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In this chapter, we briefly review the basic ideas involved in continuous and
discrete Fourier series such as aliasing. After we have the tools which we
need from continuous and discrete Fourier series, we will use them to solve
differential and difference equations as well as to analyze properties of good
difference equations for numerical approximations.



4.1 Continuous and Discrete Fourier Series

Fourier series are a mathematical tool that represents continuous periodic functions as
linear combinations of trigonometric functions {e'**}. Throughout this chapter, we only
consider 2m-periodic function f(z) € L?(0,2x), that is, f(z) = f(xz + 2m) for all z and
fo% |f|? < 0o. Consequently, we can restrict our attention to a domain of 0 < z < 27. The
corresponding discrete case has a domain of finite grid points z; = jh,j =0,1,...,2N, where
(2N + 1)h = 27. In this setup, a 27-periodic discretized function satisfies f; = fji@n1) for
f; = f(z;),7 € Z. For functions with different periods, we can always normalize them to
be 2m-periodic. To define the discrete equivalent to the integral in the continuous case, we
consider a simple example, f(z) = 1. A proper normalization for the discrete case chooses h
and NV such that

ON

2r 2N
f (x)dx = Zf / 1 dz= E 1A,
0 =0

which explains the choice of 2r = (2N + 1)A. Thus, we can define the discrete complex inner
product and the discrete norm, following the respective continuous case (see Table 4.1). One
can easily see that the dimension of the discrete vector space is 2N + 1 since we sum over
2N + 1 points. On the other hand we need to prove that the dimension of the continuous
vector space is infinite.
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4.1 Continuous and Discrete Fourier Series

Proposition 4.1. The trigonometric functions {€** = cos(¢z) + isin(fx),f € Z} form a
basis for the vector space L*(0,2m). Consequently, this vector space is infinite dimensional.
Proof: To show that they form a basis, we check that they are orthogonal.

' . 1 27 . . 1 27 .
(elle':’ enmx) — _/ ewa:e—rmxdm — el(f—m)xdm.
27T 0 27 0
Note that (€'*,e"™*) = 1 when £ = m and (€'*,e"™*) = 0 when £ # m since £ — m is an
integer and e is a 2w-periodic function. Thus, {e**, ¢ € Z} form an infinite dimensional
basis for our vector space.

Now, let us construct a basis for the discrete vector space with dimension 2N + 1. Based
on the continuous basis, our first guess would be & = ('“*s) where |£| < N and z; = jh since
we only evaluate our discrete function at lattice points.



4.1 Continuous and Discrete Fourier Series

Now, let us construct a basis for the discrete vector space with dimension 2N + 1. Based
on the continuous basis, our first guess would be & = (e'**7) where |¢| < N and z; = jh since
we only evaluate our discrete function at lattice points.

Proposition 4.2. {&‘},—0.+:
with discrete inner product.
Proof: Let £, m = 0,%1,...,£N. The discrete inner product

+N, form an orthonormal basis for the vector space C2N+1

TP ——— .
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through geometric series. Notice that the denominator is nonzero but the numerator is always
zero since (2N + 1)h = 2w, Therefore, € is a basis.

We end this section by stating the main results for the continuous and discrete expansion
theory (consult [44] for proofs of these facts).



4.1 Continuous and Discrete Fourier Series

Continuous Expansion Theory: For the continuous 27-periodic function f(z) € L%(0, 2x),
if the Fourier coefficients

27
f(e) = 1 f(z)e dz, £=0,%1,42,...
2w Jo
satisfy
> 1) < oo, (4.1)
£=—o00
then

flz)= ) f(ee*

f=—00

uniformly in z. Note that if we don’t have condition (4.1), the convergence is only in the L?
sense. What is true when condition (4.1) is not satisfied is

11P= 3 1F@P.

f=—0c

which is known as the Parseval’s identity.



4.1 Continuous and Discrete Fourier Series

Discrete Expansion Theory: Let f € (I;ZNH, where f = (fo, f1, ..., fan'). Since & is an
orthonormal basis for the vector space C*¥*!, we have

N
f - Z (faée)héea
£=—N

where the discrete Fourier coefficients are given by

2N

We can also write f componentwise

fi=Y_ fu(@)e". (4.2)

6| <N

The natural notion of length (Parseval’s identity) follows from Table 4.1

1F12=(F, Hn =" 17©®.

