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1 Spectra

(Throughout, ‘spaces’ means pointed topological spaces or simplicial sets – we’ll be clear where we need one
version or the other.)

The basic objects of stable homotopy theory are spectra. Intuitively, a spectrum is the following data:

• a sequence of spaces Xn for n ∈ N;

• for each n, a map ΣXn → Xn+1.

A map of spectra X → Y is an equivalence class of choices of maps Xn → Yn that make the obvious squares
commute. Two of these are said to be equivalent if they agree ‘cofinally,’ meaning roughly that we may
ignore what happens for a finite number of values of n.

The classic example is the suspension spectrum of a space X, which is given by (Σ∞X)n = Xn, with
the structure maps the identity. With a suitable notion of homotopy theory of spectra, the stable homotopy
groups of X as the homotopy groups of its suspension spectrum, and we can likewise use spectra to study
phenomena in spaces that only occur after ‘enough suspensions.’ The homotopy category of spectra, called
the stable homotopy category is the place where such phenomena live.

Complaint 1.1. Unfortunately, while the stable homotopy category is quite nice to deal with, actual categories
of spectra are more ill-behaved, particularly when we introduce smash products. The ‘definition’ just given
is certainly the obvious one, but leaves us with a smash product that is only commutative and associative
up to homotopy, a statement (arduously) proved in [1]. Several other categories of spectra exist which are
actually monoidal model categories, but at the cost of making the definitions of the objects or homotopies
much more complicated. Schwede has a good reference on symmetric spectra [9], which have an action of the
symmetric group Σn on each Xn, and are the initial object in some category of model categories of spectra.

In fact, Lewis showed [7] that there is no category of spectra satisfying five simple axioms on the smash
product and the relationship wtih Spaces∗. For the interested, the axioms are:

1. The smash product is symmetric monoidal.

2. There is an adjunction Σ∞ : Spaces∗ � Spec : Ω∞.

3. The sphere spectrum, i. e. Σ∞S0, is the unit for the smash product.

4. Σ∞ is colax monoidal or Ω∞ is lax monoidal.

5. There is a natural weak equivalence from Ω∞Σ∞X to the usual infinite loop space colimn ΩnΣnX.

The compromise I’ll make is to define the category of CW-spectra, invented by Boardman [2] and on
which the definitive source is [1]; I’ll move quickly to the stable homotopy category, where we’ll spend most
of our time anyway. The advantages of this are that it’s closest to the intuitive ‘definition’ given above;
all the constructions except for the smash product are relatively simple; and we can make the sorts of
cellular arguments that we’ll need to discuss Bousfield localization. The disadvantages are that I won’t
really construct the smash product or the model structure, and neither of these is terribly well-behaved.
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Keep in mind that you can always choose a category in which they are well-behaved! Theoretically, Lewis-
May-Steinberger’s category of S-modules is probably the best choice for the discussion that follows [8]; if
you want to see another construction, [9] is the a great introduction to symmetric spectra for even those
with no familiarity with spectra.

Definition 1.2. A CW-spectrum X is a sequence {Xn} of pointed CW-complexes indexed by n ∈ Z, with
cellular structure maps φn : ΣXn → Xn+1. A subspectrum Y ⊆ X is a choice of subcomplexes Yn ⊆ Xn

such that φn(ΣYn) ⊆ Yn+1. A subspectrum Y is closed if whenever a cell emα of Xn has φn(Σeαm) ⊆ Yn+1,
then emα ⊆ Yn; it is cofinal if for all cells eαm ⊆ Xn, there is a k such that

φn+k−1 ◦ (Σφn+k−2) ◦ · · · ◦ (Σk−1φn)(emα ) ⊆ Yn+k.

That is, every cell ends up in Y after enough suspensions.

Example 1.3. We already discussed the suspension spectrum of a space. The sphere spectrum S is the
suspension spectrum of S0, (S)n = Sn.

Given an abelian group A, the Eilenberg-Mac Lane spectrum on A is the spectrum HA with HAn =
K(A,n). The structure maps ΣK(A,n)→ K(A,n+ 1) are adjoint to K(A,n)

∼→ ΩK(A,n+ 1).

Definition 1.4. A map f : X → Y is a choice of cofinal subspectrum W ⊆ X and maps fn : Wn → Yn that
commute with the structure maps of X and Y , modulo the equivalence relation that two maps are equivalent
if they agree on a cofinal subspectrum of X on which they are both defined.

