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ABSTRACT

Localizations of E-Theory and Transchromatic Phenomena in Stable Homotopy Theory

Paul VanKoughnett

Chromatic homotopy theory studies a parametrization of stable homotopy theory in

terms of algebraic objects called formal groups. Transchromatic homotopy theory is

specifically concerned with the behavior of spaces and cohomology theories as these formal

groups change in height. We pursue a central transchromatic object, the K(n − 1)-

localization of a height n Morava E-theory En. We give a modular description of the

coefficients of LK(n−1)En in terms of deformations of formal groups together with extra

data about the (n − 1)th Lubin-Tate coordinate. We use this to describe co-operations

and power operations in this transchromatic setting. As an application, we construct

exotic multiplicative structures on LK(1)E2, not induced from the ring structure on E2 by

K(1)-localization.
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List of abbreviations

For the sake of reference, here is some notation introduced elsewhere in the paper:

k is a field of characteristic p, generally perfect, often even finite. W denotes the Witt

vectors functor. Λ is the completed Laurent series ring Wk((un−1))∧p .

CLN is the category of complete local noetherian rings, and CLNA of complete local

noetherian A-algebras. Gpd is the category of groupoids. Other categories are written in

sans-serif, but typically identifiable from their names.

Γ is a formal group over k of finite height n.

E = En = E(k,Γ) is the Morava E-theory for (k,Γ); this is even periodic, with

periodicity class u in degree 2 and π0E non-canonically isomorphic to Wk[[u1, . . . , un−1]].

LE is the localization LK(n−1)En. At a certain point, F is used for En−1.

BP is the Brown-Peterson spectrum with BP∗ = Z(p)[v1, v2, . . . ], where |vi| = 2(pi−1);

the map BP → E sends vn 7→ up
n−1, vi 7→ 0 for i > n, and and vi 7→ up

i−1ui for i < n.

In is the ideal (p, v1, . . . , vn−1), or its image in any BP∗-module.

Notation like E∧∗ E denotes completed homology π∗LK(n)(E∧E). Which n is intended

varies, but is generally clear from context.

Gu is the universal deformation formal group of Γ, defined over E0. In particular,

there is a canonical isomorphism Gu ⊗E0 k
∼= Γ. We write H for the height n− 1 formal

group Gu ⊗ k((un−1)). G will generally be used for other formal groups.
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We will write DefΓ for the deformations functor of Γ, and Defaug
H for the functor of

deformations of H augmented with Λ-algebra structure; both are defined more explicitly

below.

In chapter 6, ψp and θ are certain operations on θ-algebras, and T is a monad acting

on the completed E-theory of an E∞ ring spectrum.
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CHAPTER 1

Introduction

All of which will perhaps but for a supersubtle way of pointing the plain moral
that a young embroiderer of the canvas of life soon began to work in terror,
fairly, of the vast expanse of that surface, of the boundless number of its distinct
perforations for the needle, and of the tendency inherent in his many-coloured
flowers and figures to cover and consume as many as possible of the little holes.
The development of the flower, of the figure, involved thus an immense counting
of holes and a careful selection among them. That would have been, it seemed to
him, a brave enough process, were it not the very nature of the holes so to invite,
to solicit, to persuade, to practise positively a thousand lures and deceits. The
prime effect of so sustained a system, so prepared a surface, is to lead on and on;
while the fascination of following resides, by the same token, in the presumability
somewhere of a convenient, of a visibly-appointed stopping-place.

– Henry James, The Art of the Novel

As Hillis Miller has demonstrated, the figure is incoherent: the covering of the
holes in the canvas by means of embroidery requires a simultaneous puncturing
with a needle.

– Sheila Teahan, “The afterlife of figures”

We begin with an old story about complex vector bundles. A complex line bundle V

over a space X is classified by a map X → CP∞. V also has a first Chern class, which is

an element c1(V ) ∈ H2(X;Z); in fact, this is the image of a specific element

x ∈ H∗(CP∞;Z) = Z[[x]], |x| = 2

under the map H∗(CP∞)→ H∗(X).
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The tensor product of complex line bundles is classified by a grouplike multiplication

CP∞ × CP∞ → CP∞. Taking cohomology and applying the Künneth formula, we get a

map

H∗(CP∞)→ H∗(CP∞)⊗Z H
∗(CP∞)

Z[[x]]→ Z[[x]]⊗ Z[[y]] ∼= Z[[x, y]].

In fact, this map sends x to x+y, which is equivalent to the very classical statement that,

for line bundles V and W , c1(V ⊗W ) = c1(V ) + c1(W ). From this statement and the

splitting principle follows the rest of the theory of Chern classes.

There is also a theory of Chern classes for complex K-theory, but the tensor product

formula is more complicated. One has

cK1 (V ⊗W ) = c1(V ) + c1(W ) + βc1(V )c1(W ),

where β ∈ K−2(∗) is the Bott periodicity class. For a general cohomology theory A

equipped with Chern classes – a complex oriented cohomology theory – there is a

tensor product formula that is a power series in two variables the A-cohomology of a

point. This associates to A an algebraic structure called a formal group.

Over the last fifty years or so, homotopy theorists have discovered a series of surprising

and productive relationships between complex oriented cohomology theories and their

formal groups. This story begins with Quillen, who proved in [Qu69] that the complex

cobordism theory MU , which carries the universal theory of Chern classes, also carries the

universal formal group (see Theorem 2.1.2 for a precise statement). This result pointed



10

the way to computations of stable homotopy groups using the MU -based Adams spectral

sequence (see [Rav04] for a survey of this work).

It also indicated that the stable homotopy category might be more algebraic than

previously thought. So, in work like [Mora89] and [La76], mathematicians began to

construct cohomology theories from formal groups, a narrative that has run through

[GH05] to the modern theory of topological modular forms [TMF14] and their higher

generalizations [BL10]. On the other hand, the classification of formal groups was shown

to be linked to deep structural properties of the stable homotopy category as a whole

[DHS88, HSt99].

To explain this last point, localized at a fixed prime p, a formal group has a positive

integer invariant called the height, which says how many times formal multiplication by

p factors through the mod p Frobenius. Informally, height is a measure of the complexity

of a formal group or a cohomology theory – p-complete K-theory has height 1, elliptic

cohomology theories can have heights up to 2, and so on. Now, there are topologically

defined chromatic localization functors Ln and LK(n), which pare down a space X

to retain just the information about X visible to complex oriented cohomology theories,

respectively of height at most n and height exactly n (see Section 2.2.5). These functors

are central to modern stable homotopy theory, for a number of reasons.

(1) By the thick subcategory theorem of [HSt99], the functors LK(n) are the most

precise functors of this form available. It is impossible to systematically shave

more cohomological information away from a space without destroying the thing.
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(2) By the chromatic convergence theorem [Rav92], the stable homotopy of a finite

complex X, such as the sphere, can be recovered from all of its Ln-localizations

by a limit procedure.

(3) By general facts about localization, there are homotopy pullback squares

LnX //

��

LK(n)X

��

Ln−1X // Ln−1LK(n)X.

Thus, the stable homotopy of a finite complex can be recovered from its K(n)-

localizations, together with transchromatic attaching data connecting localiza-

tions of different heights.

(4) Finally, K(n)-local objects exhibit various periodicity phenomena, in their ho-

motopy groups and in various spectral sequences, of wavelength 2(pn−1). These

periodicity phenomena were observed in the Adams spectral sequence far be-

fore K(n)-localization was understood properly, and are the source of the name

‘chromatic homotopy theory’: Ravenel thought of the chromatic localizations as

a prism the ‘white light’ of a space into its various ‘colors’.

In principle, then, computations like the stable homotopy groups of spheres are re-

duced to a series of periodic, K(n)-local calculations, followed by a transchromatic as-

sembly procedure. In practice, this is all extremely difficult. The stable homotopy groups

of spheres are now extremely well understood K(1)-locally; understood, but not well,

K(2)-locally; and not understood at all at higher heights. Moreover, the transchromatic

assembly procedure is largely missing both computational and conceptual understanding.
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This thesis largely aims to study the algebraic geometry behind transchromatic homotopy

theory. This is connected to the algebraic problem of what happens to a formal group as

it changes height.

Before we describe the contents of this thesis, we need to give its other main ingredient,

which is Morava E-theory. This is a complex oriented cohomology theory constructed

from the algebraic geometry of deformations of formal groups. In [LT66], Lubin and

Tate proved that a height n formal group Γ over a perfect, characteristic p field k has

a universal deformation which lives over the ring Wk[[u1, . . . , un−1]]. The parameters

ui control the height of the deformation: for example, inverting un−1 forces the height

to be at most n − 1. By a theorem of Goerss, Hopkins, and Miller [GH04], there is

an essentially unique complex oriented, K(n)-local, E∞ ring spectrum, called Morava

E-theory E = E(k,Γ), with

π∗E = Wk[[u1, . . . , un−1]][u±1], |u| = 2, |ui| = 0,

and with formal group the universal deformation defined by Lubin and Tate.

This theorem suggests that the relationship between stable homotopy theory and the

algebraic geometry of formal groups is extremely close when localized at a single prime and

height. In particular, basically all topological facts about E-theory should be expressible

in terms of formal groups. For example:

(1) The profinite group Gn of automorphisms of the field k and the formal group Γ

acts on the Lubin-Tate ring, and this extends to an action of Gn on En by E∞

maps. By a theorem of Devinatz and Hopkins ([DH04], and see Theorem 5.1.1
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in this document),

π∗LK(n)(E
∧(s+1)
n ) ∼= Homcts(G×sn , π∗En).

This means that the K(n)-local En-based Adams spectral sequence for the sphere

takes the form

Est
2 = Hs(Gn, πtEn)⇒ πt−sLK(n)S.

Moreover, LK(n)S is the homotopy fixed points of Gn acting on En, in a sense

described by [DH04]. This also means that the E∗-comodule structure on the

completed E-homology of a space or spectrum is just a continuous Gn-action.

(2) The completed E-homology of a K(n)-local E∞ ring spectrum carries power

operations, which are parametrized by isogenies of deformations of the formal

group Γ ([AHS04], [Re09], and see chapter 6 below).

(3) The E-cohomology of BZ/pk is just the ring of functions on the p-torsion points

of Gu. One can use this fact to construct a character map from E0BG, for G

a finite group, with image in a ring of ‘generalized class functions’ on conjugacy

classes of n-tuples of commuting elements of p-power order. This map becomes

an isomorphism after base changing to a certain ring of level structures, which

in particular forces the height of both sides to decrease below n ([HKR00],

[Sta13]).

Of the transchromatic objects straddling heights n− 1 and n, one of the most basic is

the K(n − 1)-localization of a height n E-theory, known in this document as LK(n−1)En
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or just LE. This is even periodic, with

LE0 = Wk[[u1, . . . , un−1]][u−1
n−1]∧(p,u1,...,un−2)

∼= Wk((un−1))∧p [[u1, . . . , un−2]],

a complete local ring with residue field k((un−1)), over which there is a naturally defined

height n−1 formal group H = Gu⊗k((un−1)). This looks very much like the height n−1

E-theory associated to H – the only problem being that the field k((un−1)) is not perfect,

so that the Lubin-Tate theorem does not apply.

This thesis discusses the relationship between LE and formal groups, starting with

the idea that LE0 classifies deformations of a height n − 1 formal group together with

some extra data. But there are several different options for what this extra data is! First,

one could view LE0 as carrying not a formal group but a p-divisible group. This is the

result of base changing the p-power torsion subgroups of Gu to LE0; it fits into an exact

sequence

0→ Gfor → G→ Get → 0

where Gfor is the formal group of LE, and Get is a Galois twist of a constant group

scheme of the form Qp/Zp. Homotopy theorists have long thought that this p-divisible

group structure should manifest itself in transchromatic phenomena, in particular due

to the use of p-divisible groups of abelian varieties in defining topological automorphic

forms ([Lu09], [Lu18a], [Lu18b], [BL10]). However, this still remains elusive; the best

work on this subject is still [Sta13], which uses p-divisible groups like these to produce

character maps.
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Second, one could replace the field k((un−1)) with its perfect closure k((u
1/p∞

n−1 )). Then

H ⊗ k((u
1/p∞

n−1 )) is a formal group over a perfect field, so has an associated height n − 1

E-theory Eperf which has a map from LE. One could then try to interpret topological

facts about LE as facts about Eperf , together with ‘descent data’ along this inseparable

map of fields. This viewpoint is not explored here, although the author guesses that it

is implicit in the following story. In particular, the map k((un−1)) → k((u
1/p∞

n−1 )) lifts to

many different maps

Wk((un−1))∧p → W (k((u
1/p∞

n−1 ))),

which can each be used to define a different map LE → Eperf . This unexpected choice

might be to blame for the variety of E∞ structures on LE discussed in section 5.

Third, one could simply view H as a height n− 1 formal group, and the extra data as

knowledge about the last Lubin-Tate coordinate un−1. This is the most näıve but the most

workable approach, and the one we take here. After two background chapters (chapters

2 and 3), we discuss basic properties of LE in chapter 4, and prove the following:

Theorem 1.0.1 (Theorem 4.2.2, Theorem 4.3.8). The ring LE0 classifies deforma-

tions of H, together with a choice of last Lubin-Tate coordinate un−1.

To be more precise, a deformation of H over a complete local ring R takes as part of its

data a map k((un−1))→ R/m, and the extra data here is a lift of this to a continuous map

Wk((un−1))∧p → R. There are two different versions of this theorem because there are

two applicable notions of continuity. Wk((un−1))∧p is a p-adic ring, and one can consider

p-adically continuous maps. However, the residue field k((un−1)) has its own topology
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as well. One can enforce a higher version of continuity, known as ‘pipe-continuity’, that

takes this into account.

In chapter 5, we use this result to study completed co-operations for localized E-

theory. We begin by proving the Devinatz-Hopkins theorem that π∗LK(n)(E ∧ E) =

Homcts(Gn, E∗) from the point of view of formal groups (Theorem 5.1.1). Although the

results in the localized case are not quite so clean, we are able to prove the following.

Theorem 1.0.2 (Theorem 5.3.1, Theorem 5.2.4). Continuous maps from π∗LK(n−1)(E∧

E) into an LE∗-algebra R∗ with R0 complete local represent pairs of a continuous map

Wk((un−1))∧p → R0, and an isomorphism of formal groups over R0/m.

Continuous maps from π∗LK(n−1)(En−1∧En) into an (En−1)∗-algebra R∗ with R0 com-

plete local represent pairs of a continuous map Wk((un−1))∧p → R0, and an isomorphism

of formal groups over R0/m.

This is to be used in the final chapter 6 on power operations and E∞ structures. We

first survey Rezk’s theory of power operations on the E-theory of E∞ ring spectra. For an

E∞-ring spectrum X, E∧0 X has an algebraic structure describable in terms of isogenies of

formal groups, known as a T-algebra. Conversely, given a T-algebra, there is conjecturally

(Conjecture 6.2.8) an obstruction theory for realizing it as the E-theory of an E∞-ring

spectrum, with obstructions living in certain T-algebra André-Quillen cohomology groups.

By combining the height n − 1 version of this with the previous result, we obtain the

following.
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Theorem 1.0.3 (Theorem 6.4.1). The possible T-algebra structures on (En−1)∧0En

are in bijection with Frobenius lifts on Wk((un−1))∧p . Thus, there are non-isomorphic

T-algebra structures on (En−1)∧0En.

At n = 2, the obstruction theory is known to exist, and the obstruction groups can

actually be computed. Thus, we obtain the following transchromatic variant on the

Goerss-Hopkins-Miller theorem.

Theorem 1.0.4 (Theorem 6.5.2, Corollary 6.5.8). There are non-isomorphic E∞

structures on LK(1)E2.

Besides serving as an instructive calculation in K(1)-local obstruction theory, this re-

sult, and the methods used to prove it, point the way towards studying the transchromatic

behavior of highly structured ring spectra and their power operations. In particular, these

exotic E∞-algebras are K(1)-localizations of K(2)-local spectra, and are E∞-algebras, but

only one of them – the K(1)-localization of the canonical E∞-algebra E2 – is a K(1)-

localization of a K(2)-local E∞-algebra. It is likely that, as is the case here, K(n)-local

power operations generally satisfy integrality conditions that can be distorted on their

K(n− 1)-localizations.
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CHAPTER 2

Background on formal groups

2.1. Formal groups, formal group laws, and complex orientations

2.1.1. Complex oriented ring spectra and formal groups

Recall that a complex-oriented ring spectrum is a ring spectrum A with a factorization

of the unit

S0

%%��

Σ−2Σ∞+ CP∞

u

OO

A.

This forces an isomorphism

A∗(CP∞) = (A−∗)[[x]]

with x ∈ A2(CP∞), induced by the orientation map u. The grouplike E∞-space mul-

tiplication on CP∞ (classifying the tensor product of complex line bundles) induces a

map

A∗(CP∞)→ A∗(CP∞ × CP∞) ∼= A∗(CP∞)⊗̂A∗A∗(CP∞)

or

A∗[[x]]→ A∗[[x, y]].
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The image of x under this map is a power series of the form

x+ y + · · ·+ aijx
iyj + · · · ,

which we call x +GA y. As the multiplication on CP∞ is a group multiplication up to

homotopy, the map A∗[[x]] → A∗[[x, y]] is a cogroup map, and x +GA y is an example of

a formal group law, defined as follows.

Definition 2.1.1. A formal group law F over a ring R is a power series x+F y ∈ R[[x, y]]

satisfying the following properties:

(1) (x+F y) +F z = x+F (y +F z),

(2) x+F y = y +F x,

(3) x+F 0 = x,

(4) and there exists a power series [−1]F (x) ∈ R[[x]] such that x+F [−1]F (x) = 0.

(As it turns out, the existence of inverses follows formally from the other properties; see

[Rav04, A2.1.2].)

A homomorphism of formal group laws φ : F → F ′ is a power series φ(x) ∈ R[[x]]

such that

φ(x+F y) = φ(x) +F ′ φ(y).

An isomorphism is such a power series that is invertible under composition. This means

that it must satisfy φ(x) = ux+ · · · , where u ∈ R is a unit; it is a strict isomorphism

if u = 1.

There is a ring spectrum MU , the complex cobordism spectrum, which carries

the universal complex orientation: homotopy classes of multiplicative maps MU → A
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correspond to complex orientations of R. By an amazing theorem due to Quillen, the

relationship between complex orientations and formal groups is no accident, but part of

the nature of complex cobordism itself.

Theorem 2.1.2 ([Qu69]). The ring MU∗ represents formal group laws – that is,

graded ring maps MU∗ → R correspond to formal group laws over R. Likewise, MU∗MU

represents strict isomorphisms of formal group laws.

A complex-orientable spectrum admits many different complex orientations, and thus

many different formal group laws, with any two formal group laws related by an isomor-

phism. It is worthwhile to reformulate the theory of formal group laws in a coordinate-free

way.

