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ABSTRACT

We propose a Machine Learning (ML) non-Markovian closure modeling framework for accurate
predictions of statistical responses of turbulent dynamical systems subjected to external forcings.
One of the difficulties in this statistical closure problem is the lack of training data, which is a
configuration that is not desirable in supervised learning with neural network models. In this
study with the 40-dimensional Lorenz-96 model, the shortage of data is due to the stationarity of
the statistics beyond the decorrelation time. Thus, the only informative content in the training
data is from the short-time transient statistics. We adopt a unified closure framework on various
truncation regimes, including and excluding the detailed dynamical equations for the variances.
The closure framework employs a Long-Short-Term-Memory architecture to represent the higher-
order unresolved statistical feedbacks with a choice of ansatz that accounts for the intrinsic
instability yet produces stable long-time predictions. We found that this unified agnostic ML
approach performs well under various truncation scenarios. Numerically, it is shown that the
ML closure model can accurately predict the long-time statistical responses subjected to various
time-dependent external forces that have larger maximum forcing amplitudes and are not in the
training dataset.

K eywords Reduced-order model · non-Markovian closure · long-time statistical prediction · Long-short-term-
memory network

1 Introduction

Closure problem in nonlinear dynamical systems is one of the most challenging tasks in computational statistics,
see e.g., [13, 11, 16, 26, 24, 23]. In the context of turbulent fluid flows, closure problem has been studied for over a
century dated back to Boussinesq’s eddy viscosity hypothesis [29], where the goal is to describe the Reynold stress
term (which is effectively a second-order statistic) as a function of the mean flow. In a nutshell, the underlying
closure problem is to find a closed system that can describe the evolution of observable (such as low-order statistics),
and by “closure”, the goal is to specify a map that allows one to untangle the dependence on unresolved variables
(such as higher-order statistics). In the context of low-order statistical closure problem, which is the primary interest
in this work, predicting the time evolution of mean statistics is useful for point estimation, while predicting the
time evolution of the covariance statistics has a wide range of applications, including uncertainty quantification
[12, 20, 21] and data assimilation [1, 7, 34].
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As machine learning becomes popular, finding such a “closure” map can be formulated as a supervised learning
task. With machine learning algorithms, one approximates the closure system by solving a regression problem on
an appropriate hypothesis space, replacing the traditional approach of finding an analytical expression that can be
very difficult in general. In the context of turbulent fluid flows, numerous neural network-based machine learning
closure systems have been proposed (see e.g., [3, 30, 23]). While the success of the estimation depends crucially on
the choice of neural network architectures, a natural hypothesis space for modeling time series is the Recurrent
Neural Networks (RNNs) architecture. In the closure modeling applications, the Long-Short-Term-Memory (LSTM)
[9], a special class of RNNs, has been shown to produce state-of-art accuracies in the prediction of high-dimensional
time series [17, 32, 22, 8].

Building on these empirical successes, we consider the LSTM-based neural network architecture for statistical
closure modeling of turbulent dynamical systems. In this paper, we will examine the effectiveness of machine
learning in uncovering the non-Markovian statistical model. In previous works [10, 8], a closure model for predicting
the trajectory of the observed state variables is constructed using a long time series of the corresponding observable.
Despite the similarity to the closure modeling framework formulated in [10, 8], the proposed statistical closure
problem in this article is more challenging. In the present work, a unified model framework is proposed aiming
to directly predict the leading-order statistical moments subjected to general external perturbations, with limited
training data. Particularly, we will consider short-time transient statistical sequences for training. This consideration
is motivated by practical issues (e.g., stiff numerical solver and large storage) in obtaining longer time series when
the full-order model is multiscale and high-dimensional. Even in moderately low-dimensional problems, as we shall
see in this paper when the perturbed dynamics correlation statistics are decaying, we only have short time series of
transient statistics that are informative for training. While the lack of training data makes the closure problems in
this paper a stringent test for the machine learning algorithm, we are not only concerned to predict the evolution of
the low-order statistics of the underlying unperturbed system. Our ultimate goal is to capture statistical responses
subjected to unseen external forces, extending previous works [10, 8] which only examined the accuracy of the
unperturbed dynamical system on new initial conditions.

To achieve this goal, we assume that one can numerically simulate the full-order model in a short time window
(as in many reduced-order modeling configurations, e.g., [5, 33, 2, 6, 20]) to generate a training dataset under
pre-selected simple constant forcing functions and initial conditions. We will simulate this training dataset by a
Monte-Carlo simulation. While this task can be expensive depending on: the choice of integration scheme for
solving the underlying full-order model, the length of the time integration to reach correlation time scales, and the
sample size needed to achieve a robust statistical estimation, it only needs to be performed once for pre-selected
constant external forcings. Subsequently, we validate the closure model by examining how well it can extrapolate
beyond the training data to predict the statistical responses subjected to various new time-dependent forcing
functions and initial conditions.

