

Stability, Consistency and Convergence

We wish to consider the 'stability' of the numerical method with respect to 'small perturbations' in the starting conditions.

I. Zero-stability

We start with the abstract concept of 0-stability (0 refers to the stability when $\Delta t \rightarrow 0$)

Example. Consider the LMM

$$U^{n+2} - 3U^{n+1} + 2U^n = -\Delta t f(U^n)$$

LTE

$$\begin{aligned} U^n &= \frac{1}{\Delta t} [U(t_{n+2}) - 3U(t_{n+1}) + 2U(t_n) + \Delta t U'(t_n)] \\ &= \frac{5}{2} \Delta t U''(t_n) + O(\Delta t^2) \end{aligned}$$

Trivial IVP

$$U(t_0) = 0, \quad U'(t_0) = 0.$$

$$\Rightarrow U^{n+2} - 3U^{n+1} + 2U^n = 0$$

① take $U^0 = U' = 0$, then $U^n = 0$

② $U^0 = 0, \quad U' = \Delta t$

$$U^n = 2U^0 - U' + 2^n (U' - U^0) \rightarrow \infty \quad \text{as } n \rightarrow \infty.$$

Def. A linear r -step method for the ODE $u' = f(u, t)$ is said to be zero-stable if there exists a constant K such that, for any two sequences $\{u^n\}$ and $\{\hat{u}^n\}$ which have been generated by the same scheme but different initial data $\{u^0, \dots, u^{r-1}\}$, $\{\hat{u}^0, \dots, \hat{u}^{r-1}\}$ respectively, we have

$$|u^n - \hat{u}^n| \leq K \max\{|u^0 - \hat{u}^0|, \dots, |u^{r-1} - \hat{u}^{r-1}|\}$$

for $t_n = n\Delta t \leq T$ and as $\Delta t \rightarrow 0$.

It would be a very tedious exercise to verify α -stability of a LMM using the above definition.

Examples. 1. Apply the Consistent LMM

$$u^{n+2} - 2u^{n+1} + u^n = \frac{\Delta t}{2} (f(u^{n+2}) - f(u^n))$$

to $u' = 0$.

$$u^{n+2} - 2u^{n+1} + u^n = 0$$

characteristic poly.

$$f(x) = x^2 - 2x + 1 = (x-1)^2$$

$$\Rightarrow x_1 = x_2 = 1.$$

The general soln.

$$U^n = C_1 + C_2 n = U^0 + (U' - U^0)n.$$

$$\lim_{\substack{\Delta t \rightarrow 0 \\ N \Delta t = T}} U^N = \Delta t N = T, \text{ with } U^0 = 0, U' = \Delta t.$$

If $f(x)$ has repeated roots of modulus 1, the method cannot be convergent.

2. Consider the LMM

$$U^{n+3} - 2U^{n+2} + \frac{5}{4}U^{n+1} - \frac{1}{4}U^n = \frac{\Delta t}{4} f(U^n)$$

the characteristic poly.

$$f(x) = x^3 - 2x^2 + \frac{5}{4}x - \frac{1}{4} = (x-1)(x-\frac{1}{2})^2$$

$$\Rightarrow x_1 = 1, x_2 = x_3 = \frac{1}{2}.$$

(repeated roots with modulus less than 1)

General soln.

$$U^n = C_1 + C_2 \left(\frac{1}{2}\right)^n + C_3 n \left(\frac{1}{2}\right)^n$$

C_1, C_2, C_3 will be linear combinations of U^0, U^1, U^2 .

Then $\lim_{\substack{\Delta t \rightarrow 0 \\ N \Delta t = T}} U^N = 0$.

Theorem. (Root Condition) An r -step LMM is zero-stable for any ODE $u' = f$ where f satisfies the Lipschitz Condition if and only if the roots of the characteristic poly. $\varphi(x)$ satisfies the condition

$$|x_i| \leq 1, \quad \text{for } i = 1, 2, \dots, r$$

if x_i is a repeated root, then $|x_i| < 1$.