Definition 2.1.3. Let X be a scheme and consider pointed formal schemes over X,

(G → X, e ∈ X(G)). A coordinate on a pointed formal scheme (G, e) over X is an

isomorphism of pointed formal schemes over X

(G, e) ∼= (Â1
X , 0).

A (1-dimensional, commutative) formal group over X is a commutative group object

G in the category of formal schemes over X, such that after passing to a Zariski cover,

the underlying formal scheme of G, pointed by its identity section, admits a coordinate.

A homomorphism (resp. isomorphism) of formal groups is a homomorphism (resp.

isomorphism) of group objects in formal schemes over X.
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Of course, a formal group law over a ring R defines a formal group over the affine

scheme SpecR. On the other hand, a formal group G→ X is defined by a formal group

law over any open affine where it admits a coordinate.

2.1.2. Base change

A map of rings f : R1 → R2 induces base change functors

FGR1 → FGR2 , FGLR1 → FGLR2

which we write as G 7→ G⊗R1 R2 or as G 7→ f ∗G.

These functors are easiest to describe in terms of formal group laws. If G has the

formal group law

x+G y = x+ y + · · ·+
∑

aijx
iyj,

then f ∗G has the formal group law

x+f∗G y = x+ y + · · ·+
∑

f(aij)x
iyj.

There is a subtlety regarding base changes of formal groups. One would like to define

f ∗G = G ×SpecR1 SpecR2. Since base change preserves products, this is actually a sheaf

of groups on SpecR2. However, its underlying ring of functions is Zariski-locally

R1[[x]]⊗R1 R2.
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This is equal to R2[[x]] when R2 is finite over R1. Instead, one observes that G is a filtered

colimit of finite R1-schemes, locally of the form SpecR1[x]/(xn), and defines

f ∗(G) = lim SpecR1[x]/(xn)×SpecR1 SpecR2.

This is a formal group, and in fact the schemes SpecR1[x]/(xn) can be defined in a

coordinate-free way. See [Go08, Remark 1.30] or [Me72].

2.1.3. Invariant differentials

Definition 2.1.4. Let π : G → X be a formal group over X and let e : X → G be the

identity section of G. The bundle of invariant differentials of G is the line bundle on

X

ωG := e∗ΩG/X .

If G is a formal group with a coordinate over an affine scheme SpecR, given by a

formal group law F , then the R-module of invariant differentials is free and has a canonical

generator. Writing F (x, y) = x+F y, this is given by

ηF :=
dx

Fx(0, x)
.

Moreover, an isomorphism of formal group laws over R, φ : F → F ′, induces a map

dφ : ωF ′ → ωF on invariant differentials, which is just multiplication by φ′(0).
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2.1.4. Moduli of formal groups

Definition 2.1.5. The moduli of formal groups is the functor Mfg : Rings → Gpd

such that Mfg(R) is the groupoid of formal groups G over R and their isomorphisms.

We also define a functor M′
fg : Rings→ Gpd. The objects of M′

fg(R) are pairs (G, η),

where G is a formal group over R and η is a nonvanishing section of the bundle of invariant

differentials. The isomorphisms of M′
fg(R) from (G, η) to (G′, η′) are isomorphisms of

formal groups over R, φ : G→ G′, such that dφ(η′) = η.

Theorem 2.1.6. The Hopf algebroid (MU∗,MU∗MU) represents the functor M′
fg.

Proof. This is a restatement, in fancier language, of Theorem 2.1.2. Let G be a

formal group over a ring R, with an invariant differential η. After passing to a Zariski

cover, G admits a coordinate x and thus a formal group law F . Moreover, by scaling this

coordinate via an isomorphism of the form x 7→ ux, we can make it so that

η =
dx

Fx(0, x)
.

Any other coordinate for G with this property is related to F by a strict isomorphism.

Likewise, let φ : (G, ω)→ (G′, ω′) be an isomorphism of formal groups which preserves

the chosen invariant differentials. After passing to a Zariski cover and choosing coordinates

as above, we see that φ must be a strict isomorphism between the induced formal group

laws.

Thus, define Mfgl to be the Zariski sheafification of the functor sending R to the

groupoid of formal group laws and their strict isomorphisms over R. The above argument
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shows thatM′
fg 'Mfgl. ButMfgl is presented by (MU∗,MU∗MU), by Quillen’s theorem.

�

Localized at p, there is a standard way to simplify one’s formal group laws. One

defines the nth Frobenius series for the formal group law F by th

Fn(x) = x1/n +F ζx
1/n +F · · ·+F ζ

n−1x1/n,

where ζ is a primitive nth root of unity. A priori, this is only defined in R∗[[x
1/n]][ζ], but

the commutativity of the formal group law guarantees it is actually in R∗[[x]].

Definition 2.1.7. A formal group law F is p-typical if Fn(x) = 0 for every n prime to p.

Theorem 2.1.8 (Cartier). Every formal group law over a p-local ring has a canonical

isomorphism to a p-typical one, which is the identity if the formal group law is already

p-typical.

Theorem 2.1.9. Localized at a prime p, MU has a ring spectrum summand, the

Brown-Peterson spectrum BP , such that BP∗ represents p-typical formal group laws, and

BP∗BP represents strict isomorphisms of p-typical formal group laws.

Corollary 2.1.10. The Hopf algebroid (BP∗, BP∗BP ) presents (M′
fg)(p).

Proof. This follows from Cartier’s theorem 2.1.8 and Theorem 2.1.6. �

Most of the spectra we will be dealing with are even periodic, justifying the following

even periodic variants.
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Definition 2.1.11. The spectra MUP and BPP are the even periodic ring spectra

defined by MUP = MU [u±1] and BPP = BP [u±1], where |u| = 2.

Theorem 2.1.12. The Hopf algebroids (MUP0,MUP0MUP ) and (BPP0, BPP0BPP )

respectively present Mfg and (Mfg)(p).

Proof. We sketch the proof for MUP ; the one for BPP is almost identical. MU∗

is concentrated in nonnegative, even degrees. Thus, there is an isomorphism of rings

MU∗ ∼= MUP0, sending an element x ∈ MU2j to u−jx. This means that MUP0 also

represents formal group laws.

The map MU →MUP induces a flat map on homotopy groups, so

MUP∗MUP = MUP∗ ⊗MU∗MU ⊗MU∗ MUP∗ = MU∗MU [u±1, u±1].

Thus,

MUP0MUP ∼= MU∗MU [w±1],

where w = uu−1. Thus, a map MUP0MUP → R classifies a strict isomorphism of formal

group laws over R, φ : F
∼→ F ′, together with a unit w ∈ R. This is equivalent to the

data of a not necessarily strict isomorphism φw : F
∼→ F ′w, where

x+F ′w y = w(w−1x+ w−1y)

and

φw(x) = wφ(x).
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The unit w can be recovered as the coefficient of x in φ(x). One then has to check

that these isomorphisms commute with the Hopf algebroid structure. Finally, one notes

that the groupoid of formal groups and isomorphisms is Zariski-locally equivalent to the

groupoid of formal group laws and isomorphisms. �

2.2. Formal groups over fields

2.2.1. Characteristic zero

Proposition 2.2.1. Let K be a field of characteristic zero, and let G be a formal group

over k. Then G is uniquely strictly isomorphic to the additive formal group Ĝa.

Proof. Choose a coordinate x for G and an invariant differential η = η(x) dx. Then

the power series

logG(T ) =

∫
x

η(x) dx

is an isomorphism G → Ga, which is strict if and only if η(x) = 1 + · · · . See [Rav04,

Appendix 2] for details. �

2.2.2. Positive characteristic, height, and the Frobenius

In characteristic p, the situation is not so simple.

Definition 2.2.2. The p-series of a formal group law F is the power series

[p]F (x) =

p︷ ︸︸ ︷
x+F x+F · · ·+F x .
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Over a characteristic p field k, this has the form

[p]F (x) = uxp
n

+ · · ·

for some 1 ≤ n ≤ ∞, called the height of F . The height is invariant under changes of

coordinate, and thus depends only on the underlying formal group of F .

By convention, the height is said to be ∞ if [p]F (x) = 0, and zero over fields of

characteristic p. However, we are almost exclusively interested in finite, nonzero heights

here.

It will be worthwhile to introduce another point of view. Any characteristic p scheme

X has a Frobenius endomorphism σX : X → X, defined as the identity on points and

x 7→ xp on structure sheaves. We then have a diagram

(2.1) G σG

$$

  

FrobG

""

G(p)

��

// G

��

Spec k
σk

// Spec k.

Note that, by Section 2.1.2, G(p) is a formal group if σk is finite – for example, if k is

perfect. In this case, the map FrobG : G → G(p) is a homomorphism of formal groups

called the relative Frobenius.

Iterating this procedure, one gets maps

Frobn : G Frob→ G(p) Frob→ · · · Frob→ G(pn).
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The height of G is the maximal n such that [p] : G → G admits a factorization of the

form

G Frobn→ G(pn) → G.

For a formal group over a general ring R, we view height as a function on SpecR or

Spf R:

height(G) : P prime ideal of R 7→ height(G⊗R Frac(RP )).

In particular, the height of a formal group over a complete local ring R is identified with

its height over the residue field of R.

Proposition 2.2.3. The height of G is upper semicontinuous on SpecR.

Proof. In other words, the set of points on R where height(G) ≤ n, for any n, is

Zariski-open. After passing to a Zariski cover, we may assume that G has a formal group

law F , with p-series

[p]F (x) = px+
∑

bix
i.

Then height(G) ≤ n at a prime ideal P if and only if the coefficient bpn is not in P . This

is an open condition. �

We now discuss the relationship of height with BP -theory.

Proposition 2.2.4 (cf. [Go08, 2.42]). The p-series of a p-typical formal group law over

a p-local ring R can be written in the form

[p]F (x) = px+F v1x
p +F v2x

p2 +F · · ·
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where vi ∈ R. Conversely, this expression uniquely determines the p-typical formal group

law.

By Theorem 2.1.9, BP∗ carries the universal p-typical formal group law. In fact,

BP∗ = Z(p)[v1, v2, · · · ],

and the universal p-typical formal group law over BP∗ has p-series given by the above

formula. Thus, one can think of height as pulled back from a filtration on SpecBP∗.

Formal groups have height at least n precisely on the closed subscheme of SpecBP∗

where p, v1, v2, . . . , vn−1 vanish, and height at most n− 1 on its open complement.

2.2.3. Automorphisms

Definition 2.2.5. Let Γ be a height n formal group over a field k. The Morava stabi-

lizer group Aut(k,Γ) is the group of pairs (τ, g), where τ : k
∼→ k is an automorphism,

and g is an isomorphism of formal groups over k, g : Γ
∼→ τ ∗Γ.

Equivalently, one can write (τ, g) ∈ Aut(k,Γ) as a commutative square

Γ
∼

//

��

Γ

��

Spec k
τ∗
// Spec k

where the horizontal maps are isomorphisms, the top one a (non-k-linear) isomorphism

of formal groups. Then g : Γ→ τ ∗Γ is the map induced by the universal property of the

pullback.
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It is common to write Gn = Aut(k,Γ). If k is a finite field containing Fpn (which

implies that Autk(Γ) = AutFp(Γ)), then we have

Aut(k,Γ) = Gal(k/Fp) n Autk(Γ).

The composition law can then be written

(τ2, g2)(τ1, g1) = (τ2τ1, τ
∗
2 (g1)g2).

The odd variance of this formula is a result of our choice to write τ as a map of fields

(that is, rings) and g as a map of formal groups (that is, affine formal schemes).

2.2.4. The moduli stack of formal groups

We have arrived at a sort of picture of the moduli stack. For each prime p, (Mfg)(p)

admits a filtration

(Mfg)(p) =M≥0
fg ⊇M

≥1
fg ⊇M

≥2
fg ⊇ · · ·

where each M≥n
fg , the moduli of height at least n formal groups over p-local rings, is a

closed substack of codimension n. For n ≥ 2, the open complement of M≥n
fg in M≥(n−1)

fg

consists of a single geometric point – the unique isomorphism class of height n formal group

over an algebraically closed field – with isotropy group Aut(k,Γ). The open complement

of M≥1
fg in M≥0

fg is just SpecQ. The intersection
⋂∞
n=1M

≥n
fg also has a single geometric

point – the additive formal group in characteristic p, with p-series [p](x) = 0. Finally, the
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stack admits a presentation

SpecBP∗BP //

��

SpecBP∗

��

SpecBP∗ // (Mfg)(p)

and the height filtration pulls back to a filtration of SpecBP∗, with (SpecBP∗)
≤n given

by the vanishing of p, v1, . . . , vn−1.

2.2.5. Chromatic localization

Several deep theorems of Devinatz, Hopkins, Smith, and Ravenel [DHS88, HSm98,

Rav92] relate the moduli of formal groups to structure on the category of spectra. While

we will not discuss this in any detail here, it is important at least to state that there are

functors X 7→ LnX (resp. X 7→ LK(n)X) on the category of spectra, and natural maps

X → LnX (resp. X 7→ LK(n)X), inducing isomorphisms on A-homology whenever A is a

p-local complex oriented cohomology theory of height at most n (resp. of height exactly

n). These functors are Bousfield localizations with respect to spectra constructible from

BP . Ln is localization with respect to a spectrum E(n) with

E(n)∗ = BP∗[v
−1
n ]/(vn+1, vn+2, . . . ) = Z(p)[v1, . . . , vn−1, v

±1
n ],

and LK(n) is localization with respect to a spectrum K(n) with

K(n)∗ = E(n)∗/(p, v1, . . . , vn−1) = Fp[v±1
n ].
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These functors are particularly important for analyzing the homotopy groups of spheres

or other finite spectra, for the following reason.

Theorem 2.2.6 (Hopkins-Ravenel chromatic convergence theorem, [Rav92]). If X

is a finite p-local spectrum, then X ' holimLnX.

Moreover, there are homotopy pullback squares

LnX //

��

LK(n)X

��

Ln−1X // Ln−1LK(n)X.

Thus, in principle, the homotopy type of a finite spectrum can be computed from its

K(n)-localizations and some ‘transchromatic’ information about attaching maps between

localizations at different chromatic heights. In practice, every part of this is extremely

difficult. If these brief few paragraphs have piqued the reader’s interest, they are highly

encouraged to learn more from resources such as [Rav04, Rav92, Go08, Lu10].

2.2.6. Moduli of isomorphisms

Definition 2.2.7. Let G1 and G2 be two formal groups over rings a ring A. The moduli

of isomorphisms from G1 to G2 is the functor Iso(G1,G2) : AlgA → Sets given by

Iso(G1,G2)(B) = {φ : G1 ⊗A B
∼→ G2 ⊗A B an isomorphism of formal groups }.

This functor is representable by an A-scheme: this is part of the fact that Mfg is an

algebraic stack. In fact, if G1 and G2 are both equipped with coordinates, then the Hopf
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algebroid presentation of Mfg gives a representation of Iso(G1,G2) by an affine scheme,

Iso(G1,G2) = Spec(A⊗A⊗A (A⊗G1
MUP0

MUP0MUP ⊗G2
MUP0

A)),

or, if A is p-local,

Iso(G1,G2) = Spec(A⊗A⊗A (A⊗G1
BPP0

BPP0BPP ⊗G2
BPP0

A)).

Note that the maps used to define the tensor product are those classifying formal group

laws for G1 and G2.

Theorem 2.2.8. Let G1 and G2 be height n formal groups over a field k of charac-

teristic p. Then Iso(G1,G2) is pro-étale over k.

See [Go08, 5.29] for a proof. We note the following obvious corollary, which we will

use repeatedly:

Corollary 2.2.9. Let G1 and G2 be height n formal groups over a field k of character-

istic p, and let R be a a k-algebra which is complete with respect to an ideal I. Then

IsoR(G1,G2)→ IsoR/I(G1,G2) is an isomorphism.

Proof. If I is nilpotent, this is just the infinitesimal criterion of étaleness. In general,

we write R = limR/In and note that the moduli of isomorphisms commutes with limits.

�

2.3. Deformations of formal groups

The Lubin-Tate theorem is originally stated in the following form [LT66]:
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Theorem 2.3.1 (Lubin-Tate). Let Γ be a formal group of finite height n over a

field k of characteristic p > 0, let A be a ring with an ideal I such that A/I ∼= k,

and let i : A → R be a map to a complete local noetherian ring R sending I into the

maximal ideal of R, thus inducing a map on residue fields i : k → R/m. Then there is

a formal group Gu over A[[u1, . . . , un−1]] such that, for any formal group G over R with

an isomorphism α : Γ⊗k R/m
∼→ G⊗R R/m, there is a unique continuous A-algebra map

f : A[[u1, . . . , un−1]] → R and a unique isomorphism f ∗Gu ∼→ G that reduces to α over

R/m.

We can restate this in more modern terms as follows.

Definition 2.3.2. Let Γ be a formal group over k and R a complete local noetherian ring

with maximal ideal m. A deformation of Γ over R is a triple

(G, i, α),

where G is a formal group over R, i is an inclusion k → R/m, and α is an isomorphism

Γ⊗ik R/m
∼→ G⊗R R/m.

A ?-isomorphism φ : (G1, i1, α1) → (G2, i2, α2) is the requirement that i1 = i2 and

an isomorphism φ : G1 → G2 of formal groups over R, such that the square

Γ⊗k R/m

1
��

α1
// G1 ⊗R R/m

φ
��

Γ⊗k R/m
α2

// G2 ⊗R R/m

commutes.
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Finally, let A be as above, and let CLNA be the category of complete local noetherian

A-algebras and continuous maps. If Γ is a formal group over k, then let

DefAΓ : CLNA → Gpd

be the functor that sends an A-algebra R to the groupoid of deformations of Γ over

R such that i : A/I → R/mR is the reduction of the A-algebra structure map, and

?-isomorphisms.

Corollary 2.3.3 (Equivalent form of Theorem 2.3.1). The functor DefAΓ on CLNA is

pro-represented by Spf A[[u1, . . . , un−1]].

Definition 2.3.4. Let CLN be the category of complete local rings. Let DefΓ be the sheaf

of groupoids on CLN that sends R ∈ CLN to the groupoid of deformations of Γ over R

and ?-isomorphisms.

Theorem 2.3.5. If k is perfect, then for any R ∈ CLN and i : k → R/m, there is a

unique continuous map completing the diagram

Wk //

��

R

��

k // R/m.

We will prove this in Section 3.2.
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Corollary 2.3.6. If k is perfect, then DefΓ is pro-represented by Spf Wk[[u1, . . . , un−1]].