Numerically, we examine the machine learning closure on a simple test model, the Lorenz ’96 (L-96) system, that
was first introduced by Lorenz [15] as an idealization of atmospheric waves in midlatitude. While the model is
simple, it carries some properties of realistic turbulent complex systems [18, 19] such as the energy preserving
advection-like nonlinear term, and a wide spectrum of unstable modes through the nonlinear coupling between
states. Beyond the simplicity, which allows us to carry the numerical verification with moderate computational
costs, our choice to investigate this case is largely motivated by the fact that closure models for a coupled system
of the mean and covariance statistics have been well-developed and improved in [26, 19, 20]. These parametric
closure models, developed based on clever physical intuition, have demonstrated accurate statistical predictions. In
such a configuration, we found that the machine learning-based model can produce accurate statistical responses
(comparable to the parametric model) on moderate to large forcing amplitudes. Despite the effective prediction with
parametric closure models in [19, 20], the cost in calibrating the statistical modes throughout the entire spectrum
can become very expensive as the dimensionality of the problem increases [21, 24]. In addition to this practical
problem, a more fundamental issue with parametric modeling is that the design of accurate closure models crucially
depends on knowing the physics well enough, such as self-similarity or some structure of the underlying dynamics.
As an example that illustrates this issue, we will compare parametric and ML closure models for only the mean
statistics (no dynamical models for the variance are involved) in the simple L-96 example. In this scenario, we find
that the agnostic ML framework can produce more accurate predictions, beating the parametric-based approach.
This simple test suggests that the agnostic approach is easily portable for any truncation scenario. On the other hand,
while the parametric modeling assumption [19, 20] works well on the coupled system of the mean of covariance
statistics, different parametric assumptions need to be considered for accurate closure of only the mean statistics.

The remainder of this paper is organized as follows. In Section 2, we discuss the general statistical closure modeling
framework of turbulent dynamical systems using L-96 as a prototypical example and provide a hierarchy of low-
order closure models. In Section 3, we provide details on the machine learning algorithm used to estimate the
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non-Markovian dynamical components. In Section 4, we present numerical results on the hierarchy of closure
models introduced in Section 2. In Section 5, we close the paper with a summary.

2 Statistical closure of complex nonlinear systems

The general formulation of the turbulent dynamical systems [18, 20] can be described by the canonical equations
for the state variable u ∈RN as,

du

d t
= (L +D)u+B (u,u)+F (t ) . (1)

On the right hand side of the above equation (1), the first two components, (L +D)u, represent linear dispersion
and dissipation effects, where L ∗ =−L is an energy-conserving skew-symmetric operator; and D < 0 is a negative
definite operator. The nonlinear effect in the dynamical system is introduced through a quadratic form, B (u,u),
that satisfies the conservation law, u ·B (u,u) = 0, and the Liouville property, divuB (u,u) = 0 [18].

Following [27, 20], the dynamics of the statistical moments are constructed by representing the state space u as,

u (t ) = ū (t )+
N∑

i=1
Zi (t )ei , Ri j =

〈
Zi Z∗

j

〉
, (2)

where ū (t ) = 〈u (t )〉 represents the mean statistics, and the coefficients {Zi (t )} are fluctuation terms along the
coordinates ei . In the above description, the notation 〈·〉 is to denote the canonical statistical ensemble average that
approximates the integral over the phase space at the limit of large ensemble size, following the standard notion in
statistical mechanics [35]. Inserting the representation in (2) to (1), one obtains a system of dynamical moments
equations, where the first two moments satisfy,

d ū

d t
= (L +D) ū+B (ū, ū)+

∑
i , j

Ri j B
(
ei ,e j

)+F, (3a)

dR

d t
= Lv (ū)R +RL∗

v (ū)+θ, (3b)

with

(Lv )i j =
[
(L +D)e j +B

(
ū,e j

)+B
(
e j , ū

)] ·ei , (4a)

(θ)i j =
∑

m,n

〈
Zm Zn Z j

〉
B (em ,en) ·ei +〈Zm Zn Zi 〉B (em ,en) ·e j . (4b)

Here, the energy flux θ expresses nonlinear energy exchanges between different fluctuation modes due to the
nonlinearity of the dynamics modeled through third-order moments. In general, such a representation gives rise to
a non-closed system (possibly infinite-dimensional ODEs) as each moment equation is coupled to higher-order
moments.

Despite the fact that the exact equations for the statistical mean (3a) and the covariance fluctuations (3b) are not
a closed system, the total energy in the mean plus the total variance defined as E = 1

2 ū · ū+ 1
2 tr(R) satisfies the

following scalar dynamical equation [20],

dE

d t
= ū ·Dū+ tr(DR)+ ū ·F, (5)

where ū and R are the exact solutions from the statistical equations. While the mean and covariance dynamics
in (3a)-(3b) are not explicitly written in terms of E , we found that by allowing the unresolved components in (3b)
to depend on E , one can achieve an effective non-Markovian closure model, especially for reduced-order model
building upon the coupled system (3a),(3b), (5) in leading modes [19].

For the convenience of notation in the following discussion, we consider a discrete dynamical system induced by
numerical integration of the coupled system (3a),(3b), (5), and a non-Markovian equation for the energy flux θ,

ūi+1 =F1(ūi ,Ri ,Fi+1),

Ri+1 =F2(ūi ,Ri ,θi )

Ei+1 =F3(ūi ,Ri ,Fi+1)

θi+1 =G (ūi , . . . , ūi−m+1;Ri , . . . ,Ri−m+1;Ei . . . ,Ei−m+1;θi , . . . ,θi−m+1).

(6)

Here, we have defined ūi := ū(ti ), Ri := R(ti ), Ei := E (ti ), θi := θ(ti ), and {F j } to denote the corresponding operators
associated to the numerical integration of (3a),(3b), (5) for a suitable time step ∆t := ti+1 − ti . The operator G
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denotes a hidden non-Markovian model that maps the delay coordinates of variables {ū,R,E ,θ} to the energy flux θ
at the next time step. We should point out that in the absence of external forces, the non-Markovian system in (6)
is an exact representation (no approximation) of the corresponding temporal discretization of the full dynamical
system in (1) in terms of {ū,R,E ,θ} that satisfies mild conditions of the delay embedding theorem [31, 28]. To see this,
one can employ the discrete Mori-Zwanzig formulation [8] to the full system (1) with a projection operator defined
as the conditional expectation of the delay embedding coordinates of these observables, E[Xi+1|xi , . . . ,xi−m+1] for
some m > 1, where Xi denotes the random variable associated with the dynamical process xi := (ui ,Ri ,Ei ,θi ) (see
Section 3 of [4] for such a derivation).

