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Abstract

A new ensemble forecast algorithm, named as the physics-informed data-driven algorithm with conditional
Gaussian statistics (PIDD-CG), is developed to predict the time evolution of the probability density functions
(PDFs) of complex turbulent systems with partial observations. The PIDD-CG algorithm integrates a unique
multiscale statistical closure model with an extremely efficient nonlinear data assimilation scheme to represent
the PDF as a mixture of conditional statistics, which overcomes the curse of dimensionality for high-dimensional
systems. The multiscale features in the time evolution of each conditional statistics ensemble member effectively
captured by an appropriate combination of physics-informed analytic formulae and recurrent neural networks.
An information metric is adopted as the loss function for the latter to more accurately calibrate the key turbulent
signals with strong fluctuations. The proposed algorithm succeeds in forecasting both the transient and statistical
equilibrium non-Gaussian PDFs of strongly turbulent systems with intermittency, regime switching and extreme
events.

Keywords— turbulent systems, multiscale statistical closure model, conditional Gaussian mixture, recurrent neural
network, information metric

1 Introduction
Complex turbulent systems are ubiquitous in many fields, such as geophysics, climate science, neural science, engineering,
and plasma physics [44, 43, 17]. These systems contain rich nonlinear dynamics and statistical features, including multiscale
structures, intermittency, extreme events, regime switching, and strong non-Gaussian probability density functions (PDFs)
[26, 16, 49, 28, 45]. Predicting the future states of complex turbulent systems is a central challenge in contemporary science
with large societal impacts. Due to the turbulent nature of such systems, the trajectory forecast based on a single realization
of the model state quickly loses track of the truth. Alternatively, the ensemble forecast, which adopts a probabilistic
characterization of the model states utilizing a Monte Carlo (MC) type approach, is the predominant strategy in predicting
complex turbulent systems in practice [34, 46, 24]. In the ensemble forecast, different ensemble members are sampled from an
initial conditions and are subject to different random forcing, accounting for the uncertainty in the initialization and model
errors, respectively. The ensemble forecast aims at providing an indication of the PDF of possible future states by tracking
the evolution of the group of ensemble members.

Despite the simplicity of the general framework, there exists a major computational challenge in applying the traditional
ensemble forecast method to realistic scenarios. In fact, as the dimension of the system becomes large, an exponential increase
of the ensemble size is needed to maintain the accuracy of the forecast PDF, which is known as the curse of dimensionality [11].
However, since the computational cost of each single model realization also shoots up significantly as the dimension of the
system increases, only a small ensemble size is affordable in practical situations, such as climate and weather forecast [18, 13].
As a result, although the traditional ensemble forecast method can ideally provide a reasonably accurate characterization
of the mean state, the lack of a sufficient number of samples makes it extremely difficult to accurately forecast the intrinsic
uncertainty of the system. Especially, the direct ensemble method often fails to capture the non-Gaussian joint PDF in
high dimensions, and thus leads to large errors in characterizing many key turbulent phenomena, such as regime switching,
intermittency and extreme events [28, 15]. A similar issue occurs at the initialization stage of the forecast. Since only the
time series of a subset of the state variables can be observed in most of the practical problems (known as partial observations),
ensemble data assimilation is often required for the state estimation of the unobserved variables [14, 2]. Yet, the error in

1

ar
X

iv
:2

20
4.

08
54

7v
1 

 [
ph

ys
ic

s.
fl

u-
dy

n]
  1

8 
A

pr
 2

02
2



quantifying the initial uncertainty due to the lack of a sufficient number of samples can be rapidly amplified in the subsequent
forecast, leading to large biases in predicting even short-term transient features.

In this paper, a new physics-informed data-driven conditional Gaussian (PIDD-CG) algorithm is developed that aims at
efficiently and accurately forecasting the key non-Gaussian PDF for a wide class of high-dimensional complex systems. The
PIDD-CG algorithm starts with a phase space decomposition by projecting the model states into a low-dimensional subspace
containing the observed state variables and a remaining multiscale high-dimensional subspace. A systematic multiscale
data-driven closure approximation is developed in the low-dimensional subspace, with which a small number of samples is
sufficient to characterize the associated uncertainty propagations. The PIDD-CG algorithm then exploits an effective physics-
based decomposition of the PDF in the high-dimensional subspace into a conditional Gaussian mixture and integrates the
evolution equations of the conditional statistics associated with each mixture component to obtain the forecast PDF [8]. A
continuous data assimilation scheme is used to determine the characteristics in each conditional Gaussian component that
is associated with one realization in the low-dimensional observed state [6]. This captures the correlation between the two
nonlinearly coupled subspaces. There are several remarkable advantages of the PIDD-CG algorithm. First, by creating the
mixture distribution the algorithm does not suffer from the curse of dimensionality with respect to the number of mixture
components [10]. In fact, fundamentally different from the purely data-driven approaches that often require a large number
of samples, the development of the mixture distribution in the PIDD-CG algorithm uses only the same small number of
samples in characterizing the associated low-dimensional subspace and is sufficient to represent the high-dimensional full
PDF thanks to the conditional mixture. Second, the governing equations of the time-evolution of the conditional statistics
have closed analytic formulae [25], which further reduce the computational cost and avoid the direct ensemble approximation
of obtaining such statistical moments that are commonly required in applying ensemble simulations.

Yet, despite the analytically solvable properties, the computational cost of solving the governing equations of the full
conditional statistics can still be demanding due to the existence of a large number of complicated nonlinear terms involving
a wide spectrum of multiscale fluctuating variables, especially those associated with unresolved scales. Therefore, the PIDD-
CG algorithm proposes a balanced physics-informed and data-driven construction of these governing equations, aiming at
explicitly preserving the crucial dynamical structure while using data-driven approaches to effectively forecast the complicated
unresolved details with a much lower computational cost. Specifically, the PIDD-CG algorithm approximates the complicated
nonlinear feedbacks in these governing equations by a recurrent neural network (RNN) [50]. Since the neural network aims at
predicting the statistics, a simple but effective information metric is adopted as the loss function to train the RNN [39, 21],
which significantly outweighs the traditional loss functions that are based on minimizing the path-wise errors. Finally, in
light of the evolution equations of the conditional statistics, the PIDD-CG algorithm naturally provides a systematic way of
developing statistical reduced order models [29, 36], in which the feedback from the unresolved-scale variables is approximated
by the RNNs. This further enhances the forecast efficiency for complex systems with very large dimensions in practice when
the primary interest lies in the statistical forecast of certain large-scale modes.

In the rest of the paper, the PIDD-CG algorithm is illustrated based on a prototype model in geophysical turbulence: the
topographic barotropic model, which displays many representative turbulent features, including extreme events and switching
regimes [27]. The method for a general group of nonlinear systems is described in Methods Section 4. More detailed results
including a coupled dyad model as a proof-of-concept and a complete analysis of the computational performance are listed
in the Supplementary Information (SI).

2 Results

2.1 The PIDD-CG algorithm
The general framework of the PIDD-CG algorithm is schematically illustrated in Figure 1, which consists of five key steps.

Step 1. Phase space decomposition. A phase space decomposition is carried out to project the state variables
into two subspaces admitting conditional Gaussian structures [6]. A collection of the leading state variables X (such as the
large-scale, resolved or observed states) belongs to this relatively low-dimensional subspace. The rest of the variables Y,
which are multiscale, unresolved or unobserved, are contained in the remaining high-dimensional subspace.

Step 2. Systematic multiscale statistical closure of the large-scale dynamics. A systematic multiscale
statistical closure approximation is proposed to avoid running the original full-dimensional system when predicting the
statistics of the low-dimensional variable X that is fully coupled with Y. The statistical closure of the equations of X
depends explicitly on the conditional mean of only a few modes of Y conditioned on realizations of X, which can be solved
via closed analytic formulae (see Step 4 ), while the residual part is effectively approximated by a RNN (see Step 5 ). Such a
unique way of building the closure model allows to forecast the statistics ofX from an intrinsically low-dimensional subsystem,
which requires only a small number of samples. Denote such a number by J . The forecast PDF of the low-dimensional variable
X is then approximated by a kernel density estimation [4] using Gaussian kernels.
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(for k = 1, ... ,K)

Effective Physics-Informed Conditional Gaussian 
Mixture via Data Assimilation
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Information Criterion 
as Loss Function
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Overview of the PIDD-CG Ensemble Forecast Algorithm for Turbulent Systems with 
Partial Observations

Target PDF
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of the Dynamics in the Low-Dimensional Subspace

Cheap Forecast 
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Step 1.

Low-Dimensional Subspace: Kernel Density Estimation (KDE) in Step 2

High-Dimensional Subspace: PIDD-CG Algorithm in Steps 3-5 

Figure 1: Schematic diagram of the PIDD-CG algorithm for predicting the PDF of the high-dimensional complex
turbulent systems.
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Step 3. Effective physics-informed conditional Gaussian mixture via data assimilation. Given the
physical model formulation conditioned on each of the J forecast trajectories of X from Step 2, the conditional distribution
of Y can be computed via a nonlinear data assimilation method [6]. These J conditional distributions are the J conditional
statistics ensemble members. Notably, the center and the bandwidth associated with each conditional statistics ensemble
member are automatically optimized by the nonlinear data assimilation that takes into account the model physics. Because
of this, the resulting mixture distribution consisting of the conditional statistics ensemble avoids the curse of dimensionality
with respect to the number of mixture components [10]. In addition, since each sample of Y is conditioned on one realization
of X, the cross-correlation between X and Y is also captured when forming their joint distribution.

