
 

Stability Consistency and Convergence

We wish to Consider the stability of the numerical
method with respect to small perturbations in the

starting
conditions

I Zero stability

We start with the abstract concept of O stability I o refers

to the stability when of o
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Def A linear r step method for the ODE n fint

is said to be astal if there exists a constant

K such that for any two sequences a and fit
which have been generated by the same

scheme but different

initial data U U do I respectively

we have
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It wouldbe a very tedious exercise to verify o stability of a 2mm

using
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The general Sohn
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If tix has repeated rootsof modulus 1 the method

cannot be convergent

2 Consider the LMM
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Theorem I not condition An vstep IMM is zero stable

for any ODE n f where f satisfies the Lipschitz condition

ifandonly if the roots of the characteristic poly fix satisfies

the condition
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Proof 3

Consider the r step IMM method applied to n o
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The general sohn has the form
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If list 1 then there is a starting value sit
the sin grows like last

If 141 1 And multiplicity Ms 1 then there

is Sohn grows like moms

To summarize if the moot condition is violated

then themethod is not zero stable



The proof is long See Refs

Example The Adams methods
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The root condition is satisfied and all Adams Bashford

Adams Moulton methods are zero stable

I Consistency

The LTE
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Remind for Consistency th so as at so one requires
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Def The IMM scheme is said to have adrift
if p is the longest pos integer such that for any

sufficiently smooth solution Anne of the top there exists

constants K and h sit
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The 2am is of order of accuracy p if and only if
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Cpt 140 is called the enorconstant

Example Construct an implicit linear 2 step method of
maximum order

The method has the form
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I Convergence

Def The IMM scheme is said to beconvergent if
we have for the wp
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a Necessary
Conditions

Lemma I A necessary
condition for the Convergence of

IMM is that it be stbl

Proof

Consider the Ivp
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The problem yields the difference equation
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Kits o as his

Contradiction

Lemma 2 A necessary condition for the convergence of CMM

is that it be Consistent
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Proof
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The problem yields the difference equation
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Given the method is convergent
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ii Consider the Iup
N'it I Um o f Nit t

The difference equation
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b Sufficient Conditions

Fact Define Je 1 0 I 2
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We apply the above fat to estimate Soh of the linear
difference equ
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Lemma 2 For a CMM that is consistent with the ODE

n'if where f is Lipschitz and starting with consistent

starting
conditions zero stability is sufficient for Convergence
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Theorem Dahlquist For a cam that is Consistent with

the ODE n'if where f is Lipschitz and starting with consistent

initial data zero stability is necessary and sufficient for
convergence



Remarks

Consistency t o stability Convergence

if uit has continuous derivative of order pan
and LTE Olot's the global error
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Maximum order of o stable Lluly
We state the theorems describing the maximum order

by choosing the coefficients Pj ja r given

Lj j o u in an r step method

Theorem let fix the characteristic
poly of degree r

such that ein o e'into and let I be an niteger
O et er Then there exists a unique poly Tex of
degree I such that e'in vain o and the order

of the IMM associated with ex and tix is

Nt 1



Theorem There is no o stable linear v step method

whose order exceeds rt if u is odd or Vtr if
v is even

Examples O stable IMM

Adams fix X X

Adams Bashford explicit

Adams Moulton
implicit

Nystrom fix x x explicit

Milne Simpson implicit


