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Abstract

We propose a statistical-stochastic surrogate modeling approach to predict the response of the mean and
variance statistics under various initial conditions and external forcing perturbations. The proposed modeling
framework extends the purely statistical modeling approach that is practically limited to the homogeneous
statistical regime for high-dimensional state variables. The new closure system allows one to overcome several
practical issues that emerge in the non-homogeneous statistical regimes. First, the proposed ensemble modeling
that couples the mean statistics and stochastic fluctuations naturally produces positive-definite covariance matrix
estimation, which is a challenging issue that hampers the purely statistical modeling approaches. Second, the
proposed closure model, which embeds a non-Markovian neural-network model for the unresolved fluxes such
that the variance of the dynamics is consistent, overcomes the inherent instability of the stochastic fluctuation
dynamics. Effectively, the proposed framework extends the classical stochastic parametric modeling paradigm
for the unresolved dynamics to a semi-parametric parameterization with a residual Long-Short-Term-Memory
neural network architecture. Third, based on empirical information metric, we provide an efficient and effective
training procedure by fitting a loss function that measures the differences between response statistics. Supporting
numerical examples are provided with the Lorenz-96 model, a system of ODEs that admits the characteristic
of chaotic dynamics with both homogeneous and inhomogeneous statistical regimes. In the latter case, we will
see the effectiveness of the statistical prediction even though the resolved Fourier modes corresponding to the
leading mean energy and variance spectra do not coincide.

1 Introduction and background
One of the key challenges in uncertainty quantification of dynamical systems [11, 18, 19] and data assimilation
[17, 24, 7] is to construct a surrogate model that allows one to accurately and efficiently predict the evolution
of the low-order statistics under perturbation of model parameters (e.g., additional forces) and initial conditions.
Computationally, how uncertainty propagates in dynamical systems is usually characterized by understanding how
the second-order statistics change when the system’s initial conditions and/or parameters are perturbed. Under
mild perturbations and appropriate mathematical conditions, this problem has also been studied in non-equilibrium
statistical mechanics (see e.g. Chapter 7 of [29]). The time evolution of mean and covariance statistics is also
essential in data assimilation. In this application, most algorithms (such as Kalman filtering and its variant)
construct conditional mean and covariance statistics by a Bayesian formula that updates these low-order statistics
to account for the newly measured observations. Subsequently, the resulting conditional statistics are fed into the
dynamical model as initial conditions for predicting the state with the mean and uncertainty characterized by the
covariance statistics.

An expensive method to compute these statistics is to employ a Monte-Carlo simulation. This approach involves
solving an ensemble of solutions for the dynamical systems and using these solutions to empirically estimate the
statistics of interest. In the data assimilation context, such an idea has been realized by the well-known Ensemble
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Kalman Filter algorithm [3]. With the Monte-Carlo approach, the computational cost is determined by the com-
plexity of integrating the dynamical system multiplying the ensemble size. One known issue with such an approach
is that the ensemble size required to maintain the desired accuracy will grow exponentially as a function of the
state-spaced dimension. This issue poses major computational challenge when online statistical predictions under
new initial conditions and forces are needed in uncertainty quantification and data assimilation applications. The
approach adopted in this paper is to construct a reduced-order model to accurately predict the evolution of the low-
order statistics, where an offline machine learning algorithm is employed to emulate the feedback from higher-order
statistical moments.

While the proposed formulation here is applicable to any complex spatially extended nonlinear dynamical sys-
tems, it is also closely related to a long-standing moment closure problem of turbulent dynamical systems that has
been widely studied in many fields of science and engineering [12, 25, 23]. This serendipity motivates us to present
the formulation on a specific class of nonlinear dynamical system, where the moment interactions are induced by
a bilinear quadratic form that is typically inherited from a discretization (or spectral projection) of nonlinear ad-
vection in fluid dynamical models, such as in the Navier-Stokes and Burger’s equations, and the spatiotemporally
chaotic Kuramoto-Sivashinsky equation. In any nonlinear systems, the moment dynamics is not closed in the sense
that the dynamical equation for each moment depends on the higher-order moments in addition to the lower-order
statistics. This inherent hierarchical structure poses some practical issues especially if one is interested to resolve
at least the first- and second-order moments. Particularly, for a system with N -dimensional state space variables,
while the evolution of the first-order moment is represented by a system of N -dimensional differential equations,
the evolution of the second-order moment is represented by an N × N matrix-valued differential equations that
further depend on components of the unresolved third-order moments of size N ×N ×N .