Step 4. Analytic formulae for the time evolution of the conditional statistics in smaller-scale dynam-
ics. One important feature of the PIDD-CG algorithm is that the time evolution of each conditional statistics ensemble
member from Step 3 can be solved via closed analytic formulae [25]. Thus, it avoids using the expensive MC methods for
finding such data assimilation solutions and prevents the sampling errors when handling high-dimensional systems.

Step 5. Data-driven modeling of the nonlinear feedbacks in conditional statistics with information
theory. Despite the closed analytic formulae, the computational cost of running the evolution equations of the conditional
statistics, especially the time evolution of the conditional covariance, can still be demanding for high-dimensional systems.
To improve computational efficiency, a model reduction strategy is applied to approximate certain complicated nonlinear
components in the unresolved fluctuation modes feedbacks using a recurrent neural network (RNN). Since the output variables
are associated with the conditional distribution, a simple but effective information loss function [39] is adopted as a natural
metric to train the RNN.

The PIDD-CG algorithm also allows an efficient and accurate data assimilation scheme to obtain the conditional statistics
ensemble at the forecast initialization stage (see the Methods Section 4), which facilitates the application of the algorithm to
the more realistic situations with only partial observations.

2.2 The topographic barotropic model
The topographic barotropic flow is a prototype model in geophysics [27], which involves multiscale interactions and transport
among the zonal mean flow and the fluctuations. It also contains many key features of interests in turbulence, such as
emerging non-Gaussian PDFs, regime switching and extreme events.

The spectral formulation of the model with layered topography reads (see SI for the derivations):

dU

dt
=
∑
k

ĥ∗kv̂k − d0U + σ0Ẇ0, (1a)

dv̂k
dt

= [−γv,k (U) + iωv,k (U)] v̂k − l2xĥkU − dv,kv̂k + σv,kẆk, (1b)

dT̂k
dt

= [−γT,k (U) + iωT,k (U)] T̂k − dT,kT̂k − αv̂k. (1c)

In (1), the wavenumbers are given by kl, k = ±1, . . . ,±K, expanded along one characteristic direction l = (lx, ly) with
|l| = 1. The state variable U represents the large-scale zonal mean flow velocity while v̂k, T̂k and hk are the coefficients of
the k-th Fourier modes corresponding to the fluctuation components of the flow velocity v, the turbulent transport of passive
tracer field T , and the topography h, respectively. The notation ·∗ stands for the complex conjugate while Ẇ0 and Ẇk are
independent white noise sources with strengths σ0 and σk. The model parameters γv,k, γT,k and ωv,k, ωT,k represent the
dispersion and dissipation effects. The details of the parameter values are included in the SI.

The mean flow U is driven by the topographic stress from h combining all the feedbacks from the fluctuations v, while
U also inversely contributes to each spectral mode through the nonlinear advection and topographic effect. The coupling
between the mean flow and the fluctuations is through the topographic stress. The PIDD-CG algorithm is applied to two
regimes with distinct dynamical and statistical features. Depending on the statistical equilibrium distributions of U , v̂k and
T̂k [38], these two regimes are named as:

• Strongly non-Gaussian regime: The zonal mean flow U is driven by strong white noise forcing while only small noises
are added to the fluctuation modes v̂k.

• Near-Gaussian regime: The fluctuation modes v̂k are subject to strong white noise forcing while the noise strength in
the zonal mean flow U is relatively weak.

Figure 2 illustrates dynamical features of both regimes. In the non-Gaussian regime, the large white noise forcing in U
excites a strong competition between two alternating states: a highly intermittent flow field v when the eastward jet appears
(U > 0) and a nearly steady flow when the westward jet occurs (U < 0). The intermittent nature of the flow field triggers
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non-Gaussian fat-tailed distributions of v and T (see e.g., the blue curves in Figure 4). On the other hand, in the near-
Gaussian regime, strongly multiscale features emerge in the time series of all the variables, which include multiple fast scales
with rapid oscillations and a slowly varying long-term tendency. In particular, there are two distinct dominant frequencies
in the fast oscillations. The extremely fast oscillation appears when the zonal flow goes steadily towards the west (U < 0)
while the moderately fast one occurs when the zonal flow becomes intermittent with an average eastward velocity (U > 0).
In contrast to the non-Gaussian regime, the near-Gaussian statistics in this regime is due to the comparable amplitude of v̂k
and T̂k at different states.

In the following forecast tests, the zonal mean flow U is assumed to be the only observed variable.
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Figure 2: Solutions of the barotropic topographic model with in total 41 modes (i.e., K = 10). Panel (a) shows the
solution in the non-Gaussian regime while Panel (b) shows that in the near-Gaussian regime. In each panel, the
zonal velocity U , the real parts of the first fluctuation mode v̂1 and T̂1, and the entire fields of v and T in physical
space as a function of time are presented.

2.3 Predicting key PDFs in the barotropic topographic model using the PIDD-CG
algorithm

In Step 1 of the PIDD-CG algorithm described in Section 2.1, the entire phase space is decomposed into a low-dimensional
subspace that contains only the observed variable, namely the zonal mean flow U , and a high-dimensional subspace that
includes all the fluctuation modes v̂k and T̂k for k = ±1, . . . ,±K. In Step 2, only the explicit equations of the conditional

5



non-Gaussian regime near-Gaussian regime

t = 0.5 t = 1 t = 1.5 t = 2 t = 0.2 t = 0.5 t = 1

U 6.80 × 10−3 4.74 × 10−3 7.55 × 10−3 1.76 × 10−2 1.58 × 10−2 1.68 × 10−2 1.85 × 10−2

v̂1 4.56 × 10−4 1.68 × 10−3 4.09 × 10−3 4.93 × 10−3 7.13 × 10−4 4.76 × 10−3 4.06 × 10−3

v̂2 2.89 × 10−4 4.19 × 10−4 9.74 × 10−4 4.48 × 10−3 1.44 × 10−3 1.27 × 10−2 4.14 × 10−2

T̂1 9.21 × 10−4 4.52 × 10−3 5.11 × 10−3 9.58 × 10−3 4.03 × 10−4 3.28 × 10−3 2.55 × 10−3

T̂2 3.40 × 10−4 4.05 × 10−4 4.08 × 10−4 2.91 × 10−3 4.74 × 10−4 1.41 × 10−3 2.21 × 10−3

Table 1: Information error (relative entropy) between the truth and forecast PDF in U, v̂1, v̂2, T̂1 and T̂2 of the
barotropic topographic model at different lead time before arriving at the statistical equilibrium state.

means of the leading two complex modes of v̂k (e.g., k = ±1 and ±2) are utilized to build the closure model of U while all
the remaining small-scale feedbacks are automatically learned by the RNN. This accounts for a strongly reduced model of 2
resolved modes compared with the full model with K = 10. Steps 3-5 follow directly the description in Section 2.1 with the
detailed step-by-step explanations being included in the Method Section and the SI.

Since the joint PDF from the PIDD-CG algorithm is given by a mixture distribution, where each mixture component is
uniquely determined by U and the conditional statistics of v̂k and T̂k, it is natural to start with the study of the forecast
of these quantities. Figure 3 compares the forecast trajectories at the lead time t = 1 with the truth. The lead time
forecast here means each point in the forecast trajectory is the forecast value starting from 1 unit prior to it. Such a lead
time is around the decorrelation time of the first a few modes of v̂k and T̂k and is comparable with the time scale of the
fast component of U (see the SI). Note that the forecast at a lead around the decorrelation time of a turbulent system is
extremely challenging if the entire dynamics is fully approximated by the neural network due to the quick accumulation of
errors [39, 36]. Nevertheless, basic dynamics are retained in the PIDD-CG algorithm while the neural network plays the
supplementary role of only modeling the unresolved residual part. Therefore, good agreements between the truth and the
forecast are achieved in the zonal mean flow U as well as the conditional statistics. In particular, the multiscale structures are
accurately predicted in both regimes despite the small errors in forecasting the highly oscillating small scales, which are the
unpredictable part due to the turbulent nature. More importantly, both the locations and the amplitudes of the dominant
intermittent features are successfully predicted by the PIDD-CG algorithm, which is a central prerequisite for accurately
predicting the joint PDFs.

Figure 4 shows the main prediction results for the true PDFs and the forecast ones. The forecast starts from one specific
observed initial value of U while the initial values of v̂k and T̂k are recovered from the efficient and accurate data assimilation
algorithm, which is described in the Method Section 4. In each panel, the one-dimensional PDFs of the zonal mean flow U
and the leading fluctuation modes v̂1 and T̂1 as well as the two-dimensional joint PDFs between these variables are presented.
A complete comparison of the second fluctuation modes and other joint distributions at several different lead times can be
found in the SI. Here, the true PDFs are generated from a direct MC simulation of the topographic barotropic flow model (1).
The MC simulation contains JMC = 50000 samples to fully characterize the non-Gaussian statistics, which is computationally
very expensive. In contrast, the PIDD-CG algorithm exploits a much smaller ensemble size with only J = 100 samples.

