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References are the first few chapters of Mosher and Tangora, and if you can read French, Serre’s ‘Coho-
mologie modulo 2 des complexes d’Eilenberg-MacLane’ (1953). Hatcher §4.L is OK.

1 Eilenberg-Mac Lane spaces

Definition 1.1. Let n ≥ 1 and let A be a group, which is abelian if n ≥ 2. An Eilenberg-Mac Lane
space K(A,n) is a space whose only nonzero homotopy group is πnK(A,n) = A.

We’ve seen, but not proved, a few important properties of these things:

1. They exist.

2. A little more interesting: they’re unique up to homotopy equivalence, so we’re justified in speaking of
‘the Eilenberg-Mac Lane space K(A,n)’.

3. We have ΩK(A,n) ' K(A,n− 1).

4. Most importantly today, K(A,n) represents the functor degree n cohomology with coefficients in A on
the homotopy category. This means that for any space X, there’s an isomorphism

[X,K(A,n)] ∼= Hn(X;A)

(and the source has a natural abelian group structure). This isomorphism is natural in X, meaning
that a map f : X → Y induces a diagram

[Y,K(A,n)]
∼= //

f∗

��

Hn(Y ;A)

f∗

��
[X,K(A,n)] ∼=

// Hn(X;A)

and this square commutes.

Representing a functor by maps into an object is a really useful technique that I think originated in
algebraic topology (and is in turn the starting point of category theory). We’ve seen one example of this
already: we realized we could study real vector bundles through the object BO that represented them, and
in particular, define cohomology classes of vector bundles as cohomology elements of BO. Naturality of the
Stiefel-Whitney classes came for free from this definition.

Today, we’ll study the properties of cohomology through the lens of representability. I’ll spend the rest
of the talk on mod 2 cohomology, and just write this H∗, though similar things work for mod p cohomology.
The mod 2 cohomology of a space is a graded commutative ring, which is a lot of structure already. Is there
more structure floating around? One way to make this question precise is to ask: what are all the natural
transformations

HnX → HmX,

also known as cohomology operations?

1



Example 1.2. The cup-product square, HnX → H2nX, is a cohomology operation. (It’s a group homo-
morphism because we’re mod 2!)

By the Yoneda lemma, natural transformations between these two functors are the same as maps between
their representing objects. So I’m asking for the set of homotopy classes of maps

[K(F2, n),K(F2,m)]

which is the same as the cohomology group

Hm(K(F2, n)).

We could compute this right now, as a matter of fact, using the Serre spectral sequence, Borel’s theorem on
simple systems of generators, and the fact that K(F2, 1) = RP∞, whose cohomology we know. It’s a nice
exercise to compute it for the first few values of n. As you’ll see, it’s a little hard to write it down without
better notation.

So instead, let’s remember another piece of structure on homology: there’s a suspension isomorphism

HnX ∼= Hn+1ΣX.

In terms of the representing object, this is an isomorphism

[X,K(F2, n)] ∼= [ΣX,K(F2, n+ 1)].

The right-hand side is the same as [X,ΩK(F2, n + 1)], so the suspension isomorphism is induced by the
homotopy equivalence K(F2, n) ' ΩK(F2, n+ 1). Now instead of asking for all cohomology operations, let’s
ask for stable cohomology operations which are stable. A degree k stable cohomology operation is a natural
transformation

HnX → Hn+kX

for all n that commutes with the suspension isomorphisms.

Example 1.3. The cup-product square for varying n is not stable. Suspending the map HnX → H2nX
gives a map Hn+1ΣX → H2n+1ΣX, which isn’t even the right degree. In fact, on H∗ΣX, all cup products
vanish! (Exercise, using Mayer-Vietoris, if you haven’t seen this.) A natural question at this point is: is
there a stable cohomology operation, HnX → Hn+kX for varying n, that is the cup product square on Hk?

Again using representability, the set of stable cohomology operations will be the colimit of the groups
[K(F2, n),K(F2, n+ k)] along the maps

[K(F2, n),K(F2, n+ k)] ∼= [ΩK(F2, n+ 1),ΩK(F2, n+ k + 1)]
∼= [ΣΩK(F2, n+ 1),K(F2, n+ k + 1)]→ [K(F2, n+ 1),K(F2, n+ k + 1)].

Equivalently, I want the colimit
colimn H

n+kK(F2, n)

along the maps
K(F2, n+ 1)→ ΣΩK(F2, n+ 1) ' ΣK(F2, n).