Note that two maps always have a common cofinal subspectrum of definition, since the intersection of
two cofinal subspectra is cofinal. Also, all this works for simplicial sets instead of CW-complexes, though to
define homotopy as below, we’ll want the simplicial sets involved to be Kan complexes.

Example 1.5. Big Paul gave the example of the Kan-Priddy map. For each n, there’s a map RPn−1+ →
O(n) given by sending a line to reflection in the plane perpendicular to that line. There’s also a map
O(n)→ ΩnSn: an orthogonal transformation gives an automorphism of the sphere. Composing these maps
and using an adjunction gives ΣnRPn−1+ → Sn, and taking the colimit gives a map of spectra Σ∞RP∞+ → S.
This map is surjective on homotopy, but doesn’t restrict to any map of spaces ΣnRP∞+ → Sn. Thus we have
a map of CW-spectra that can’t be fully defined at any stage of the source.

There are two primary reasons to be interested in spectra. The first is that spectra are intimately related
to cohomology, as we’ll discuss in a bit. The second is that spectra are the natural place to do stable
homotopy theory. To this end, we define the stable homotopy category.

Definition 1.6. Let I be the interval [0, 1]. The cylinder on a spectrum X is the spectrum (X ∧ I+) with
(X ∧ I+)n = Xn ∧ I+, and the structure maps given by applying the structure maps of X. If f, g : X → Y
are maps of spectra, a homotopy f ∼ g is a map H : X ∧ I+ → Y with H|X∧{0}+ = f , H|X∧{1}+ = g.
(Recall that this equality means the maps agree on a cofinal subspectrum.)

Definition 1.7. The stable homotopy category is the category of CW-spectra and homotopy classes of
maps. We write [X,Y ] for the set of homotopy classes of maps from X to Y . We can make this a graded
category by defining [X,Y ]n = [ΣnX,Y ]. In particular, π∗X = [S,X]∗, where S is the sphere spectrum.

Now, if X is a space, we have an isomorphism

[S,Σ∞X]n ∼= πSnX := colimk→∞ πn+kΣkX.

Thus the stable homotopy groups of a space are encoded in the stable homotopy category; likewise, other
stable phenomena are expected to live here as well.

In theoretical terms, model categories of spectra are stable model categories, in that their homotopy
categories are triangulated. A s a result, (graded) hom-sets in the stable homotopy category are (graded)
abelian groups, and homotopy cofiber sequences and homotopy fiber sequences are the same.
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2 Constructions with spectra

Loop space and suspension

Given a spectrum X, its suspension is the spectrum given by (ΣX)n = Xn+1, and its loop space is the
spectrum given by (ΩX)n = Xn−1. Clearly, these are inverse equivalences on the stable homotopy category,
and shift the homotopy groups of a spectrum down or up. We could also construct these by applying the
suspension and loop space constructions levelwise to X; the structure maps ΣXn → Xn+1 and their adjoints
Xn → ΩXn+1 define homotopy equivalences between the two constructions.

In particular, every spectrum is a double suspension, and the Eckmann-Hilton argument shows that
[X,Y ]∗ = [X,Σ2Ω2Y ]∗ is always a graded abelian group. Thus, the stable homotopy category is additive!

Cofibers and fibers

In fact, the stable homotopy category is triangulated, meaning not only that suspension is an equivalence,
but also that every cofiber sequence is also a fiber sequence. We can construct the cofiber of f : X → Y
by (Y/X)n = Yn ∪ CWn for W a cofinal subspectrum of X on which f is defined; one can check that this
only depends on f up to homotopy, and that it is well-defined up to homotopy equivalence. We then have a
sequence in the stable homotopy category

· · · → Ω(Y/X)→ X → Y → Y/X → ΣX → · · ·

in which every consecutive triple of terms is both a cofiber sequence and a fiber sequence. In particular, for
any spectrum Z we have long exact sequences

· · · → [X,Z]n−1 → [Y/X,Z]n → [Y, Z]n → [X,Z]n → [Y/X,Z]n+1 → · · ·

and
· · · → [Z, Y/X]n+1 → [Z,X]n → [Z, Y ]n → [Z, Y/X]n → [Z,X]n−1 → · · · .

Sums

We can sum or wedge spectra by doing so objectwise: (
∨
αX

α)
n

=
∨
αX

α
n .