While one can, in principle, deduce the hidden dynamics G , such a mathematical derivation is far from trivial even
if the structure of the full dynamics in (1) is known. Following the idea in [10, 8], we will use machine learning to
approximate the hidden map G in an efficient way. Theoretically, under the assumption that F j ,G are uniformly
Lipschitz, one can guarantee accurate solutions (in a strong sense) up to a finite time with an error bound that
depends linearly on the total error of learning G (see Theorem 3 in [8]). Numerically, we will consider a specific
type of Recurrent Neural Networks (RNN) known as the Long-Short-Term-Memory model for the estimation of G ,
motivated by the robust numerical results on other closure problems reported in [8]. In fact, using the approximation
theory of a two-layer neural network, the work in [14] shows that there exists an RNN closure model that gives the
desired consistency up to a finite time.

To illustrate the approach, we focus on the Lorenz’96 (L-96) model [15] that fits into the general structure of (1). The

L-96 model is a 40-dimensional ODE system with state variables u = (
u0,u1, ...,u J−1

)>
du j

d t
= (

u j+1 −u j−2
)

u j−1 −d (t )u j +F j (t ) , j = 0, · · · , J −1 = 39, (7)

with a periodic boundary condition, u J = u0, mimicking geophysical waves in the mid-latitude atmosphere. While
the model is rather simple, it carries representative properties of realistic complex systems with the energy preserving
advection-like nonlinear terms, and the exchanges between the damping and forcing terms.

To compare with the abstract form (1), we can write the linear and quadratic operators for the L-96 system as

L = 0, D (t ) = diag
(−d0 (t ) , · · · ,−d J−1 (t )

)
, B (u,v) = {

u∗
i−1 (vi+1 − vi−2)

}J−1
i=0

and define the state variables in (2) with ek := {e2πi k j
J } j for j = 0, . . . , J −1.

For simplicity, we consider uniform damping and forcing terms, d (t ) and F (t ) respectively, that are only functions
of time and identical for any grid points j = 0, . . . J −1. For an extensive test of the model prediction skill, we will
consider several forcing functions with distinctive features (see the right panel in Figure 1). With this assumption,
the first two moments can be further simplified to a uniform mean state, ū (t ) = ū (t ) (1, · · · ,1)T, and a diagonal
covariance matrix, R (t ) = diag

(
r0 (t ) , ...,r J/2 (t )

)
. The corresponding moment equations are given as,

dū (t )

d t
= −d (t ) ū (t )+φ (t )+F (t ) , (8a)

drk (t )

d t
= −2[Γk ū (t )+d (t )]rk (t )+θk (t ) , k = 0,1, ..., J/2, (8b)

dE (t )

d t
= −2d (t )E (t )+F (t ) ū (t ) , (8c)

where we have defined the coupling coefficients Γk = 1
J

(
cos 4πk

J −cos 2πk
J

)
, r−k = 〈

Z−k Z∗
−k

〉 = 〈
Zk Z∗

k

〉 = rk , the

variance feedback φ to the mean equation, and the nonlinear flux θk in the variance equations,

φ=∑
k

rkΓk , θk = 2
∑
m
Re

{〈
Zm Z∗

m+k Zk
〉(

e−2πi 2m+k
J −e2πi m+2k

J

)}
,

respectively, with statistical energy conservation tr(θk ) = 0. See Appendix A in [19] for a detail derivation of these
terms. A numerical discretization of the right hand sides of (8a)-(8c) gives an explicit example for the abstract
operators F1,F2,F3 in (6).

2.1 Mean-covariance closure model

Here, we will specify the closure model for the discrete dynamical system in the form (6) induced by the time
discretization of (8a)-(8c). In Section 4, we will numerically validate the effectiveness of the machine learning
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Figure 1: Direct Monte-Carlo simulation solutions of the 40-mode L-96 system as the standard test model. The left
panel shows the equilibrium energy spectra and the inner shaded area includes the resolved modes in the reduced-
order model (10). Unstable modes span in a wider range 4 ≤ k ≤ 13 than the resolved state in the reduced-order
model. The right panel shows several external forces we will consider for testing the prediction skill.

strategy in recovering the dynamical maps Gk that model the evolution of the nonlinear flux θk that are missing in
this formulation,

ūi+1 =F1(ūi , {rk,i }k=0,...,J/2,Fi+1),

rk,i+1 =F2,k (ūi ,rk,i ,θk,i ), ,

Ei+1 =F3(ūi ,Ei ,Fi+1)

θk,i+1 =Gk (ūi , . . . , ūi−m+1; {θk,i , . . . ,θk,i−m+1}k=0,...,J/2;Ei , . . . ,Ei−m+1)

(9)

for k = 0, . . . , J/2. Here, we should point out that ūi ,rk,i ,Ei ,θk,i are all real-valued scalar variables, where we used
subscript-i to denote the discrete time index. Here, we have adopted another simplification by ignoring the explicit
dependence of Gk on {rk }. This simplification is partly motivated by the implicit dependence of the variance
information through E . Numerically, this simplification avoids the complexity in training the neural network model
in approximating G := (G0, . . . ,GJ/2). In such a case, we should point out that {Gk :R(3+J/2)m →R}k=0,...,J/2 is already
high-dimensional when m is large, even without the explicit dependence on {rk }.