For the purpose of illustrating the skill of the PIDD-CG algorithm for predicting the entire time evolution of the system,
Figure 4 includes the predicted PDFs at both a short-term transient phase and the nearly final saturated statistical equilibrium
state. The non-Gaussian regime has a longer mixing time with the statistical equilibrium being reached at around the lead
time t = 2, while the solution in the near-Gaussian regime mixes faster and reaches the statistical equilibrium state within
t = 1. The PIDD-CG algorithm succeeds in capturing the transient PDFs as well as the final equilibrium state in both regimes
containing distinct statistics. Particularly, the highly skewed and fat-tailed PDFs in the non-Gaussian regime are accurately
reproduced by the PIDD-CG algorithm. Table 1 includes a quantitative assessment of predicting the one-dimensional PDFs.
It shows the relative error, quantified by an information measurement (the relative entropy) [21, 27], at different forecast lead
times before the system reaches the statistical equilibrium. The forecast error remains in a negligible level at the order of
O(10−3) in most cases, and the biggest error occurs at the longest lead time, which is nevertheless at most of order O(10−2).
Among different variables, the predicted zonal mean flow U shows a slightly larger error than the fluctuation modes, which
is due to the relatively more severe approximation in U . In fact, only the conditional means of the leading two fluctuation
modes are explicitly included in the development of the closure model of U while the combined feedback from the remaining
multiple fluctuation modes is completely approximated by the RNN. Nevertheless, the error in predicting U lies in an overall
low level, which justifies the strategy in the PIDD-CG algorithm that combines the conditional mean time series with the
RNN in facilitating the statistical closure of U .
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Figure 3: Forecast at lead time t = 1 of the trajectories for the zonal mean flow U as well as the conditional mean
and conditional variance of the first fluctuation modes v̄1, T̄1 and rv1 , rT1

. Panel (a) shows the solutions in the
non-Gaussian regime while Panel (b) shows those in the near-Gaussian regime.

3 Discussion
Different from the traditional ensemble forecast methods, the PIDD-CG algorithm incorporates the evolution equations of the
conditional statistics as part of the forecast scheme. A data-driven component using RNNs is incorporated into the method
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Figure 4: Comparison of the truth and the forecast PDFs of the zonal mean flow U and the first fluctuation modes
v̂1, T̂1. The truth is generated from a direct Monte-Carlo simulation with JMC = 50000 ensembles, while the
prediction from the PIDD-CG algorithm only uses J = 100 ensembles. The prediction at both a transient state and
a nearly statistical equilibrium state are compared in both regimes. To better demonstrate the non-Gaussianity of
each variable, the comparison of the one-dimensional PDFs in the logarithm scale is also included. Note that the
ranges of x-axes for the same variable are different with each other in two panels, representing distinct features in
the transient and the nearly statistical equilibrium states.
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to facilitate an efficient estimation of the combined fluctuation feedback in the observed state and the multiscale fluctuation
modes in the unobserved high-dimensional subspace. Since the learning target has become a conditional distribution, an
information metric is utilized as the loss function to train the RNN, which is a natural choice to avoid unnecessary fluctuating
errors in turbulent signals. Yet, a quantitative assessment of the advantage of using such an information metric compared
with the traditional L2 loss function is still needed. To this end, Figure 5 illustrates the forecast skill of the RNN in the
non-Gaussian regime trained by these two different losses during the optimization process. Due to the strong turbulent
nature of the system, the errors accumulate in time as the model is updated recurrently. Nevertheless, the forecast error
using the RNN trained with the information loss grows much slower than that using the RNN optimized via the L2 loss. In
fact, there is already an intrinsic barrier in the training phase if the L2 loss is utilized, which indicates that the path-wise
measurement is not the most appropriate choice in minimizing the statistical error. In particular, it is noticeable from Figure
5 that the prediction of the conditional mean using the information metric remains accurate even at a very long lead time.
This is crucial for accurately recovering of the joint PDFs, as the conditional mean explicitly appears in the closure term in
the U equation.

Finally, it is worthwhile to point out that predicting the full spectrum of the state variables, especially in high-resolution
systems, is not computational feasible. The primary interest often lies in predicting the large-scale coherent structures.
Therefore, developing computationally efficient reduced order models with suitable parameterizations and forecasting the
statistics of the leading a few resolved modes, which still correspond to a relatively high-dimensional PDF for direct numerical
simulations, have more practical significance in more realistic applications [29, 1, 20, 41, 5, 3, 22, 42, 12]. The PIDD-CG
algorithm can facilitate the development of efficient statistical reduced order models as well as accelerating the associated
statistical forecast. Specifically, a large portion of the state variables in Y can be truncated and only those that are utilized
explicitly in the closure of X in Step 2 are preserved in the reduced order model. The contribution from the truncated modes
in Y can be effectively approximated by RNNs, which are then added to the equations of both X and the resolved components
of Y as the additional closure terms. Note that, in applying the PIDD-CG algorithm to the topographic barotropic flow
model (1), the statistical evolutions of the pairs (v̂k, T̂k) and (v̂k′ , T̂k′) with |k| 6= |k′| do not explicitly influence each other
but they are coupled through the zonal mean flow U (see the SI). Therefore, the resolved subsystem consisting of these
variables serves as a natural reduced order formulation for predicting the joint PDF of U and (v̂k, T̂k) with k = ±1 and ±2.
In fact, the forecast PDF from such a 9-dimensional reduced order model is exactly the same as the associated 9-dimensional
marginal distribution from the 41-dimensional model when applying the PIDD-CG algorithm to the topographic barotropic
model (1), due to the lack of explicit dependence between different (v̂k, T̂k) pairs.
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4 Methods

4.1 General mathematical framework of the PIDD-CG algorithm
In this section, we present the general strategy of the PIDD-CG algorithm step-by-step, following the schematic illustration
in Figure 1. In the PIDD-CG algorithm, high computational efficiency is achieved by avoiding the direct MC sampling in the
whole high-dimensional phase space of the entire system. After a proper phase space decomposition (Step 1 ), the ensemble
sampling is performed only inside a low-dimensional subspace, where a systematic statistical closure approximation has been
applied in the leading-order states (Step 2 ). On the other hand, an effective physics-informed data-driven estimation is
adopted to advance the conditional statistics forecast in the remaining high-dimensional subspace (Step 3 ), which allows an
accurate recovery of the conditional statistics only relying on the small number of samples. In particular, the ensemble size
is independent of the full dimension of the phase space [10], and thus the curse of dimensionality is avoided. The ensemble
members in the PIDD-CG algorithm consist of a conditional Gaussian mixture, which can be tracked by closed analytic
formulae for the conditional mean and covariance (Step 4 ). Finally, a RNN is introduced to approximate the nonlinear
unresolved-scale feedbacks in the analytic expressions of the conditional statistics as well as the statistical feedback in model
closure in Step 2 and 3. In particular, since the model outputs are associated with the conditional distribution, a simple but
effective information loss function is adopted to train the RNN (Step 5 ). The combination of the physics-informed analytic
time evolution of the statistics and the data-driven RNN closure of unresolved multiscale feedbacks accelerates the overall
computational efficiency and model accuracy by a significant amount.

We start with the general formulation of turbulent dynamical systems [47, 40, 19, 28],

du

dt
= (L+D)u +B (u,u) + F (t) + σ (u, t)Ẇ (t) , (2)

where the state variable u ∈ CN lies in a high-dimensional phase space. In (2), the first two components, (L+D)u,
represent linear dispersion and dissipation effects, where L∗ = −L is a skew-symmetric operator; and D is negative definite.
The nonlinear effect is introduced through a quadratic form, B (u,u), which conserves the total energy with u ·B (u,u) = 0.
Besides, the system is subject to external forcing effects that are decomposed into a deterministic component, F (t), and a
stochastic one represented by a Gaussian random process, σ (u, t)Ẇ (t), where σ measures the noise amplitude and Ẇ is
the white noise.

Step 1. Phase space decomposition

To facilitate the analytically solvable properties in the PIDD-CG algorithm, we introduce a proper phase space decomposition
of general system (2). Decompose the original model state u into two multi-dimensional state variables, X ∈ CN1 and
Y ∈ CN2 , with N1 +N2 = N . Usually, X is a collection of the large-scale, resolved leading modes or observed state variables
while Y contains the remaining relatively smaller-scale modes, including unresolved and unobserved ones. Therefore, X
belongs to a relatively low-dimensional subspace while Y remains high-dimensional. Since Y by design denotes the faster
and smaller scale components of the system, the terms corresponding to the nonlinear self-interaction inside Y, i.e. B(Y,Y),
mostly involve high frequencies and homogeneous dynamics [31]. Thus, these terms can often be effectively parameterized
either by simple stochastic noise [30, 35, 32, 3] or suitable closures that are nonlinear functions of X and conditionally
linear functions of Y [33]. The resulting approximate system can successfully capture the dominant dynamical and statistics
features of the original one as well as reproducing very similar ensemble forecast solutions.

With such a decomposition of the model states, the following nonlinearly coupled multiscale stochastic model is reached
as the approximation of the original system (2):

dX

dt
=
[
A0(X, t) + A1(X, t)Y(t)

]
+ B1(X, t)Ẇ1(t), (3a)

dY

dt
=
[
a0(X, t) + a1(X, t)Y(t)

]
+ b2(X, t)Ẇ2(t), (3b)

where A0,a0,A1,a1,B1 and b2 are vectors or matrices that can depend nonlinearly on the state variables X and time t
while Ẇ1 and Ẇ2 are independent white noise sources. One desirable feature of (3) is that, given one realization of the
time series X(s) for s ∈ [0, t], the conditional distribution

p(Y(t)|X(s), s ≤ t) ∼ N (µ(t),R(t)) (4)

becomes Gaussian, where the conditional mean µ and the conditional covariance R can be solved via closed analytic formulae
[25] (details will be shown next in Step 4 ).