Smash product

The smash product of pointed spaces is defined by

X ∧ Y = (X × Y )/(X × {∗} ∪ {∗} × Y );

this defines a closed symmetric monoidal structure on the category of pointed spaces (where we’ll have to
jump through the usual compactness hoops to get ‘closed’). In spectra, we’d like to do the same thing. The
obvious way to go about it is to define

(X ∧ Y )n = Xn ∧ Yn,

which is clearly a CW-complex if Xn and Yn are. Unfortunately, this does not work! For we’d need a map

Xn ∧ Yn ∧ S1 → Xn+1 ∧ Yn+1,

but with only the one suspension coordinate, we can only go to Xn+1 ∧ Yn or Xn ∧ Yn+1.
One way to fix this problem is to have (X ∧ Y )2n = Xn ∧ Yn, (X ∧ Y )2n+1 = Xn ∧ Yn+1, and alternately

increase the level of the X and Y factors. In fact, there are an infinite number of ways to do this, each given
by a choice of two disjoint cofinal subsets of N which tell you when to increase the respective levels of X and
Y . After about thirty pages of tediousness [1], one can show that all of these various smash products are
equivalent in the stable homotopy category, with these equivalences respecting various associativity, unit,
and commutativity isomorphisms.
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It is highly recommended that you ignore the details of this construction and black-box the fact that
there exists a symmetric monoidal smash product on the stable homotopy category with S as the unit.
Needless to say, this does not lift to a symmetric monoidal structure on the category of CW-spectra, though
as mentioned above, if need be we can work in a model category of spectra on which the smash product is
on-the-nose monoidal. One example of a smash product that can and should be explicit is when we one of
the factors is the suspension spectrum of a space. In this case we have

(X ∧ Σ∞K)n = Xn ∧K,

where the structure maps use the spectrum structure of X in the obvious way. We often identify spaces with
their suspension spectra and thus write this X ∧K, giving an action of the monoidal category of spaces on
the stable homotopy category.

Spanier-Whitehead duality

A useful corollary of Brown representability is the following observation. If X is a spectrum, then [X,Y ]∗
is a covariant functor of Y that clearly satisfies the axioms of a homology theory. Thus there is a spectrum
Xˇand a natural isomorphism

[X,Y ]∗ ∼= [S,Xˇ∧ Y ]∗.

In particular, [X,S]∗ ∼= [S,X ]̌∗. It’s easy to check that this dual construction commutes with smash products.
When X has the homotopy type of a finite CW-spectrum, so does X ,̌ and Xˇ̌ ' X; in general, this isn’t
true for non-finite X. Note that Xˇ∧ · is the internal hom functor right adjoint to · ∧X.

Brown representability

This is the true clincher about spectra. For E a spectrum and X a space, we define

E∗X = [S,E ∧X]∗

and
E∗X = [X,E]−∗.

For a pair (A,X), we can just define E∗(A,X) = E∗(X ∪ CA).

Proposition 2.1. The functors E∗ and E−∗ are homology theories on the category of spaces.

Proof. Long exact sequences follow from the fact that the stable homotopy category is triangulated, as do
wedges, once you notice that X → X ∧ Y → Y is a split cofiber sequence. Homotopy-invariance is by
construction, and excision follows from homotopy-invariance. We also have suspension isomorphisms.

Surprisingly, every cohomology theory is of this form!

Theorem 2.2 (Brown representability, [3]). Every cohomology theory on the category of spaces is naturally
isomorphic to one of the form E∗ for some spectrum E.

The actual statement of Brown representability is more general: it gives conditions for a functor from
spaces to sets to be representable by a space.

In any case, this theorem allows us to represent the algebraic data of a homology theory topologically, as
a homotopy type of spectra. For example, the Eilenberg-Maclane spectrum HA represents cohomology with
coefficients in A, S∗ is stable homotopy, and there are likewise spectra called K,MU,E(n), . . . . By means of
the Atiyah-Hirzebruch spectral sequence, knowing the homotopy groups of these spectra can get you a long
way in calculating the cohomology they represent!