2.2 Reduced-order mean-covariance closure model

Next, we will consider a reduced-order model by truncating the summation term in (8a) to only account for leading
modes K := {k ∈ Z : kmin ≤ k ≤ kmax} that carry large variances (see the variances as functions of modes on left
panel of Figure 1 for various constant forcings). In our numerical experiment, we consider kmin = 6 and kmax = 12
such that the resolved subset K includes only the most unstable modes .

Specifically, the reduced-order model is given by a coupled system consisting of

dū (t )

d t
=−d (t ) ū (t )+

∑
k∈K

rk (t )Γk + φ̃(t )+F (t ),

and the dynamics of {rk : k ∈ K } in (8b) and the dynamics of E in (8c). The key idea here is to consider a non-
Markovian model (to be learned via appropriate machine learning algorithm) for the evolution of the unresolved
total variance feedback φ̃ :=∑

k∈{0,...,J/2}\K rk (t )Γk . In discrete form, our task will be to learn the dynamical maps
Gk,1 and G2 of,

ūi+1 =F1(ūi , {rk,i }k∈K ,Fi+1)+ φ̃i ,

rk,i+1 =Fk,2(ūi ,rk,i ,θk,i ),

Ei+1 =F3(ūi ,Ei ,Fi+1),

θk,i+1 =G1,k (ūi , . . . , ūi−m+1; {θk,i , . . . ,θk,i−m+1}k∈K ;Ei , . . . ,Ei−m+1),

φ̃i+1 =G2(ūi , . . . , ūi−m+1; φ̃i , . . . , φ̃i−m+1;Ei , . . . ,Ei−m+1),

(10)

for k ∈K using appropriate machine learning algorithms. With the reduced-order model (10), we only need to
learn {G1 :R(2+|K |)m →R|K |,G2 :R3m →R}k∈K , where G1 := (G1,k )k∈K and we have denoted the number of modes
in K by |K | = kmax −kmin +1. Compare to the full-order closure model in (9), G1 is a lower-dimensional map
which makes the computational cost less expensive when |K | < J/2. In our numerical simulation, we will consider
K = {6, . . . ,12} such that |K | = 7 < 21 and the closure map to be recovered, G1 : R9m → R7, is a much smaller
dimensional map relative to that in the full-order model where G1 :R24m →R21.

5
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2.3 Mean closure model

Finally, we will consider a closure model that ignores the detail evolution of the covariance terms rk . In such a
severe truncation scenario, we will introduce a non-Markovian closure for φ :=∑J/2

k=−J/2+1 rk (t )Γk to account for
the combined contribution of the truncated covariance terms in (8a). The corresponding discrete form is given as
follows,

ūi+1 =F1(ūi ,Fi+1)+φi ,

Ei+1 =F3(ūi ,Ei ,Fi+1),

φi+1 =G (ūi , . . . , ūi−m+1;φi , . . . ,φi−m+1;Ei , . . . ,Ei−m+1).

(11)

Computationally, we only need to learn one map G : R3m → R, which is a significant reduction compared to the
previous models in (9) and (10).

2.4 An important strategy for modeling unstable dynamics

In the full-order and reduced-order covariance models (9) and (10), neural network models will be constructed to
update the variances rk . One major challenge is the inclusion of strong inherent instability that is common among
turbulent dynamical systems. For example, in the L-96 system, the covariance equation (8b) for rk contains positive
unstable modes with positive Lyapunov exponents if −Γk ū > 0. A lack of careful consideration in the detailed
balance in unstable variance dynamics will lead to unbounded model divergence in the numerical verification.
Particularly, an empirically trained neural-network model for the map G in (9) (or G1 in (10)) may not produce
marginally stable dynamics that maintain accurate long-term stable forecasts.

To address this issue, we consider a more structural modeling, adopting the ideas in [20] by including an explicit
nonlinear coupling terms in the variance equation. To illustrate this, we modify the dynamical equation for G in
(9) and (10) as follows: We decompose the higher-order nonlinear flux θk containing all the third moments in a
(nonlinear) effective damping d M

k,i+1 and noise σM
k,i+1 such that

θk,i+1 =−d M
k,i+1rk,i +σM

k,i+1,

QM
k,i+1 =Gk

(
ūi , · · · , ūi−m+1; {θk,i , · · · ,θk,i−m+1}k=0,...,J/2;Ei , · · · ,Ei−m+1

)
d M

k,i+1 =−min
{

QM
k,i+1,0

}
/rk,eq,

σM
k,i+1 = max

{
QM

k,i+1,0
}

.

(12)

Here, the map Gk models the full nonlinear flux at each time instant and we employ an LSTM network in the next
section to approximate G := (G0, . . . ,GJ/2). However, instead of directly setting θk,i+1 =QM

k,i+1, which gives the last

equation in (9), we split the model output into two positive effective damping d M
k > 0 and effective noise σM

k > 0.
The effective damping is recovered from the unperturbed equilibrium statistics rk,eq. In this way, the unstable
directions in the system are stabilized by the effective damping modeling the nonlinear transfer of energy without
altering the detailed statistical balance in the equilibrium. One can see that if QM

k,i+1 is positive (that is, the mode is

stable), then θk,i+1 =QM
k,i+1 and we retain the original model in (9).

3 Machine learning of the missing Non-Markovian components

In this section, we briefly discuss how to employ the Long-Short-Term-Memory (LSTM) [9], a recurrent neural-
network, to learn the hidden non-Markovian maps in the proposed closure statistical models in (9), (10), (11).
To simplify the discussion, let us identify the input variable (or covariate) with a sequence of correlated state

variables
{

x j
}i

j=i−m+1 measured at m time instants ahead of the prediction time i +1 and the output (response)

variable at discrete time index-i +1 as yi+1. In the case of (9), the input variable is x j = {ū j ,θ0, j , . . . ,θJ/2, j ,E j } and
the output variable is yi+1 = {θ0,i+1, . . . ,θJ/2,i+1}. For (10), the input variable is x j = {ū j , {θk, j }k∈K , φ̃ j ,E j } and the
output variable is yi+1 = {{θk,i+1}k∈K , φ̃i+1}. For (11), the input variable is x j = {ū j ,φ j ,E j } and the output variable is
yi+1 = {φi+1}.