Proof. $\therefore \Rightarrow$

Consider the r -step LMM method, applied to $u' = 0$

$$\alpha_r U^{n+r} + \alpha_{r-1} U^{n+r-1} + \dots + \alpha_1 U^{n+1} + \alpha_0 U^n = 0$$

The general soln has the form

$$U^n = \sum_s \beta_s(u) x_s^n$$

where x_s is a root of $\varphi(x)$.

- If $|x_s| > 1$, then there is a starting value s.t. the soln. grows like $|x_s|^n$.

- If $|x_s| = 1$ and multiplicity $m_s > 1$, then there is soln. grows like n^{m_s-1} .

To summarize, if the root condition is violated then the method is not zero-stable.

'<' The proof is long. See Refs.

Example. The Adams methods

$$U^{n+r} = U^{n+r-1} + \Delta t \sum_{j=1}^r \beta_j f(U^{n+j})$$

$$f(x) = x^r - x^{r-1} = (x-1)x^{r-1}$$

The root condition is satisfied and all Adams-Basforth & Adams-Moulton methods are zero-stable.

II. Consistency

The LTE

$$\tau^n = \frac{\sum_{j=0}^r [\alpha_j u(t_{n+j}) - \Delta t \beta_j u(t_{n+j})]}{\Delta t \sum_{j=0}^r \beta_j}$$

Def. The LMM scheme is said to be consistent if

the truncation error τ^n is such that for any $\varepsilon > 0$
there exists $h(\varepsilon)$ for which

$$|\tau^n| < \varepsilon \quad \text{for } 0 < \Delta t < h(\varepsilon)$$

and any (h_{n+1}) -points $(t_n, u(t_n)), \dots, (t_{n+r}, u(t_{n+r}))$

on any solution curve of the IVP.

Re mind for consistency $\tau^h \rightarrow 0$ as $\Delta t \rightarrow 0$, one requires

$$-f(1) = 0, \quad f'(1) = \tau(1) \neq 0$$

($x=1$ must be a root!)

Def. The LMM scheme is said to have order of p

if p is the largest pos. integer such that for any sufficiently smooth solution curve of the IVP, there exists constants K and h_0 s.t.

$$|\tau^h| \leq K \Delta t^p \quad \text{for } 0 < \Delta t < h_0$$

for any $(k+1)$ -points $(t_0, u(t_0)), \dots, (t_{m+1}, u(t_{m+1}))$

on any solution curve.

$$\tau^h = \frac{1}{\Delta t \tau(u)} [C_0 u(t_0) + C_1 \Delta t u'(t_0) + C_2 \Delta t^2 u''(t_0) + \dots]$$

$$C_0 = \sum_{j=0}^r \alpha_j, \quad C_1 = \sum_{j=1}^r j \alpha_j - \sum_{j=0}^r \beta_j$$

$$C_2 = \sum_{j=1}^r \frac{j^2}{2!} \alpha_j - \sum_{j=0}^r j \beta_j$$

...

$$C_q = \sum_{j=1}^r \frac{j^q}{q!} \alpha_j - \sum_{j=0}^r \frac{j^{q-1}}{(q-1)!} \beta_j$$

The LMM is of order of accuracy p if and only if

$$C_0 = C_1 = \dots = C_p = 0 \quad \text{and} \quad C_{p+1} \neq 0$$

$$U^n = \frac{C_{p+1}}{\tau^{(1)}} \Delta t^p u^{(p+1)}(t_n) + O(\Delta t^{p+1})$$

$C_{p+1} (\neq 0)$ is called the error constant.

Example. Construct an implicit linear 2-step method of maximum order.