Products

The product of cohomology theories is a cohomology theory, so purely formally, products of spectra exist in
the stable homotopy category.
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Ring and module spectra

A ring spectrum is a monoid object in the stable homotopy category. This is a spectrum E with a
multiplication map µ : E ∧ E → E and a unit map η : S → E such that the associativity diagram

E ∧ E ∧ E
1∧µ //

µ∧1
��

E ∧ E
µ

��
E ∧ E

µ
// E

and the unit diagrams

E
' //

1

55S ∧ E
η∧1 // E ∧ E

µ // E,

E
' //

1

66E ∧ S
1∧η // E ∧ E

µ // E

commute. A ring spectrum E is said to be commutative if the commutativity diagram

E ∧ E twist //

µ
##

E ∧ E

µ
{{

E

commutes.

A (left) module spectrum over a ring spectrum E is a spectrum F with an action map ν : E ∧F → F
such that the associativity diagram

E ∧ E ∧ F 1∧ν //

µ∧1
��

E ∧ F
µ

��
E ∧ F

µ
// F

and the unit diagram

F
' //

1

66S ∧ F
η∧1 // E ∧ F ν // F

commute.

Remark 2.3. In this and other model categories of spectra, ring and module spectra will often be modelled by
objects and structure maps in the actual model category, such that the above diagrams only commute up to
homotopy. One thing to keep in mind is that there aren’t many ‘strict ring spectra,’ meaning monoid objects
in the original model category. Indeed, the only strict monoid objects in Spaces are products of Eilenberg-
Mac Lane spaces of rings. This is the key point in Lewis’s argument that there are no nice categories of
spectra; the five axioms given end up creating too many strict ring spectra.

Example 2.4. If R is a ring, then the Eilenberg-Mac Lane spectrum HR is a ring spectrum. Recalling
that maps X → HR correspond to elements of H0(X;R), the unit map is S → HR corresponding to
1 ∈ H0(S0;R) ∼= R, and the multiplication map is HR ∧ HR → HR corresponding to the multiplication
map in

Hom(R⊗R,R) ∼= H0(HR ∧HR;R).

Likewise, if M is an R-module, HM is an HR-module spectrum.

The sphere spectrum is also a ring spectrum, with the unit map being 1 : S → S and the multiplication
being 1 : S ∧ S ' S → S. Every spectrum is a module over S.
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The primary use of ring and module spectra is to define multiplication on cohomology. Generally speaking,
given any two spectra E and F , there is a natural external pairing

Ep(X)⊗ F q(X) ∼= [X,E]−p ⊗ [X,F ]−q → [X,E ∧ F ]−p−q ∼= (E ∧ F )p+q(X).

If E = F is a ring spectrum, post-composing with E∧E → E defines a cup product E∗(X)⊗E∗(X)→ E∗(X)
making E∗(X) a graded ring. If E is a ring spectrum and F an E-module spectrum, post-composing with
E ∧ F → F defines an action of E∗(X) on F ∗(X), making F ∗(X) a graded E∗(X)-module. Similar results
exist in homology. For more general results, including a pairing between homology and cohomology and
‘slant products’ allowing you to ‘divide’ homology classes by cohomology classes and vice versa, see [1].

A universal coefficient theorem

We conclude with a theorem that will be useful in our discussion of Bousfield localization below.

Theorem 2.5 (Universal coefficient theorem). Let E be a spectrum, G an abelian group, and let EG =
E ∧ SG. There exist natural exact sequences

0→ En(X)⊗G→ (EG)n(X)→ Tor(En−1(X), G)→ 0

and

0→ En(X)⊗G→ (EG)n(X)→ Tor(En+1(X), G)→ 0.

Proof. Recall that SG is defined by a cofiber sequence∨
α

S →
∨
β

S → SG

corresponding to a free resolution 0 → R → F → G → 0 of G with a choice of generators {α} and {β} for
R and F . Smashing this with E and X gives a cofiber sequence∨

α

E ∧X →
∨
β

E ∧X → EG ∧X,

and taking graded maps from S gives a long exact sequence

· · · →
⊕
α

En(X)→
⊕
β

En(X)→ (EG)n(X)→
⊕
α

En−1(X)→ · · · .

The cokernel of the first map is En(X) ⊗ G, and its kernel is Tor(En(X), G), so the long exact sequence
splits into the described short exact sequences. The theorem for cohomology is proved similarly.

Remark 2.6. Unlike the case of spaces, these sequences do not in general split!