Proof. Given (G, i, α) ∈ DefΓ(R), Theorem 2.3.5 implies that R has a unique con-

tinuous Wk-algebra structure such that (G, i, α) is an object of DefWk
Γ (R). Thus, its

?-isomorphism class is represented by a unique map Wk[[u1, . . . , un−1]] → R, and it ad-

mits no nontrivial ?-automorphisms. Since ?-isomorphisms as objects of DefΓ(R) are the

same as ?-isomorphisms as objects of DefWk
Γ (R), this completes the proof. �

Remark 2.3.7. The ring Wk[[u1, . . . , un−1]] is called the Lubin-Tate ring for (k,Γ).

As a result of Corollary 2.3.6, it carries a deformation (Gu, 1, αu) which is a universal

deformation of Γ, in the sense that any other deformation (G, i, α) over R ∈ CLN is

uniquely ?-isomorphic to the base change of Gu along a unique map Wk[[u1, . . . , un−1]]→

R.

In fact, this can be made fairly explicit. If Γ has the Honda formal group law over k,

with p-series

[p]Γ(x) = xp
n

(for some chosen coordinate x), then we can choose a coordinate on Gu such that

[p]Gu(x) = px+Gu u1x
p +Gu · · ·+Gu un−1x

pn−1

+Gu x
pn .

The isomorphism αu : Γ
∼→ Gu ⊗ k matches these two coordinates.

In other words, a deformation of a height n formal group is specified, up to ?-

isomorphism, by deformations of the coefficients of xp, . . . , xp
n−1

in its p-series, and the

Lubin-Tate parameters keep track of these deformations. This should indicate that the
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parameters u1, . . . , un−1 themselves are very non-canonical, and are related to the choice

of coordinate on the formal group Γ.

Remark 2.3.8. There is a left action of Aut(k,Γ) on DefΓ, defined as follows. Given

(G, i, α) ∈ DefΓ(R) and (τ : k → k, g : Γ→ τ ∗Γ) ∈ Aut(k,Γ) (see Definition 2.2.5), define

(τ, g)(G, i, α) = (G, i ◦ τ, αg−1 : Γ⊗iτk R/m
g−1

→ Γ⊗ik R/m
α→ G⊗R R/m).

2.4. Morava E-theory

If Γ is a height n formal group over a perfect field k, its universal deformation is

classified by a map Wk[[u1, . . . , un−1]]→Mfg. This map is flat, which ultimately reduces

to the fact that (p, u1, . . . , un−1) is a regular sequence [Go08]. The existence of Morava

E-theory then follows from the Landweber exact functor theorem, as follows.

Theorem 2.4.1. There is a complex orientable, even periodic ring spectrum E =

E(k,Γ) such that π0E = Wk[[u1, . . . , un−1]] and the formal group of E (rescaled to degree

zero) is the universal deformation of Γ.

Some of these spectra can be constructed more homotopically. One defines a ring

spectrum BP 〈n〉 as the quotient of BP by the ideal (vn+1, vn+2, . . . ) [EKMM]. The

Johnson-Wilson E-theory E(n) is then BP 〈n〉[v−1
n ]. This admits an étale extension in

ring spectra, Ẽ(n), with

π∗Ẽ(n) = π∗E(n)[u]/(u(pn−1) − vn) = Z(p)[u1, . . . , un−1][u±1]
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where |u| = 2 and |ui| = 0, and ui = viu
1−pi . Finally, the K(n)-localization of Ẽ(n) is a

Morava E-theory. Specifically, it is the Morava E-theory for the Honda formal group of

height n over Fp, with

[p]Γ(x) = xp
n

.

Both constructions lack a certain something. Both the Landweber exact functor the-

orem, and the process of quotienting ring spectra by ideals, only produce ring objects in

the stable homotopy category. This does not let us use power operations or most of the

machinery of derived algebraic geometry. More advanced obstruction theory techniques

imply the following, for which one should see [GH04] and [Re98].

Theorem 2.4.2 (Goerss-Hopkins-Miller). There is a unique E∞ ring spectrum, up

to E∞ homotopy equivalence, whose underlying ring spectrum is E(k,Γ). Moreover, the

space of E∞ endomorphisms of this spectrum is homotopy equivalent to the discrete group

Aut(k,Γ).

There is thus a canonical way to lift very locally defined formal groups, namely the

universal deformations of finite height formal groups over perfect fields, from algebraic

geometry into homotopy theory. In this very local setting, the relationship between stable

homotopy theory and algebraic geometry is as close as it can possibly be. Conversely,

the Goerss-Hopkins-Miller theorem suggests that every topological fact about E-theory

should mean something in terms of formal groups. This prophecy has been answered, for

example, by [Re09] and [Sta13].
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CHAPTER 3

Complements on completion

3.1. Derived completion

The coefficient ring of E-theory is complete and local, and so one would like to think

of the E-homology and cohomology of a finite complex as valued in E∗-modules which

are complete for the maximal ideal In. However, problems arise from the fact that the

category of complete modules is not closed under colimits.

First, while an infinite direct product of complete modules is complete, an infinite

direct sum is not – thus, while the E-cohomology of an infinite wedge of spheres is com-

plete, its E-homology is not. This suggests replacing E-homology with the better-behaved

completed homology functor

X 7→ E∧∗X = π∗LK(n)(E ∧X).

This functor is better-behaved in several ways: for example, while E∗E is quite com-

plicated, E∧∗ E is pro-free over E∗ and has the simple Hopf algebra description E∧∗ E
∼=

Homcts(Gn, E).

Second, the cokernel of a map of complete modules may not be complete. Thus, the

cohomology of a spectrum with infinitely many cells may not be complete.

As it turns out, E-cohomology and completed E-homology are valued in a wider

category of L-complete E∗-modules. That is, they are fixed by the zeroth left derived
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functor of completion, which is not the completion functor itself, as this functor is not right

exact. Here, we first review the relevant definitions, and then show that LE-homology is

valued in a similar category. The reader is directed to [HSt99], [BF15], and [GM92] for

more detailed information.

Definition 3.1.1. Let R be a ring and I an ideal in R. We write M∧ for the I-adic

completion of an R-module M , and LsM for the sth derived functor of I-adic completion

applied to M . There are natural maps M → L0M → M∧. A module M is L-complete

if the natural map M → L0M is an isomorphism, and complete if the map M →M∧ is

an isomorphism.

(In particular, complete objects will always be separated and complete with respect

to some ideal.)

In what follows, we will assume that R is Noetherian and I is generated by a regular

sequence of length n. This is less general than the hypotheses in [GM92] (they are able to

weaken the Noetherian condition), and more general than those in [HSt99] and [BF15]

(they both assume that R is local and I its maximal ideal). Nevertheless, the proofs in

[HSt99] and [BF15] do not rely on I being maximal.

The following results are collected from [GM92].

Proposition 3.1.2. Suppose that R is Noetherian and I is generated by a finite regular

sequence of length n. Then:

(1) LsM = 0 for s ≥ n+ 1.

(2) If M is finitely generated, then the natural map M∧ → L0M is an isomorphism.
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(3) If M is I-adically complete, or of the form LsN for some N and s, then it is

L-complete.

(4) If M is L-complete, then LsM = 0 for s > 0.

(5) There are natural exact sequences

0→ lim1
k TorRs+1(R/Ik,M)→ LsM → lim

k
TorRs (R/Ik,M)→ 0.

Let Mod∧R be the category of L-complete R-modules. The following results are collected

from [HSt99, Appendix A]; though stated for the case where R is local and I is its

maximal ideal, they are true in this more general setting with the same proof.

Proposition 3.1.3. There is an adjunction L0 : ModR � Mod∧R : i, where i is the

inclusion. The category Mod∧R is an exact subcategory of ModR, closed under extensions

and limits in ModR. Furthermore, if · · · →M2 →M1 →M0 is a diagram in Mod∧R, then

lim1Mi ∈ Mod∧R.

The main idea in [GM92] is a duality between derived completion and local cohomol-

ogy, as follows. For x ∈ R, let K•(x) be the cochain complex R
x→ R, concentrated in

degrees 0 and 1. Given a sequence of elements x = (x0, . . . , xn−1), let

K•(x) = K•(x0)⊗ · · · ⊗K•(xn−1).
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There are natural maps K•(xr)→ K•(xr+1), given by the diagrams

R
xr
//

1
��

R

x
��

R
xr+1

// R.

We let K•(x∞) = hocolimrK
•(xr).

Theorem 3.1.4 ([GM92, Theorem 2.5]). If I is generated by the regular sequence

x0, . . . , xn−1, then there is a quasi-isomorphism

L•M ' Hom(K•(x∞),M).

This shows why the derived completion is concentrated in degrees at most n, and gives

an explicit model for computing it.

Greenlees and May thus call the derived completion ‘local homology’, as the complex

K•(x∞) also computes local cohomology :

H∗I (M) = H∗(K•(x∞)⊗M).

In particular,

H∗I (R) = H∗(K•(x∞)).

A composite functor spectral sequence implies the following.

Corollary 3.1.5. There is a spectral sequence

Epq
2 = ExtpR(Hq

I (R),M)⇒ Lq−pM.
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3.2. Witt vectors and Cohen rings

Notation 3.2.1. In this section, we write CLN for the category of complete local Noe-

therian rings and continuous maps, and we let k be a field of characteristic p.

We start by defining the Witt vectors, which are ubiquitous in p-adic deformation

theory, as well as being important in the study of Frobenius lifts. For more information,

see [Hes08] or [Rab14].

Definition 3.2.2. The nth ghost component is the polynomial

wn(a0, . . . , an) = ap
n

0 + pap
n−1

1 + · · ·+ pnan.

For any ring R, these assemble to a map

W =
∏

wn : RN → RN.

The Witt vectors of R, W (R), are the set RN equipped with a functorial ring structure

that makes W a ring homomorphism. If R is a Q-algebra, one can recover an element of

the domain from its ghost components, so this is clearly well-defined and W (R) ∼= RN as

rings. If R has characteristic p, then the ghost components only see the zeroth coordinate,

and are useless for defining a ring structure. The key word is ‘functorial’: the right ring

structure can be obtained by looking at maps from other rings. If R is p-torsion-free,

the ghost component map is at least injective, meaning that at most one compatible ring

structure exists. That one actually does is a consequence of the following fact, which we

will not prove.
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Lemma 3.2.3 (Dwork). Suppose that R is a p-torsion-free ring which admits a Frobenius

lift (a ring homomorphism ψp : R → R such that ψp(x) ∼= x mod p). Then a sequence

(ai) ∈ RN is in the image of W if and only if an ∼= ψp(an−1) mod pn, for each n.

Since ψp is a ring homomorphism, the set of (ai) satisfying this condition is ob-

viously closed under addition and multiplication. Thus, in the universal case R =

Z[x0, x1, . . . , y0, y1, . . . ], there are polynomials Sn and Pn with

Sn(x0, . . . , xn, y0, . . . , yn) = wn(x0, . . . , xn) + wn(y0, y1, . . . , yn),

Pn(x0, . . . , xn, y0, . . . , yn) = wn(x0, . . . , xn)wn(y0, . . . , yn).

Definition 3.2.4. The Witt vectors of R, W (R), are the set RN equipped with addition

and multiplication

(a0, a1, . . . ) + (b0, b1, . . . ) = (S0(a, b), S1(a, b), . . . ),

(a0, a1, . . . )(b0, b1, . . . ) = (P0(a, b), P1(a, b), . . . ).

The truncated Witt vectors Wn(R) are the set R{0,...,n−1} with addition and multipli-

cation given by the analogous formulas.

This ring comes with a lot of additional structure, which we will mention briefly.

There is a ring map F : W (R) → W (R), the Frobenius, such that if (ai) has ghost

components (w0,w1, . . . ), then F (ai) has ghost components (w1,w2, . . . ). This is a lift

of the Frobenius map on W (R)/pW (R).
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There is an additive map V : W (R) → W (R), the Verschiebung, defined by

V (a0, a1, . . . ) = (0, a0, a1, . . . ). This satisfies FV = p and V (xF (y)) = V (x)y. There

is also a multiplicative map [·] : R → W (R), the Teichmüller lift, defined by [a] =

(a, 0, 0, . . . ). Eveyr element of W (R) has a unique expansion of the form
∑∞

n=0 V
n[bn],

with bn ∈ R.

If k is a perfect field of characteristic p, then W (k) is a very well-behaved ring. This

will be the primary place where we use the Witt vectors.

Proposition 3.2.5 (cf. [Rab14]). If k is a perfect field of characteristic p, then W (k) is

a p-torsion-free complete local ring with maximal ideal VW (k) = pW (k) and residue field

k. Every element of W (k) has a unique expansion of the form
∑∞

n=0 p
n[bn], with bn ∈ R.

The Witt vectors of a perfect characteristic p field enjoy the universal property of

Theorem 2.3.5. It will help to prove a slightly more general version of this, as follows.

Theorem 3.2.6. Let k be a perfect field of characteristic p and let R be a ring which

is complete with respect to an ideal I that contains p. Then for any map i : k → R/I,

there exists a unique continuous map completing any diagram of the form

Wk //

��

R

��

k
i

// R/I.

Proof. This proof originally goes back to Cartier, and one should consult [Se79,

§II.4-6]. Recall that elements of Wk for k perfect can be uniquely written in the form∑
[an]pn, where [an] is the Teichmüller lift of an ∈ k. The idea is that there is a unique
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multiplicative lift τ : k× → R×. One is then forced to send
∑

[an]pn to
∑
τ(an)pn, which

converges by completeness of R.

Regard k as a subring of R/I. For each a ∈ k, define

Un(a) = {xpn : x ∈ R, x ≡ ap
−n

(mod I)}.

Here ap
−n

is the unique pnth root of a in k. We have Un+1(a) ⊆ Un(a). Moreover, if xp
n

and yp
n

are elements in Un(a), then x ≡ y mod I, and thus xp
n ≡ yp

n
mod In+1 using

the binomial theorem and the fact that p ∈ I. By completeness of R, there is a unique

element in
⋂
n≥0 Un(a). Call this τ(a).

One now observes that τ(ap) = τ(a)p, and that τ is the unique section k× → R× with

this property. Indeed, if τ ′ also has this property, then

τ ′(a) = τ ′(ap
−n

) ∈ Un(a) for all n,

so τ ′(a) = τ(a). Thus, there is at most one multiplicative section. But τ is also multi-

plicative, because Un(a) · Un(b) ⊆ Un(ab). �

Remark 3.2.7. Theorem 2.3.5 is just the case when I is a maximal ideal of a complete

local ring R. One can see this is as a trivial case of deformation theory. Indeed, define

the functor of deformations of nothing, Def : CLN→ Sets, by

Def(R) = {i : k → R/m}.

Then we have proved that Def(R) ∼= Homcts(Wk,R).
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However, the above theorem proves slightly more. A map k → R/I gives deformations

of nothing over numerous complete local rings, namely the completions of the localizations

of R at maximal ideals containing I. The theorem implies that these deformations of

nothing assemble over Spf R to give a unique deformation of nothing over everything,

which is really something.

If k is a non-perfect characteristic p field, its ring of Witt vectors is harder to get a

handle on. There is still a surjection w0 : W (k) → k with kernel VW (k), but this ideal

need not be principal, and V (1) 6= p. In addition, the universal property of Theorem 2.3.5

is not satisfied. However, there is still a weak version. (Topologists wishing to know more

should also consult the last section of [AMS98]).

Definition 3.2.8. A Cohen ring for a characteristic p field k is a complete DVR with

residue field k and uniformizer p.

Example 3.2.9. The Witt vectors of a perfect field k are a Cohen ring for k. For an

imperfect field, we have px = V (1)x = V (F (x)), so the set of multiples of p is in general

a proper subset of the maximal ideal VWk. Thus, the Witt vectors are not a Cohen ring

in this case.

Example 3.2.10. If k is perfect, the ring Λ = WFq((x))∧p is a Cohen ring for the field

k((x)).

Theorem 3.2.11. Every characteristic p field k has a Cohen ring.

Proof. We follow the Zorn’s lemma argument in [Stacks, Tag 0323]. Given a field k

of characteristic p, consider the category C of pairs (k1, C1), where k1 is a subfield of k

http://stacks.math.columbia.edu/tag/0323
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and C1 � k1 is a Cohen ring. A map (k1, C1)→ (k2, C2) is an inclusion k1 ⊆ k2, together

with a map C1 → C2 making the square

C1
//

��

C2

��

k1
� � // k2

commute. Although this category will turn out to be essentially small, one can make it

small by requiring all Cohen rings to be completions of quotients of subrings of a fixed

polynomial ring over Zp generated by |k| many indeterminates. The constructions below

will demonstrate that only this many indeterminates are ever necessary.

The category C is nonempty, because Fp has the Cohen ring Zp.

If k2 is generated over k1 by a single element α ∈ k, and k1 has the Cohen ring C1,

then we define a Cohen ring C2 for k2 as follows. If α is transcendental over k1, then

C2 = C1[x]∧p .

The ideal (p) is a prime in C1[x], and is height 1 by Krull’s Hauptidealsatz. Thus, C2 is a

complete, one-dimensional, local ring, and so it is a Cohen ring for k2 (via the map that

sends x to α).

If α is algebraic over k1, satisfying the minimal polynomial

f(T ) = T d + c1T
d−1 + · · ·+ cd,

then let

C2 = C1[x]/(xd + c̃1x
d−1 + · · ·+ c̃d)

∧
p ,
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where c̃i is any lift of ci to C1. This again has a map to k2 under C1 that sends x to α.

Any maximal ideal of C2 will intersect C1 in a prime ideal, so again, C2 is complete and

local with maximal ideal (p), and thus a Cohen ring for k2.

Finally, suppose given a filtered diagram F : I → C with F (i) = (ki, Ci). Define

k′ =
⋃
i∈I ki, C̃

′ = colimi∈I Ci, and C ′ = (C̃ ′)∧p . Observe that if x is not a multiple of p in

C̃ ′, and x is in the image of some Ci, then x isn’t a multiple of p in Ci, so it’s a unit in

Ci and thus a unit in C̃ ′. It follows that C̃ ′ is a local ring with maximal ideal (p), thus a

DVR, and so C ′ is a Cohen ring. The map C ′ → k′ is surjective, and so its kernel must

be (p). Thus, R′ is a Cohen ring for k′. It is clear that (k′, C ′) = colimI F .

Thus, C is nonempty and admits small filtered colimits. By a categorical version of

Zorn’s lemma [KS06, Theorem 9.4.2], it has a weakly terminal object, i. e. an object

(k′, C ′) such that any map (k′, C ′) → (k′′, C ′′) has a left inverse. In particular, for any

map (k′, C ′)→ (k′′, C ′′), k′ = k′′. By what we’ve shown, if k′ is any proper subfield of k,

then there exists a map (k′, C ′)→ (k′(α), C ′′) where α 6∈ k′. Thus, we must have k′ = k,

which means that k has a Cohen ring. �

Proposition 3.2.12. If C is a Cohen ring for k, then the map Z/pnZ → C/pnC is

formally smooth for each n.

