Introduction

There are many different types of partial differential equations. A good
choice of numerical schemes is often dependent on the type of equations,
which is the key difficulty of studying numerical methods.

1.1 Partial differential equations

Most of classical PDEs originate from modeling physical phenomenon, used
in science and engineering problems. One thing we should always keep in
mind is that these equations are chosen models, which are supposed to be
valid, suitable or acceptable only under certain assumptions or only within
certain context. For instance, compressible Navier-Stokes equations is a
good continuum description of gas dynamics, if gas is not as rarefied as in a
space shuttle entering the outer atmosphere.

In many applications, a PDE is a simplified approximated continuum
modeling, as opposed to alternative particle models, e.g., the Boltzmann
equation describes the statistical behaviour of a thermodynamic system,
which can also be descirbed via molecular dynamics. PDEs have also been
used for an efficient surrogate modeling of pedestrian flows or a flock of birds
for which a particle model might seem more reasonable at least intuitively.

For beginners, equations can be assumed as given and well-posed, which
roughly means that the equation has a unique nice solution. For a better
understanding of the numerical methods, eventually one must understand
the origin of the equation, which often plays a critical role in designing
numerical schemes. Classical equations were mostly derived from physical
principles (e.g., compressible Euler equations were derived from conservation
of mass, momentum and energy) along with some empirical formula (e.g.,
equation of state for descrbing pressure dependence on mass, momentum
and energy). On the other hand, in practical applications, many ad hoc
equations have been proposed and used. For example, if we know u; =
u, represents convection, u; = Uy, represents dissipation and u; = Uggq
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represents dispersion, then it makes sense, at least seemingly, to use u; =
aty + bug, + cug., as a model equation for modeling a system of convection-
dissipation-dispersion. Nonetheless, a common practice does not necessarily
mean that it is the right way.

Examples of PDEs

o Wave equation
Utt = Ugy

Sound waves in air and water, acoustics

e Heat equation
Ut = Ugy

Diffusion of heat, solutes, probability

o Laplace equation
Ugg + Uyy = 0

Steady-state potentials in heat conduction, electromagnetics, fluids

e Biharmonic equation

(8331‘ + ayy)2u - O

Solid mechanics, viscous fluids

¢ Poisson equation

Au = f
Steady-state potentials in the presence of sources

o Elastic wave equation

Utt = —Ugzax

Sound waves in solids, seismology, structural mechanics

e Helmholtz equation
Au+Eu=0

Sound waves at prescribed frequency, scattering theory

e Schrédinger equation
Wy = —Uge + VU

Quantum mechanics
o Korteweg-de Vries (KdV) equation
Ut + UUy + Uggy =0

Solitons, water waves
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Klein-Gordon equation

Ut = Ugy — U
Relativistic quantum mechanics

Burgers equation
Ut + UlUy = €EUgpy

Shock waves and rarefactions

Fisher-KPP equation
Up = Ugy +u(l —u)
traveling waves

Allen-Cahn equation
3

Ut = Ugpy +U — U
Structure formation in materials

Kuramoto-Sivashinsky equation
Ut + UUy = —Ugy — Ugaag
Flames, turbulence, chaos
Ginzburg-Landau equation
up = (14 i) ugy +u — (1 + ip)uful?
nonlinear evolution and amplitude modulation of disturbances

Perona-Malik equation
u =V - (g(|Vu[)Vu)
Sharpening of images

Navier-Stokes equations
Fluid mechanics with viscosity

Euler equations
Fluid mechanics without viscosity, gas dynamics

Maxwell’s equations
Electromagnetic radiation, light and radio waves

Einstein equations
General relativity, black holes
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o Hodgkin-Huxley equations
Propagation of signals in neurons

¢ Black-Scholes equations
Valuation of options in finance

¢ Cauchy-Riemann equations
Analytic function theory, complex analysis

1.2 Numerical schemes

For PDEs, usually there are no exact solution formulae, and even if there is
one, the formula can be demanding or dfficult to compute. One practial goal
of numerical methods for PDEs is of course to provide a computationally
tractable way for generating some kind of accurate approximations of the
solution. Be aware that not all computational methods are tractable with
given computational resources.

There are many popular numerical methods, which one may not have
used but likely have heard of, such as finite difference, finite element, finite
volume and spectral methods. As shown in Figure [I.I] approximations are
obviously quite different in different numerical methods, which is however
only a superficial way of understanding numerical schemes for PDEs. As a
matter of fact, many of these different numerical methods can sometimes be
regarded equivalent, especially for solving a one-dimensional problem.

The key is not the difference in the choice of approximation methods,
but rather the PDEs that one needs to solve. For certain types of PDEs such
as wave equations uy = Awu, almost all kinds of numerical methods can be
used to obtain a useful numerical scheme. For many other types of PDEs, it
can be hard to use even a very popular numerical method. Even though the
popular finite element methods are equipped with various software packages
and the most complete and beautiful mathematical theory, there are equa-
tions and problems that they cannot handle. There is no single numerical
method to serve as a silver bullet, unless one is content with solving only
particular kinds of PDEs.

For example, finite volume schemes are successful for solving hyperbolic
conservation laws and they are derived by discretizing the integral form of
the conservation laws, and it is a perfectly natural thing to do because those
PDEs are derived from the integral equations in the first place. On the other
hand, it is very challenging to construct a scheme for hyperbolic conservation
laws using spectral methods and continuous finite element methods.
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Figure 1.1: An illustration of a few popular methods.
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1.3 Computational tools

One particular emphasis of this lecture is the breadth of the scope. We will
discuss a few different types of equations. The variety of different equations
and different methods might seem overwhelming thus pose challenges, which
however can become opportunities later because various methods provide
ample inspiring perspectives of computational philosophy.

Many numerical methods go beyond solving PDEs. The simplest cen-
tered difference for Poisson’s equation naturally extends to graph Laplacian
on a graph. Numerical schemes for differential equations and numerical opti-
mization algorithms are closely related. Many classical algorithms find roots
in both territories. To name a few, the proximal point method for solving
convex optimization, is nothing but backward Euler time discretization for
numerical ODE.

Put simply, methods in numerical PDEs are also useful tools for other
modern computational tasks.
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