This colimit is the group of degree-n stable cohomology operations. Taking this for all n, we get a graded
ring (I can compose two stable cohomology operations to get another one). This ring is the Steenrod algebra.

Remark 1.4. I’ve written this down as a colimit of cohomologies, but it might be better to think of it as the
cohomology of some kind of limit of suspensions of Eilenberg-Mac Lane spaces along the maps above. This
limit is what we’ll later call an ‘Eilenberg-Mac Lane spectrum’.
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2 Constructing the Steenrod operations

The way I’ve just described it, the natural next thing to do would be to compute this cohomology ring.
AgaIn, it’s possible to do this blind, but knowing the Steenrod operations beforehand makes it practically
much, much easier. Historically, people instead constructed the Steenrod operations geometrically and then
used them to find cohomology of Eilenberg-Mac Lane spaces. I want to give you an idea of how this works
because the same method is still useful today to give analogous operations, so-called ‘power operations’, in
other cohomology theories. For references, see chapter 2 of Mosher-Tangora and this MathOverflow answer
by Charles Rezk.

I’ll write K =
∏

nK(F2, n), so an arbitrary formal sum a of cohomology classes of X is represented by
an element of [X,K]. The cup-product square of a is represented by the composite

X
∆→ X ×X a→ K ×K → K.

Here the last map is some kind of multiplication map on K that represents the cup product. Now, since
the cup product is associative and graded-commutative on cohomology, this multiplication is associative and
commutative up to homotopy. If it were commutative on the nose, we’d have a factorization

X // X ×X

��

// K ×K // K.

(X ×X)/Σ2

44

Since it’s only commutative up to homotopy, we can factor down to the quotient space only after we’ve added
extra coordinates that allow us to make a Σ2-equivariant homotopy from (x, y) to (y, x). If you think about
this for a while, you realize that you need to multiply X ×X by a contractible space with a free Σ2-action.
Such spaces are often coyly written EΣ2, but in this case, there’s a really simple geometric model: the
space S∞, the colimit of the spheres Sn along the maps that include each sphere as the equator of the next.
(Exercise: why is this contractible?) The antipodal map is a free Σ2-action. So there’s a diagram

X // X ×X

��

// K ×K // K,

(X ×X × S∞)/Σ2

44

and the space on the bottom is X ×RP∞. Thus, from a cohomology class of X, we’ve produced an element
of

H∗(X × RP∞) = H∗X ⊗H∗RP∞ = H∗X[t],

and the degree zero term, which is what you get by pulling back along the inclusion

X → X ×X × S∞ → X × RP∞,

is the cup-product square of our original class. The higher-degree coefficients are the Steenrod squares of
the original class.

The upshot of all this is that the cup product, which is commutative on cohomology, is only commutative
up to homotopy on the chain level. These homotopies produce artifacts in lower-degree cohomology, and
these artifacts are the lower Steenrod squares.

3 The Steenrod algebra

Unfortunately, I’m not going to start calculating this, either, though Philip might do some on Wednesday.
Instead, I’ll write down a bunch of algebraic properties of the Steenrod algebra.

Theorem 3.1. There are a unique set of operations Sqi : Hn(X,Y ) → Hn+i(X,Y ), called the Steenrod
squares, that satisfy the following properties:
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1. The squares are homomorphisms of abelian groups, natural in X, and commute with suspension. They
also commute with long exact sequences of cohomology.

2. Sq0 is the identity, Sq|x|(x) = x2, and Sqi(x) = 0 for i > |x|.

3. Sq1 : Hn(X;F2)→ Hn+1(X;F2) is the connecting homomorphism in the long exact sequence

· · · → Hn(X;F2)→ Hn(X;Z/4)→ Hn(X;F2)
Sq1

→ Hn+1(X;F2)→ · · ·

induced by the short exact sequence of coefficients

0→ F2 → Z/4→ F2 → 0.

(This map is also called a Bockstein homomorphism.)

4. The squares satisfy a Cartan formula:

Sqk(xy) =
∑

i+j=k

Sqi(x) Sqj(x).

Equivalently, the ‘total square’ Sq =
∑

k Sqk is a ring homomorphism.

5. There are Adem relations describing the composition of two squares: if a < 2b, then

Sqa Sqb =

ba/2c∑
c=0

(
b− c− 1

a− 2c

)
Sqa+b−c Sqc .

Finally, the Steenrod algebra A is the quotient of the free (noncommutative) F2-algebra on generators Sqi by
the Adem relations.