Proof. When n = 1, Fp → C/pC = k is a separably generated field extension, thus

in particular formally smooth (see [Stacks, Tag 0322]). In general, observe that C is

p-torsion-free and thus flat over Zp, and in fact faithfully flat because p is not invertible

in C. Thus, C/pn+1C is flat over Z/pn+1Z. The ideal (pn) squares to zero in Z/pn+1, and

http://stacks.math.columbia.edu/tag/0322
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by induction, we can assume that Z/pnZ→ C/pnC is formally smooth. The same follows

for n+ 1 by [Stacks, Tag 031L]. �

Corollary 3.2.13. If C is a Cohen ring for k, R is a ring which is complete with respect

to an ideal I containing p, and i : k → R/I is an inclusion, then there exists a map

completing the diagram

C //

��

R

��

k
i

// R/I.

Proof. Starting with the map C/p = k → R/I, we use formal smoothness to induc-

tively construct lifts

Z/pnZ

��

// R/In

��

C/pnC

::

// R/In−1

along the square-zero extensions R/In → R/In−1. By completeness, these assemble to a

map C → R with the desired property. �

Corollary 3.2.14. Any two Cohen rings for k are (non-uniquely) isomorphic.

Proof. Let C1 and C2 be Cohen rings for k. By the previous corollary, there exists a

map f : C1 → C2 reducing to the identity on k. If f(x) = 0, then x must be divisible by

p, and writing x = px1 and proceeding inductively, we see that x is divisible by all powers

of p, so is zero by completeness. Thus, f is injective. If y ∈ C2, then there is an x0 ∈ C2

such that f(x0)−y is divisible by p, so is equal to some py1. Proceeding inductively again

and using completeness, we see that f is surjective. �

https://stacks.math.columbia.edu/tag/031L
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3.3. Pipe phenomena

We record some basic definitions concerning pipe rings here, and refer to [MGPS]

and [Ka00] for further details. Throughout this section, n will always be a nonnegative

integer or −1, and r will be a nonnegative half-integer or −1.

Definition 3.3.1. Let C be a category. The category of ind-objects in C, Ind(C), has

as its objects diagrams I → C where I is a filtered category. We will generally write

colimα∈I Xα for such a diagram – bearing in mind that the diagram is what is meant, and

not its colimit, which may not exist in C. The morphism sets are defined by

HomInd(C)(colim
α

Xα, colim
β

Yβ) = lim
α

colim
β

HomC(X, Y ).

Likewise, the category Pro(C) of pro-objects has as its objects diagrams limα∈I Xα,

where I is a cofiltered category. The morphism sets are defined by

HomPro(C)(lim
α
Xα, lim

β
Yβ) = lim

β
colim
α

HomC(X, Y ).

There are functors C → Ind(C) and C → Pro(C), sending an object X to the diagram

{∗} → C with image X. Moreover, Ind(C) has all filtered colimits, and Pro(C) has all

filtered limits.

Definition 3.3.2. The categories of r-pipes are defined by:

• Pipes− 1
2

is the category of finite sets,

• Pipes0 = Pro(Pipes− 1
2
) is the category of profinite sets,

• for n a nonnegative integer, Pipesn+ 1
2

= Ind(Pipesn),
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• and for n a nonnegative integer, Pipesn+1 = Pro(Pipesn+ 1
2
).

The categories Pipesr have finite products. We write PipeRingsr for the category of ring

objects in Pipesr. There are product-preserving, fully faithful functors Pipesr → Pipesr+ 1
2
,

which induce functors PipeRingsr → PipeRingsr+ 1
2
. We write Pipes = colimPipesr and

PipeRings = colimr PipeRingsr.

There is a terminal pipe 1, and a realization functor Pipes → Sets (and PipeRings →

Rings) defined by

X 7→ Re(X) = HomPipes(1, X).

More concretely, the realization functor takes colimits and limits along the diagrams

defining X, in the category of sets. That is, the realization of a (−1
2
)-pipe is itself, and

for higher values of pipiness,

Re(colim
α

Xα) = colim
α

Re(Xα), Re(lim
α
Xα) = lim

α
Re(Xα).

This functor is in general neither injective on objects, nor faithful, but it is under certain

conditions.

Definition 3.3.3. Every (−1
2
)-pipe and 0-pipe is fine. For n ≥ 0, an (n+ 1

2
)-pipe

Y = colim
β

Yβ

is fine if each Yβ is a fine n-pipe, and the maps on realizations

Yβ → Y
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are injective. An (n+ 1)-pipe

Y = lim
α
Yα

is fine if each Yα is a fine (n+ 1
2
)-pipe.

Every (−1
2
)-pipe is cofine. A 0-pipe is cofine if it is a limit of finite sets along

surjective maps. For n ≥ 0, an (n+ 1
2
)-pipe

X = colim
λ

Xλ

is cofine if each Xλ is a cofine n-pipe. An (n+ 1)-pipe

X = lim
µ
Xµ

is cofine if each Xµ is a cofine (n+ 1
2
)-pipe, and the maps on realizations

X → Xµ

are surjective.

Remark 3.3.4. Note that the usage of ‘cofine’ and ‘fine’ is reversed from [Ka00], and

agrees with [MGPS]; the definition corrects a reversal of ‘ind’ and ‘pro’ found in [MGPS].

Lemma 3.3.5 ([MGPS], Lemma 5). If X is cofine and Y is fine, then the realization

map

HomPipes(X, Y )→ HomSets(Re(X),Re(Y ))

is injective.
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Definition 3.3.6. There is a natural topology on the realization of a pipe, given by taking

the limits and colimits in the category of topological spaces rather than the category of

sets. To be precise:

• If X is a (−1
2
)-pipe, Re(X) is discrete;

• if X is a 0-pipe, Re(X) has its profinite topology (which is its limit topology for

the limit diagram of (−1
2
)-pipes);

• if X ∈ Pipesn+ 1
2

with X = colimβXβ where Xβ are n-pipes, then Re(X) =

colimβ Re(Xβ) has the colimit topology, i. e., it is topologized as a quotient of

the disjoint union
∐

Re(Xβ);

• if X ∈ Pipesn+1 with X = limµXµ where Xµ ∈ Pipesn+ 1
2
, then Re(X) =

limµ Re(Xµ) has the limit topology, i. e., it is topologized as a subspace of∏
Re(Xµ).

Lemma 3.3.7. If X is cofine, Y is fine, and r ≤ 1
2
, then the realization map

HomPipes(X, Y )→ HomSpaces(Re(X),Re(Y ))

is an isomorphism.

Proof. Without loss of generality, both X and Y are r-pipes for some common r.

Injectivity is guaranteed by Lemma 3.3.5, so it suffices to prove surjectivity, which we do

by induction on r. If r = −1, then the statement is obvious. If r = 0, then suppose given

a continuous map

f : Re(X)→ Re(Y )
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of profinite spaces, and presentations X = limXλ, Y = limYµ. Let πµ : Re(Y )→ Re(Yµ)

be the projection; for fixed µ and each y ∈ Re(Yµ), f−1π−1
µ (y) is open in Re(X), and is

thus a union of sets of the form π−1
λ (x) for x in a fixed Re(Xλ). Thus, Re(X)→ Re(Yµ)

factors through Re(Xλ). It follows that

HomSpaces(Re(X),Re(Y )) = lim
µ

colim
λ

HomSets(Re(Xλ),Re(Yµ)) = HomPipes(X, Y ).

For r = 1
2
, write X = colimXλ and Y = colimYµ. Given a map f : Re(X)→ Re(Y ),

observe that Re(Xλ) is compact (because profinite) and so f(Re(Xλ)) is also compact.

Thus its cover by
⋃
µ Re(Yµ) factors through some finite stage Re(Yµ), and by the case

r = 0 there is a map of 0-pipes Xλ → Yµ. Thus, f can be lifted to a map of 1
2
-pipes

X → Y . �

Example 3.3.8. The canonical examples are coefficients of iterated localizations of E-

theory,

π0LK(ht) · · ·LK(h1)En, 0 ≤ ht < · · · < h1 < n.

On coefficients, each localization inverts in a parameter uni in the regular sequence

(p, u1, . . . , un−1), which is a filtered colimit, and then completes at the lower parame-

ters (p, u1, . . . , uni−1), which is a cofiltered limit. Thus, the above ring is the realization

of an m-pipe ring, which is moreover fine and cofine [MGPS, Lemma 33].

In situations like these, where the diagrams involved are clear, we will not distinguish

the pipe ring, considered as an iterated diagram, from its realization, considered as a

topological ring. We will say that a map between realizations of pipe rings is pipe-

continuous if it is the realization of a map of pipe rings.
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In particular, we specialize to the 1-pipe rings

π0LK(n−1)En = Wk[[u1, . . . , un−1]][u−1
n−1]∧(p,u1,...,un−2) = Wk((un−1))∧p [[u1, . . . , un−2]].

The topology on their realizations is explicitly described as follows [Morr12]. We can

write elements of this ring as

∑
i∈Z

aiu
i
n−1, ai ∈ Wk[[u1, . . . , un−2]],

where ai goes to 0 in the maximal ideal topology on Wk[[u1, . . . , un−2]] as i goes to −∞.

For each i ∈ Z, choose an open neighborhood Ui of 0 in Wk[[u1, . . . , un−2]] such that

• Ui = Wk[[u1, . . . , un−2]] for i >> 0, and

• all Ui contain some fixed power of the maximal ideal.

Then the set {∑
aiu

i
h−1 : ai ∈ Ui

}
is an open neighborhood of 0 in π0LK(n−1)En, and the topology on π0LK(n−1)En is the

coarsest one invariant under translation such that these are open neighborhoods of 0.

3.3.1. Local rings and Cohen rings

Definition 3.3.9. For r ≤ r′, an r-ideal of an r′-pipe ring R is the kernel of a surjection

R→ S where S is an r′-pipe ring.

Definition 3.3.10. A complete local 0-pipe ring is a cofine, fine, profinite complete

local ring. A complete local (n+ 1
2
)-pipe ring is a cofine and fine (n+ 1

2
)-pipe ring of
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the form

R[x−1] = colim
(
R

x→ R
x→ · · ·

)
= colim

m
x−mR

where R is a complete local n-pipe ring and x is a non-zero-divisor of R. A complete

local (n+ 1)-pipe ring is a cofine and fine (n+ 1)-pipe ring formed by a limit of (n+ 1
2
)-

pipe rings of the form R/mk, where R is a complete local (n + 1
2
)-pipe ring and m is a

maximal (n+ 1
2
)-ideal of R.

An (n + 1
2
)-pipe field is a pipe ring of the form K = R/m, where R is a complete

local (n+ 1)-pipe ring. Note that K is fine and cofine and K is a field.

If K is an (n+ 1
2
)-pipe field, a Cohen n-pipe ring for K is a complete local (n+1)-pipe

ring C with maximal (n+ 1
2
)-ideal pC, such that C is a Cohen ring for K.

Example 3.3.11. Let K = k((u)), where k is a finite field. This is a fine and cofine

1
2
-pipe ring, the colimit of the 0-pipes u−mk[[u]]. A Cohen 1-pipe ring for k is

Λ = lim
n
Wnk((u)) = lim

n
colim
m

u−mWnk[[u]].

Proposition 3.3.12. If K = k((u)) where k is a finite field, Λ is a Cohen ring and R

is a complete local 1-pipe ring with a map of 1
2
-pipe rings k → R/m, then there exists a

map filling in the diagram

Λ

��

// R

��

k // R/m.

Proof. Since Λ is a Cohen ring for k, there exists such a map filling in the analogous

diagram of realizations. We construct this map by inductively filling in the diagrams of



58

realizations of 1
2
-pipe rings,

Z/pnZ

��

// R/mn

��

Λ/pnΛ

::

// R/mn−1

By Lemma 3.3.5 and Lemma 3.3.7, it suffices to show that we can always fill in these

diagrams with continuous maps.

Furthermore, the 1
2
-pipe ring structure on Λ/pnΛ is obtained from the 0-pipe ring

Zq/pn[[u]] by inverting the element u. Thus, to find a continuous lift

Λ/pnΛ→ R/mn

it suffices to find a map of realizations of 1
2
-pipe rings

Zq/pn[[u]]→ R/mn,

lifting

Zq/pn[[u]]→ R/mn−1,

such that the map factors through some stage in the colimit diagram for R/mn, and such

that the image of u becomes invertible in R/mn. However, this last condition is automatic

as long as the map reduces to a map k → R/m. Finally, we have R = S[x−1] for some
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complete local profinite ring S, and so it suffices to inductively find continuous lifts

Z/pnZ

��

// S/mn

��

Zq/pn[[u]]

99

// S/mn−1

However, Z/pnZ→ Zq/pn[[u]] is formally smooth on underlying rings and continuous, and

thus it is formally smooth as a map of topological rings, by [Stacks, Tag 07EA]. Thus,

the desired lifts exist. �

Remark 3.3.13. Though this could have been proved in more generality, fields of the

form Fq((u)) are essentially the only 1
2
-pipe fields of characteristic p.

3.4. Three notions of continuity

To sum up, we consider the ring Λ = Wk((x))∧p , which will play a key role in the story

to follow. This ring admits three different kinds of topology and, correspondingly, three

notions of continuity.

(1) The p-adic topology on Λ is a ring topology in the most conventional sense: an

adic topology for a maximal ideal. A p-adically continuous map Λ → R, where

R is a complete local ring, descends to a map k((x)) → R/m. However, this

map need not be continuous in any reasonable sense, even if R/m has a nice

topology. Since k((x)) has infinite transcendence degree over k(x), there are

many discontinuous maps out of it.

(2) We could also consider Λ as a 1-pipe ring and look at maps into other 1-pipe

rings R. Assuming that R is fine and cofine and R = limR/pn with each
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R/pn a 1
2
-pipe ring, a pipe-continuous map Λ → R is a diagram of 1

2
-pipe maps

Wnk((x))→ R/pn. By Lemma 3.3.7, this is equivalently a diagram of compatible

mpas of topological rings Wnk((x)) → R/pn. Here Wnk((x)) has the topology

making xrWnk[[x]] an basis of open neighborhoods of 0. A convergent sequence

in Wk((x))∧p is one that converges x-adically mod pn for every n: for example,

xr converges to zero as r →∞ in the pipe topology, but not p-adically.

(3) Finally, there is an inclusion Wk[[x]]→ Wk((x))∧p , and we can give Wk((x))∧p the

coarsest ring topology making Wk[[x]], with its maximal ideal topology, an open

subring. That is, a basis of neighborhoods of 0 is given by (p, x)rWk[[x]]. This

topology has more and smaller open sets than either of the other two topologies

considered. For example, the sequence prx−r converges to zero p-adically and

in the pipe topology, but not in this topology. Note that this topology contains

Wk((x)) as an open subring, and a continuous map Wk((x))→ R is equivalent

to a continuous map Wk[[x]] → R sending x to a unit. However, extending

this to a continuous map Wk((x))∧p → R involves some choices with no simple

description. This is the topology Torii uses to study localizations of E-theory

[To11].
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CHAPTER 4

Localized E-theory

4.1. Description of LK(n−1)En as ring and cohomology theory

Our primary concern in this paper is the spectrum LK(n−1)En, where n ≥ 2. We

abbreviate this spectrum by LE. We begin by describing its coefficient ring.

Proposition 4.1.1. The coefficient ring LE∗ is even periodic, with

LE0 = Wk[[u1, . . . , un−1]][u±1
n−1]∧(p,u1,...,un−2).

Proof. By [Rav84], BP satisfies the telescope conjecture, in the sense that there is

an equality of Bousfield classes 〈BP ∧ T (n − 1)〉 = 〈BP ∧ K(n − 1)〉, where T (n) is a

vn−1-telescope of a finite type n− 1 spectrum. As En is a BP -module, it also satisfies the

telescope conjecture. By [Hov93, Theorem 1.5.4],

LK(n−1)En = holimS/(pi0 , vi11 , · · · , v
in−2

n−2 ) ∧ v−1
n−1En,

where the limit is over type (n− 1) generalized Moore spectra. We observe that

(v−1
n−1En)∗S/(p

i0 , vi11 , · · · , v
in−2

n−2 ) = E∗[u
−1
n−1]/(pi0 , ui11 , · · · , u

in−2

n−2 ),

which is even periodic with

(v−1
n−1En)0S/(p

i0 , vi11 , · · · , v
in−2

n−2 ) = Wk[[u1, . . . , un−1]][u±1
n−1]/(pi0 , ui11 , · · · , u

in−2

n−2 ).
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The transition maps in the diagram are surjective, so there is no lim1 and the result is

still even periodic. The limit on π0 is the completion Wk[[u1, . . . , un−1]][u±1
n−1]∧(p,u1,...,un−2),

as desired. �

Proposition 4.1.2. We have

LE0 = Wk((un−1))∧p [[u1, . . . , un−2]].

Proof. Elements of both rings can be identified as certain possibly infinite formal

sums

∑
{aIui11 · · ·u

in−2

n−2u
in−1

n−1 : aI ∈ Wk, ij ∈ N for 1 ≤ j ≤ n− 2, in−1 ∈ Z.}

Such a sum is in LE0 if and only if its reduction modulo each power of (p, u1, . . . , un−2)

is in k((un−1)). In other words, the exponents in−1 appearing in all nonzero terms with

i0, . . . , in−2 less than some fixed i are bounded below. On the other hand, such a sum

is in Wk((un−1))∧p [[u1, . . . , un−2]] if and only if the terms with each fixed i1, . . . , in−2 add

up to an element of u
in−1

1 · · ·uin−2

n−2Wk((un−1))∧p . That is, the exponents in−1 appearing in

the nonzero terms with fixed i1, . . . , in−2, and with i0 less than some fixed i, are bounded

below. Since there are only finitely many choices of i1, . . . , in−2 less than any fixed i, the

two conditions are in fact equivalent. �

4.1.1. Completed homology

The spectrum LE defines completed homology and cohomology theories:

LE∗X = π∗F (X,LE),
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LE∧∗X = π∗LK(n−1)(LE ∧X) = π∗LK(n−1)(E ∧X).

These are valued in the category Mod∧LE∗ of graded LE∗-modules which are L-complete

for the ideal In−1 = (p, . . . , un−2), as we now prove.

Proposition 4.1.3. The functors LE∗ and LE∧∗ from HoTop to ModLE∗ naturally factor

through Mod∧LE∗.

Proof. The homology of the sphere is complete, and thus L-complete. Since Mod∧LE∗ is

an abelian category closed under extensions, the same follows for any finite complex. Now

let X be an arbitrary spectrum and write X as a filtered colimit of its finite subcomplexes

Xα. Then LE∗X = limLE∗Xα, which is also L-complete.

Finally, the completed homology of X is

LE∧∗X = π∗LK(n−1)(En ∧ Ln−1X) = π∗ holim(E[u−1
n−1]/(pi0, . . . , u

in−2

n−2 ) ∧ Ln−1X).