Recurrent neural networks offer the desirable structure to incorporate temporal processes of sequential data with
long temporal correlations and keep tracking of hidden processes. The LSTM network is designed to avoid the
problem of vanishing gradients. The building block of LSTM is to consider the following model, which is known as

6
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an LSTM cell,
fi =σg

(
W f xi +U f hi−1 +V f ci−1 +b f

)
,

Ii =σg (Wi xi +Ui hi−1 +Vi ci−1 +bi ) ,

ci =fi ⊗ci−1 + Ii ⊗ tanh(Wc xi +Uc hi−1 +bc ) ,

oi =σg (Wo xi +Uo hi−1 +Vo ci +bo) ,

hi =oi ⊗ tanh(ci ) .

(13)

In (13), σg = 1
1+e−x is the sigmoid activation function, and ⊗ represents the element-wise product. The model cell

includes forget, input, and output gates fi ,Ii ,oi , and the cell state ci . The hidden process {hi−m+1, · · · ,hi−1,hi }
represents the time-series of the unresolved process. In a compact form, let us denote the LSTM cell in (13) as
hi+1 = Lc(xi ,hi ), where we have suppressed the dependence on the parameters for simplicity.

The LSTM network is constructed from m LSTM cells Lc with the same structure and parameters W. The cells are
connected by the intermediate hidden state hi ∈Rh . Every LSTM cell takes in the input data xi at the i -th step and
the output hi from the previous adjacent cell, and gives out the inner hidden state hi+1 to be used for prediction of
the next state. The full LSTM chain is connected through m sequential cell structures, that is,

hm = Lc(m) {h0;xi−m+1, · · · ,xi } ≡ Lc(xi )◦ · · · ◦Lc(xi−m+1) (h0) , (14)

where the composition operator is defined with respect to the hidden state hi . In (14), the data at different time
instance, xi , is fed into the corresponding LSTM cell, and the hidden state hi is the output of the previous cell and
input for the next cell. For simplicity, the initial value of the hidden state is often set as zero, h0 = 0. The final output
hm from the last step of the LSTM chain goes through a final single layer fully connected linear model given as,

ŷi+1 = Ahm +b, (15)

where A ∈Rdy×h ,b ∈Rdy are the model coefficients in the final layer and dy = dim(y) denotes the dimension of the
output variables. In our numerical implementation, for the reduced-order model in (10), we consider two LSTM
networks, one for estimating G1 and another one for estimating G2. One can also consider separate LSTM networks
for each component Gk in (9) (or G1,k in (10)), which we do not pursue in our numerical experiments.

3.1 Empirical loss functions

The neural network parameters W := {A,b,W f ,U f ,V f ,b f ,Wi ,Ui ,Vi ,bi , . . .} are obtained by solving a nonlinear non-

convex optimization problem to minimize the difference between the training output data {y`j }n,M
`, j=1 and the LSTM

output data {ŷ`j }n,M
`, j=1, subjected to the same input data {x`j }i ,n

j=i−m+1,`=1, where n denotes the total number of training

samples. There are many ways to design loss functions. Denote the true output data as y`j = {φ`j ,θ`k, j } and the LSTM

model output data as ŷ`j = {φ̂`j , θ̂`k, j }, then we can, for example, consider the following empirical loss function,

M∑
j=1

[
α

n∑
`=1

(
φ`j − φ̂`j (Wφ)

)2 +∑
k
βk

n∑
`=1

∣∣θ`k, j − θ̂`k, j (Wθ)
∣∣] , (16)

where we have defined Wφ and Wθ to distinguish the parameters of the two network models. For the full-order
mean-covariance model in (9), we set α= 0 and minimize (16) for Wθ. For the reduced-order mean-covariance
model in (10), we set α = 1 and βk > 0 such that they have comparable scales and minimize (16) for both Wφ

and Wθ. For the mean closure model in (11), we set α= 1 and βk = 0,∀k, and minimize (16) for Wφ. While other
choices exist, such as to include the error in the mean and variance components, we found the improvement is not
significant. We should also point out that the empirical loss function in (16) is defined over a path of length-M , the
model parameters are obtained by one minimization problem. In practice, we found that with M = 10, the resulting
estimate yields more stable long-time predictions, compared to just setting M = 1 (for which one can solve separate
minimization problems to obtain independent LSTM networks for G1 and G2, by fitting to one-step forecast data as
employed in [8]).

3.2 Small training dataset

While the general unperturbed underlying non-Markovian dynamics in (6) is an example of the missing dynamical
model formulated in [10, 8], the statistical configuration here is more challenging due to the shortage of informative
training data that reflect the key features of the underlying dynamical process. In our numerical test problem (the
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(a) Response in ū

(b) Response in tr(R)

Figure 2: Statistical responses correspond to perturbations in external forcing (left) and in the initial mean state
(right). Responses of the statistical mean and total variance with different perturbation amplitudes are shown.