Remark 3.2. At odd primes, we write Pi for the ith ‘Steenrod pth power’, and there’s a very similar theorem.
The biggest difference is that if x has odd degree, then xp = 0, so we should only be trying to reduce the
pth power map on even degree classes. People generally write Pn for an operation that increases degrees by
2p(n− 1) – so it’s the pth power on degree 2n – and β for the Bockstein, which increases degrees by 1 and
gives all the odd degree operations. This makes the formulas much more complicated. If you read about
this you should think about β as the analogue of Sq1 and Pn as the analogue of Sq2n.

Remark 3.3. We’ve seen three ways to think about the Steenrod algebra. There’s this axiomatic definition
of the squares, which is all you need if you’re most interested in messing around with cohomology classes,
as we’ll do in a second. These squares generate an algebra of cohomology operations, which turn out to be
all of the stable cohomology operations – the way we started the discussion. (In fact, as we might see from
Philip tomorrow, the algebras of unstable operations are all quotients of the Steenrod algebra.) Finally,
the geometric approach had us finding Steenrod squares as artifacts of the homotopy-commutativity of the
cup-product square, i. e. as power operations. In general, power operations and cohomology operations are
not the same concept!

This big, infinite-dimensional algebra acting on cohomology is a huge amount of structure, and can
be used to distinguish homotopy types, obstruct various maps and homotopy types, and exhume hidden
relations.

Example 3.4. CP 2 has integral cohomology Z[x]/(x3) where |x| = 2. Suspending it gives a space with a
3-cell and a 5-cell and thus cohomology in degrees 3 and 5, and all cup products vanish. Is this space S3∨S5?
We can’t tell from the cohomology ring alone. However, the mod 2 cohomology groups are generated by
elements Σx and Σ(x2), and stability of the Steenrod squares shows that Sq2(Σx) = Σ(Sq2 x) = Σ(x2). This
is not true in S3 ∨S5: there’s a map S3 ∨S5 → S3 inducing H∗S3 → H∗(S3 ∨S5), which is an isomorphism
on H3, and all Steenrod squares vanish on the generator of H3S3.

For the same reason, no suspension of CP 2 is a wedge of spheres. Another way of saying this is that the
map attaching the 4-cell of CP 2 to the 2-cell doesn’t become nullhomotopic after suspending. This is a map
S3 → S2 – in fact, it’s the Hopf fibration. So we’ve just shown that πn+1S

n 6= 0 for all n ≥ 2, which is to
say that the first stable homotopy group of spheres is nonzero.
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Example 3.5. Here’s an example of how we can use the Adem relations. Let n be a number that’s not a
power of 2, let b = 2k be the largest power of 2 less than n, and let a = n − b. Then a < 2b, so there’s an
Adem relation

Sqa Sqb =
∑(

b− c− 1

a− 2c

)
Sqn−c Sqc .

The coefficient when c = 0 is (
1 + 2 + · · ·+ 2k−1

a0 + 2a1 + · · ·+ 2k−1ak−1

)
where the bottom is the base 2 expansion of a. Exercise: the mod 2 binomial coefficient(

b0 + 2b1 + · · ·+ 2ibi
a0 + 2a1 + · · ·+ 2iai

)
=

(
b0
a0

)(
b1
a1

)
· · ·
(
bi
ai

)
.

So this coefficient is 1. This means that there’s a relation

Sqn =
∑

Sqi Sqj ,

i. e., if n isn’t a power of 2, the nth square is decomposable into smaller squares.

In particular:

Theorem 3.6. The Steenrod algebra is generated by the elements Sq2k

.

Corollary 3.7. If X is a space with H∗X ∼= F2[x] as a ring, then |x| is a power of 2.

Proof. If |x| = n, then Sqn(x) = x2 6= 0, but all lower squares are zero. So Sqn can’t be decomposable,
meaning n must be a power of 2.

Remark 3.8. By making the same argument at odd primes, you can show that if H∗(X,Z) ∼= Z[x], then
|x| = 2 or 4. In fact, if H∗X ∼= F2[x], then |x| is 1, 2, 4, or 8. This follows from Adams and Atiyah’s proof
of the Hopf invariant one theorem (‘K-theory and the Hopf invariant’, 1960), and 8 is ruled out from the
integral case by work of Toda (‘Note on the cohomology ring of certain spaces’, 1963). Similar results hold
mod odd primes. I don’t know if the obvious projective spaces are the only spaces with these cohomology
rings.
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