There is a Milnor exact sequence

0→ lim1 πk+1(E[u−1
n−1]/(pi0, . . . , u

in−2

n−2 ) ∧ Ln−1X)→

LE∧kX → limπk(E[u−1
n−1]/(pi0, . . . , u

in−2

n−2 ) ∧ Ln−1X)→ 0.

Each term in the limit diagram is torsion to a power of In−1 and thus L-complete. Since

L-complete modules are closed under extensions, limits and lim1, LE∧kX is L-complete

for each k. �

Proposition 4.1.4. If X is finite, then LE∧∗X = LE∗X, which is complete in the ordi-

nary sense.
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Proof. If X is finite, then LE ∧ X is in the thick subcategory generated by LE.

In particular, it is K(n − 1)-local. It follows that LE∗X = LE∧∗X, a finite L-complete

LE∗-module. This is also complete in the ordinary sense, by Proposition 3.1.2. �

Proposition 4.1.5. If LE∗X is free over LE∗, then LE∧∗X is its In−1-completion.

Proof. In the Milnor exact sequence for LE∧∗X, we have π∗(LE/I ∧X) ∼= π∗(LE ∧

X)/I, where I is an ideal in LE0. Thus, the transition maps in the towers are surjective,

the lim1 term vanishes, and the lim term is the ordinary completion of LE∗X. �

4.2. Augmented deformations

In Proposition 4.1.1, we showed that LE0
∼= Wk((un−1))∧p [[u1, . . . , un−2]]. We write

Λ for the coefficient ring Wk((un−1))∧p ; the previous section showed that this is a Cohen

ring for k((un−1)).

We will also write Hu for the base change of the universal deformation formal group

Gu over E0 to LE0, and H for its base change to the residue field k((un−1)). By the

discussion in Remark 2.3.7, if we started with the Honda formal group law with p-series

[p]Γ(x) = xp
n

,

then H has a coordinate with p-series

[p]H(x) = un−1x
pn−1

+H x
pn .

In particular, its height is n− 1.
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Definition 4.2.1. Let H be a formal group over k((un−1)). An augmented deforma-

tion of H over R ∈ CLN is a triple (G, i, α), where:

• G is a formal group over R,

• i : Λ→ R is a local ring homomorphism, inducing a map i→ R/mR,

• and α : H ⊗ik((un−1)) R/mR
∼→ G ⊗R R/mR is an isomorphism of formal groups

over R/mR.

A ?-isomorphism of augmented deformations, φ : (G1, i1, α1) → (G2, i2, α2), is the

requirement that i1 = i2 and a map φ : G1 → G2 of formal groups over R, such that the

square

Γ⊗k((un−1)) R/m

1
��

α1
// G1 ⊗R R/m

φ

��

Γ⊗k((un−1)) R/m
α2

// G2 ⊗R R/m

commutes.

Let

Defaug
H : CLN→ Gpd

be the functor that sends R to the groupoid of augmented deformations of H and ?-

isomorphisms.

Theorem 4.2.2. The functor Defaug
H is represented by LE0. That is, there is a natural

equivalence

Homcts(LE0, R) ' Defaug
H (R),

where LE0 = Wk((un−1))∧p [[u1, . . . , un−2]] is given its maximal ideal topology (cf. Sec-

tion 3.4)
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Proof. This is more or less an immediate consequence of the Lubin-Tate theorem.

We define a putative universal deformation in Defaug
H (LE0) by the formal group Hu, the

map 1 : Λ→ Λ, and the canonical isomorphism αu : H ∼→ Hu ⊗ k((un−1)). A continuous

map of complete local rings f : LE0 → R then induces an augmented deformation of H,

namely the base change of (Hu, 1, αu) along f . We note that the underlying map i of this

base change is f |Λ, which is local because f is.

On the other hand, suppose given (G, i, α) ∈ Defaug
H (R). We must exhibit a unique

continuous map f : LE0 → R and a unique ?-isomorphism between (G, i, α) and an

augmented deformation of the above form. Since i is local, we may regard R as a Λ-algebra

of the form given in Theorem 2.3.1, and (G, i, α) as an object of DefΛH(R). Theorem 2.3.1

now implies that (G, i, α) is uniquely isomorphic, as an object of DefΛH(R), to a base

change of the universal deformation along a unique local ring map

Λ[[u1, . . . , un−2]]→ R

compatible with i. Equivalently, it is uniquely isomorphic, as an object of Defaug
H (R), to

a base change of (Hu, 1, αu) along a unique local ring map

Λ[[u1, . . . , un−2]]→ R.

�

Again, there are graded versions of all these notions, and we also have an equivalence

of functors from even periodic complete local rings to groupoids:

Homcts(LE∗, R∗) ' Defaug,∗
H (R).
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4.3. Pipe formal groups and pipe deformations

As we noted in Example 3.3.8, LE0 is a complete local 1-pipe ring. This is slightly

more structure than a complete local ring: for example, pipe maps out of LE0 induce

continuous maps on the residue field k((un−1)). In this section, we repeat the above story

and prove the analogue of Theorem 4.2.2 for the pipe ring LE0.

4.3.1. Pipe formal groups

Before proving the pipe analogue of Proposition Theorem 4.2.2, we need to define formal

groups and their deformations in this pipe setting.

Definition 4.3.1. If R is an n-pipe ring, define the (n+ 1)-pipe ring

R[[x1, . . . , xd]] = lim
k
R[x1, . . . , xd]/(x1, . . . , xd)

k.

A formal group law over R is a commutative group structure on the functor

Â1
R = HomR/PipeRingsn+1

(R[[x]], ·);

equivalently, it is a map of (n+ 1)-pipe R-algebras

F : R[[x]]→ R[[x1, x2]]

satisfying the usual properties of a formal group law. An isomorphism of formal group

laws f : F → G is an isomorphism of (n+ 1)-pipe rings

f : R[[x]]→ R[[x]]
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such that f(F (x, y)) = G(f(x), f(y)). We write FGL(R) for the category of formal group

laws and their isomorphisms over R.

A formal group over R is a commutative group structure on a functor

PipeRingsn+1 → Sets

which is isomorphic to Â1
R. We write FG(R) for the category of formal groups and their

isomorphisms over R.

Clearly, there is a map of groupoids FGL(R) → FG(R) which forgets about the co-

ordinate; since any formal group can be given a coordinate, this map is an equivalence.

Classically, we define formal groups so that they only locally admit coordinates; here,

lacking good notions of algebraic geometry and primarily interested in local phenomena

anyway, we won’t make this distinction.

Proposition 4.3.2. The realization of R[[x1, . . . , xd]] is the power series ring R[[x1, . . . , xd]].

Thus, realization induces a functor FGL(R)→ FGL(R). If R is fine and cofine, this functor

is faithful.

Proof. This is clear from the definitions. For the last part, one should note that if R

is fine and cofine, so is R[[x1, . . . , xd]]. �

Proposition 4.3.3. A map i : R → S of pipe rings induces a functor i∗ : FGL(R) →

FGL(S).

Proof. More generally, a map i : R → S of pipe rings induces a base change functor

from the category of pipe rings of the form R[[x1, . . . , xd]] to the category of pipe rings
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of the form S[[x1, . . . , xd]]. Importantly, this holds even for maps between pipe rings of

different levels. To prove this, it suffices to show that the category of pipe rings of the

form R[x1, . . . , xd]/(x1, . . . , xd)
k is functorial in R. If R is an n-pipe ring, then a map

between two n-pipe rings of this form is in particular a map between finite free n-pipe

modules over R, and it suffices to observe that the category of finite free pipe modules is

functorial in R. �

Remark 4.3.4. If R is a limit of (n− 1
2
)-pipe rings,

R = lim{Rα : α ∈ I},

then we can also define

R[[x1, . . . , xd]] = lim{Rα[x1, . . . , xd]/(x
e1
1 , . . . , x

ed
d ) : (α, e1, . . . , ed) ∈ I × Nd},

which is an n-pipe ring rather than an (n+1)-pipe ring. This distinction is immaterial for

the purposes of dealing with formal groups: for any formal group in this ‘n-pipe’ sense,

the multiplication is continuous over the n-pipe ring R with respect to the xi, and so the

formal group is canonically the realization of a formal group in the ‘(n + 1)-pipe’ sense

we have opted to use.

Example 4.3.5. The formal group Gu over π0En is a formal group in the 0-pipe sense.

As a result, its base change over π0LK(n−1)En is a 1-pipe formal group, and the reduction

H to the residue field k((un−1)) is a 1
2
-pipe formal group.

Definition 4.3.6. The height of a formal group over a pipe field k is the height of its

realization over k.
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4.3.2. Deformations of formal groups

Definition 4.3.7. Let H be a formal group over an (n− 1
2
)-pipe field K. A deformation

of H over a complete local n-pipe ring R is:

• a formal group G over R,

• a map i : K → R/m of (n− 1
2
)-pipe rings,

• and an isomorphism of formal groups over R/m,

α : i
∗H ∼→ G⊗R R/m.

An isomorphism of deformations, φ : (G1, i1, α1)
∼→ (G2, i2, α2), is the requirement

i1 = i2 and an isomorphism of formal groups φ : G1 → G2 such that the square

i
∗
1H

=
��

α1
// G1 ⊗S S/m

φ

��

i
∗
2H α2

// G2 ⊗S S/m

commutes.

We write DefH for the functor from complete local n-pipe rings to groupoids, sending

R to the groupoid of deformations of H and their isomorphisms. If Λ is a Cohen ring for

K, we write Defaug
H for the same functor where

• i is equipped with a lift to an n-pipe ring map i : Λ→ R, and

• isomorphisms of deformations (H1, i1, α1)→ (H2, i2, α2) include the requirement

that i1 = i2 : Λ→ S.
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Theorem 4.3.8. If K is the 1
2
-pipe field k((un−1)), Λ is the 1-pipe ring Wk((un−1))∧p ,

and H is the base change of the Lubin-Tate formal group Gu to K, then Defaug
H is repre-

sented on the category of complete local 1-pipe rings by LE0 = Λ[[u1, . . . , un−2]].

Proof. Let R be a complete local 1-pipe ring. By definition, R is of the form (S[x−1])∧m,

where S is a profinite complete local ring and m is a maximal 1
2
-ideal of S[x−1]. Suppose

given (G, i, α) ∈ Defaug
H (R). By Proposition 4.3.3, G descends to a compatible system of

formal groups G ⊗ R/mr over the 1
2
-pipe rings R/mr, and α descends to a compatible

system of isomorphisms over these same rings. The map i : Λ → R lifts a map i :

k((un−1))→ R/m, which means that i sends the ideal (p) into m. Thus, there are induced

1
2
-pipe maps Wrk((un−1))→ R/mr.

Taking the realization of all this data, we get a compatible system of deformations in

the usual, non-pipe sense,

(Gr, i, αr) = (G⊗R/mr, i, α⊗R/mr) ∈ DefH(R/mr),

together with a lift of i to

ir : Wk((un−1))→ Wrk((un−1))→ R/mr.

By Theorem 4.2.2, for each r there is a unique continuous map fr : LE0 → R/mr and

a unique isomorphism from the pushforward of the universal augmented deformation

along fr to the augmented deformation (Gr, ir, αr). Moreover, fr factors through LE0/p
r.
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Finally, the diagram

LE0/p
r

fr
//

��

R/mr

��

LE0/p
r−1

fr−1

// R/mr−1

commutes.

It remains to show that each fr is a 1
2
-pipe ring map, meaning that they assemble to

a 1-pipe ring map LE0 → R. This follows from the lemma below. �

Lemma 4.3.9. Let R and R′ be complete local 1-pipe rings with maximal ideals m and

n. Let f be a ring map between their realizations such that f(m) ⊆ n, and such that f

induces a continuous map on residue 1
2
-pipe fields. Then f is the realization of a 1-pipe

ring map.

Proof. The hypotheses imply that f induces compatible maps of realizations, fr :

R/mr → R′/nr. By Lemma 3.3.7, it suffices to prove that each fr is continuous, for then

they lift to compatible maps of 1
2
-pipe rings, thus defining a map of 1-pipe rings realizing

to f . We prove this by induction on r, the case r = 1 being a hypothesis. Assume

that fr is continuous, and let U be a neighborhood of 0 in R′/nr+1 such that U is closed

under addition and multiplication and contains nrU . Such neighborhoods are cofinal in

the filtered poset of neighborhoods of 0. Since fr is continuous, there is a neighborhood

V 3 0 in R/mr+1 such that

fr+1(V ) ⊆ U + mrR/mr+1.
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In fact, Definition 3.3.10 of complete local pipe rings says that R/mr+1 = S[x−1]/mr+1

where S is a profinite complete local ring, say with maximal ideal p, and x ∈ p. Thus, we

can take V to be an ideal of the form psS/mr+1. If x, y ∈ V ,

fr+1(xy) ∈ (U + mrR/mr+1)2 ⊆ U.

Thus, f−1
r+1(U) contains all products of pairs of elements of V . Since U is closed under

addition, it even contains all sums of products of pairs of elements of V . But this is

another open ideal, psS/mr+1. Thus, fr+1 is continuous. �

We conclude this chapter by relating the above to the work of Mazel-Gee, Peterson,

and Stapleton.

Definition 4.3.10. Let StagedDef1 be the category of maps of pipe rings R0 → R1,

where R0 is a complete local 0-pipe ring and R1 is a complete local 1-pipe ring of the

form R1 = R0[x−1]∧m. Let Γ be a height n formal group over a finite field k, and define

DefΓ : StagedDef1 → Gpd

as follows. An object of DefΓ(R0 → R1) is a (G0, i, α) ∈ DefΓ(R0), such that G0 ⊗R0 R1

is height n − 1 over the residue field of R1. An isomorphism in DefΓ(R0 → R1) is an

isomorphism in DefΓ(R0).
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Corollary 4.3.11. The functor DefΓ is represented on StagedDef1 by the diagram E0 →

LE0.

Proof. A commutative square

E0
//

��

LE0

��

R0
// R1

defines objects (G0, i0, α0) ∈ DefΓ(R0) and (G1, i1, α1) ∈ Defaug
Γ (R1) via the vertical maps,

together with an isomorphism G0 ⊗R0 R1
∼= G1. In particular, G0 ⊗R0 R1 has height

n − 1 over the residue field of R1. Conversely, given an object in DefΓ(R0 → R1), the

underlying (G0, i0, α0) ∈ DefΓ(R0) is represented by a unique continuous map E0 → R0.

Since G0 ⊗R0 R1 has height n− 1, the map from E0 to the realization R1 factors through

LE0. On residue fields, k((un−1)) → R1/m = R0[x−1]/m factors through a continuous

map k[[un−1]] → R0/m, and is thus continuous. By Lemma 4.3.9, there is an induced

1-pipe map LE0 → R1 making the diagram commute. �

Of course, this is a very special case of the main theorem of [MGPS], which proves

that the diagram of pipe rings

π0En → π0LK(h1)En → · · · → π0LK(ht) · · ·LK(h1)En,

for ht < · · · < h1 < n, represents a similar moduli problem, of deformations of a height n

formal group over a complete local ring, such that the deformation drops to the specified
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heights over specified pipe localizations. The representation theorem proved here, Theo-

rem 4.3.8, describes what happens to one of these moduli problems when we forget about

the map from π0En.
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CHAPTER 5

The E-theory of E-theory

5.1. Co-operations for E-theory

The completed E-homology E∧∗X = π∗LK(n)(E ∧X) of a space or spectrum X is nat-

urally a complete comodule for a coalgebra of co-operations E∧∗X. This has a surprisingly

simple form. In this section, we write Gn = Aut(k,Γ).

Theorem 5.1.1 ([DH04]). If E = E(k,Γ) where Γ is the height n Honda formal

group over a finite field k containing Fp, there is an isomorphism

E∧∗ E
∼= Homcts(Gn, E∗),

where Homcts(Gn, E∗) is the E∗-algebra of continuous set maps Gn → E∗.

As an immediate application, in the K(n)-local E-based Adams spectral sequence

E2 = Ext∗E∧∗ E(E∗, E
∧
∗X)⇒ π∗LK(n)X,

we can rewrite the E2 page as group cohomology H∗cts(Gn, E
∧
∗X).

For the sake of inspiring the arguments below, we give a proof of this theorem. It will

be more convenient to work more generally than with the Honda formal group, so let Γ be

a height n formal group of characteristic p over a perfect field, and let E = E(k,Γ). Let

Alg∧E∗ be the category of even periodic, In-adically complete E∗-algebras, and let Alg∧E0
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be the category of In-adically complete E0-algebras. The proof will show that E∧∗ E and

Homcts(Gn, E∗) represent the same functor on Alg∧E∗ .

Lemma 5.1.2. The ring E∧∗ E is an object in Alg∧E∗.

Proof. Since E is Landweber exact,

E∗E = π∗(E ∧ E) = E∗ ⊗BP∗ BP∗BP ⊗BP∗ E∗

is even periodic and flat over E∗ (where, for definiteness, we use the left E∗-module

structure). The theory E ∧ E is Ln-local, which means that

LK(n)(E ∧ E) = holim
I

E ∧ E ∧ S/I = holim
I

E ∧ E/I

where I ranges over ideals (pi0 , vi11 , . . . , v
in−1

n−1 ) such that the associated Moore spectrum

exists. Again, the homotopy groups of the objects in the limit diagram are

E∗(E/I) = E∗ ⊗BP∗ BP∗BP ⊗BP∗ E∗/I.

Thus, the maps in the diagram are surjective on homotopy groups, so that

π∗LK(n)(E ∧ E) = lim
I
E∗(E/I) = (E∗ ⊗BP∗ BP∗BP ⊗BP∗ E∗)∧In .

As In and its powers are images of invariant ideals in BP∗BP , it doesn’t matter whether

we complete with respect to the In coming from the left or right E∗-module structure.

Clearly, this is an object of Alg∧E∗ . �
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Lemma 5.1.3. For R∗ ∈ Alg∧E∗, pre-composition with the completion map E∗E → E∧∗ E

induces an isomorphism

HomAlg∧E∗
(E∧∗ E,R∗)

∼= HomE∗(E∗E,R∗).

Moreover, for any map E∧∗ E → R∗ in Alg∧E∗, the composition

E∗
ηR→ E∗E → R∗

is also continuous.

Proof. Let R∗ ∈ Alg∧E∗ and give R∗ the In-adic topology. As we saw in the proof of

the previous lemma, In is the image of an invariant ideal in BP∗BP . Thus, any map

f : E∗ ⊗BP∗ BP∗BP ⊗BP∗ E∗ → R∗

extending the given map E∗ → R∗ has f(In · E∗E) ⊆ InR∗. In particular, R∗ is also

complete with respect to In · E∗E, so that f factors uniquely through the completion

E∧∗ E. Moreover, f(ηR(In · E∗)) is also in InR∗, so that the map E∗ → R∗ coming from

the right unit is also continuous. �

Let Alg∧E∗,loc be the full subcategory of R ∈ Alg∧E∗ such that R0 is complete local. Then

the map E0 → R0 classifies an object (G, i, α) ∈ DefΓ(R0).