3 Bousfield localization

In the Adams and Adams-Novikov spectral sequences, we have homological data coming from the groups
E∗X and E∗Y for some homology theory E∗, and we’d like to compute something like the homotopy classes
of maps [X,Y ]∗. However, it’s obvious that we won’t be able to compute anything in [X,Y ]∗ that E can’t
see; for instance, if E = HZ(2), we shouldn’t expect to discover any of the odd torsion of [X,Y ]∗. So what
we end up doing is replacing Y with an object, called a localization, whose homotopy theory is entirely
described by its E∗-homology.

Another way of thinking about this, which is described in more detail below, is that we define a new model
category of spectra in which the cofibrations are the same and the weak equivalences are the E∗-equivalences.
A localization of an object is then just a fibrant replacement.
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Remark 3.1. It’s interesting to me that Bousfield localization unites the two common meanings of localization.
On the one hand, if E = HA where A is some localization of the ring Z (for example, HZ(p) or HQ), then
E∗-localizing a spectrum literally localizes its homology and homotopy by tensoring them with A. There’s a
standard topological way to do this, called ‘localization’ or ‘rationalization,’ that you may have seen already,
and the construction for a more general E is along the same lines. On the other hand, we’re also adding
weak equivalences to the model category of spectra, and thus localizing its homotopy category in the sense
of inverting maps. [As was pointed out to me, localization of categories is a categorification of localization
of rings/monoids.]

Definition 3.2. Let E∗ be a homology theory. A spectrum X is called E∗-acyclic if E∗X = 0. A spectrum
X is called E∗-local if [A,X]∗ = 0 for every E∗-acyclic A.

Since an E∗-equivalence is precisely a map with an E∗-acyclic homotopy fiber, X is E∗-local iff every
E∗-equivalence A→ B induces an isomorphism [B,X]∗ ∼= [A,X]∗.

Definition 3.3. An E∗-localization of a spectrum X is an E∗-equivalence X → LEX such that LEX is
E∗-local. An E∗-localization functor is a functorial choice of E∗-localizations; thus, we want a functor
LE : Spec→ Spec and a natural transformation 1⇒ LE satisfying the above conditions.

Let’s first establish some facts about E∗-local spectra.

Proposition 3.4 (E∗-Whitehead theorem). If f : X → Y is an E∗-equivalence of E∗-local spectra, then f
is a weak equivalence (and a homotopy equivalence if X is a cell complex).

Proof. Since both spaces are E∗-local, f induces isomorphisms [Y, Y ]∗ ∼= [X,Y ]∗ and [Y,X]∗ ∼= [X,X]∗.
These lift to homotopy equivalences of mapping spaces, proving that f is a weak equivalence.

Proposition 3.5. If E is a ring spectrum and X is a module spectrum over E, then X is E∗-local.

Proof. Let A be E∗-acyclic and f : A→ X be a map. We can factor f as

A
i∧1 //E ∧A

1∧f //E ∧X
µ //X

where i is the unit map of E and µ the module structure map of X. Since E∗A = 0, E ∧ A is contractible,
so f is nullhomotopic. Thus [A,X]∗ = 0.

Proposition 3.6. E∗-local spectra are closed under shifts, products, retracts, and cofibers

Proof. Products and retracts are obvious; cofibers follow from the five lemma.

Proposition 3.7. If LE is any localization functor, then LE preserves shifts, wedges, and homotopy cofibers.

We now prove that localization functors exist. Adams attempted to do this by directly localizing the
homotopy category, but this procedure is set-theoretically unsound: in general, a localization of a locally
small category need not be locally small. To deal with this, we need to be clever with the cardinalities of
our spectra, a trick called the ‘Bousfield-Smith cardinality argument.’ The below is all in [4].

Recall that a subspectrum B of a CW-spectrum X is closed if B is a union of cells and any cell of X
with some suspension in B is in B; this guarantees that X/B is a CW-spectrum.

Lemma 3.8. Let X be a CW-spectrum and B a proper closed subspectrum with E∗(X,B) = 0, and let κ be
an infinite cardinal greater than or equal to |π∗E|. Then there is a closed subspectrum W ⊆ X with at most
κ cells such that W is not contained in B and E∗(W,W ∩B) = 0.

