
 

Multistage and Multistep Methods

Euler's method is only first orderaccurate

Highly
a one stepmethod achieving

Another
way to achieve high accuracy is the

used using
several stepsof previous values
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Examples I one stage Runge Kutta method 12 1
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This is also a fundamental tool in stability analysis

3 Trapezoidal rule for integral
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4 A very popular 6th order KK method
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Explicit Kk methods Gig o j i

Diagonally implicit RK methods a.jo j i

Orderof accuracy

An R stage explicit RK method canhave order at most R

of stages R I 2 3 4 5 b
attainablenderlexpacitkkes
Among implicit Kk methods K stagemethodsof order 2kexist

Example Explicit
three stage Runge Kutta method 12 3
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in Henn's method ii Standard 3rd order RK

o

Absolute stability of KK methods

Consider
y du Mio No 0 1 1

And too real

We discuss R stage RK method with orderof accuracy R
that is IE12 4

1 12 1 forward Euler's method
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Euler's method is absolutelystable in 1 2.0

The interval 1 2 o is referred to asnitavalof
absolutestability
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Applying this to a yields
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In general we will have

U't Arch U
however for 1225 in addition to h the expression for

Apis also depends on the coefficients of the RK method

Taylor series methods
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Solving n'it 2sin hit
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A second order method
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It 12thsingle that lil sin'll

One
step

v s Multistep Methods

Kk methods are one step methods

U depends on U butnot on previous Uh Um

Advantages of one step method

self starting from U the initial data

time step k can be changed at any point

a Solution net can be non smooth at some point E

Disadvantages

Cumbersome and expensive to implement
especially high order RKmethods

functionvaluesexpensive to compute

difficulty in implicit nonlinear systems



Linear Multistep Methods Lims

In general an v step Lam has the form
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Example 1 Apply Singh's rule
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Explicit Adams Bashful
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local truncation error LTE
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Example 2 step
Adams Molton
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Comments

Starting values

Using Vstage Laius U U U't are needed

Predictor Great methods
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odev3 in MATLAB uses this approach

with Adams Bashforth Moulton of orders i iz