Proposition 5.1.4. Let R∗ ∈ Alg∧E∗,loc, and let (G, i, α) be the deformation of Γ classified

by E0 → R0. Then the set of maps HomAlg∧E∗
(E∧∗ E,R∗) is naturally isomorphic to the set
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of pairs (j, γ), where j is a map k → R0/m, and γ is an isomorphism of formal groups

over R/m, γ : Γ⊗ik R/m→ Γ⊗jk R/m.

Proof. By Lemma 5.1.3,

HomAlg∧E∗
(E∧∗ E,R∗)

∼= HomE∗(E∗E,R∗)
∼= HomE0(E0E,R0).

We also have

E0E = E0 ⊗BPP0 BPP0BPP ⊗BPP0 E0.

The Hopf algebroid (BPP0, BPP0BPP ) presents the moduli of p-local formal groups, so

there is a pullback square of stacks

SpecE0E //

��

SpecE0

��

SpecE0
// Mfg.

Again, Lemma 5.1.3 implies that, for any E0-map E0E → R0, the map E0 → R0 coming

from the right unit is also continuous, and thus classifies a deformation. So we have a

homotopy pullback of groupoids,

HomAlg∧E∗
(E∧∗ E,R∗) //

��

DefΓ(R0)

��

{∗}
G

// Mfg(R0).

An object in the pullback is given by another deformation (G′, j, β) ∈ DefΓ(R0) and

an isomorphism φ : G → G′. An isomorphism in the pullback is an isomorphism ψ :
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(G′, j, β) → (G′′, j, δ) such that the obvious triangle involving φ commutes. Now, there

is an isomorphism of deformations φ−1 : (G′, j, β) → (G, j, β ◦ φ−1); this is the only

isomorphism from (G′, j, β) to a deformation whose underlying formal group is exactly

G. It follows that the connected components of the pullback groupoid are contractible,

as expected, and correspond to pairs

(j, β : Γ⊗j R0/m
∼→ G⊗R0/m).

Equivalently, they correspond to pairs

(j : k → R0/m, γ = β−1α : Γ⊗i R0/m
∼→ Γ⊗j R0/m).

�

Example 5.1.5. The group Aut(k,Γ) acts on this set by pre-composing with the map j

and post-composing with the isomorphism γ. However, this action need not be transitive.

For example, let Γ be the height 1 formal group over the perfect field K = Fp((u1/p∞))

with p-series

[p]Γ(x) = uxp.

Let L = K ⊗Fp K = Fp((u1/p∞ , v1/p∞)), and let R0 be the algebraic closure of L. There

are two maps j1, j2 : K → R0, respectively sending u to u and to v. The base changes of

Γ along these maps are isomorphic over R0 via

φ(x) = (u/v)1/(p−1)x.

This isomorphism is not induced by an element of Aut(k,Γ).
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We now specialize to the case where Γ is the height n Honda formal group over a

finite field k containing Fpn , with [p]Γ(x) = xp
n
. In this case, the formal group is algebraic

enough to prevent the above subtlety from occurring. (In fact, the following argument

works in slightly more generality: one can take [p]Γ(x) = uxp
n

for u ∈ k×, which at least

implies that FrobΓ is central in Endk(Γ).) The author thanks Paul Goerss for pointing

out this subtlety and the following method of addressing it.

Proof of Theorem 5.1.1. First, we need to construct a continuous E∗-algebra map

f : E∧∗ E → Homcts(Gn, E∗). Such a map is adjoint to a continuous map

Gn → HomAlg∧E∗
(E∧∗ E,E∗).

Let (Gu, 1, αu) be the universal deformation over E∗. The E∗-algebra structure map

E∗ → E∗ is just the identity map, which classifies this deformation. By Proposition 5.1.4,

HomAlg∧E∗
(E∧∗ E,E∗)

∼= {(j : k → k, γ : Γ
∼→ Γ⊗j k)}.

Since k is a finite field, any map k → k is an isomorphism. So the right-hand side is

exactly Gn, defining the desired map.

For simplicity’s sake, we now restrict everything to degree zero. To show that the map

f : E∧0 E → Homcts(Gn, E0) is an isomorphism, it suffices, since both sides are flat and

complete E0-algebras, that it induces an isomorphism mod In. Now, In is an invariant

ideal in BP , so

E∧0 E/In = k ⊗BPP0 BPP0BPP ⊗BPP0 k.



82

A map from this into a ring R is the same as a pair of maps i, j : k → R and an

isomorphism γ : Γ⊗ikR→ Γ⊗jkR of formal groups over R. Now, if Γ is the Honda formal

group over k ⊇ Fpn , we have a coordinate x for Γ with [p]Γ(x) = xp
n
, and this must

commute in the obvious way with any isomorphism γ. It follows that the coefficients of

γ, viewed as a power series in x, are fixed by the nth power of Frobenius. Since R is an

Fpn-algebra via i, the subring of elements of R fixed by the nth power of Frobenius is a

product of copies of Fpn . By Theorem 2.2.8, the isomorphism γ is defined over Fpn .

Thus, the data (i, j, γ) is always base changed from data of the form

(1 : k → k, j : k → k, γ : Γ
∼→ j∗Γ).

Since k is finite, j is an isomorphism. This is precisely an element of the Morava stabilizer

group Gn = Aut(k,Γ) (cf. Definition 2.2.5). Thus, the map E∧0 E/In → Homcts(Gn, k) is

an isomorphism. �

5.2. E∧n−1,∗En

In this section, we let k be a finite field containing Fp and Fpn−1 . We let E be the

E-theory associated to a height n formal group Γ over k, and F the E-theory associated

to the height n − 1 Honda formal group Γn−1 over k. As before, LE = LK(n−1)E, Λ is

the ring Wk((un−1))∧p ⊆ LE0, and H is the base change of the formal group of E0 to

k((un−1)). As we showed (Theorem 4.2.2), a continuous map from LE0 to a complete

local ring R represents a deformation of H together with an augmentation lifting its map

i : k((un−1)) → R/m to a p-adically continuous map i : Λ → R. We will study the ring

F∧∗ E = π∗LK(n−1)(F ∧ E).
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Proposition 5.2.1. F∧∗ E = F∧∗ LE.

Proof. The map E → LE is a K(n−1)-local equivalence, so remains so after smashing

with F . �

Proposition 5.2.2. F∧∗ E is even periodic and flat over F∗.

Proof. As in the proof of Lemma 5.1.2, F and LE are both even periodic and Landwe-

ber exact, so

F∗LE = F∗ ⊗BP∗ BP∗BP ⊗BP∗ LE∗,

which is even periodic and flat over F∗, since F∧E is Ln−1-local. The K(n−1)-localization

satisfies

F∧∗ LE = π∗ holim
I

(F ∧ LE/I),

where I ranges over a cofinal set of ideals of the form (pi0 , . . . , v
in−1

n−1 ). The objects in the

limit diagram are

F∗ ⊗BP∗ BP∗BP ⊗BP∗ LE∗/I,

and the maps in the diagram are surjective. Therefore, F∧∗ E is also even periodic.

It remains to show that F∧∗ E is F∗-flat. The above implies that

F∧∗ LE = (F∗LE)∧In−1
,

(the degreewise completion), and therefore that

F∧∗ LE/I = (F∗LE)/I = F∗/I ⊗BP∗ BP∗BP ⊗BP∗ LE∗/I,
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where I is a power of In−1. Since each of these is a flat F∗/I-module and the maps in the

limit diagram computing the completion are surjective, [Stacks, Tag 0912] implies that

F∧∗ LE is a flat (F∗)
∧I = F∗-module. �

For x ∈ BP∗, write x for ηL(x) and x for ηR(x), elements of BP∗BP . The map

BP∗ → F∗ sends

vi 7→ up
i−1ui, i ≤ n− 2,

vn−1 7→ up
n−1−1,

vi 7→ 0, i ≥ n.

Likewise, the map BP∗ → LE∗ sends

vi 7→ up
i−1ui, i ≤ n− 1,

vn 7→ up
n−1,

vi 7→ 0, i ≥ n+ 1

We can thus write

F∧∗ E =

(
Wk[[u1, . . . , un−2]][u±1][t1, t2, . . . ]⊗Wk((un−1))[[uE1 , . . . , u

E
n−2]][(uE)±1]

(v1 − (uE)pi−1uEi , . . . , vn − (uE)pn−1, vn+1, . . . )

)∧
In−1

.

In degree zero, let si = ti(u
E)1−pi and w = u(uE)−1. Note that the ideal In−1 contains p

and all ui and uEi (and thus all vi and vi) for 1 ≤ i ≤ n− 2. Therefore,

F∧0 E/In−1 = k((un−1))[s1, s2, . . . , w
±1]/((uE)1−pn−1

vn−1 − un−1, (u
E)1−pnvn − 1, vn+1, . . . ).
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Now, by [Rav04, 4.3.1],

(5.1) vn−1+i ≡ vn−1+i + vn−1t
pn−1

i − vp
i

n−1ti (mod (p, v1, . . . , vn−2, t1, . . . , ti−1)).

Scaling to degree zero by multiplying by appropriate powers of u, we get relations in

F∧0 E/In−1:

un−1 = wp
n−1−1,

1 = wp
n−1−1sp

n−1

1 − wp(pn−1−1)s1,

0 ≡ wp
n−1−1sp

n−1

i − wpi(pn−1−1)si + fi(s1, . . . , si−1) for i ≥ 2.

(5.2)

The first relation gives an embedding of k((w)) into F∧0 E/In−1, as a tamely ramified

extension of k((un−1)) (recall that k contains Fpn−1). The remaining relations inductively

define si as solutions to higher Artin-Schreier equations over the ring generated by k((w))

and s1, . . . , si−1. In particular, F∧0 E/In−1 is ind-étale over k((un−1)).

We now describe the functor represented by F∧0 E.

Lemma 5.2.3. For any complete local ring R, pre-composition with the completion map

F0E → F∧0 E induces an isomorphism

Homcts(F
∧
0 E,R) ∼= HomF0,cts(F0E,R∗).

Moreover, for any continuous map F∧0 E → F0, the composition

LE0
ηR→ F0E → R

is also continuous.
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Proof. This is just as in Lemma 5.1.3. Since In−1 is an invariant ideal in BP∗,

any complete local ring R with a map f : F0E → R such that the restriction to F0 is

continuous must be complete with respect to In−1 ·F0E, so that f factors uniquely through

the completion F∧0 E. Moreover, f also sends ηR(In−1 · E0) into In−1R, so that the map

E0 → R coming from the right unit is also continuous. �

Theorem 5.2.4. Let R be a complete local F0-algebra. There is a natural isomorphism

between continuous F0-algebra maps F∧0 E → R and pairs (j, γ), where j : Λ → R is a

p-adically continuous map and γ is an isomorphism of formal groups over R, γ : Γn−1⊗ik

R/m
∼→ H⊗jk((un−1)) R/m.

Proof. As before, we have

F0LE = π0(F∗ ⊗BP∗ BP∗BP ⊗BP∗ LE∗) = F0 ⊗BPP0 BPP0BPP ⊗BPP0 LE0.

An F0-algebra map F0LE → R is equivalent to a map LE0 → R and an isomorphism

over R between the base changes of the formal groups of F0 and LE0.

If R is complete local, then the previous lemma tells us that HomF0,cts(F0E,R) =

HomF0,cts(F
∧
0 E,R), and that the map LE0 → R is continuous. Hence, the map LE0 → R

represents an object of Defaug
H (R). Likewise, the structure map F0 → R represents an

object of DefΓn−1(R), say (G, i, α). Thus, we have a pullback of groupoids:

HomF0,cts(F
∧
0 E,R) //

��

Defaug
H (R)

��

{∗}
G

// Mfg(R).
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In other words, a map f : F0E → R corresponds to the data:

(G′, j : Λ→ R, β : H⊗jk((un−1)) R/m
∼→ G′ ⊗R R/m) ∈ Defaug

H (R); φ : G ∼→ G′.

There is a unique isomorphism in the pullback groupoid which restricts to φ−1 : G′ → G on

formal groups. Composing with this isomorphism, one gets a unique object in the pullback

groupoid isomorphic to f whose underlying formal group is G and whose underlying

isomorphism of formal groups is the identity. It follows that the groupoid is locally

contractible, as expected. The rest of the data is given by j and β, or equivalently by j

and

γ = β−1α : Γn−1 ⊗ik R/m
∼→ H⊗jk((un−1)) R/m.

�

Proposition 5.2.5. F0E/In−1 is of the form Hom(Gal(k/Fp), L), where L is a field.

Therefore, F∧0 E is a finite product of complete local rings.

Proof. Armed with the above result, this is essentially a reinterpretation of a result

of Torii, [To11, Theorem 2.7], which in turn reinterprets a result from [Gr79]. For R a

complete local k = F0/In−1-algebra,

Homk(F0E/In−1, R) = {(j : k((un−1))→ R, γ : Γn−1 ⊗ik R/m
∼→ H⊗jk((un−1)) R/m)}.

The étaleness of isomorphisms, Theorem 2.2.8, says that we can equivalently define γ

as an isomorphism between Γn−1 and H over R. There is a smallest extension L of

k((un−1)) over which Γn−1 and H become isomorphic, given by adjoining the coefficients

of an isomorphism between any choice of formal group laws for Γn−1 and H. Torii proves
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that L/k((un−1)) is Galois with Galois group Autk(Γn−1). On the other hand, having

chosen j : k((un−1)) → R such that an isomorphism Γn−1 ⊗ R → H ⊗ R exists, the set

of such isomorphisms is clearly a torsor for this group. It follows that a k-algebra map

F0E/In−1 → R is precisely a map L → R, which is not necessarily a k-algebra map. In

other words, F0E/In−1 = Hom(Gal(k/Fp), L).

Since k is finite, this is a finite product of fields. The corresponding splitting for F∧0 E

itself follows from Hensel’s lemma. �

Remark 5.2.6. Of course, the coefficients of the universal isomorphism of formal groups

defined over L are precisely the si, and the algebraic equations they satisfy over k((un−1))

were partially computed above in (5.2). What is not clear is that the equation defining

si is irreducible over the field defined by w and s1, . . . , si−1.

One should compare this result with the computation of E∧0 E. In both cases, the

object calculated is a flat extension of a Lubin-Tate ring, it represents an isomorphism of

deformations of formal groups, and its reduction mod In−1 carries the action of a Morava

stabilizer group. In the case of E∧0 E, this action splits, and in fact E∧0 E is a profinite

group algebra for the Morava stabilizer group. In the case of F∧0 E, the action is in a

certain sense as complicated as possible, so that the only part of the action that splits is

the Galois group. This is one way of stating the idea that the formal group of LE0 is as

complicated a height n− 1 formal group as possible.

5.3. Co-operations for localized E-theory

We conclude this chapter by studying K(n− 1)-localized co-operations, by much the

same argument as before.
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Theorem 5.3.1. Let R be a complete local LE0-algebra, with LE0 → R classifying

(G, i, α) ∈ Defaug
H (R). There is a natural isomorphism between continuous LE0-algebra

maps LE∧0LE → R and pairs (j, γ), where j : Λ→ R is a p-adically continuous map and

γ is an isomorphism of formal groups over R/m, γ : H⊗ik((un−1))R/m
∼→ H⊗jk((un−1))R/m.

This proceeds by the same essential steps as in the previous section:

• LE0 is Landweber exact, so that LE∧0LE is even periodic and flat over LE0.

• If R is a complete LE0-algebra, continuous LE0-algebra maps LE∧0LE → R

are equivalent to LE0-algebra maps LE0LE → R, and induce continuous maps

LE0 → R through the right unit.

• The representability results imply that a continuous map LE0LE → R represents

a pair of augmented deformations with an isomorphism between their underlying

formal groups. This implies the statement of the theorem.

Remark 5.3.2. Unlike the case of π0LK(n)(E ∧ E), LE∧0LE is not formally étale over

LE0 (nor is F∧0 E formally étale over F0). However, in the data (j, γ), the isomorphism γ

is insensitive to infinitesimal thickenings. Constructing a lift in a diagram of the form

LE0
//

��

R

��

LE∧0LE //

::

R/I
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where R is complete local and I is a square-zero ideal reduces to constructing a lift in the

diagram

Wk //

��

R

��

Λ = Wk((un−1))∧p //

77

R/I.

In other words, the complete cotangent complex LLE∧0 LE/LE0
is a base change of LΛ/Wk. As

a consequence of Proposition 3.2.12, the map Wk → Λ is formally smooth if k is perfect,

meaning that its completed cotangent complex is Λ-free and concentrated in degree zero.

Note that

rankΛ LΛ/Wk = rankk((un−1)) Lk((un−1))/k =∞

as k((un−1)) has infinite transcendence degree over k. (If k is finite, this last fact follows

from a cardinality argument: k((un−1)) is uncountable, while any field of finite transcen-

dence degree over k is countable.)
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CHAPTER 6

Power operations and E∞ structures

6.1. Power operations: topology

If A is an E∞ ring spectrum, the d-fold multiplication map m : A∧d → A is com-

mutative up to coherent homotopy, and factors through the A has multiplication maps

m : A∧dhΣd
→ A which give rise to power operations in the homotopy of A. To be precise,

a class x ∈ π0A is represented by a map

x : S → A;

the composition

Σ∞+BΣd ' S∧dhΣd

x∧d→ A∧dhΣd

m→ A

then gives a class in A0(BΣd), called the total dth power operation on x, Pd(x). This

operation satisfies the following properties ([BMMS], [Re09, 3.9]):

• Pd(xy) = Pd(x)Pd(y).

• Pd(x + y) ≡ Pd(x) + Pd(y) modulo the sums of the images of the transfer maps

A0(BΣi ×BΣd−i)→ A0(BΣd) for 1 ≤ i ≤ d− 1.

• Composing with the map A0(BΣd) → A0(∗) = π0A given by the inclusion of a

basepoint to BΣd sends Pd(x) to xd.
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In nonzero degrees, power operations can still be defined but land in the cohomology

of an extended power of a sphere, or equivalently a Thom spectrum of a virtual bundle

over BΣd; see [Re09, 3.11].

In good cases, one can identify A0(BΣd) and decompose the total power operation into

more manageable pieces. Most famously, the mod p cohomology of BΣp for p > 2 is the

tensor product of an exterior algebra on a generator y in degree 2p− 1 and a polynomial

algebra on a generator z in degree 2p− 2. This has at most a one-dimensional Fp-vector

space in each degree. If A is an E∞ algebra over HFp, one can write

A∗(BΣp) = π−∗A⊗Fp H
∗(BΣp;Fp) = π−∗A⊗ Fp[y, z]/(y2),

and take the coefficients of Pd(x) with respect to monomials in y and z to produce further

elements of A∗, called the Dyer-Lashof operations on x. These operations are a specific

algebraic structure that act on the homotopy of any E∞-HFp-algebra. In particular, if A

is an arbitrary E∞-algebra, then HFp ∧ A is an E∞-HFp-algebra, so we get Dyer-Lashof

operations on the homology of A; if X is a space, then F (Σ∞+X,HFp) is an E∞-HFp-

algebra, so we get operations on the cohomology of X (which are just the Steenrod

operations).