The method has the form

$$U^{n+2} + \alpha_1 U^{n+1} + \alpha_0 U^n = \Delta t (\beta_2 f_{n+2} + \beta_1 f_{n+1} + \beta_0 f_n)$$

with $\alpha_0 = \alpha_1$.

$$C_0 = 1 + \alpha_1 + \alpha_0 = 0$$

$$C_1 = \alpha_1 + 2 - (\beta_0 + \beta_1 + \beta_2) = 0$$

$$C_2 = \frac{1}{2}(\alpha_1 + 4) - (\beta_1 + 2\beta_2) = 0$$

$$C_3 = \frac{1}{3!}(\alpha_1 + 8) - \frac{1}{2}(\beta_1 + 4\beta_2) = 0$$

Hence

$$\alpha_1 = -1 - \alpha$$

$$\beta_0 = -\frac{1}{12}(1+5\alpha) \quad \beta_1 = \frac{2}{3}(1-\alpha) \quad \beta_2 = \frac{1}{12}(5+\alpha)$$

$$U^{n+2} - (1+\alpha)U^{n+1} + \alpha U^n = \frac{\Delta t}{12} \left[(5+\alpha) f_{n+2} + 8(1-\alpha) f_{n+1} - (1+5\alpha) f_n \right]$$

$$C_4 = -\frac{1}{4!} (1+\alpha) \quad C_5 = -\frac{4}{3 \cdot 5!} \quad (\alpha = -1)$$

If $\alpha \neq -1$, $C_4 \neq 0 \Rightarrow 3^{\text{rd}}\text{-order accuracy}$

If $\alpha = -1$, $C_4 = 0$, $C_5 \neq 0 \Rightarrow 4^{\text{th}}\text{-order accuracy}$
(Simpson's rule)

III. Convergence

Def. The LMM scheme is said to be convergent if we have for the IVP

$$\lim_{\substack{\Delta t \rightarrow 0 \\ n \rightarrow t}} U^n = u(t)$$

holds for all $t \in [0, T]$ and for all solutions $\{U^n\}_{n=0}^N$

with consistent starting condition.

The starting condition

$$U^s = \gamma_s(\Delta t), \quad s = 0, 1, \dots, r-1 \quad \text{with}$$

$$\lim_{\Delta t \rightarrow 0} \gamma_s(\Delta t) = U^0, \quad s = 0, \dots, r-1$$

a) Necessary Conditions

Lemma 1. A necessary condition for the convergence of LMM is that it be zero-stable.

Proof.

Consider the IVP

$$u'(t) = 0, \quad u(0) = 0 \quad \text{on } t \in [0, T], \quad T > 0$$

The problem yields the difference equation

$$Q_r u^{n+r} + Q_{r-1} u^{n+r-1} + \dots + Q_0 u^n = 0 \quad (1)$$

The method is assumed to be convergent, then

$$\lim_{\substack{\Delta t \rightarrow 0 \\ n \Delta t = t}} u^n = 0 \quad (2)$$

for all $u^s = \eta_s(\Delta t)$, $s=0, \dots, r-1$ with

$$\lim_{\Delta t \rightarrow 0} \eta_s(\Delta t) = 0, \quad s=0, \dots, r-1$$

Let $x = r e^{i\varphi}$ be a root of the characteristic poly. $\varphi(x)$

then $u^n = \Delta t r^n e^{i\varphi n}$ defines a soln. to (1)

and satisfies (2)

If $\varphi \neq 0, \pi$

$$\frac{(U^n)^2 - U^{n+1}U^{n-1}}{\sin^2 \varphi} = \Delta t^2 \gamma^{2n}$$

LHS $\rightarrow 0$ as $\Delta t \rightarrow 0, n \rightarrow \infty, n\Delta t = t$

$$\Rightarrow \text{RHS} = \left(\frac{t}{n}\right)^2 \gamma^{2n} \rightarrow 0$$

$$\Rightarrow \gamma \leq 1.$$

Next, assume $x = r e^{i\varphi}$ is a multiple root of $f(x)$

with $|r| = 1$. Again

$$U^n = (\Delta t)^{\frac{1}{2}} n r^n \cos(n\varphi)$$

defines a soln. to (1) and satisfies (2).