Proof. Let W1 be any closed subspectrum of X not contained in B and with at most κ cells. Inductively,
given Wn, for each class α ∈ E∗(Wn,Wn ∩B), choose a finite closed subspectrum Fα of X such that α goes
to zero in E∗(Wn ∪ Fα, (Wn ∪ Fα) ∩ B), and let Wn+1 be the union of all Wn with all Fα. If Wn has at
most κ cells, then E∗(Wn) has at most κ elements since |π∗E| ≤ κ; thus by induction, all Wn have at most
κ cells. Letting W = colimWn, it is clear that E∗(W,W ∩ B) = 0, that W is not contained in B, and that
W has at most κ cells.
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Lemma 3.9. For any E, there exists an E∗-acyclic spectrum A such that a spectrum Y is E∗-local if and
only if [A, Y ]∗ = 0.

Proof. Choose κ as above, and let {Kα} be a set of CW representatives for the weak equivalence classes
of E∗-acyclic spectra with at most κ cells. Let A =

∨
αKα. Clearly if Y is E∗-local, then [A, Y ]∗ = 0.

Conversely, if [A, Y ]∗ = 0, then [A′, Y ]∗ = 0 for any spectrum A′ that can be obtained from A by taking
weak equivalences, shifts, wedges, summands, and cofibers. Let C(A) denote this class of spectra; it suffices
to show that every E∗-acyclic spectrum is in C(A).

Let X be an E∗-acyclic spectrum; up to weak equivalence, we can take X to be a CW-spectrum. By
transfinite induction and the previous lemma, we can construct a sequence

0 = B0 ⊆ B1 ⊆ B2 ⊆ · · · ⊆ Bγ = X

such that

• each Bλ is an E∗-acyclic closed subspectrum;

• each Bλ+1 is obtained from Bλ by adding a closed subspectrum Wλ as in the previous lemma;

• for λ a limit ordinal, Bλ =
⋃
σ<λBσ.

Now, if Bλ ∈ C(A), there is a cofiber sequence

Bλ → Bλ+1 → Kα,

where Kα is weakly equivalent to the E∗-acyclic spectrum Wλ/(Wλ ∩Bλ), and thus a cofiber sequence

ΩKα → Bλ → Bλ+1;

thus Bλ+1 is also in C(A). Likewise, if λ is a limit ordinal, it is the cofiber of∨
σ<λ

Bσ
1−i→

∨
σ<λ

→ Bλ,

where i is the wedge of Bσ ↪→ Bσ+1. By transfinite induction, all Bλ, and in particular X, are in C(A).

Theorem 3.10. For any E, there exists a localization functor X 7→ [X → LEX].

Proof. By the above lemma, all we need is a natural map X → LEX such that [A,LEX]∗ = 0. As in
the small object argument, we can do this by successively coning off all maps from A and using transfinite
induction. By construction, A is a wedge of spectra with less than κ cells, each of which should be κ-small,
so A is κ-small and the small object argument goes through. This also shows that A→ LEX is functorial.
(For a reference on the small object argument, see e.g. [6][§2.1]).

Remark 3.11. The interested should know that this process is very general. Given a left proper model
category with a set I of generating cofibrations, the relative I-cell complexes are the maps that are
transfinite compositions of pushouts of coproducts of elements of I – recall that the cofibrations in the
model category are precisely the retracts of these. We can run the above argument, with the relative I-cell
complexes replacing the relative CW-spectra and any class of maps replacing the E∗-equivalences, so long
as we assume:

• smallness conditions on the objects appearing in I, so that the small object argument used above
works;

• a somewhat irritating condition called ‘compactness’ that lets us factor certain maps into relative I-cell
complexes through subcomplexes with a bounded cardinality of cells;

• that the maps in I are ‘effective monomorphisms,’ which means that we can specify a subcomplex of
an I-cell complex purely by its cells.

These conditions define a cellular model category. An encyclopedic reference on this approach is [5].
In fact, any left proper combinatorial model category admits localizations. Since these appear more often

and are desirable for other attacks, this is probably the approach you want to use. I don’t know whether
every cellular model category is combinatorial – if someone has a proof or counterexample, I’d love to see it.
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4 Examples of localizations

First and foremost, let’s fix the hole discovered at the beginning of the previous section. As we’ll surely
discuss later, the Adams spectral sequence is in fact a spectral sequence

ExtE∗E(E∗X,E∗Y )⇒ [X,LEY ]∗.

Second, we discuss some specific examples of localizations, specifically localizing with respect to Moore
spectra, and localizing connective spectra.

Definition 4.1. Two abelian groups G1 and G2 have the same type of acyclicity if each prime p is a unit
in G1 iff it is in G2, and if G1 is torsion if G2 is torsion.