Likewise, let A be an E∞-algebra over an E-theory E. Besides examples of the above

form, a key example here is A = LK(n)(E ∧X), where X is an arbitrary E∞-algebra. We

can write A0(BΣd) = A0⊗E0E
0(BΣd), using work of Strickland [Str98] which implies that

E0(BΣd) is always free over E0. Strickland further proves that the quotient of E0(BΣpk)

by transfers represents deformations of a formal group together with a degree pk subgroup.
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This suggests that Dyer-Lashof-type operations on algebras over E-theory should have

something to do with subgroups of formal groups. We now turn to this relationship.

6.2. Power operations: algebra

We now let E be the E-theory associated to a height n Honda formal group over a

finite field k containing Fpn . If X is a spectrum, then the zeroth completed E-homology

of X receives the structure of an E∧0 E-comodule. Put differently, E∧0 X is a quasicoherent

sheaf on the formal stack represented by (E0, E
∧
0 E). As a functor on CLN, this stack

represents deformations (G, i, α) of the base formal group Γ, together with isomorphisms

of their underlying formal groups. In other words, E∧0 X gives us the following information:

• For every R ∈ CLN and for every (G, i, α) ∈ DefΓ(R), an R-module MG, namely

the tensor product R⊗E0 E
∧
0 X along the map classifying (G, i, α).

• For every pair of deformations (G1, i1, α1) and (G2, i2, α2) overR and isomorphism

φ : G1 → G2, an isomorphism of R-modules θφ : MG2 → MG1 . In fact, étaleness

of the moduli of isomorphisms (Theorem 2.2.8) means that φ is induced by an

element g of the Morava stabilizer group, which lifts to a commutative diagram

E0

g∗

∼=
//

G2

��

E0

G1

��

R R.

This induces the desired isomorphism R⊗G2
E0
E∧0 X → R⊗G1

E0
E∧0 X.

• Moreover, these R-modules and isomorphisms are natural in R. A map f :

R→ R′ induces isomorphisms MG ⊗R R′ ∼= Mf∗G carrying each θφ to θf∗φ; given
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a composition R → R′ → R′′, the corresponding triangle of isomorphisms of

modules commutes.

Now suppose that X is an E∞ ring spectrum. Then E∧0 X has more structure, in the

form of power operations. This corresponds to an extension of the above structure by an

action of isogenies of formal groups, as was worked out by Rezk [Re09] following work of

Ando-Hopkins-Strickland [AHS04]. (See Equation (2.1) for discussion of the Frobenius

map of a formal group.)

Definition 6.2.1. Let Γ be a height n formal group over a perfect field k and let R be a

complete local ring. Let σ be the Frobenius automorphism of k. The deformations of

Frobenius category DefFrobΓ(R) is defined as follows. The objects of DefFrobΓ(R) are

just deformations (G, i, α) of Γ over R. The morphisms are naturally graded by r ≥ 0; a

morphism φ : (G1, i1, α1) → (G2, i2, α2) of degree r is the requirement that i1 ◦ σr = i2,

together with a formal group homomorphism φ : G1 → G2 over R such that the square

Γ⊗i1k R/m

α1

��

Frobr
// (Γ⊗i1k R/m)(pr) = Γ⊗i2k R/m

α2

��

G1 ⊗R R/m
φ

// G2 ⊗R R/m

commutes. In particular, the morphisms of degree zero are precisely those of the groupoid

DefΓ(R).

One can think of DefFrobΓ as a sort of stack, but valued in categories rather than

groupoids. The following definition then is then a definition of a quasicoherent sheaf on

this stack.
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Definition 6.2.2. An isogeny module (resp. isogeny algebra) for (k,Γ) is the follow-

ing information:

• For every R ∈ CLN, a functor MR from DefFrobopΓ to the category of complete

R-modules (resp. complete R-algebras) and continuous maps. We will often write

MR(G), or just M(G), for MR(G, i, α).

• For every map f : R → R′, a continuous natural isomorphism MR(G) ⊗R R′ ∼=

MR′(f
∗G), such that for each composition R → R′ → R′′, the corresponding

triangle of isomorphisms commutes.

An isogeny algebra for (k,Γ) is an isogeny module M together with a lift of MR to a

functor from DefFrobopΓ to AlgR, such that the base change transformations R′ ⊗R′MR →

MR′ are isomorphisms of algebras. We write IsogModΓ and IsogAlgΓ for the categories of

isogeny modules and algebras.

Remark 6.2.3. An isogeny module has an underlying E0-module M , given by evaluation

at the universal deformation (Gu, 1, αu) ∈ DefΓ(E0). For any R and (G, i, α) ∈ DefΓ(R),

M(G) is the base change M ⊗E0 R along the map E0 → R classifying (G, i, α). We will

often write M for the whole isogeny module, where this does not cause confusion.

Remark 6.2.4. An isogeny module can be thought of as a comodule, as follows. There

is a moduli space IsogΓ,r parametrizing pairs of a deformation G of Γ and a deformation

of Frobr out of G. By a theorem of Strickland [Str97, Str98], this is an affine formal

scheme, represented by a ring Ar = E0BΣpr/I, where I is the transfer ideal, which is finite

free over E0. The pair (E0,
∏

r Ar) then has the structure of a (graded) Hopf algebroid:

maps ηL, ηR : E0 → Ar representing source and target, Ar → As ⊗E0 Ar−s representing
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composition, and so on, with the exception that
∏

r Ar has no conjugation automorphism

(as the morphisms in the deformations of Frobenius category are not invertible). An

isogeny module is then a (complete) comodule for this object, in the usual sense.

Definition 6.2.5. An isogeny algebra A for (k,Γ) satisfies the Frobenius congruence

if, for each R ∈ CLN of characteristic p and each (G, i, α) ∈ DefFrobΓ(R), the following

diagram commutes:

σ∗R(A(G))
∼=
//

FrobA(G) ((

A(σ∗G) = A(G(p))

θFrobG
��

A(G).

Here FrobA : σ∗RA → A is the Frobenius relative to R, defined for any R-algebra A; see

Equation (2.1).

We are now in a position to state Rezk’s main theorem. Note that our T-algebras

correspond to his analytically complete T-algebras; these are also algebras over a monad

by the main theorem of [BF15].

Theorem 6.2.6. Let X be a K(n)-local E∞-algebra over E, such that π∗X is concen-

trated in even degrees. Then π0X is naturally an algebra for a monad T on E-modules,

with the following properties.

(1) If π∗X is a finite free E∗-module, then there is a map from T(π∗X) to the homo-

topy groups of the free K(n)-local E∞-algebra over X, which becomes an isomor-

phism after In-completion of T(π∗X).

(2) The free algebra functor ModE∗ → AlgT is the left Kan extension of its restriction

to finite free E∗-modules.
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(3) There is a functor AlgT → IsogAlgΓ which restricts to an equivalence between

the subcategories of p-torsion-free T-algebras and p-torsion-free isogeny algebras

satisfying the Frobenius congruence.

In other words, torsion-free T-algebras reduce to isogeny algebras satisfying a certain

property. By virtue of the Kan extension property, T-algebras which are not necessarily

torsion-free are isogeny algebras with an extra piece of structure: an operation which

appears in the torsion-free case as a witness to the Frobenius congruence. This operation

is not necessarily additive and multiplicative, but at least does comprehensible things to

addition and multiplication, because of the Frobenius congruence.

Example 6.2.7. When n = 1, T-algebras are elsewhere known as θ-algebras. The height

1 Lubin-Tate ring is Zp: the multiplicative formal group over Fp has a unique deformation

over any p-complete ring R, namely the multiplicative formal group over R. For any r,

there is a unique deformation of Frobr to Ĝm ⊗R, namely the multiplication by pr map

[pr] : Ĝm ⊗R→ Ĝm ⊗R.

Thus, an isogeny algebra A for Ĝm ⊗ Fp is precisely a complete Zp-algebra with a single

ring operation ψp. The Frobenius congruence is the condition that

ψp(x) ≡ xp (mod p).

If A is an isogeny algebra satisfying the Frobenius congruence, we can therefore define an

operation

θ(x) =
1

p
(ψp(x)− xp).
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The fact that ψp preserves addition and multiplication then implies certain relations on

θ, namely

θ(x+ y) = θ(x) + θ(y)−
p−1∑
i=1

1

p

(
p

i

)
xiyp−i,

θ(xy) = θ(x)yp + xpθ(y) + pθ(x)θ(y).

A T-algebra is then a complete Zp-algebra with an operation θ (which is automatically

continuous) satisfying these identities. Note that θ determines ψp, but ψp generally only

determines θ in torsion-free θ-algebras.

For higher values of n, T-algebras are much more complicated, but like θ-algebras

in certain essential respects. In general, there is a finite set of pth power operations

corresponding to the (pn−1)/(p− 1) order p subgroups of the universal deformation of Γ.

These do not necessarily commute with each other, but satisfy Adem relations coming

from order p2 subgroups of the universal deformation. These generators and relations

completely describe the algebra of additive operations on T-algebras, a reflection of the

fact that a deformation of Frobr decomposes as an r-fold composition of deformations of

Frob1. Finally, a single operation, like ψp, will satisfy the Frobenius congruence, producing

a single non-additive θ-like operation on T-algebras, which is uniquely determined in the

torsion-free case. At height 2 and small primes, these structures have been calculated

explicitly by [Re08] and [Zhu14]. At all heights and primes, the operation satisfying the

Frobenius congruence is identified by [Sta16].

This is all a variation on a by now familiar theme: topological information about

E-theory is expressible in terms of algebraic information about deformations of formal
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groups. Here, we are interested in using Rezk’s power operations to analyze E∞ structures

on LE. This relies on the following result, which to the author’s knowledge is not proved

in the literature, and is here stated as a conjecture.

Conjecture 6.2.8. Let A be an T-algebra. Then there are successively defined obstruc-

tions to realizing A as π0X, where X is an even periodic E∞-algebra over E, in the

T-algebra André-Quillen cohomology groups

Ds+2
AlgT

(π0X,Ω
sπ0X), s ≥ 1.

There are successively defined obstructions to the uniqueness of this realization in

Ds+1
AlgT

(π0X,Ω
sπ0X), s ≥ 1.

The height 1 version is proved in [GH05], and a similar result is claimed in [Re13].

For the definition of André-Quillen cohomology, see Section 6.3.3. We indicate why the

conjecture is plausible. The obstruction theory machinery of [GH05] proceeds by building

certain kinds of free resolutions of E∞-E-algebras. Given an E∞-E-algebra X, one can

construct a simplicial resolution P• → X such that each Pn is a free E∞-E-algebra on

a free E-module, and such that the underlying degeneracy diagram of P• is free on a

diagram of these modules, in the sense of [GH05, 1.1.9]. By the first statement of

Theorem 6.2.6, π∗P• is a similar diagram of completions of free T-algebras. Conversely,

given a T-algebra A one wants to realize, one can attempt to do so by realizing a resolution

of A by a simplicial T-algebra of this form. To make this work, one needs compatible

model structures on simplicial E∞-E-algebras and simplicial T-algebras, for which one
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needs T to be homotopically adapted to E in the sense of [GH05, 1.4.16]. However, this

is more or less the content of Theorem 6.2.6, and the fact that T is a monad rather than

an operad is not an essential obstacle.

6.3. Constructions with isogeny algebras and T-algebras

6.3.1. The functor of points

Acomplete E0-algebra A defines functors, which we write

Spf A = Spf AR : DefΓ(R)→ Sets

sending each E0 → R, classifying (G, i, α) ∈ DefΓ(R), to the set of continuous ring maps

(Spf AR)(G, i, α) = HomR,cts(AR(G), R) = HomE0,cts(A,R).

A map f : R→ R′ induces a natural isomorphism f∗ Spf AR ∼= Spf AR′ , and a composition

R→ R′ → R′′ induces a commutative triangle of natural isomorphisms.

The structure of an isogeny algebra on A then induces an action of each DefFrobΓ(R)

on Spf AR: for each φ : (G1, i1, α1) → (G2, i2, α2), there is a corresponding (covariant!)

map φ∗ : (Spf A)(G1) → (Spf A)(G2). These maps are moreover compatible with base

change in R. As it is by now too late to stop, we call this structure an affine isogeny

scheme.

The Frobenius congruence is then the following statement: if R has characteristic p

and (G, i, α) ∈ DefΓ(R), then the map

FrobG,∗ : (Spf A)(G) = HomE0/p(A/p,R)→ HomE0/p(A/p,R) = (Spf A)(G(p))
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is given by precomposing with the Frobenius of A/p.

In settings like ours, where it is easier to talk about rings in terms of the functors they

represent, it is useful to know the following:

Proposition 6.3.1. If A is a finite product of complete local E0-algebras, then it any

isogeny algebra structure on A is uniquely given by its affine isogeny scheme.

Proof. The isogeny algebra structure maps are given via Remark 6.2.4 by maps

λr : A→ A⊗E0 E
0BΣpr/I.

By Strickland’s theorem [Str97], E0BΣpr/I is finite free over E0, and thus a finite product

of complete local E0-algebras. Thus, the same is true for A⊗E0E
0BΣpr/I. It follows that

the structure map λr is given by a finite product of E0-linear maps from A to complete

local E0-algebras, all of which can be identified with points of Spf A. By the Yoneda

lemma and the fact that E0BΣpr/I carries the universal deformation of Frobp
r

[Re09,

11.9], the maps λr define an isogeny algebra structure on A if and only if they define an

affine isogeny scheme structure on Spf A. �

6.3.2. The isogeny algebra of E-theory

One example of an E∞-algebra over E is E itself. The corresponding functor of points is

just the constant functor: (G, i, α) ∈ DefΓ(R) 7→ ∗. There is a unique possible structure of

an affine isogeny scheme on this, and thus a unique possible structure of an affine isogeny

algebra on E.
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6.3.3. André-Quillen cohomology

The obstruction groups occurring in Conjecture 6.2.8 are André-Quillen cohomology

groups of T-algebras. These are the derived functors of derivations from a T-algebra

into a module over a T-algebra. Let’s define all the terms in this sentence.

Definition 6.3.2. Let A be a T-algebra. The category of A-modules, ModA, is the

category of abelian group objects in the slice category (AlgT)/A.

If B is an A-module, the zero of B is a T-algebra map A→ B splitting the slice map

B → A. The module itself is best thought of as the kernel of B → A, and B as a split

square-zero extension A ⊕M . Replacing T-algebras with rings for a moment, all this is

very exact. An abelian group object in (Rings)/A is precisely a ring of the form A ⊕M ,

where M is an A-module and the multiplication is given by

(a,m)(b, n) = (ab, an+ bm).

Moreover, a map of abelian group objects A⊕M → A⊕N is precisely a map of the form

1⊕ f where f : M → N is an A-module map.

A module over a T-algebra A therefore has an underlying ring of the form A ⊕M ,

and the T-algebra operations restrict to operations on A ⊕M . We will typically call M

the ‘A-module’, and A ⊕M the ‘split square-zero extension’; however, the two notions

are obviously equivalent.



103

Example 6.3.3 ([GH05]). Suppose that n = 1, so that T-algebras are θ-algebras. Let

A be a θ-algebra. A split square-zero extension A⊕M has an operation

ψp : A⊕M → A⊕M

with

ψp(a,m) = (ψp(a), ψpM(a,m))

for some other operation ψpM : A⊕M →M . We can write

ψp(a,m) = (a,m)p + pθ(a,m)

= (ap, pap−1m) + (pθ(a), pθM(a,m)),

which means that

ψpM(a,m) = pap−1m+ pθM(a,m).

Restricting to M = ker(A⊕M → A), we have

ψp(0,m) = pθM(0,m).

Additionally,

ψp(0, am) = ψp((a, 0)(0,m)) = (ψp(a), 0)(0, ψpM(0,m)) = (0, ψp(a)(ψpM(0,m))),

which implies that

θM(0, am) = ψp(a)θM(0,m).
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Thus, an A-module M is precisely a complete module M over the complete Zp-algebra A,

together with an operation θ such that θ(m+ n) = θ(m) + θ(n) and θ(am) = ψp(a)θ(m).

Definition 6.3.4. A derivation from a T-algebra A into an A-module M is a map

A→ A⊕M in (AlgT)/A. We write DerT(A,M) for the set of derivations from A into M .

This is an abelian group, using the abelian group structure of A⊕M . We emphasize that

T-algebra derivations are required to be continuous.

Example 6.3.5. Again, consider the case of θ-algebras. A derivation A → A ⊕M is a

map a 7→ (a, δ(a)) satisfying

(ab, δ(ab)) = (a, δ(a))(b, δ(b))

and

(θ(a), δθ(a)) = θ(a, δ(a)).

This is equivalent to

δ(ab) = aδ(b) + bδ(a)

and

δθ(a) = θδ(a) + pap−1δ(a).

Finally, the following is a special case of [GH05, Proposition 2.3.1].

Proposition 6.3.6. There is a model structure on the category of simplicial T-algebras

in which a morphism A• → B• is a weak equivalence (resp. fibration) if and only if it is a

weak equivalence (resp. fibration) in the Quillen model structure on simplicial commutative

rings.
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Definition 6.3.7. The André-Quillen cohomology of a T-algebra A with coefficients

in an A-module M ,

Ds
T(A,M),

is the sth left derived functor of Ds
T(A, ·) applied to M .

6.3.4. Comodules

For the purposes of obstruction theory, we care more about K(n)-local E∞-algebras in

general than those which are algebras over E. If X is a K(n)-local E∞-algebra, then

LK(n)(E ∧X) is a K(n)-local E∞-E-algebra. We can recover X as the limit of a K(n)-

local Adams resolution:

X holim
(
LK(n)(E ∧X) //LK(n)(E ∧ E ∧X)oo

oo //
//· · ·
)

oo
oo

oo

On taking homotopy groups, the maps in this diagram are all determined by E∧∗X as an

E∗-comodule algebra, or equivalently, as an E∗-algebra with a Gn-action (at least if E is

associated to the Honda formal group over a finite field, by Theorem 5.1.1).