$$(1) |U_s(\Delta t)| = |U^s| \leq (\Delta t)^{\frac{1}{2}} s \leq (\Delta t)^{\frac{1}{2}} (r-1)$$

i) $\varphi = 0, \pi$

$$|U^n| = t^{\frac{1}{2}} n^{\frac{1}{2}} r^n \rightarrow \infty \text{ as } n \rightarrow \infty$$

Contradiction!

ii) $\varphi \neq 0, \pi$

$$\frac{(V^n)^2 - V^{n+1}V^{n-1}}{\sin^2 \varphi} = \gamma^{2n}$$

where $V^n = n^{-1} \Delta t^{-1} U^n = \Delta t^{\frac{1}{2}} t^{-1} U^n$

$$\lim_{n \rightarrow \infty} V^n = 0 \Rightarrow \text{LHS} \rightarrow 0 \text{ as } n \rightarrow \infty.$$

$\Rightarrow \text{RHS} \rightarrow 0 \text{ as } n \rightarrow \infty$.

Contradiction!

Lemma 2. A necessary condition for the convergence of LMM is that it be consistent.

(It is to show $p^{(1)} = 0$, i.e. $C_0 = 0$

& $p^{(1)} = \tau^{(1)}$, i.e. $C_1 = 0$)

Proof.

i) $C_0 = 0$:

Consider the IVP $u'(t) = 0$, $u(0) = 1$ (that is, $u \equiv 1$)

The problem yields the difference equation

$$2rU^{n+r} + 2r-1U^{n+r-1} + \dots + 2U^n = 0 \quad (1)$$

Suppose 'exact' starting values $U^s = 1$, $s = 0, \dots, r-1$

Given the method is convergent

$$\lim_{\substack{\Delta t \rightarrow 0 \\ n \rightarrow \infty}} U^n = 1$$

and in this case U^n is independent of Δt

$$\lim_{n \rightarrow \infty} U^n = 1$$

Passing the limit $n \rightarrow \infty$ to (1) gives

$$\alpha_r + \alpha_{r-1} + \dots + \alpha_0 = 0$$

$$\Rightarrow f(1) = 0$$

(i) Consider the IVP

$$u'(t) = 1, \quad u(0) = 0 \quad (u(t) = t)$$

The difference equation becomes

$$\alpha_r u^{n+r} + \dots + \alpha_0 u^0 = \alpha t / (\beta_r + \dots + \beta_0) \quad (2)$$

with $N\Delta t = T$ and $1 \leq n \leq N-r$

For a convergent method

$$\lim_{\Delta t \rightarrow 0} \eta_s(\Delta t) = 0 \quad s=0, \dots, r-1 \quad (3)$$

$$\text{and } \lim_{\Delta t \rightarrow 0} u^n = t \quad \text{at } n\Delta t = t$$

Since 0-stability is necessary for convergence, $f(x)$ must not have a multiple root of $|x|=1$

$$f'(x) = r\alpha_r + \dots + 2\alpha_2 + \alpha_1 \neq 0$$

Let $u^n = Rn\Delta t$ where

$$R = \frac{\beta_r + \dots + \beta_1}{r\alpha_r + \dots + \alpha_1}$$

The solution $\{u^n\}_{n=0}^N$ satisfies (2) & (3)

$$\text{Then } t = u(t) = \lim_{\substack{\Delta t \rightarrow 0 \\ n\Delta t = t}} u^n = \lim_{\substack{\Delta t \rightarrow 0 \\ n\Delta t = t}} Rn\Delta t = Rt$$

$$\Rightarrow R=1 \Rightarrow C_1 = (1\alpha_1 + \dots + \alpha_r) - (\beta_1 + \dots + \beta_r) = 0$$

$$\Rightarrow f^{(1)} = \sigma^{(1)}.$$

b) Sufficient Conditions

Fact. Define γ_l , $l=0, 1, 2, \dots$

$$\frac{1}{\alpha_r + \dots + \alpha_1 x^{r-1} + \alpha_0 x^r} = \gamma_0 + \gamma_1 x + \gamma_2 x^2 + \dots$$

$$\text{Then } T = \sup_{l \geq 0} |\gamma_l| < \infty.$$

We apply the above fact to estimate sol. of the linear difference eqn.