It is worthwhile to highlight that many complex nonlinear systems already fit into the framework of (3) [6, 7]:

• Physics-constrained nonlinear stochastic models. Examples include the noisy versions of Lorenz models, Charney-
DeVore flows, and the paradigm model for topographic mean flow interactions.
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• Stochastically coupled reaction-diffusion models in neuroscience and ecology. Examples include FitzHugh-Nagumo
models and SIR epidemic models.

• Multi-scale models in turbulence and geophysical flows. Example include the Boussinesq equations and rotating shallow
water equation.

These examples further justify that the modeling framework (3) is appropriate to characterize or approximate many nonlinear
and non-Gaussian systems in various disciplines.

Step 2. Systematic multiscale statistical closure of the large-scale dynamics

Since the observed large-scale state variable X lies in a low-dimensional subspace, a small number of suitable random sample
points is sufficient to effectively characterize such a low-dimensional PDF. However, as the dynamics of X is nonlinearly
coupled with Y, the high-dimensional system (3) has to be integrated all together requiring solutions of both X and Y to
obtain the ensemble forecast of X. This is not only computationally challenging for the simulation of each single realization,
but also requires a large ensemble size to accurately reconstruct the statistics of the entire system. To reduce the high
computational cost, a systematic multiscale statistical closure model of X is thus developed, the purpose of which is to avoid
running the full set of the equations of Y during predicting the marginal PDF of only X.

The multiscale statistical closure here depends on the crucial feature that the dynamics of Y in (3a) becomes linear given
one realization of the trajectory of X. Thus the conditional mean of Y (t) relying on the history observation of X (s) , s < t
can be solved via closed analytic formulae (shown in Step 4 ). Next, decompose Y as Y = (Y1,Y2), where Y1 is the
resolved subsscale processes and Y2 represent the rest unresolved ones. Correspondingly, the conditional mean of Y can be
decomposed as as µ = (µ1,µ2). Accordingly, rewrite A1 in (3a) as A1 = [A1,1,A1,2]. The statistical closure model of X in
(3a) reads:

dX

dt
=
[
A0 + A1Y

]
+ B1Ẇ1

=
[
A0 + A1,1Y1 + A1,2Y2

]
+ B1Ẇ1

=
[
A0 + A1,1µ1

]
+ B1Ẇ1 +

[
A1,1

(
Y1 − µ1

)
+ A1,2Y2

]
: =

[
A0 + A1,1µ1

]
+ B1Ẇ1 + FX.

(5)

The contributions from the resolved and unresolved components of Y are separated in the above closure model (5). First,
the contribution from the resolved leading modes of Y is modeled by the conditional mean and its stochastic deviation from
the mean, namely A1,1Y1 = A1,1µ1 + A1,1 (Y1 − µ1). Second, the combined contribution of the unresolved fast processes
A1,2Y2 is modeled together as the coupled feedback from the various multiscale fluctuations. The conditional mean part with
µ1 is explicitly modeled through the conditional dynamics of reduced order model in Step 4 and Step 5, while the remaining
components of the deviation from the mean and the fast fluctuations in a high-dimensional space are both unresolved. In
the closure approximation (5), we denote the unresolved ‘residual’ part as FX by combining contributions from both the
mean deviation Y1 −µ1 and the remaining high-dimensional unresolved fluctuations Y2 together. Usually, these terms will
include complex nonlinear coupling between multiple scales. Nevertheless, we only need their combined feedback for the
prediction of the large-scale state X.

Here, the unresolved mean feedback FX is effectively approximated from data by a RNN:

FX(t+ 1) = RNN (X(t−m : t),µ1(t−m : t),FX(t−m : t)) , (6)

where the input of the RNN depends on the discrete time series from a past time instant t−m to the current time instant t
of the state variable X, the conditional mean of the resolved leading modes µ1 and FX itself (see more details of the neural
network architecture in the SI). Therefore, the closure model (5) together with the governing equations of the conditional
mean µ1 leads to a closed system. An ensemble simulation of this set of equations with a small number of samples can
be carried out to sufficiently characterize the low-dimensional PDF of X at future time instants via running the RNN (6)
iteratively forward starting from an initial time instant.

Finally, denote the total number of ensemble members by J , and the forecast value at time t associated with the j-th
ensemble member by X{j}(t). Then a smoothed PDF of X(t) can be reached by a kernel density estimation (KDE) [4],

p(X(t)) = lim
J→∞

1

J

J∑
j=1

p̃(X{j}(t)). (7)

In (7), p̃(X{j}(t)) is the j-th member from the KDE that is associated with X{j}(t) using the “solve-the-equation plug-in”
algorithm [4], which is an appropriate KDE method for approximating non-Gaussian distributions. Note that the asymptotic
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expression as J →∞ is used in (7) for the mathematical rigor of the formula. In practice, only a finite value of J is adopted
as the approximation. To facilitate the computation in Step 3, a Gaussian kernel is used in (7) such that p̃(X{j}(t)) is a
Gaussian distribution centered at X{j}(t).

Step 3. Effective physics-informed conditional Gaussian mixture via data assimilation

In the ensemble simulation of the large-scale dynamics in Step 2, each ensemble member provides one trajectory of X up
to time t, denoted by X{j}(s ≤ t), where j = 1, . . . , J . Given the coupled model formulation in (3) and conditioned on the
realization X{j}(s ≤ t), there is one corresponding distribution of Y at time instant t, namely p

(
Y(t)|X{j}(s ≤ t)

)
. Such a

conditional distribution can be viewed as the posterior distribution of the analysis state Y(t) from data assimilation, where
X{j}(s ≤ t) plays the role of the observed time series. One desirable feature in the model (3) is that it becomes a conditional
Gaussian distribution (4), due to the linear dynamics of Y conditioned on X(s ≤ t) with Gaussian white noise [6]. In light
of these conditional Gaussian distributions, the marginal distribution of Y(t) is provided by a conditional Gaussian mixture,

p(Y(t)) = lim
J→∞

1

J

J∑
j=1

p(Y(t)|X{j}(s ≤ t)). (8)

Combining (8) with (7) yields the formula for the joint distribution,

p(X(t),Y(t)) = lim
J→∞

1

J

J∑
j=1

p̃(X{j}(t))p(Y(t)|X{j}(s ≤ t)). (9)

Since the component p(Y(t)|X{j}(·)) with each sample j is a Gaussian distribution, the overall joint distribution in (9) is
given by a Gaussian mixture. It has been shown in rigorous analysis [10] that the error bound of the joint distribution in (9)
does not depend on the dimension of Y. Therefore, as long as X stays in a relatively low dimensional subspace, it suffices
to adopt a small number of samples (i.e., a small J) to accurately approximate the joint PDF based on the formula in (9).

Here, the physics-informed ingredient is embodied in the data assimilation that takes into account the large-scale model
information to improve the conditional distribution. In fact, the center of each p(Y(t)|X{j}(s ≤ t)) can be very different from
the actual value of Y{j}(t) when it is explicitly simulated with X{j}(t) from the original coupled system. This distinguishes
from the KDE, where the mixture components are often centered at the simulated data points. In addition, the covariance
of p(Y(t)|X{j}(s ≤ t)), which is the correspondence to the fixed bandwidth in the standard KDE, is determined utilizing the
dynamical properties via data assimilation and can be adaptive for different j’s. The optimization procedure of automatically
determining the center and the bandwidth of each Gaussian mixture component in such a physics-driven method facilitates
the use of only a small number of samples to accurately approximate the high-dimensional PDF.

Step 4. Analytic formulae for time evolution of conditional statistics in smaller-scale dynamics

To forecast the joint PDF using (9), what remains to compute is the conditional Gaussian distribution p(Y(t)|X{j}(s ≤ t))
for the sample realizations j = 1, . . . , J . However, since Y contains all the smaller scale dynamics in a high-dimensional
subspace, applying a direct ensemble method to forecast its statistics has the same the curse of dimensionality issue as
simulating the original physical system (2) or (3). From a different approach exploiting the important structural feature of
the system (3), the dynamical equations for the conditional mean µ and the conditional covariance R in (4) are available via
the following explicit analytic formulae [25]

dµ

dt
= (a0 + a1µ) + (RA∗1)(B1B

∗
1)−1

(
dX

dt
− (A0 + A1µ)

)
, (10a)

dR

dt
= a1R + Ra∗1 + b2b

∗
2 − (RA∗1)(B1B

∗
1)−1(A1R), (10b)

with ·∗ being the complex conjugate transpose. Once a single trajectory of X is given, the system (10) can be solved using
the standard ODE solvers, such as the Euler or the Runge-Kutta schemes. In this way, the extensive MC simulation of the
entire high-dimensional system can be effectively avoided. In addition, the analytic formulae of the moment equations in (10)
avoid the potential computational issues of random sampling errors and recover the true conditional statistics characterized
by the deterministic solutions for the mean µ and covariance R.

Step 5. Data-driven modeling of the nonlinear feedbacks in conditional statistics with information
theory

Despite the closed analytic formulae for solving the conditional statistics, the cost of running (10), especially the full spectrum
of the conditional covariance R ∈ CN2×N2 in (10b), remains to be computational demanding for high-dimensional systems.
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Therefore, an additional model reduction strategy is required to further reduce the computational cost and focus on the
conditional statistics of the resolved states Y1. The contributions from the remaining unresolved fluctuations are modeled
through a closure scheme as described in (5) of Step 2. Usually, Y1 can be separately by taking the most energetic leading
modes of the high-dimensional state Y. In addition, certain localized structures [48, 2] can be exploited to approximate
the covariance matrix with a diagonal or block diagonal structure. Thus only the entries near the diagonal line need to
be computed in the algorithm. For example in our illustrative example (1) in Section 2.2, the coupling coefficient a1 is
automatically diagonalized since it represents linear dispersion and dissipation effects in small scales as well as the noise
coefficients B1 and b2.