In particular, every group has the same type of acyclicity as a localization of Z (i.e. a subring of Q) or
a direct sum of distinct rings of the form Z/p. The next proposition shows that when studying localization
with respect to Moore spectra, we only need consider these two cases.

Proposition 4.2. G1 and G2 have the same type of acyclicity iff SG1 and SG2 give weakly equivalent
localization functors.

Proof. By the universal coefficient theorem discussed above, (SG)∗(X) is an extension of Tor(πn−1(X), G)
by πn(X)⊗G. Thus X is (SG)∗-acyclic iff π∗(X)⊗G and Tor(π∗(X), G) are both zero. This only depends
on the type of acyclicity of G. Clearly the localization functors are equivalent iff the theories have the same
acyclic objects.

Proposition 4.3. Let G be a localization of Z and let X be a spectra. Then LSG(X) ' SG ∧ X, with
π∗LSG(X) = G⊗ π∗X.

Proof. SG ∧ X is a module spectrum over SG, and thus local. By homology with coefficients the map
X ' S ∧X → SG ∧X is an SG∗-localization.

In particular, the SG∗-local spectra for such G are precisely those X for which p is a unit in π∗(X), for
each p that is a unit in G.

Proposition 4.4. Let G =
⊕

p∈P Z/p. Then

LSG(X) '
∏
p∈P

X ∧ (ΩSZ/p∞)̌

and if π∗X is degreewise finitely generated, then

π∗LSG(X) =
∏
p∈P

Zp ⊗ π∗X.

In general there’s a split short exact sequence

0→ Ext(Z/p∞, π∗X)→ π∗LSG(X)→ Hom(Z/p∞, π∗−1X)→ 0.

Proof. It suffices to consider one prime p.
ΩSZ/p∞ is the fiber of S → SZ[p−1], since Z/p∞ is the cokernel of Z → Z[p−1]. Thus we have a fiber

sequence
X ∧ (SZ[p−1])̌ → XS → X ∧ (ΩSZ/p∞)̌ → ΣX ∧ (SZ[p−1])̌ .

Now, Z/p∞ has the same type of acyclicity as Z/p, so that X ∧ (ΩSZ/p∞)̌ is SZ/p∗-local. Meanwhile,
X ∧ (SZ[p−1])̌ has homotopy groups

[S,X ∧ (SZ[p−1])̌ ]∗ ∼= [SZ[p−1], X]∗ ∼= π∗X ⊗ Z[p−1].

In particular, p is a unit in these homotopy groups, so X ∧ (SZ[p−1])̌ is SZ/p∗-acyclic. Thus X → X ∧
(ΩSZ/p∞)̌ is a SZ/p∗-localization of X, and the conclusion follows.
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One Moore spectrum that pops up more often than you’d think is SQ. By elementary rational homotopy
theory, this is homotopy equivalent to HQ!

In addition, since EG = E ∧ SG, the above methods let you EG∗-localize as soon as you’ve managed to
E∗-localize. In particular, this only depends on E and the type of acyclicity of G.

One nice thing that comes up is the following.

Proposition 4.5. Let E, F , X be spectra with LFX E∗-acyclic. Then the square

LE∨FX
f //

g

��

LEX

��
LFX // LFLEX

is a homotopy pullback square.

Proof. Let P be the homotopy pullback of the square and construct the obvious map LE∨FX → P . Working
in a proper model category of spectra, we get that the map P → LFX is an F∗-equivalence, and P → LEX
is an E∗-equivalence. Also, f and g in the above square are respectively E∗- and F∗-equivalences, because
X → LE∧FX is an E∗- and F∗-equivalence and composing this map with f and g gives respectively an E∗-
and F∗-localization of X. Thus the maps P → LEX and P → LFX factor through LE∨FX, giving an
isomorphism between P and LE∨FX.

We’ll see one application involving various K(n)’s later on. For another, let F = SQ and E =
∨
p SZ/p.

Then E ∧ F detects ordinary homology, so LE∨FX = X; also, LEX =
∏
p LSZ/pX. We get the Sullivan

arithmetic square

X //

��

∏
p LSZ/pX

��

LSQX // LQ

(∏
p LSZ/pX

)
.

We end with a note of hope: when dealing with connective X and E, localization is extremely easy!

Theorem 4.6 (Bousfield). Let E and X be connective, and let G = π0E (or even a group with the same
type of acyclicity, as above). Then LEX ' LSGX.
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