$$\alpha_r \ell^{m+r} + \dots + \alpha_0 \ell^m = \sigma \ell (\beta_{r,m} \ell^{m+r} + \dots + \beta_{0,m} \ell^m) + \lambda_m \quad (*)$$

Lemma 1. Suppose all roots of $f(x)$ lie in the closed unit disk $|x| \leq 1$ and those on the unit circle $|x|=1$ are simple.

Let B and λ be non-negative constants and β a positive constant s.t.

$$|\beta_{r,n}| + \dots + |\beta_{0,n}| \leq B$$

$$|\beta_{r,n}| \leq \beta, \quad |\lambda_n| \leq \lambda$$

$$n=0, \dots, N.$$

and $0 \leq \alpha t < 12r\beta^{-1}$. Then every soln. of $(*)$ for which

$$|\alpha^s| \leq E, \quad s=0, \dots, r-1$$

satisfies

$$|\alpha^n| \leq K \exp(n\alpha t L), \quad n=0, \dots, N$$

where

$$L = \tilde{\Gamma} B, \quad K = \tilde{\Gamma} (N\lambda + \lambda Er)$$

$$\tilde{\Gamma} = \tilde{\Gamma} / (1 - \alpha t 12r\beta^{-1} \tilde{\Gamma}),$$

$\tilde{\Gamma}$ is defined before.

Proof. Fix r .

Multiply both sides of $(*)$ by γ_ℓ for $m = n-r-\ell$ with $\ell = 0, \dots, n-r$ and denote the summing eqn. by S_n

$$\begin{aligned} S_n &= (2_r \ell^n + 2_{r-1} \ell^{n-1} + \dots + 2_0 \ell^{n-r}) \gamma_0 & \ell=0 \\ &+ (2_{r-1} \ell^{n-1} + 2_{r-2} \ell^{n-2} + \dots + 2_0 \ell^{n-r-1}) \gamma_1 & \ell=1 \\ &+ \dots \\ &+ (2_r \ell^r + 2_{r-1} \ell^{r-1} + \dots + 2_0 \ell^0) \gamma_\ell & \ell=n-r \\ &= 2_r \gamma_0 \ell^n + (2_r \gamma_1 + 2_{r-1} \gamma_0) \ell^{n-1} + \dots \\ &+ (2_r \gamma_{n-r} + 2_{r-1} \gamma_{n-r-1} + \dots + 2_0 \gamma_{n-2r}) \ell^r \\ &+ (2_{r-1} \gamma_{n-r} + \dots + 2_0 \gamma_{n-2r+1}) \ell^{r-1} \\ &+ \dots \\ &+ 2_0 \gamma_{n-r} \ell^0. \end{aligned}$$

Define $\gamma_{l=0}$ for $l < 0$ and note

$$\alpha_r \gamma_l + \alpha_{r-1} \gamma_{l-1} + \dots + \alpha_0 \gamma_{l-k} = \begin{cases} 1, & l=0 \\ 0, & l > 0 \end{cases}$$