€| <N
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4.2 Aliasing

Aliasing is an artifact of the discretization process. When we try to represent a continuous
function by a discrete set of points we lose information. In particular we cannot distinguish

high harmonics from their low counterpart (e.g., see Figure 4.1). Mathematically, we can
describe this fact by considering the discrete oscillatory basis e* = (e'%") for |[£| < N with
the following harmonics

m=+@N+1)k, k=0,+1,42 ....
Since (2N + 1)h = 2, it is clear that

elmjh — e1(1?-+—(2}\¢-.l-l)ls:)_yh — elégh i2mky _ lfjh.

€ €

We have shown that when we sample €™ with 2N + 1 grid points, z = z; = jh, such that
(2N +1)h = 27, we cannot distinguish it from its lower harmonics, €'*, at the corresponding
grid points. In Figure 4.1, we show an example where aliasing occurs with two sinusoidal
functions, one with higher frequency, m = 25, and another with lower frequency, ¢ = 3. Here,
both functions are sampled with identically 2NV + 1 = 11 uniformly distributed grid points.
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4.2 Aliasing

Next, we would like to know how the coefficients of the continuous Fourier series, f(£), |¢| <
N, compare to the discrete coefficients, f;,(£). To understand the difference, let us consider

f(z) = €

for any m. No matter what m is, it can be written in the following form

m=~{+ (2N + 1)k
for some £, (| < N and k € Z. Since f(z) is sufficiently simple, we can calculate f(£) and
frn(€). In particular,

1 [ 1, if¢=m

0, else ’

“~n»

N
(9N

p —
Il

emm:e—lﬁmdx — {

27 Jo

h 2N
; _ imjh ,—iljh _
fnll) = %Ze eI = 1,

3=0

The last equality is due to the aliasing ei™ih = ik, If £ = m, both f(£) = f,,(¢) = 1 and we
do not have aliasing since k = 0, |£| < N. For £ # m, there is a difference between f(£) and
frn(€), and this difference is the result of aliasing.

For a more general f(z), we can look at it as a superposition of exponentials.



4.2 Aliasing

Proposition 4.3: Consider
_ Z f(m)eimx.

For |¢| < N, we can write down an ezpression for fn(£) in terms of f(£),

fu®) = f(&) + > f(€+ k(2N +1)),

k#0

where the second term on the right hand side is the aliasing error.
Proof: Compute f = (f(0), f(h),..., f(27)). We want to reorganize the following sum

Z f(m)é™" j=0,1,...,2N,

fi =
~N-1 3N+1
= .+ ) [+ Z fQeh+ 3" f(0)eh +
¢=—3N-1 &-\+1
_ L+ Z f 2N+ 1))61(£ (2\+1))]h+ Z f e)ew]h
£|<N f=—N
+ ) f(e+2N + 1) 4
|£| <N
— Z Z f(€+k(2N+1))ei(e+(2N+1)k)jh
[¢|<N k=—00

= > i Ff€+ k(2N +1))el™,

|| <N k=—o0



4.2 Aliasing

fi = 3% fe+k@N +1))e"
€| <N k=—o00
fi=Y fn)e" (4.2)

£|<N

The last equality uses the fact that (2N + 1)h = 27. By the discrete expansion theory in
(4.2), we have

@ =) fl+Ek@2N+1)

k=—oc

and the proof is completed.



Aliasing and nonlinearities

« assume we have a non-linear term uv in our PDE, and u(x) =sin(k,x),
v(x) = sin(k, x), with k;, k, from our set of available wave-vectors k;

« NOW uv ~ -cos[(kq+ko) z] + cos[(k2-k4)z], and kq+ko may lie outside our
range of k's, and the available Fourier amplitudes might get aliased !

 kq+ko outside range if k4+ko > 11, and the amplitude appears wrongly
in the range of k’s at kq+ko—21T (I=-1, j4+j2-N), the DFT is aliased
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Example: Korteweg de Vries equation (KdV)

XXX

L
dtu+5(3xu +0,.,.,u=0

Numerically, two colliding solitons

time-series of the KdV solution, dealiasing time-series of the KdV solution, no dealiasing

x 100

De-aliased solution Not de-aliased solution



4.3 Differential and Difference Operators

In Section 4.1, we showed that both the continuous and discrete basis involving oscillations
were made up of exponentials. In this section, we are going to see that these exponentials
are indeed eigenfunctions of both differential and difference operators, respectively. For the
continuous case, let u(z) € C¥(0,27) be a 2m-periodic K-times continuously differentiable
function. For known constant p,,, we define a differential operator

5 K
P(5)u@) = > pm

m—>0

dnlu(x)
d .

a’:?n



Proposition 4.4: Every harmonic e**

Proof: Since

is a 2w-periodic eigenfunction of P(0,).