To accelerate the computational efficiency, the most time consuming parts including the complicated nonlinear and
possibly unresolved information in solving (10) are directly learned from data. To this end, define

FY = Ẋ− (A0 + A1µ),

GY = RA∗1,
(11)

where FY and GY are the ‘embedded’ feedbacks to the resolved mean and covariance dynamics. The explicit expressions
on the right hand sides of (11) contain the full information in µ and R, while the RNNs can help us learn the resolved
state information without running the full spectrum of unresolved fluctuation modes. More importantly, note that the mean
feedback will be the same as the unresolved term in (6), i.e., FY = FX, when we take Y = Y1. Thus the computational cost
is further reduced. As an analog to FY and GY in (11), define FY1 and GY1 as the functions constrained on the resolved
subspace of Y1. Then the associated low-order dynamics from the full formulae in (10) can be rewritten as

dµ1

dt
= (a0 + a1µ1) + GY1(B1B

∗
1)−1FY1 , (12a)

dR1

dt
= a1R1 + R1a

∗
1 + b2b

∗
2 − GY1(B1B

∗
1)−1G∗Y1

. (12b)

Then FY1 and GY1 are approximated by the following RNNs,

FY1(t+ 1) =RNN (X(t−m : t),µ1(t−m : t),FY1(t−m : t)) ,

GY1(t+ 1) =RNN (X(t−m : t),R1(t−m : t),GY1(t−m : t)) .
(13)

What remains is to train the RNNs. It is worthwhile to highlight that these RNNs are used to approximate certain
components in the moment equations. Therefore, it is important to develop a suitable criterion as the loss function of the
RNNs such that the resulting moments µ and R or the associated PDF are forecasted as accurate as possible. Since the path-
wise error is not necessarily related to the calibration of the forecast statistics, minimizing the path-wise errors in forecasting
the conditional mean and conditional covariance is not the most appropriate choice of the loss function for training the RNNs.
Instead, an information loss function is adopted here that specifically emphasizes the minimization of the forecast error in
terms of the PDF. The information criterion used here is the so-called relative entropy or the Kullback-Leibler divergence
(KL divergence) [23, 21],

P(pref(z), pf (z)) =

ˆ
pref(z) ln

pref(z)

pf (z)
dz, (14)

where pref(z) is the true PDF while pf (z) is the predicted one.

4.2 Implementation details of the PIDD-CG algorithm
4.2.1 ML training and the use of the relative entropy as cost function

In the training process, the neural network parameters are achieved through the optimization using a proper loss function.
A straightforward choice of the loss function is the standard L2 loss, which measures the mean square error (MSE) between
the truth and the predicted conditional mean or the predicted conditional covariance. That is,

LMSE (t) =
∥∥∥ūNN (t)− ūref (t)

∥∥∥2
L2

+
∑
k

αk

∥∥∥rNN
k (t)− rrefk (t)

∥∥∥2
L2
. (15)

In (15), ūNN and ūref are the conditional mean of neural network output and the truth, respectively; and rNN
k and rrefk are

the conditional covariance entries. However, as is shown in the SI, this L2-loss becomes insufficient for guiding the training
convergence to the optimal critical point, especially when highly turbulent fluctuations become dominant in the solution
fields.

In the regimes with stronger extreme events and many noisy small-scale fluctuations, it becomes essential to focus on the
dominant solution structures and ‘filter out’ the noises in small amplitudes in the training phase. To this end, a more balanced
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measurement of the training error, is introduced here. It is named as the information loss as it exploits an information metric
— the relative entropy — as the loss function:

LKL (x,y) =
1

M

M∑
j=1

Lj, Lj
(
xj ,yj

)
=
∑
i

ỹ
(j)
i log

ỹ
(j)
i

x̃
(j)
i

, (16)

where x is the PDF reconstructed by the predicted conditional statistics while y is the reconstruction of the true PDF made
by the true conditional statistics. The superscript j in (16) represents the mini-batch members and the subscript i goes
through the dimensions of the variable. In addition, to highlight more towards the extreme events, the following two sets of
positive and negative temperatures are added to rescale the data from the partition functions

x̃+i =
exp (xi/T+)∑
i exp (xi/T+)

, x̃−i =
exp (−xi/T−)∑
i exp (−xi/T−)

, (17)

where T+ > 0, T− > 0 are the positive and negative temperatures weighting the importance of extreme events in the scaled
measure.

4.2.2 Initialization of the conditional statistics ensembles

Assume the initial time instant for the forecast is at t = T . In the traditional ensemble forecast, the initialization of the
ensembles is provided by data assimilation. Consider the modeling framework in (3). Assume the time series of the large-scale
variable X is fully observed with no additional observational error while the observation of Y is not available. The situation
in which the observation of X contains observational error can be easily handled by imposing another data assimilation
procedure for X, which is however not the main scope of the current framework. Therefore, the precise observational value
of X at time T is naturally served as the initial condition of X(T ). This also means all the initial ensembles of X(T ) are the
same as the observed value. On the other hand, the initial ensemble of Y(T ) is provided by sampling J different samples
from the conditional (or the so-called posterior) distribution (4), which is given by the data assimilation formulae in (10).

The initialization of the PIDD-CG algorithm has two major differences compared with the traditional ensemble forecast
initialization. First, each ensemble member in the PIDD-CG algorithm is no longer a single point but instead a conditional
Gaussian distribution. Second, due to the use of neural network approximations in (6) and (13), each initial ensemble of FX,
FY and GY contains a time series that requires the past information. This is different from the traditional ensemble forecast
that only exploits the state estimation at the initial time instant. The details of the initialization in the PIDD-CG algorithm
are as follows.

(a). The initialization of the state variable Y in (3).
Since the initial ensembles of X are all the same, it is natural to use the same conditional statistics ensembles for the
initialization of Y as well. In particular, all the initial ensembles of Y take the values where µ and R are the posterior mean
and posterior covariance computed from the direct data assimilation (10). This also makes the entire initial distribution of
X and Y to be consistent as the traditional ensemble forecast method.

(b). The initialization of the functions FY and GY in (13).
The functions FY and GY depend on the past information of µ, R, X and themselves. Therefore, the data assimilation
scheme (10) starts from a certain time instant in the past, and then results in the time series of µ and R from T −m to the
current time instant T . The time series of X from T −m to T is available from observations.

(c). The initialization of the functions FX in (6).
The input of the neural network in (6) requires additional path-wise information of the unobserved trajectory Y, which are
related but are not directly available using the point-wise posterior mean and posterior covariance. The trajectory of Y can
be sampled from an infinite dimensional (or high-dimensional with temporal the discretization) joint posterior distribution,
where the infinity (or high) dimensionality comes not only from the number of the state variables in Y but also the temporal
direction. Nevertheless, the modeling framework (3) allows such a high-dimensional sampling problem to be solved by
integrating a backward stochastic differential equation [9]. It is given by

←−−
dY

dt
=

←−−
dµs

dt
−
(
a1 + (b2b

∗
2)R−1)(Y − µs) + b2ẆY(t), (18)

where the notation
←−
d·/ dt corresponds to the negative of the usual derivative, which means that the system (20) is solved

backward over [0, T ]. Here µs(t) and Rs(t) are the so-called smoother mean and smoother covariance

p(Y(t)|X(s), s ∈ [0, T ]) ∼ N (µs(t),Rs(t)), (19)
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which are also provided with closed analytic formulae

←−−
dµs

dt
= −a0 − a1µs + (b2b

∗
2)R−1(µf − µs), (20a)

←−−
dRs

dt
= −(a1 + (b2b

∗
2)R−1)Rs −Rs(a

∗
1 + (b2b

∗
2)R) + b2b

∗
2, (20b)

The initial condition of solving (18) is (µs(T ),Rs(T )) = (µ(T ),R(T )), which is the same as the data assimilation (filtering)
estimate (µ(T ),R(T )).
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Supplementary Information:
This Supplementary Information (SI) contains the numerical construction and experiments for

A) a coupled dyad model as a proof-of-concept of the PIDD-CG algorithm; and

B) a complete analysis of the computational performance of the barotropic topographic model with multiscale coupling.

A The coupled dyad model
First, we verify the effectiveness of the PIDD-CG algorithm on a prototype two-mode dyad model as a standard proof of
concept. The purpose of using this model with the simplest possible turbulent structure is to illustrate the basic ideas in the
algorithm construction and the key features in the method to predict crucial statistics in a simple and clean setup.

A.1 Model description
The dyad model is described by the two nonlinearly coupled states (u, v) following the dynamics

du

dt
=− duu+ cuv + Fu + σuẆu,

dv

dt
=− dvv − cu2 + Fv + σvẆv.

(S1)

Naturally, we can view u as the ‘observed state’ (as X in the main text) and v the ‘unresolved process’ (Y in the main
text) satisfying the general conditional Gaussian framework (Eqn. (3) in the main text). Different statistics can be gener-
ated by varying the model parameters (du, dv, c, Fu, Fv, σu, σv). The common parameters are taken as (du, dv, c, Fu, Fv) =
(0.8, 0.8, 1.2, 1, 1). In particular, we consider two typical statistical regimes by changing the noise forcing strength for: i)
near-Gaussian regime in u with (σu, σv) = (3, 0.2) ; and ii) non-Gaussian regime in u with (σu, σv) = (0.5, 2). For concise-
ness, these two regimes are referred to as near-Gaussian u and non-Gaussian u in the following. The typical trajectories of
the dyad model are illustrated in Figure S1. It can be seen that different strongly turbulent features including significant
skewness and kurtosis appear in the solutions of u and v. Thus the dyad model becomes a desirable first test for confirming
the basic features and prediction skill of the general PIDD-CG algorithm.