L-96 model), the statistics are homogeneous such that the statistics of each of the solutions forced by a constant
forcing will decay to a constant value in a short time (see Figure 2). To compensate for the lack of observed statistical
data, in practice, we generate the training data by a direct short-time Monte-Carlo simulation following these steps:

i. Generate an ensemble of unperturbed equilibrium statistical solutions with the reference forcing F =
Feq. Each ensemble member solves an initial value problem corresponding to a randomly drawn initial
condition from the standard Gaussian distribution.

ii. Simulate an ensemble of solutions to the statistical steady state subjected to various constant external
perturbations F = Feq+δ f . The ensemble of solutions at the final time from [i.] is used as initial conditions.
The empirical mean and variance of these initial conditions correspond to the mean state ū = ūeq ≈ 2.35,
and total variance, tr(R) = tr(Req ) ≈ 6.8, respectively (see the left panel of Figure 2).

iii. Simulate an ensemble of solutions to the statistical steady state correspond to unperturbed constant
external perturbation F = Feq and perturbed initial conditions ū → ū +δū. We perturb each ensemble
member of the initial condition by adding a constant value δū to each ensemble member at the final time
from [i.]. In the right panel of Figure 2, one can see that the ensemble mean states at the initial time vary
while the total variances at the initial time stay the same.

Typical statistical trajectories with different initial and forcing perturbation amplitudes are depicted in Figure 2.
The statistics of the perturbed states, which exhibit strong nonlinear coupling effects, decay to new (or original
unperturbed) equilibrium states beyond the decorrelation time. Notice that for this problem, the decaying behavior
of these trajectories yields a small training dataset (in terms of temporal length). Beyond the transient time, the
time series saturates and, thus, is not informative.

In general, even when long time statistics are informative (e.g., for nontrivial time-dependent external forces or
non-stationary statistical dynamics), from a practical standpoint, attaining longer time series is computationally
infeasible, especially when the dimension of the underlying state space is high and/or the system requires a stiff
numerical solver. Thus the configuration that we consider (training with an ensemble of short time series) in the
present paper can be used for a wide class of high-dimensional systems when long time series are not accessible.

4 Numerical results

We now examine the effectiveness of the statistical model schemes discussed above with detailed numerical tests.
We start with the full-order mean-covariance model (9) to learn the unresolved high-order nonlinear flux directly
from data. Second, the reduced-order mean-covariance model (10) is proposed for efficient computation with
the most energetic leading modes. Finally, we show an even more efficient computation of the mean statistical
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prediction using only the mean closure model (11), focusing on the mean responses subjected to various forcing
perturbations.

4.1 Model configuration for training and prediction

In the training stage, the training data are generated from 41 response solutions (shown in Figure 2) with either
perturbed initial states δū ∈ [−ūeq, ūeq

]
or constant forcing perturbations δ f ∈ [−0.1Feq,0.1Feq

]
from direct Monte-

Carlo solutions of the L-96 system with an ensemble size 10000. The true equation (7) is integrated with a 4th-order
Runge-Kutta scheme with a small time step δt = 0.001, while the data is sampled at every 10 steps. Thus we
have the data sampling step ∆t = 0.01. The training model is updated M = 10 times to account for the integrated
error along the time integration. Notice that this choice of larger measurement step size leads to numerical
discretization errors in computing the time integration and recovering the parameters ofφ and θk . The total number
of samples is n = 1640, and they are obtained by collecting non-overlapping time interval M∆t = 0.1 units from
the statistical response trajectories. With such a small sample size, the learning problem is rather challenging as
the neural-network model has a large number of parameters. While one can, of course, generate more data by
additional perturbations and initial conditions, we will not pursue this direction since our goal is to understand the
effectiveness of the agnostic machine learning model in such a stringent configuration with a small training dataset.

In the prediction stage, we verify the model performance by considering the long-time statistical prediction
under a variety of time-dependent forcing scenarios that are not observed in the training dataset. For long-time
prediction, the model output in the previous step is reiterated as an input in the next forecast stage, thus model
errors accumulate in time. Therefore, it requires the closure models to be numerically stable in resistance to
the accumulated model errors in the neural network model. In our numerical tests, we consider the ramp-type
forcings and the periodic forcing as standard test examples where the large external perturbation is introduced to its
equilibrium state forcing, Feq = 8 (see Figure 1 for changes in the energy spectra for different forcing perturbations).
In application, such testing configurations can be used to simulate the climate change scenario where the original
state is driven away from its previous equilibrium state due to external perturbations [19, 21] and other uncertainty
quantification tasks.

In addition, a residual structure is adopted in the neural network for the closure models (9)-(11)

θi+1 =G = θi + G̃ , (17)

where G̃ denotes the LSTM network (14) to update the increment of the unresolved higher-order component. The
LSTM chain contains m = 100 repeating cells with the same structure, taking a time sequence of time length T = 1
which is still shorter than the correlation time of the system (see Figure 2). The dimensions of the hidden states in
LSTM are taken as hv = 50 for the variance equation and hm = 10 for the mean equation. The optimization for the
loss (16) is carried out by the ADAM scheme. A total of 100 epochs is repeated during training, starting from the
learning rate lr = 5×10−4 which is reduced three times to half of its original value at the epoch number 25, 50, and
75.

4.2 Prediction skill of the mean-covariance model

In this section, we numerically verify the prediction skill of the full statistical mean-covariance model (9). For clarity,
we split the discussion into two subsections. First, we state the concrete discrete closure model corresponding to
this example. Subsequently, we report the detailed prediction skill.