Thus, we should think of E∧0 X as a T-algebra in comodules, or equivalently, as a Gn-

equivariant T-algebra. Such a thing can be defined in terms of isogeny algebras. First,

note that Aut(k,Γ) acts on the groupoid DefFrobΓ(R). On objects, this is precisely the

action of Remark 2.3.8:

(τ, g)(G, i, α) = (G, iτ, αg−1 : Γ⊗iτk R/m
g−1

→ Γ⊗ik R/m
α→ G⊗R R/m).
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Given φ : (G1, i, α1) → (G2, iσ
r, α2) deforming Frobr, (τ, g) sends this to the same

underlying formal group homomorphism φ : G1 → G2, a map between the objects

(G1, iτ, α1g
−1) → (G2, iσ

rτ, α2g
−1). This makes sense because the following diagram

commutes.

Γ⊗iτ R/m
g−1

//

Frobr

��

Γ⊗ik R/m
α1
//

Frobr

��

G1 ⊗R/m

φ

��

Γ⊗iτσr R/m
(σr)∗g−1

// Γ⊗iσrk R/m
α2

// G2 ⊗R/m

Γ⊗iσrτk
g−1

// Γ⊗iσrk R/m

(Since k is a finite field, Galk/Fp is abelian and contains the Frobenius σ.)

Definition 6.3.8. An isogeny comodule algebra is an isogeny algebra A with the

following additional structure. For every (G, i, α) ∈ DefΓ(R) and every (τ, g) ∈ Aut(k,Γ),

there is an isomorphism of R-algebras

(τ, g)∗ : A(G, iτ, αg−1)→ A(G, i, α),

such that (τ1, g1)∗(τ2, g2)∗ = (τ2τ1, τ
∗
2 (g1)g2)∗ (cf. Definition 2.2.5 and Remark 2.3.8), and

making the following diagrams commute.

(6.1) A(G2, iσ
rτ, α2g

−1)

φ∗

��

(τ,g)∗

// A(G2, iσ
r, α2)

φ∗

��

A(G1, iτ, α1g
−1)

(τ,g)∗

// A(G1, i, α1).
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Again, this can be interpreted in terms of the affine isogeny scheme. The affine isogeny

scheme of an isogeny comodule algebra is a collection of functors, compatible under base

change in R,

Spf AR : DefFrobΓ(R)→ Sets,

together with bijections

(τ, g)∗ : (Spf AR)(G, i, α)→ (Spf AR)(G, iτ, αg−1)

compatible under composition in Gn and commuting with morphisms in DefFrob via the

diagram (6.1).

6.4. Power operations on E∧n−1,0E

We now specialize to the case where F and E are E-theories corresponding to the

Honda formal groups, respectively of heights n − 1 and n, over a finite field k which

contains both Fpn−1 and Fpn . As we saw in Section 5.2, the ring F∧0 E represents a fairly

simple functor on complete local rings, and is moreover a finite product of complete local

rings.

Theorem 6.4.1. There exists a T-algebra structure on F∧0 E for each lift of the Frobe-

nius of k((un−1)) to Λ. These structures are all compatible with the action of the Morava

stabilizer group for F , and thus define T-algebras in comodules.

Proof. As F∧0 E is a finite product of complete local rings (Proposition 5.2.5), it

suffices by Proposition 6.3.1 to define the corresponding affine isogeny scheme. If R is a
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complete local ring, then

Spf F∧0 E : DefΓ(R)→ Sets

satisfies

(Spf F∧0 E)(G, i, α) = {(j : Λ→ R, γ : Γn−1 ⊗ik R/m
∼→ H⊗jk((un−1)) R/m)}.

Let Σ be a Frobenius lift on Λ, and write σ for the Frobenius maps of k and of

k((un−1)). We define an isogeny algebra structure as follows. For any morphism φ :

(G1, i1, α1)→ (G2, i2, α2) which deforms Frobr over R, and for each (j1, γ1) as above, let

φ∗(j1, γ1) = (j2, γ2), where j2 = j1 ◦Σr, and where γ2 is the unique map of formal groups

making the following diagram commute:

(6.2) Γ⊗i1 R/m
γ1

//

Frobr

��

H⊗j1 R/m

Frobr

��

Γ⊗i1σr R/m
γ2

// H⊗j1σr R/m = H⊗j1Σr R/m.

Such a γ2 exists and is unique because the maps Γ⊗iR/m→ Γ⊗iσR/m and Γ⊗iR/m→

H⊗jσ R/m have the same kernel.

This operation is clearly an action of DefFrobΓ(R) on Spf F∧0 E, and compatible with

base change. Furthermore, the Morava stabilizer group for F , Gn−1 = Aut(k,Γn−1), acts

on points (j, γ) by precomposition with γ: (τ, g) sends (j, γ) to

(τ, g)(j, γ) = (j, γg−1 : Γ⊗iτk R/m
g−1

→ Γ⊗ik R/m
γ→ H⊗R/m).
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Given a morphism φ deforming Frobr, checking the commutativity of Equation (6.1)

amounts to observing that the following diagram commutes:

(6.3) Γ⊗i1τ R/m
g−1

//

Frobr
��

Γ⊗i1 R/m
γ1
//

Frobr

��

H⊗j1 R/m

Frobr

��

Γ⊗iτσr R/m
(σr)∗g−1

// Γ⊗iσrk R/m
γ2

// H2 ⊗R/m

Γ⊗iσrτk
g−1

// Γ⊗iσrk R/m

We now show that it satisfies the Frobenius congruence. We need to use the fact

that, as a complete F0-algebra, F∧0 E is generated by un−1 and the coefficients w and si

of the universal isomorphism from Γn−1 to H. Let R be a complete local F0-algebra of

characteristic p, with the map F0 → R classifying (G, i, α). Suppose given an F0-algebra

map f : F∧0 E/p → R, classifying a pair (j, γ). We want to show that FrobG,∗(j, γ) is

classified by the composition

F∧0 E/p
σ→ F∧0 E/p→ R.

It suffices to show that, in the map FrobG,∗ f : F∧0 E/p → R classifying FrobG,∗(j, γ), we

have (FrobG,∗ f)(x) = f(x)p, where x = un−1, w, or si. If R has characteristic p, then the

map j : Λ→ R factors through j : k((un−1))→ R. Then j◦Σ factors through j◦σk((un−1)).

This map j is nothing but the restriction of the map F∧0 E → R to Λ ⊆ LE0 → F∧0 E, and

reducing mod p gives the statement for un−1.
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Finally, choose formal group laws for Γn−1 and H. Then w and si are the coefficients

of the universal isomorphism x 7→ wx +
∑
six

pi+1
between Γn−1 and H. In particular,

f(si) are the coefficients of the isomorphism γ. In formulas, the square (6.2) is

x � //
_

��

wx+
∑
six

pi+1

_

��

xp � // wpxp +
∑
spix

pi+2
.

Clearly, the new isomorphism FrobG,∗(γ) has coefficients wp and spi , as desired. �

6.5. The height 2 case

We specialize to the case n = 2 and n− 1 = 1. We write K = E1 and E = E2. In this

case, a height 1 T-algebra is a θ-algebra, and a height 1 T-comodule algebra is a θ-algebra

together with an action of Z×p that commutes with θ. By [GH05], Conjecture 6.2.8 is

true and has a corresponding version for comodules:

Theorem 6.5.1. Let A be an p-complete θ-comodule algebra with a commuting Z×p

action. Then there are successively defined obstructions to realizing A as K∧0 X, where X

is an E∞ algebra such that K∧0 X is concentrated in even degrees, in the André-Quillen

cohomology groups

Ds+2
ComodAlgθ

(A,ΩsA), s ≥ 1.

There are successively defined obstructions to the uniqueness of this realization in

Ds+1
ComodAlgθ

(A,ΩsA), s ≥ 1.
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In the previous section, we constructed θ-comodule algebra structures on K∧0 E corre-

sponding to Frobenius lifts on Λ = Wk((u1))∧p – that is, to θ-algebra structures on LE0.

There is a simple reason for this. For any K(1)-local E∞-algebra X, the action of θ on

K∧∗X commutes with the Z×p -action, and restricts to an action on

π∗(LK(1)(K ∧X))hZ
×
p = π∗LK(1)X.

This situation is special to height 1, and has to do with the fact that there is a unique

order p subgroup of Γ1, which is therefore preserved by the Morava stabilizer group.

For X = E, LE∗ is still even periodic, and the homotopy fixed point spectral sequence

collapses to LE∗ = (K∧∗ E)Z
×
p . That is, the θ-algebra LE0 is just a subring of K∧0 E, and

this is precisely Λ with its chosen θ-algebra structure.

We now prove that any θ-algebra structure on Λ is induced by an E∞-algebra structure

on LE, using the argument of [GH05, Section 2.4.3].

Theorem 6.5.2. For any p-complete θ-algebra A with underlying ring equal to K∧0 E,

there is an even periodic E∞-algebra X with K∧0 X = A as θ-algebras, and with X '

LK(1)E2 as homotopy commutative ring spectra.

Proof. We want to show that the obstruction groups

Ds+2
ComodAlgθ

(A,ΩsA)
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vanish for s ≥ 1. Since ΩsA ∼= K∧0 ΩsE is an induced Z×p -module, these reduce [GH05,

Proposition 2.4.7] to André-Quillen cohomology of θ-algebras without Z×p -action:

Ds+2
ComodAlgθ

(A,ΩsA) ∼= Ds+2
Algθ

(A,ΩsLE0).

The complete cotangent complex of A over Wk is a θ-module, and there is a composite

functor spectral sequence

ExtpModθ,A/
(πqLA/Wk,Ω

sLE0)⇒ Dp+q(A,ΩsLE0).

But Wk = K0 → K∧0 E = A is formally smooth by Theorem 5.2.4 and Remark 5.3.2.

Thus, LA/Wk is just the Kähler differentials ΩA/Wk concentrated in degree zero, and these

are a p-completion of a free module. Finally, there is a resolution ΩA/Wk by free θ-modules

over A,

0→ A[θ]⊗A ΩA/Wk
θ→ A[θ]⊗A ΩA/Wk → ΩA/Wk.

For any complete θ-module M over A,

Ext∗Modθ,A/
(A[θ]⊗A ΩA/Wk,M) = Ext∗ModA

(ΩA/Wk,M),

which is concentrated in degree zero because A is pro-free. Thus, the André-Quillen

cohomology groups are concentrated in cohomological degrees 0 and 1, and in particular,

those that can contain obstructions vanish.

This produces a K(1)-local E∞-algebra X with K∧0 X = A. Since K∧0 X
∼= K∧0 E as

Z×p -modules, we also have K∧t X
∼= K∧t E as Z×p -modules for all t. Thus, the homotopy
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fixed points spectral sequence

Hs
cts(Z×p , K∧t X)⇒ πt−sX

has the same E2 page as that for LK(1)E. This is concentrated in cohomological degree

zero and collapses to give π∗X = π∗LK(1)E. So X is even periodic, and in particular,

complex orientable. Finally, the Landweber exact functor theorem furnishes a (non-

unique) equivalence of homotopy commutative ring spectra X ' LK(1)E. �

We conclude by showing that this construction actually does furnish non-equivalent

E∞ algebras. Let X and X ′ be two of the E∞-algebras constructed by the above theorem.

An equivalence X → X ′ induces a p-adically continuous isomorphism of θ-algebras π0X →

π0X
′. Thus, the question of how many non-equivalent E∞-algebra structures there are on

LK(1)E2 reduces to the purely algebraic question of how many non-isomorphic θ-algebra

structures there are on Wk((u1))∧p .

This appears to be a thorny question. To take the reader into the brambles a little,

here is a failed line of argument. There is, of course, a standard E∞ structure on LE,

namely that by K(1)-localizing the canonical one on E. The operation ψp on π0LE is

induced by a quotient of the formal group of LE by a certain subgroup, namely the kernel

of multiplication by p. One can try to extend this subgroup to a subgroup K of the formal

group of E. The corresponding quotient operation by K should then induce a height 2

power operation on π0E. In particular, it follows that the operation ψp preserves the

subring π0E = Wk[[u1]] of π0LE. One can easily define θ-algebra structures on π0LE

that do not have this property, thus giving exotic E∞ structures on LE.
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The problem with this argument is that the additive height 2 power operations are

really coefficients of a total power operation

Pp : E0 → E0BΣp/I,

where I is the transfer ideal. The ring E0BΣp/I represents [Str98] deformations of the

formal group of E together with a cyclic order p subgroup. At height 2, this is a rank p+1

free module over E0, and mapping to various rank 1 factors gives power operations of the

form E0 → E0. However, the height 1 power operation ψp is induced from K(1)-localizing

the total power operation, not any of its coefficients. (As a slogan, the order p subgroup

of Γ2 that lands in the formal group of its K(1)-localization varies nontrivially around

π0LK(1)E2.) That is, there is a commutative square

E0

��

Pp
// E0BΣp/I

��
LE0(LE0BΣp)/I

ψp
// LE0.

The operation ψp sends E0 to the image of E0BΣp/I in LE0, and the right-hand vertical

map is somewhat elusive. An example is produced in [Zhu14, Section 4]: his formula (at

p = 3) is

ψ3(u1) = u3
1 − 27u2

1 + 183u1 − 180 + 186u−1
1 + (lower order terms in u1).
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Instead of studying this power operation, we simply produce non-isomorphic θ-algebra

structures on LE0. We start with some results and definitions about the structure of θ-

algebras.

Recall that

θ(fg) = fpθ(g) + θ(f)gp + pθ(f)θ(g),

θ(f + g) = θ(f) + θ(g)−
p−1∑
i=1

1

p

(
p

i

)
f igp−i,

θ(n) = 0 for n ∈ Zp.

Lemma 6.5.3. The operation θ descends to a map θ : k((u1))→ k((u1)).

Proof.

θ(f + pg) = θ(f) + ppθ(g) +
∑ 1

p

(
p

i

)
pp−if igp−i,

which is congruent to f mod p. Thus, the reduction of θ(f) mod p only depends on the

class of f mod p. �

We will show that there are two θ-algebra structures, θ0 and θ, such that there is no

p-adically continuous automorphism of Wk((u1))∧p making the diagram

Wk((u1))∧p
θ0
//

f

��

Wk((u1))∧p

f

��

Wk((u1))∧p
θ

// Wk((u1))∧p

commute. For both θ-algebra structures, ψp will be pipe-continuous. In other words, for

each n, it will induce a continuous map Wnk((u1))→ Wnk((u1)) for the topology in which
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{ur1Wnk[[u1]]} is a basis of neighborhoods of zero. Such a map is uniquely determined

by the image of u1. However, there is a priori a possibility of a non-pipe-continuous

isomorphism f intertwining the two pipe-continuous θ-algebra structures. We first deal

with this possibility.

Proposition 6.5.4. Every automorphism of Wk((u1))∧p , with k a finite field, is pipe-

continuous.

Proof. Such an automorphism is automatically p-adically continuous. The statement

follows from Lemma 4.3.9, as soon as we can prove that the induced automorphism of

k((u1)) is continuous. Suppose that k = Fq. Let S be the set of power series 1+a1u1 +· · · .

Then S is multiplicatively closed, and any f ∈ S has a (q−1)th root g ∈ S, by the binomial

theorem. On the other hand, an f 6∈ S either has vu1(f) = 0 but constant term not equal

to 1, in which case it does not have a (q− 1)th root at all, or vu1(f) 6= 0, in which case it

has at most a (q − 1)mth root for some maximal m.

It follows that S is exactly the set of elements of k((u1)) which have a (q− 1)mth root

for all m. Thus, any automorphism of k((u1)) preserves S. Subtracting 1, we see that any

automorphism of k((u1)) preserves the set u1k[[u1]], and thus that it preserves ur1k[[u1]]

for every r. Thus, any automorphism is continuous. �

As an aside, we note that similar arguments apply to θ-algebras. This defeats one

possible attempt to construct non-isomorphic θ-algebra structures: defining a discontinu-

ous and a continuous θ-algebra structure, and using Proposition 6.5.4 to show that they

are not isomorphic.
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Proposition 6.5.5. Any Frobenius lift on Wk((u1))∧p , with k a finite field, is pipe-

continuous.

Proof. Again, any Frobenius lift is p-adically continuous, so this follows immediately

from Lemma 4.3.9 and the fact that the Frobenius map is continuous on k((u1)). �

Corollary 6.5.6. If ψp is a Frobenius lift of Wk((u1))∧p , then the mod p reduction of the

associated θ is a continuous self-map of k((u1)).

Proof. The reduction of θ mod p can be recovered from reduction of ψp mod p2 by the

formula ψp(f) = fp + pθ(f) inside W2k((u1)). In other words, θ(f) = 1
p
(ψp(f) − pθ(f)),

where division by p is the obvious isomorphism from the p-torsion of W2k((u1)) to k((u1)).

Since ψp(f) and f 7→ fp are both continuous on W2k((u1)), it follows that θ is also

continuous. �

Proposition 6.5.7. There are two non-isomorphic θ-algebra structures on Wk((u1))∧p .

Proof. Let ψp0 and ψp be the unique pipe-continuous endomorphisms satisfying ψp0(u1) =

up1 and ψp(u1) = up1 + p. Thus, θ0(u1) = 0 and θ(u1) = 1. Suppose that f is an auto-

morphism of Wk((u1))∧p such that fθ0 = θf . By Lemma 6.5.3, this equation makes sense

mod p, giving a commutative diagram

k((u1))
θ

0

//

f

��

k((u1))

f

��

k((u1))
θ

// k((u1))

where f is, by Proposition 6.5.4, a continuous automorphism of k((u1)).
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We now work over k((u1)), meaning that all equations are mod p unless it is stated oth-

erwise. We have θ(f(u1)) = 0, which property is stable under multiplication by elements

of k (since θ(af) = apθ(f)). Thus, without loss of generality, we can take

f(u1) = u1 + g(u1)

where u2
1 divides g. Then

(6.4) θ(u1 + g) = 1 + θ(g)−
p−1∑
i=1

1

p

(
p

i

)
ui1g

p−i.

Let v denote the u1-adic valuation on k((u1)). This satisfies

v(fg) = v(f) + v(g), and

v(f + g) ≥ min(v(f), v(g)), with equality if v(f) 6= v(g).

In particular, for θ(u1 + g) to be equal to zero, the two elements of lowest valuation in

(6.4) must have equal valuation. We have

v(1) = 0, and

v(ui1g
p−i) = i+ (p− i)v(g) ≥ p+ 1.

Thus, we must have v(θ(g)) = 0.

However, this never happens. Still working mod p,

θ(un1 ) = up1θ(u
n−1
1 ) + u

p(n−1)
1 θ(u1) = nu

p(n−1)
1 .
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Thus, a monomial g with v(g) ≥ 2 has v(θ(g)) ≥ 2 as well. By induction and using the

theta sum formula, the same is true for polynomials. By continuity of θ (Corollary 6.5.6),

the same is true for power series. �

Corollary 6.5.8. There are non-isomorphic E∞ structures on LK(1)E2.

Proof. This follows by combining Proposition 6.5.7 with Theorem 6.5.2 and the fact

that an equivalence of E∞ structures on LK(1)E2 induces an equivalence of G1-equivariant

θ-algebras on (E1)∧0E2. �
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