thus

$$\begin{aligned} S_n &= \epsilon^n + (\alpha_{r-1} \gamma_{n-r} + \dots + \alpha_0 \gamma_{n-r+1}) \epsilon^{n-1} \\ &\quad + \dots + \alpha_0 \gamma_{n-r} \epsilon^0 \\ &= \Delta t [\beta_{r, n-r} \gamma_0 \epsilon^n + (\beta_{r-1, n-r} \gamma_0 + \beta_{r, n-r-1} \gamma_1) \epsilon^{n-1} \\ &\quad + \dots \\ &\quad + (\beta_{0, n-r} \gamma_0 + \dots + \beta_{r, n-2r} \gamma_r) \epsilon^{n-r} + \dots + \beta_{0, 0} \gamma_{n-r} \epsilon^0] \\ &\quad + (\lambda_{n-r} \gamma_0 + \lambda_{n-r-1} \gamma_1 + \dots + \lambda_0 \gamma_{n-r}) \end{aligned}$$

Noting that $\gamma_0 = \alpha_r^{-1}$

$$\begin{aligned} |\epsilon^n| &\leq \Delta t \beta |\alpha_r^{-1}| |\epsilon^n| + \Delta t \bar{B} \sum_{m=0}^{n-1} |\epsilon^m| \\ &\quad + NTA + ATE \end{aligned}$$

with $A = |\alpha_r| + |\alpha_{r-1}| + \dots + |\alpha_0|$.

$$\Rightarrow (1 - \Delta t \beta |\alpha_r^{-1}|) |\epsilon^n| \leq \Delta t \bar{B} \sum_{m=0}^{n-1} |\epsilon^m| + NTA + ATE$$

$$\Rightarrow |\epsilon^n| \leq K + \Delta t \bar{L} \sum_{m=0}^{n-1} |\epsilon^m|$$

(discrete Gronwall)

$$\Rightarrow |\epsilon^n| \leq K + \Delta t \bar{L} K \frac{(1 + \Delta t \bar{L})^{n-1}}{\Delta t \bar{L}} = K (1 + \Delta t \bar{L})^n$$

$$\Rightarrow |e^n| \leq k e^{atn}, \quad n=0, \dots, N. \quad \#$$

Lemma 2. For a LMM that is consistent with the ODE $u' = f$ where f is Lipschitz, and starting with consistent starting conditions, zero-stability is sufficient for convergence.

Proof.

Define

$$\delta = \delta(\Delta t) = \max_{0 \leq s \leq t-1} |\gamma_s(s\Delta t) - \gamma(s\Delta t)|$$

Given $u^s = \gamma_s(s\Delta t)$, $s=0, \dots, t-1$ and consistency $\lim_{\Delta t \rightarrow 0} \delta(\Delta t) = 0$.

Need to prove

$$\lim_{n \rightarrow \infty} u^n = u(t) \quad \text{for all } t \in [0, T].$$

LTE

$$u^n = \frac{1}{\Delta t \alpha^n} \left[\sum_{j=0}^r \alpha_j^n u(t_{n-j}) - \Delta t \beta_j^n u(t_{n-j}) \right]$$

Define

$$\chi(\varepsilon) = \max_{\substack{|t^* - t| \leq \varepsilon \\ t^*, t \in [0, T]}} |u(t^*) - u(t)|$$

(above well-defined since $u \in C[0, T]$)

$$u(t_{n-s}) = u(t_n) + \theta_s \chi(s\Delta t) \quad |\theta_s| \leq 1.$$

By MVT, there exists $\xi_s \in [t_m, t_{m+s}]$

$$u(t_{m+s}) = u(t_m) + \text{sat} u'(\xi_s)$$

$$\Rightarrow u(t_{m+s}) = u(t_m) + \text{sat} [u'(t_m) + \theta_s \chi(\text{sat})]$$