4.2.1 Training model to learn the unresolved nonlinear flux

In the full mean-covariance model in (8a)-(8c), the dynamical equations for the mean state ū, the total energy E ,
and variance rk are given explicitly and Markovian. In our numerical experiment, the discrete form in (9) is obtained
by adopting the mid-point implicit scheme on (8a)-(8c) to ensure a more robust numerical performance with the
larger time step ∆t = 10δt . Together with the structural form in (12) to avoid instabilities and the residual network

9
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Figure 3: Long-time model prediction with the full mean-covariance closure model. Predictions of the statistical
mean and total variance under three different external forcing scenarios are compared.

architecture in (17), the overall dynamical closure model adopted here is given as follows:

ūi+1 − ūi =∆t

[
−d

2
(ūi + ūi+1)+

∑
k

Γk

2

(
rk,i + rk,i+1

)+ 1

2
(Fi +Fi+1)

]
,

Ei+1 −Ei =∆t

[
−d (Ei +Ei+1)+ 1

2
(ūi Fi + ūi+1Fi+1)

]
,

rk,i+1 − rk,i =∆t
[−Γk

(
ūi rk,i + ūi+1rk,i+1

)−d
(
rk,i + rk,i+1

)+θk,i+1
]

,

θk,i+1 −θk,i = min
{

QM
k,i+1,0

}
/rk,eqrk,i +max

{
Qm

k,i+1,0
}

,

QM
k,i+1 =Gk

(
ūi , · · · , ūi−m+1, {θk,i , · · · ,θk,i−m+1}k=0,...,J/2,Ei , · · · ,Ei−m+1

)
(18)

In (18), the states are discretized at time intervals ti+1 − ti =∆t . The exact dynamical equations for the mean ū, the
total statistical energy E , and rk are adopted, while dynamics of θk are learned from data, with Gk modeled by an
LSTM architecture.

4.2.2 Numerical results for detailed mean and variance prediction

Figure 3 shows the model prediction performance under the three forcing scenarios. The numerical model (18) is
trained with a very short time dataset under constant forcings (in Figure 2), while the prediction performance is
tested on time-dependent forcing perturbations (in the right panel of Figure 1). It is shown that for the long-time
prediction (up to T = 50), the trained neural network model is stable and generates accurate predictions of both
the statistical mean and variance throughout the time interval among all three test cases. For a more detailed
comparison of the variance response on individual mode, Figure 4 compares the predictions of the variances of the
first three leading modes. Again, we observe robust accurate prediction of variances in all the modes under the
tested forcing cases containing different statistical features.

In addition, we confirm the importance of adopting the strategy discussed in Section 2.4 to guarantee long-time
numerical stability. The variance dynamics include a large number of unstable directions that will amplify even
small errors. Considering this, the neural network approximation for θk adopts the decomposed structure (12)
so that the marginally stable modes are balanced. Otherwise, if a neural network is applied directly to the model
structure θk without proper consideration of the physical mechanism, severe numerical instability may occur due to
the insufficient modeling of the unstable dynamics. Numerically, we compare the root mean square errors (RMSEs)
in mean and total variance prediction in Figure 5. Indeed, we see that the optimal model with decomposed damping
and noise structure (model 1) maintains high accuracy for the long prediction period. In contrast, if the nonlinear
flux θk is directly learned from the neural network (model 2), the predicted solution diverges after a short time due
to the strong inherent persistent instability in the system.

4.3 Prediction skill of the reduced-order mean-covariance model

Next, we consider the reduced-order mean-covariance model for efficient computation of only the most energetic
modes kmin ≤ k ≤ kmax in the variance equation. The total contribution of the less energetic unresolved modes is
accounted with another neural network model for φ̃. Thus the computational scheme follows the discretized mean
and variance equations (10), with the dynamical equation for θ being modified as in (12) to avoid instability of the
flux with residual network structure in (17).

10



A PREPRINT - JUNE 6, 2022

0 10 20 30 40
time

0.65

0.70

m
od

e 
7 model

truth

0 10 20 30 40
time

0.80

0.85

m
od

e 
8 model

truth

0 10 20 30 40
time

0.70

0.75

m
od

e 
9 model

truth

prediction of single mode variance (upward ramp forcing)

0 10 20 30 40
time

0.575

0.600

0.625

m
od

e 
7 model

truth

0 10 20 30 40
time

0.725

0.750

0.775

m
od

e 
8 model

truth

0 10 20 30 40
time

0.60

0.65

m
od

e 
9 model

truth

prediction of single mode variance (downward ramp forcing)

0 10 20 30 40
time

0.6

0.7

m
od

e 
7

model
truth

0 10 20 30 40
time

0.7

0.8

0.9

m
od

e 
8

model
truth

0 10 20 30 40
time

0.6

0.7

m
od

e 
9

model
truth

prediction of mode variances (time periodic forcing)

Figure 4: Detailed prediction of the variances of the first three most energetic modes using the full mean-covariance
model.
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Figure 5: Prediction RMSEs using the trained models with different model structures. Model 1: the full-order model
with decomposed effective damping and noise in (12); Model 2: the direct model without using the proper nonlinear
flux decomposition.

In Figure 6, we compare the reduced-order model prediction for different forcing perturbations. Again, we attain
accurate predictions on both the statistical mean state and variances in the resolved subspace among the different
kinds of forcing cases. In comparison to the full-order model prediction in Figure 3, a slightly larger error occurs
here, especially in the mean state. This reflects the additional model error due to the model approximation for the
many unresolved modes. However, the computation cost is significantly reduced since we only compute a small
portion of the full system (7 out of the total 21 modes).

Furthermore, to check the robustness of the model, we verify the model prediction skill with even stronger forcing
perturbation amplitudes. Figure 7 shows the downward forcing case with stronger maximum forcing perturbations,
δ f =−0.1Feq,−0.15Feq,−0.2Feq (beyond the maximum forcing |δ f | = 0.1Feq in the training data). Notice that the
long-time prediction skill remains accurate for −0.15Feq and starts to deteriorate for larger forcing amplitude,
−0.2Feq. This somewhat negative result for larger perturbation is not so surprising as it displays the difficulty of the
machine learning model in extrapolating beyond the information contents in the training data.