The conditional Gaussian dynamics can be proposed for the dyad model (S1) based on the general framework (3) in
the main text. Given a realization of the observed state u, the unresolved state v has conditional Gaussian statistics
v ∼ N (v̄, rv) with v̄ ≡ v̄ (t;u (·)) and rv ≡ rv (t;u (·)) being the conditional mean and conditional variance dependent on the
history trajectory of u (s) , s ≤ t. Therefore, we can find the explicit dynamical equations for the conditional statistics as

dv̄

dt
=− dv v̄ − cu2 + Fu + σ−2

u Fu · Gv,

drv
dt

=− 2dvrv + σ2
v − σ−2

u G2v .
(S2)

In the above formulation, we have the unresolved nonlinear coupling terms Fu and Gv as follows

Fu = u̇+ duu− fu − cuv̄, Gv = curv. (S3)
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Figure S1: Trajectories of the dyad model in different statistical regimes with near-Gaussian observed state u (upper
row) and non-Gaussian observed state u (lower row).

In the effective approximation of the nonlinear terms, we propose to use RNNs to replace the crucial nonlinear feedback
terms in the PIDD-CG algorithm as

Fu (t+ 1) =RNN (u (t−m : t) , v̄ (t−m : t) ,Fu (t−m : t)) ,

Gv (t+ 1) =RNN (u (t−m : t) , rv (t−m : t) ,Gv (t−m : t)) .
(S4)

Notice that we need to include the history of the nonlinear terms Fu,Gv in the inputs of the RNNs.

A.2 Forecast results
A.2.1 Training and lead time prediction
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Figure S2: Training and lead-time prediction errors in the dyad model. The first row shows the iterations of training
loss and training errors in the resolved state u and conditional mean and variance in the unresolved state v. The
second row shows the development of lead time errors using the trained model in the two parameter regimes.

First, we train the RNNs proposed in (S4) by using the standard LSTM network. The loss function is from the information
metric (16) in the main text and the model is trained in 50 epochs. The error evolution of the loss and the mean square
errors (MSEs) in the target states are compared in the first row of Figure S2. Rapid convergence and accurate training are
achieved. Then we confirm the trajectory prediction performance in the two tested statistical regimes. The second row of
Figure S2 displays the prediction errors in the states with different lead times. The errors all saturate in small amplitudes,
inferring accurate prediction for both the resolved state u and the conditional statistics for the unresolved state v. The truth
and model prediction of the trajectory realizations are also compared in Figure S3. It confirms the good performance by
using the PIDD-CG algorithm to recover the true trajectory by directly learning the nonlinear dynamics from data. Notice
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that the near-Gaussian regime is usually easier to predict and can stay accurate with smaller errors for longer lead time
prediction. In the trajectory prediction of the resolved state u in its non-Gaussian regime, larger errors will emerge as the
model is iterated for longer time forecast (right panel of Figure S3).
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Figure S3: Lead time prediction of the resolved state u and conditional mean and variance in the unresolved state
v in the two test regimes.

A.2.2 Prediction of PDFs

Next, we use the PIDD-CG algorithm to predict the evolution of state PDFs from a given initial distribution. The initial
distribution is taken as Gaussian and is very different from the final highly non-Gaussian equilibrium state. To show the
true statistics as the reference solution, we carry out direct Monte-Carlo simulation with a large ensemble size N = 50000.
In the PIDD-CG algorithm, we only take M = 100 samples to recover the resolved space of u. The first row of Figure S4
shows the prediction of the final equilibrium PDFs in the two tested regimes. As is implied from the trajectory prediction in
Figure S3, the near-Gaussian regime of u gives accurate recovery of the PDFs. On the other hand, the non-Gaussian regime
of u is more challenging to capture the entire non-Gaussian statistics with a very small sample size. Nevertheless, the major
statistical structures are still captured using the PIDD-CG algorithm. The second and third rows of Figure S4 show the
predicted PDFs at several different lead time instants before the final statistical equilibrium. We observe the development
of skewed PDFs in time in the transient states. Again, the efficient PIDD-CG algorithm is able to capture the statistical
development of the transient PDFs. Especially in the non-Gaussian regime of u, the forecast is accurate at the starting time
then errors are gradually developed as we try to predict the PDFs at a longer lead time due to the strong nonlinearity in the
dynamics.

B The barotropic topographic model with multiscale coupling
Next, we display detailed results about applying the PIDD-CG algorithm on the multiscale barotropic topographic model
discussed as the major test model in the main text.

B.1 Model description
B.1.1 The starting model

The topographic barotropic flow is a prototype model in geophysics. It is expressed as follows [27],

∂q

∂t
+∇⊥ψ · ∇q = D (∆)ψ + Fq,

dU

dt
+

 
∂h

∂x
ψ′ = −dUU + FU ,

(S5)

which is defined in a two-dimensional domain D : x = (x, y) ∈ [−π, π]2 with double periodic boundary conditions. In (S5),
D (∆) is the dissipation operator, h is the topographic effect, and Fq and FU are external forcings. The state variable U
represents the large-scale zonal flow velocity while q and ψ are the potential vorticity and the stream function, respectively.
They are related by

q = q′ + f = ∇2ψ′ + h+ βy, ψ = −U (t) y + ψ′, (S6)

where the prime terms denote the fluctuations subject to the large-scale mean flow. The averaged integration in the mean
dynamics U in (S5) is defined as

ffl
fdx = 1

|D|

´
D
fdx, where |D| is the total area of the domain. The topographic barotropic
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Figure S4: Prediction of equilibrium (first row) and transient (second and third rows) PDFs of the dyad states at
different time instants before the equilibrium. The truth from Monte-Carlo samples is shown in solid blue line, and
the reduced model prediction in dashed orange line. The two tested regimes with different statistics are compared.
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flow model in (S5) is supplemented by a passive tracer model that characterizes the advection-diffusions of the transport of
a tracer density field T (x, t), such that

∂T

∂t
+ u · ∇T = −dTT + κ∆T, (S7)

where u = ∇⊥ψ, dT is the drag term and κ is the diffusion coefficient. The model (S5)–(S7) exhibits very rich dynamical
and statistical features, such as the switching behavior between blocked and unblocked zonal flow regimes, non-Gaussian
distributions and extreme events.

B.1.2 The barotropic model with layered topography

A particularly interesting case of the above barotropic model (S5) is the one with layered topography, where the topography
and stream function have the following expansion form

h (x, y) =
∑
k

ĥke
ikl·x, ψ (x, y, t) =

∑
k

ψ̂k (t) eikl·x. (S8)

The expansion is along one characteristic wavenumber direction l = (lx, ly) with |l| = 1. The corresponding full velocity field
can be found combining the zonal mean flow and the fluctuations

u =
(
U + u′, v′

)
=

(
U − ily

∑
k

kψ̂ke
ikl·x, ilx

∑
k

kψ̂ke
ikl·x

)
. (S9)

Then nonlinear coupling term, ∇⊥ψ ·∇q, vanishes under the above layered topography expansion. As a further simplification
of the passive tracer model, we introduce a background mean gradient α = (αx, αy) on top of the tracer field fluctuations T ′

and a stochastic velocity field u is assumed such that

T (x, t) = α · x + T ′ (x, t) ,

u (x, t) = (U (t) , v (x, t)) .
(S10)

Here the zonal cross-sweep U and the fluctuations v can be adopted from the topographic barotropic model solution. The
same layered structure can be also assumed for the tracer fluctuation state so that we consider the tracer mean gradient
αx ≡ 0, αy = α with

T ′ (x, y, t) =
∑
k

T̂k (t) eikl·x. (S11)

The resulting equation gives a simplified formulation for the turbulent transport of passive tracer field

∂T ′

∂t
+ U

∂T ′

∂x
= −dTT ′ + κ

∂2T ′

∂x2
− αv (x, t) . (S12)

The above equation for the tracer fluctuation field provides a judicious simplified formulation in modeling the tracer passive
transport with many interesting statistical features such as intermittency and skewed statistics.

B.1.3 The spectral formulation of the barotropic model with layered topography

Based on the above justifications, the original equations (S5) can be reformulated in the following form for each Fourier
spectral mode

dU

dt
=
∑
k

h∗kv̂k − d0U + σ0Ẇ0, (S13a)

dv̂k
dt

= [−γv,k (U) + iωv,k (U)] v̂k − l2xĥkU − dv,kv̂k + σv,kẆk, (S13b)

dT̂k
dt

= [−γT,k (U) + iωT,k (U)] T̂k − dT,kT̂k − αv̂k, (S13c)

where k is the wavenumber with |k| = 1, . . . ,K and model parameters

γT,k = dT + κk2, ωT,k = −k (U + u)

γv,k = 0, ωv,k = lx(k−1β − kU), σv,k = −ik−1σk.
(S14)

Note that additional dependent parameters γv,k, γT,k are introduced in (S13) as extra parameterization for the unresolved
multiscale interactions between fluctuation modes.

Notably, given one realization of U , the processes v̂k and T̂k in (S13) become conditionally linear and Gaussian. Thus,
the system automatically fits into the general modeling framework (3) proposed in the main text.
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B.1.4 Step-by-step illustration of predicting the barotropic topographic model using the PIDD-CG
algorithm

Step 1. Phase space decomposition. The fact that the large-scale zonal velocity U is observed offers a natural
way for the phase space decomposition: the low-dimensional subspace contains only U while the remaining high-dimensional
subspace involves all the Fourier modes for v̂k and T̂k. Putting into the general framework in (3), this means:

X := U and Y := (v,T) = (v̂1, v̂2, . . . , T̂1, T̂2, . . .).