%ei&r (le) 1£.r

dnl
d T m

eifr (le) meif:r.,

we have

dm x

( ) me T = me i0)"e"

m=0 m=—0

Thus, we have shown that e'** is an eigenfunction of P(8,) with eigenvalue

K
ﬁ(i@) = Z pm(ie)m'

m=—0

The equivalent discrete case is for @ € C*¥*! with components u; = u(z;), z; = jh, where
J € Z and (2N +1)h = 27. Each component satisfies u; = u;.ax5+1. We define the difference
operator G with component



The equivalent discrete case is for @ € C?*¥*! with components u; = u(z;), z; = jh, where

J € Z and (2N +1)h = 27. Each component satisfies u; = u;.2x+1. We define the difference
operator G with component
K
(Gu)k= D Gmlkim,
m=—K
where a,, are known constant.

Proposition 4.5: Every discrete harmonics e**

difference operator G.
Proof: Again the proof follows from te definition of (G(u;))r. Let u; =€

» with ¢; = jh is an eigenfunction of the

Mﬂzand

(G xf;h Z a, elfkmh _ Z a, efmh itk

m——K m——K

Here, the corresponding eigenvalue is

Z a,e 1£mh’ (43)

m——K

which is sometimes called the amplification factor.



4.4 Solving Initial Value Problems

In this section, our goal is to understand when we can solve the Initial Value Problem
(IVP):

o = P(o)
u(z,0) = f(a),

for £ > 0 and u(z + 2m,t) = u(x,{) and what the general solution is. In particular, we would
like to find explicit algebraic criteria which would tell us when we have a solution for the
IVP. Some examples of differential operators which arise in applications are the free space
Schrodinger operator, P(0.)u = iu,,, the simple wave equation, P(8,)u = Cu,, and the
heat /diffusion equation, P(0,)u = ug,.



Consider a set of trigonometric function, T, defined as follows

Ty ={ Y G Cech (4.4)

<N

Since we have shown that €'“* is an eigenfunction of the differential operator P(8,), we would

not be surprised to see that for functions from 7T, the IVP can always be solved. Formally,
this is given by the next proposition.

Proposition 4.6: For any operator P(0.), any function f(x) € Ty and any N, we can
always solve the IVP.
Proof: Solve the IVP

ou’ O\
o ?(%)“ ’ (4:5)
u'(z,0) = €*.

We want to use separation of variables so we assume
ut(z,t) = a(t)e*. (4.6)
Recall that since €'“* is an eigenfunction of P(8,), substituting (4.6) into the IVP in (4.5)
yields
£ £
aaiteif.r — afﬁ(w)eif.r - 36%

This equation has the solution a‘(t) = ePl¥)* and therefore u(t) = e?i9teié* golves (4.5).

= p(if)a*, where, a‘(0) = 1.



Now we want to solve the same PDE but with more general initial data, i.e.,

ou s,
o = Pl
u(z,0) = ZC’ge”"’.
£|<N

Since this equation is linear we know that sum of the solutions is also a solution. From the
above we know that we can solve the IVP for initial data which consists of one harmonic.
In order to get the solution matches the general initial data we just need to add up all the
individual solutions,

u(z, t) = Z CyePlif)tgite,

€| <N



In discrete setting, consider @ = (ug, u1,...,usn) € C*¥*! such that u; = u;+on+1 and
(2N + 1)h = 27. The corresponding IVP is given as follows

ﬁM +1 — G ,l-l:.-\-f :
-{) e
a = f,

where superseript M denotes the discrete time step, the difference operator G : C2N+! —
C*¥+1 is defined as follows

’tf
G('u, § : anl“Hm
m=—K

Based on the Fourier discrete expansion theory, we can write any initial conditions, f €
C2¥+1, as a linear combination of the exponential basis €° (see Eqn. (4.2)). By superposition,
the general solution for the discrete IVP is always given by

= ) aw@OY i)

£|<N

where §;(¢) is the eigenvalue of the difference operator G as defined in (4.3).



4.5 Convergence of the Difference Operator

Naively one might think that any numerical scheme to discretize in z and ¢ would produce
a convergence solution to the IVP. We will show that is not true even in a simple context.

To be more explicit, we consider the linear wave equation as an example since it constitutes
the simplest prototype model for turbulent systems as we will discuss in the next chapter.

Linear wave equation:
u, = Cu, (4.7)
u(z,0) = f(x).
We know that this equation has the solution
u(z,t) = f(z + Ct),
which is a wave that propagates to the left if C' > 0 and to the right if C' < 0.