Then

$$\begin{aligned} |\mathcal{T}^{(1)} \mathcal{T}^m| &\leq \left| \Delta t^4 (2_1 + \dots + 2_r) u(t_m) \right. \\ &\quad + (2_1 + 2\alpha_2 + \dots + r\alpha_r) u'(t_m) \\ &\quad \left. - (\beta_0 + \dots + \beta_r) u(t_m) \right| \end{aligned} \quad \left. \right\} = 0 \text{ consistency}$$

$$\begin{aligned} &+ (1\alpha_1 + 2\alpha_2 + \dots + r\alpha_r) |\chi(\text{rat})| \\ &+ (|\beta_0| + |\beta_1| + \dots + |\beta_r|) |\chi(\text{rat})| \end{aligned}$$

$$\Rightarrow |\mathcal{T}^{(1)} \mathcal{T}^m| \leq K \chi(\text{rat})$$

$$K = |\alpha_1| + \dots + r|\alpha_r| + |\beta_0| + \dots + |\beta_r|.$$

Global error

$$\mathcal{E}^m = u(t_m) - U^m$$

$$2_r \mathcal{E}^{m+r} + \dots + 2_0 \mathcal{E}^m = \Delta t (\beta_r g_{m+r} \mathcal{E}^{m+r} + \dots + \beta_0 g_m \mathcal{E}^m)$$

$$+ \mathcal{T}^{(1)} \mathcal{T}^m \Delta t$$

$$= \Delta t (\beta_r g_{m+r} \mathcal{E}^{m+r} + \dots + \beta_0 g_m \mathcal{E}^m)$$

$$+ \theta K \chi(\text{rat}) \Delta t.$$

$$g_m = \begin{cases} [f(\eta(t_m), t_m) - f(\eta^m, t_m)]/\epsilon^m, & \epsilon^m \neq 0 \\ 0, & \epsilon^m = 0. \end{cases}$$

$$(\text{Lipschitz}) \Rightarrow |g_m| \leq L, \quad m=0, 1, \dots$$

(Lemma 1)

$$\Rightarrow |\epsilon^n| \leq \tilde{\Gamma} [A\gamma\delta(h) + T K \chi(\text{ratio})] \epsilon^{L\tilde{\Gamma}B}$$

with $E = \delta(h)$, $\lambda = K \chi(\text{ratio}) \delta t$, $N = T/\delta t$

$$B = |\beta_0| + \dots + |\beta_r|.$$

u uniformly continuous on $[0, T]$

$$\Rightarrow \chi(\text{ratio}) \rightarrow 0 \text{ as } \delta t \rightarrow 0$$

Passing to the limit $h \rightarrow 0$ ($\delta(h) \rightarrow 0$ by consistency in starting value)

$$\lim_{n \rightarrow \infty} |\epsilon^n| = 0$$

$$n\delta t = t$$

#

Theorem (Dahlquist) For a LMM that is consistent with the ODE $u' = f$ where f is Lipschitz and starting with consistent initial data, zero-stability is necessary and sufficient for convergence.

Remarks.

* Consistency + O-stability = Convergence.

* if $u(t)$ has continuous derivative of order $(p+1)$ and LLE $O(\Delta t^p)$, the global error

$$e^u = u(t_{n+1}) - u^n = O(\Delta t^p).$$

Maximum order of O-stable LMM

We state the theorems describing the maximum order by choosing the coefficients β_j , $j=0, \dots, r$ given α_j , $j=0, \dots, r$ in an r-step method.

Theorem Let $\varphi(x)$ the characteristic poly. of degree r such that $\varphi^{(1)}=0$, $\varphi^{(r)} \neq 0$, and let \hat{r} be an integer $0 \leq \hat{r} \leq r$. Then there exists a unique poly. $\tau(x)$ of degree \hat{r} such that $\varphi^{(1)} - \tau^{(1)} = 0$ and the order of the LMM associated with $\varphi(x)$ and $\tau(x)$ is $\geq \hat{r} + 1$.

Theorem There is no O-stable linear r-step method whose order exceeds $r+1$ if r is odd or $r+2$ if r is even.

Examples. O-stable LMM

Adams $f(x) = x^r - x^{r-1}$

- Adams - Bashforth : explicit
- Adams - Moulton : implicit

Nystrom $f(x) = x^r - x^{r-2}$: explicit

Milne - Simpson : implicit.