Step 2. Systematic multiscale statistical closure approximation of the large-scale dynamics in the
low-dimensional subspace. Since U is coupled with v̂k and T̂k, a suitable closure equation of U needs to be developed
before applying the traditional MC method to forecast U in a closed intrinsic low-dimensional subspace.

Following the general framework in (5) in the main text, the fluctuation modes are decomposed into two subsets of the re-
solved scales for wavenumbers in I = {k : |k| ≤M} and the long spectrum of the unresolved scales in Ic = {k : M < |k| ≤ N},
where the modes of v̂k and T̂k belonging to I correspond to the state variable Y1 in (5) while the remaining modes are Y2.
Therefore, the mean flow equation (S13) in the topographic model can be rewritten as

dU

dt
=
∑
k∈I

h∗kv̄k − d0U +MU +NU + σ0Ẇ0

:=
∑
k∈I

h∗kv̄k − d0U +HU + σ0Ẇ0

MU =
∑

k∈I∪Ic
h∗k (v̂k − v̄k) , NU =

∑
k∈Ic

h∗kv̂k, HU =MU +NU ,

(S15)

where v̄k is the conditional mean of vk given the past trajectory of U that will be introduced in the next two steps. Clearly,
HU = MU + NU corresponds to FX in the general framework (5). Following (6), HU is approximated by a RNN that
approximates the contribution from both the fluctuation part of the resolved modes and the entire unresolved modes,

HU (t+ 1) = RNN
(
U(t−m : t), {v̄k(t−m : t)}k∈I ,HU (t−m : t)

)
.

With the governing equation of v̂k being provided, the intrinsic dimension of the approximated governing equation of U is
low. It therefore allows to use a MC simulation with a small number of ensembles N to forecast its PDF up to a given time
instant, which is then smoothed using a kernel density estimation,

p(U) = lim
J→∞

1

J

J∑
j=1

p̃(U{j})

with p̃(U{j}) the j-th member from kernel density estimation that is associated with U{j}.

Step 3. Effective physics-informed conditional Gaussian mixture via data assimilation. Each of the
ensemble member from the MC simulation in Step 1 provides one trajectory of U , denoted by U{j}. Conditioned on
such a trajectory, there is one corresponding distribution of v and T, namely p(v,T|U{j}). Note that p(v,T|U{j}) is a
conditional Gaussian distribution for the layered topographic model (S13) since conditioned on U the processes of vk and Tk
are conditional linear. The joint distribution of U,v and T is thus given by

p(U,v,T) = lim
J→∞

1

J

J∑
j=1

p̃(U j)p(v,T|U{j}). (S16)

This corresponds to (9) in the main text of the general PIDD-CG forecast framework.

Step 4. Time evolution of the conditional statistics in smaller-scale dynamics. Following the general
framework (10) or (12) in the main text, the time evolutions of the conditional mean and the conditional covariance for the
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barotropic model with layered topography are given as follows,

dv̄k
dt

=− l2xĥkU + [iωv,k (U)− dv,k] v̄k + σ−2
0 FU · Gv,k, (S17a)

dT̄k
dt

= [iωT,k (U)− dT,k] T̄k − αv̄k + σ−2
0 FU · Gc,k, (S17b)

drv,k
dt

=− 2dv,krv,k + σ2
v,k − σ−2

0 |Gv,k|
2, (S17c)

drT,k
dt

=− 2dT,krT,k − α (ck + c∗k)− σ−2
0 |Gc,k|

2, (S17d)

dck
dt

=− (dv,k + dT,k) ck + i [ωT,k (U)− ωv,k (U)] ck

− αrv,k − σ−2
0 Gc,k · G

∗
v,k, (S17e)

where v̄k and T̄k are the conditional mean of v̂k and T̂k while rv,k, rT,k and ck are the conditional variance of v̂k, T̂k and
the cross covariance between v̂k and T̂k, respectively. In (S17), only the leading modes |k| ≤ M are resolved explicitly.
In addition, the covariance equations have been further simplified by applying a block diagonal approximation, where each
block has the size 2× 2 including the cross-correlation of the mode with the same wavenumber ck. The central (quasi) linear
dynamics are explicitly expressed while the complicated nonlinear functions are denoted by FU , Gv,k and Gc,k with

FU = U̇ −
∑
m

ĥ∗mv̄m + d0U,

Gv,k =
∑
m

ĥmrv,km, Gc,k =
∑
m

ĥmckm,

where FU corresponds to FX while G = (Gv,k,Gc,k)k∈I correspond to GY in (11) of the main text.

Step 5. Data-driven modeling of the nonlinear feedbacks in conditional statistics via recurrent neural
networks. Finally, corresponding to (13), the complicated nonlinear functions are approximated by RNNs,

FU (t+ 1) = RNN
(
U(t−m : t), {v̄k(t−m : t)}k ,FU (t−m : t)

)
,

G(t+ 1) = RNN
(
U(t−m : t), {rk(t−m : t), ck(t−m : t),Gk(t−m : t)}k∈I

)
.

(S18)

B.2 Model parameters
This section includes the basic numerical setup and model parameters for the barotropic topographic model (S5) as well as
the corresponding neural network architecture for the unresolved subscale processes in (S18).

B.2.1 Parameters in the topographic barotropic model

The barotropic topographic model displays distinct dynamical and statistical features with different values of the white noise
forcing amplitudes σU and σv,k. In particular, the two representative regimes in the main text corresponding to the highly
non-Gaussian and the nearly Gaussian regimes, and the PDFs are equipped with the following parameters:

• Strongly non-Gaussian regime: The zonal mean flow is strongly forced with white noise strength σU = 1√
2
while only

small noises σv,k = k−1

20
√
2
are added to the fluctuation modes.

• Near-Gaussian regime: The fluctuation modes are subject to relatively stronger noise forcing with strength σv,k = k−1
√
2

compared with the noise strength in the zonal mean flow σU = 1

2
√
2
.

Notice that even in the near-Gaussian regime, nonlinear dynamics takes a dominant role in the multiscale interactions.
Therefore, the feedbacks from the fluctuations cannot be neglected.

Next, the topography structure is given by

h = H1 (cosx+ sinx) +H2 (cos 2x+ sin 2x) +

K∑
k=3

k−2eiθ0 + c.c.,

with the first two dominant leading modes H1 = 1, H2 = 1
2
, and initial phase parameter θ0 = −π

4
. The ‘c.c.’ denotes the

complex conjugate. This topography can be viewed as an analog to a long north-south ridge [38]. For the rest parts of the
model parameters, a uniform damping is adopted in both the mean and the fluctuation modes dU = dv,k ≡ 0.0125. The
damping, diffusion, and mean cross-sweep for tracer field are dT = 0.1, κT = 0.001, α = 1, respectively, and the rotation

23



parameter is β = 1. These parameter values are derived from non-dimensionalization of the real physics measurements of
the characteristic scales [27].

For the numerical integration in the true model to generate the simulated data, the standard 4th-order Runge-Kutta
scheme with time step size dt = 1 × 10−3 is adopted, which is essential to maintain stability due to the stiffness in the
small-scale flow and tracer dynamics, as well as the full conditional statistical equations. In contrast, only a forward Euler
scheme with a much larger time step size ∆t = 0.01 is utilized in the RNN and thus the numerical cost is further reduced.
Notice that this large time step cannot guarantee the numerical stability in the original model.

B.2.2 Parameters in the neural network

Recurrent neural networks (RNNs) offer the desirable structure to incorporate temporal processes of sequential data, and
keep tracking of hidden processes. The long short-time memory (LSTM) network is a special RNN that is useful to recover
the time-series including very long time correlations. The LSTM designed to learn the multi-scale temporal structures
overcoming the problem of vanishing gradients. In the computational cell of the LSTM network, it consists of the basic
building cell as

ft =σg (Wfxt + Ufht−1 + Vfct−1 + bf ) ,

it =σg (Wixt + Uiht−1 + Vict−1 + bi) ,

ct =ft ⊗ ct−1 + it ⊗ tanh (Wcxt + Ucht−1 + bc) ,

ot =σg (Woxt + Uoht−1 + Voct + bo) ,

ht =ot ⊗ tanh (ct) .

(S19)

Above, the σg = 1
1+e−x is the sigmoid activation function, and ⊗ represents the element-wise product. The model cell

includes forget, input, and output gates ft, it, ot, and the cell state ct. The hidden process {ht−m, · · · , ht−1, ht} represents
the time-series of the unresolved process. The final output data is given by a final linear layer yt = Wxht applying on the
final state of the hidden process.

The LSTM net is constructed from m LSTM cells hi+1 = Lc (xi,hi;W) with the same structure and parameters W.
The cells are connected by the intermediate hidden state hi ∈ Rh. Every LSTM cell takes in the input data xi at the i-th
step and the output hi from the previous adjacent cell, and gives out the inner hidden state hi+1 to be used for prediction
of the next state. The full LSTM chain is connected by m sequential cell structures, that is,

hm = Lc(m) {h0;xt−m, · · · ,xt−i, · · · ,xt−1} ≡ Lc (xt−1) ◦ · · ·Lc (xt−i) · · · ◦ Lc (xt−m) (h0) . (S20)

Above, the data at different time instants xi is fed into the corresponding LSTM cell, and hi is the hidden state as the
output of the previous cell and input for the next cell. For simplicity, the initial value of the hidden state is often set as
zero, h0 = 0. The final output hm from the last step of the LSTM chain goes through another single layer fully connected
network to give the model approximation of the dynamical increment for f

fMm = σ
(
Wfhm + bf

)
, (S21)

where Wf ,bf are the model coefficients in the final layer, and σ is a nonlinear activation function adopting the rectified
linear unit (ReLU).