The fundamental theory in the analysis of finite difference methods for the numerical
solutions of partial differential equations is the Lax Equivalence Theorem, which states
the following: Provided that differential equation u, = P(0,)u is stable. The convergence of
the difference scheme is gquaranteed only when it is stable and consistent.



The strength of this theorem is that it is quite often easier to check the stability and

the consistency relative to directly showing the convergence since the numerical method is
defined by recurrence relation while the differential equation involves differentiable functions.

To confirm the stability of the differential and difference operators, it suffices to check the
following algebraic conditions.

Proposition 4.7: IVP is stable for a given P(8,) if and only if

max |ePU2 < C(T).

Proposition 4.8: The difference scheme is stable for a strategy At < S(h), where A is the
discrete spatial mesh size, if and only if

max |gn(At, M| < C(T).

€| €oc, 0 MALET



In our example, the stability of the PDE is clearly satisfied since the differential operator
of the wave equation in (4.7) is bounded from above, |e?t)|? = |e“¥|2 = 1. Let us consider
the forward Euler time discretization (as described in Chapter 2) as well as the symmetric

difference to approximate the spatial derivative,

uM M

1 — U .
3.12}1 = ='U,I+O(h2),

where u;V ~ u(jh, MAt). This second order accurate approximation can be easily deduced
by substracting the Taylor expansions of 7, and !, about their mid point, z; = jh. With
these approximations, the numerical estimate of the wave equation is given by the following
recurrence relation

CAt
M+ M M M
;= (e - ugh), (4.8)

0
'U,j = fj'



We will show that this difference scheme is indeed not stable. The amplification factor of
(4.8),

CAt CAL

~ _ ith _ —ifhy _ .
gn(At,£) =1+ oh (e e ) 1+1—h sinfh,
satisfies
. 2
Gn(AL 0> =1+ (%) sin®(¢h) > 1,

when £ # 0, |£| < N and for any constant CAf/h # 0. For a fixed time T where 0 < MAt <
T, whenever At is small with Af/h constant, we need to increase the time step M, therefore
|Gn (AL, £)M]? keeps growing as M increases, and the algebraic condition in Proposition 4.8 is
not satisfied.



Now, let us reduce the accuracy in the spatial derivative approximation by considering a
first order forward difference method,

ul, — M

: - L = u, + O(h).

With the forward Euler time discretization, we called the following approximation the upwind
difference scheme,

CAL, M

M M M
w/ T = w4 > (uysy — '), (4.9)

J

U? = fi.
Before we check the stability and consistency of this scheme, let us intuitively give a conjecture
for this scheme. We know that when C > 0 the exact solution propagates to the left and
when C' < 0 it propagates to the right. The difference equation in (4.9) uses the values at
the right (grid point 7 4+ 1) to calculate a value at the left (grid point 7). Thus, we expect
the difference scheme will work for C' > 0. On the other hand, for C' < 0, the difference
scheme (4.9) still uses the values at the right side to calculate values at the left side. Since
the difference scheme uses information from the wrong side, we do not expect it to work

well in this case. When C < 0, one needs to consider the backward difference scheme to
approximate the spatial derivative since it uses information from the left to calculate the

value at the right.



To check the stability, let us denote A = A¢/h such that the amplification factor of (4.9)
can be written as follows

Gn(AL, £) =1+ XC(e" = 1). (4.10)
The algebraic condition in Proposition 4.8 is satisfied when [ga|? < 1 for all |¢| < N.
0 < |gn(At 0 =1—2CA(1 — CA)(1 — cos(£h)).
For |g,|° < 1, we need
2C\(1 — CA)(1 — cos(£h)) > 0.

Since (1 — cos(£h)) > 0 for all h, ¥4, the stability holds when CA(1 — CA) > 0. That is,
for C,A > 0,\C < 1. This is the well-known Courant-Friedrichs-Lewy (CFL) criterion for
stability.



Consistency is a condition which guarantees that the discrete problem approximates the
correct continuous problem. To verify this, let %" = u(jh, MAt) be the exact solution of the
wave equation in (4.7), evaluated at grid point jh and time MA¢{. The Taylor expansions
about the grid spacing h and discrete time At are given as follows

Uy, = @ + hite + hPies + O(R),

- M = M - -
ay o=y + Atdy + O(AL?).

Substituting these expansions to the finite difference scheme in (4.9), we obtain
ity + O(At) = C(i, + hily, + O(h?)).

Taking the limit h, Af — 0, we obtain the continuous wave equation in (4.7) and the consis-

tency is satisfied. Therefore, the upwind difference scheme is a convergent method whenever
the CFL condition holds.