As a benchmark, we also show the corresponding prediction skill of the parametric closure model [19] in the right
panel of Figure 7. By visual comparison, one can see that the prediction skill is very similar to the machine learning-
based closure model; for the largest forcing amplitude, the parametric closure gives a slightly better prediction.
While the prediction performance is comparable, this parametric model requires a complicated calibration strategy
that involves an expensive brute-force minimization of a loss function that depends on a long time statistics (linear
response statistics). Particularly, the evaluation of the loss function involves an integration of the reduced-order
model for a long time for each choice of parameter. Beyond this step that can be expensive for high-dimensional
problems (as the dimension of the parameter space increases), a more fundamental issue is that it requires a physical
insight for choosing the parametric model for the flux term. On the other hand, the more agnostic neural-network
model can capture the changes in the statistics without specifying some detailed nonlinear flux structure beyond
(12) that overcome instability.
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Figure 6: Prediction of the statistical mean and variance on the resolved modes using the reduced-order mean-
variance model. The same neural network model is applied to different types of external forcing forms. Only the
most energetic modes 6 ≤ k ≤ 12 are computed in the model.
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Figure 7: Comparison of reduced-order model predictions under different forcing perturbation amplitudes. The
downward ramp forcing case is shown here as a typical example. The left panels show the predictions of machine
learning model and the right panels show the prediction of the parametric closure model proposed in [19].

4.4 Prediction skill of the mean closure model

Finally, we test the prediction skill of the mean closure model (11), where we adopt the implicit midpoint rule for
the discretization of (8a) and (8c), and use the standard LSTM network for the unresolved high-order feedback. We
test the performance of the neural network model for long-term mean state prediction under the ramp down and
periodic forcings in Figure 1. In Figure 8, we plot the predicted mean state ū, total statistical energy E , as well as the
variance feedback in the mean φ. It shows that the machine learning model successfully captures the changes in
the mean state under this extreme model setup (with severely truncated dynamics) without including the explicit
dynamical equations of the second-order moments. With forcing to a non-Gaussian regime (downward ramp
forcing) or a periodic forcing with larger amplitude, the prediction becomes less accurate compared to the closure
models that include more detailed variance dynamics (see e.g., Figures 3 and 6). Still, the closure model maintains
high prediction skills under the unseen forcings. Again, if we compare the machine learning model results with
the parametric closure model in [19], the machine learning framework produces more accurate predictions with
cheaper computational costs. This shows the robustness of the agnostic neural network-based approach on various
truncated configurations. On the other hand, the less accurate parametric model is due to the difficulty in modeling
the truncated flux terms with a simple parametric equation.

5 Summary

In this paper, we developed non-Markovian statistical modeling strategies with machine learning. In the con-
struction of the statistical closure models, we considered learning the complicated dynamical structure of the
high-order nonlinear flux terms directly from data by imposing the LSTM neural-network architecture to uncover
the non-Markovianity induced by partially observed components. Three statistical mean and covariance models
were considered, with different emphasis on the prediction of full variance spectrum, most energetic leading modes,
and only the mean state. With limited training data due to the stationarity of the statistics beyond the correlation
time, we enriched the training dataset by simulating the transient behavior of the statistics under various constant
forcings and perturbed initial conditions.
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Figure 8: Predictions for the mean state ū, total statistical energy E , and the mean dynamical feedback φ with the
mean statistical model under different forcing scenarios. The optimized machine learning model is compared with
the parametric closure model.

The performance of the hierarchical machine learning models was verified on the L-96 system with homogeneous
statistics. Uniformly accurate long-time predictions are observed using the resulting ML model under different
forcing perturbation functions and strong perturbation amplitudes beyond the data in the training set. In addition,
the true nonlinear physical energy transfer mechanism was considered in the model construction to guarantee
numerical stability in long-term numerical integration. The machine learning model displays strong resistance to
accumulated model errors with a long-time stable prediction despite the inherent instability in a wide spectrum
of modes in the L-96 system. We found that the ML-based model prediction is comparable to that of the existing
parametric model, which requires a more detailed calibration strategy, in two scenarios: learning the full-order and
reduced-order coupled systems of mean-covariance statistics. On the other hand, the ML model is more accurate
than the parametric approach in the severely truncated regime, learning the closure of only the mean statistics.

From this study, we conclude that the agnostic machine learning model is portable on various truncation scenarios
since the strategy does not require physical knowledge of the high-order flux terms (as in parametric modeling)
beyond avoiding instabilities. Numerically, the proposed scheme benefits from the advancement in the optimization
of neural-network modeling, which allows us to carry the supervised learning task conveniently under one caveat
(a reasonable neural-network architecture, in our case LSTM, and various tuning parameters). In addition, it is
found from our numerical tests that the model performance is insensitive to different choices of neural-network
hyperparameters such as the input chain length and hidden state size, implying robust prediction skills of the model
framework.

While this result is encouraging, we only view this work as a first step. Particularly, this work only focuses on
the L-96 system with homogeneous statistical dynamics. This assumption simplifies the closure model as the
covariance matrix naturally becomes diagonal, so we only need to close the diagonal variances and their reduction.
A more important and challenging direction is to extend the proposed ML approach to non-homogeneous statistical
dynamics, which involve nontrivial off-diagonal covariance components. Besides the curse of dimension problem
(the dynamical equation of the covariance matrix has N 2-terms), a direct closure on the covariance statistics may not
preserve positive definite-ness under the machine learning prediction. To overcome these two issues, one possibly
needs to consider closing the dynamical equation for the fluctuation components Zi in (2) directly, extending the
idea from [25] with ML model, which is part of our future work.
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