The above standard architecture of the LSTM is applied to estimate the feedback FU ,G to the leading resolved scales in
(S15) and (S17) in (S18) to learn the embedded processes. In addition, a residual structure is adopted in the LSTM neural
network to update the correlated time sequence

θi+1 = θi + F ,
where F is the LSTM output for the increment.

The major hyperparameters of the neural network used in the tests are as follows. The LSTM chain consists of m = 100
repeating cells with the same structure, taking a time sequence of time length t = 1 which is about the decorrelation time of
the system state. The dimension of the hidden state is taken as hv = 100 for the conditional variance equations and hm = 20
for the conditional mean feedback. The LSTM output is reiterated forward for n = 10 steps (only a short forward time of
t = 0.1) to account for the integrated error along the time integration steps. The optimization is carried out by stochastic
gradient descent using the ADAM scheme for a training batch of size 100 samples. During the training process, a total of
100 epochs are repeated starting from the learning rate lr = 1 × 10−3 which is reduced three times to half of its original
values at epoch number 25, 50 and 75. In the training data using the neural network, we pick a larger integration time step
∆t = 10dt = 0.01. The reduced-order model can be integrated using the simple forward Euler scheme with the large time
step ∆t thanks to the autocorrections directly learned during the training process of the LSTM neural network.

B.3 Forecast results
Finally, we display detailed test results for the training and prediction using the PIDD-CG algorithm of the barotropic
topographic model with strong non-Gaussian and intermittent dynamics.
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layered topo. N β H1 H2 (lx, ly) dT κT α d0 σ0

H1 (cosx+ sinx) +

H2 (cos 2x+ sin 2x)
10 1 1 0.5 (1, 0) 0.1 0.001 1 0.0125 1

2
√
2

Table S1: Standard model parameters for the barotropic topographic model simulations.

B.3.1 Transition in true model statistics

In the numerical test, we consider different statistical regimes with the inclusion of damping and stochastic forcing effects.
Especially, we would like to check the transition in statistics in the flow and tracer field solutions with varying model
parameters. The standard model parameters used in the tests are listed in Table S1 according to the reference values proposed
in [37]. The same damping amplitude dU = dk = d0 is applied to all the spectral modes and two sets stochastic forcing strength
are considered for i) the near-Gaussian regime σU = σ0, σk = 2σ0; and ii) the non-Gaussian regime σU = 2σ0, σk = 0.1σ0. In
the near-Gaussian regime, the zonal flow U is subject to a smaller white noise forcing compared with the small scale modes
forcing σU < σk. Both flow and tracer modes show PDFs close to Gaussian. In the non-Gaussian regime, a stronger forcing
in the zonal flow field σk < σU gives a negatively skewed zonal state U , and the small scale modes become strongly fat tailed.
The corresponding passive tracer field in this case also displays fat tails and also a large skewness in the leading modes.

We first display the key features in the two test regimes with distinct statistics. The equilibrium energy spectra in the
flow and tracer modes as well as the autocorrelation functions are shown in Figure S5. The time development of the marginal
PDFs of the zonal flow U and the leading fluctuation and tracer modes v̂1, v̂2 and T̂1, T̂2 at different time instants until
equilibrium are compared in Figure S6 for the near-Gaussian and non-Gaussian regime respectively. First, in the equilibrium
energy spectra it is observed that even though the first two leading modes are the most energetic, the other smaller scale
modes still contain large amount of energy with strong feedback to the mean flow thus cannot be directly neglected in the
reduced model approximation. This confirms the crucial role to consider the conditional Gaussian structure in the PIDD-
CG algorithm to achieve accurate statistical forecast. In addition to the multiscales in spatial modes, the time series also
display multiscale structures as shown in the autocorrelation functions. The zonal flow U has a much slower decay in time
correlation compared with the rapid decay in the fluctuation modes. From the comparison of the time-series in the two cases,
the multiscale structure and competition between the blocked and unblocked regimes is also observed. Especially, we see the
generation of high skewness in the zonal mean flow U is from the strong zonal transport with suppressed fluctuations. These
multiscale features are consistent with the time series in Figure 2 of the main text.

To see the distinct statistical features in the two test regimes, Figure S6 illustrates the time evolution of the marginal PDFs
in time up to the final equilibrium state. Both regimes start with a Gaussian initial distribution with accurate observation in
U (thus with zero variance) and the fluctuation modes are sampled from the conditional Gaussian distribution. In the near-
Gaussian regime, the marginal PDFs of the states rapidly develop into the equilibrium steady state with all near-Gaussian
structures. In contrast, in the non-Gaussian regime, strongly skewed PDFs are gradually developed in time with highly
non-Gaussian features.

B.3.2 Training and lead time prediction

The PIDD-CG algorithm includes the data-driven component to learn the unresolved feedbacks from data. The standard
LSTM network is used and thus a training stage is required. In the training process using the neural network, we pick a
larger integration time step ∆t = 10dt = 0.01. The training output is reiterated recurrently for n = 10 times to improve the
stability of the scheme.

First, we show the convergence in the training stage. In Figure S7, the training loss and mean square errors are displayed
during the training iterations with 100 epochs. It can be seen that the training error drops rapidly during the first few
iterations and is quickly saturated at a low level. The corresponding errors in the conditional mean and covariance can
also be minimized very quickly. Furthermore, we compare the improvement with the reiterated multistep forecast n = 10
compared with single step update n = 1 in the training calibration. The multi-step model achieves a higher accuracy during
training and is faster to converge with a fewer number of iterations.

Next, we check the lead time prediction using the trained model. The neural network model prediction is in general
challenging with growing imperfect errors in time due to the high model uncertainty and strong internal instability. The
prediction accuracy gradually grows larger as the errors accumulate for the prediction in longer lead time shown in Figure S8
(also in the trajectory predictions in Figure 5 of the main text). Again, the multi-step time integration shows much higher
stability during longer time iterations and maintains high accuracy beyond the decorrealtion time. In comparison, if only
the one-step updating scheme is used in the training stage, the prediction keeps accurate for short leading time (around
T < 0.5) while it quickly diverges to much larger errors when the leading time becomes larger. This is related with the
inherent difficulty in the unstable numerical integration with this large time step ∆t.
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Figure S5: Equilibrium energy spectrum and autocorrelation functions of the barotropic topographic model in the
near-Gaussian (left) and non-Gaussian (right) regimes.
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Figure S6: Marginal PDFs for the zonal flow U and the leading flow and tracer modes v̂1, v̂2 and T̂1, T̂2 at several
time instants until equilibrium state is reached in the near-Gaussian (left) and non-Gaussian (right) regime.

0 20 40 60 80 100
epochs

10
2

lo
ss

one step
multi step

loss function in training iterations

0 20 40 60 80 100
epochs

10
3v

one step
multi step

0 20 40 60 80 100
epochs

10
3

2 × 10
3

3 × 10
3

4 × 10
3

6 × 10
3

T

one step
multi step

trained MSEs for conditonal mean flow & tracer states

0 20 40 60 80 100
epochs

10
5

10
4

r v

one step
multi step

0 20 40 60 80 100
epochs

10
5

10
4

10
3

r T

one step
multi step

0 20 40 60 80 100
epochs

10
5

10
4

10
3

c v
,T

one step
multi step

trained MSEs for conditional variance & covariance

Figure S7: Errors in the loss function and the MSEs in conditional mean, variance, and covariance during training
iterations.
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Figure S8: MSEs with different lead time predictions for errors in the conditional mean and variance. The two
trained models with different iterating forward steps are compared.

B.3.3 Prediction of the transient PDFs

Finally, we display more detailed prediction results of using the PIDD-CG algorithm to efficiently capture the transient PDFs
of key model states. Using the same initial distribution as in the main text, Figure S9-S12 display the predicted marginal
PDFs of the resolved states and the joint distributions between the zonal flow U and the first two leading flow and tracer
modes v̂1, v̂2 and T̂1, T̂2 in the transient states before equilibrium is reached. Especially, we observe the development of
non-Gaussian features from the initial mixed Gaussian state. Notice the difference scales in the values of U and leading
modes at different time instants. The direct Monte-Carlo simulation requires a sample size of 50000 particles to capture the
PDFs in accuracy, while in contrast the PIDD-CG algorithm only needs N = 100 samples to achieve comparable accuracy
with the truth. The PIDD-CG algorithm maintains high accuracy in capturing the highly non-Gaussian statistics regardless
of the relatively high full dimension of the system. On the other hand, in the near-Gaussian regime, the convergence to
equilibrium is faster and is also accurately captured with accuracy in the much efficient PIDD-CG algorithm.
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Figure S9: Prediction of the marginal PDFs and joint PDFs in the non-Gaussian regime at lead time t = 0.5.
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Figure S10: Prediction of the marginal PDFs and joint PDFs in the non-Gaussian regime at lead time t = 1.5.
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Figure S11: Prediction of the marginal PDFs and joint PDFs in the near-Gaussian regime at lead time t = 0.1.
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Figure S12: Prediction of the marginal PDFs and joint PDFs in the near-Gaussian regime at lead time t = 0.5.
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