For the first-order moment closure of turbulent dynamics, machine learning has been used to approximate
the unresolved subgrid scale terms [4, 26, 20]). In fact, for the second-order moment closure problem, machine
learning with Long-Short-Term-Memory (LSTM) architecture has been proposed [22] to emulate the feedback from
the third-order moments. The approach in [22], unfortunately, is restricted to spatially homogeneous statistics.
When the statistics are spatially homogeneous, the mean and variance dynamics can be represented by a (1 +N)-
dimensional system, consisting of the one-dimensional mean variable and N -dimensional variance components since
the non-diagonal entries in the covariance matrix are all zeros. Such a reduced representation, unfortunately, is
invalid in non-homogeneous systems. The work in this paper is to extend the machine learning approach in [22]
to non-homogeneous statistics. In this regime, several issues emerge. Beyond the practical issue of resolving the
N×N non-diagonal covariance matrix, constructing a machine learning model for the feedback from the third-order
moments that preserves the positive-definite covariance remains a challenging task, especially when the covariance
dynamical equation is conditionally unstable due to the quasilinear coupling with the mean state.

To overcome this issue, we propose a reduced-order system of differential equations for the leading-order mean
state and stochastic fluctuations. In this fully coupled statistical-stochastic system, the reduced-order mean dynam-
ics depend on the covariance matrix that is empirically estimated using the ensemble prediction of the fluctuation
terms and the resolved mean state determines the linear stability of the stochastic fluctuation dynamics. Denoting
the resolved state space dimension by K, where K < N , the dynamical equation of the proposed statistical-
stochastic model has the complexity of order K(1 + M), accounting for the K-dimensional vector for the mean
and the M ensemble members of K-dimensional fluctuation equations. While the system can be moderately high-
dimensional, especially if the ensemble size M > K, the unresolved processes to be modeled in this formulation are
only K-dimensional, accounting for the modeling error in the K-dimensional reduced-order mean dynamics and the
unresolved fluxes in the K-dimensional fluctuation dynamics.

For a scalable and accurate statistical prediction on this systematic modeling framework, two issues need to be
addressed. First, internal instability as a common feature in chaotic dynamics often leads to unstable dynamic and
fast divergence of the solution when the data-driven surrogate model is chosen from an arbitrary hypothesis space
(such as the neural-network models) without any dynamical constraints. To overcome this issue, we will impose dy-
namical constraints through a semi-parametric framework with consistent variances, embedding the neural-network
model on a parametric modeling framework proposed in [22, 18]. Second, while the ensemble structure in the
proposed statistical-stochastic system is natural for ensemble prediction and data assimilation, the computational
cost of this fully coupled system K(1 + M) is often too high for accurate learning. In our numerical example, the
state-space dimension is of order 1000 for a K = 14 dimensional reduced-order state variable. In this case, the
standard learning procedure of fitting an empirical loss function that compares the trajectories of these states [8]
may not be numerically feasible since it requires a very large training data set resulting in an enormously expensive
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computational cost . In the Appendix of this paper, we documented that applying such a learning procedure with
a generic neural-network model to identify the unresolved fluxes in the fluctuation dynamics leads to overfitting.
To overcome this issue, we will consider an empirical information metric as a loss function [2] that compares the
response mean and variance statistics. We will show that fitting to the statistical responses corresponding to the
same trajectories that led to overfitting in the standard procedure produces accurate response statistical prediction
subject to new initial conditions and external forces, both in homogeneous and inhomogeneous statistical regimes.

As we already mentioned above, while the approach can be implemented on any spatially extended chaotic
dynamical systems, since the approach is closely related to the moment closure problem, we will present our approach
on nonlinear systems with a bilinear form. Specifically, we will examine the stochastic-statistical formulation of
the Lorenz-96 model [14] which admits the characteristic of the chaotic dynamical systems and can be adjusted to
generate non-trivial inhomogeneous statistics. First, we should point out that the variance spectrum in this system
decays slowly (relative to the Kolmogorov decay in classical turbulence theory) and the corresponding Fourier
modes with large variance spectrum are all unstable. When spatially large-scale disturbances are injected into the
system, while they excite the entire mean energy spectrum and variance spectrum, the changes in the mean energy
spectrum are significantly noticeable in the Fourier modes corresponding to the lower variance spectrum. The
mismatch between modes that have a large mean energy spectrum and those that have a large variance spectrum
makes this system ideal for testing the proposed reduced-order statistical-stochastic framework. Particularly, this
test model would allow us to understand to which extent the reduced ordering can be employed and whether the
internal instability in this system can be overcome with the proposed modeling framework.

The remainder of this paper is organized as follows. In Section 2, we discuss the general statistical-stochastic
closure modeling framework of turbulent dynamical systems. In Section 3, we discuss the proposed machine learning
strategy on a concrete example, the Lorenz-96 model. In Section 4, we discuss the training configuration and present
numerical results for the proposed closure framework, both on homogeneous and inhomogeneous statistical regimes.
In Section 5, we close the paper with a summary. As mentioned in the above discussion, we include an example
demonstrating the difficulty of attaining accurate trajectory prediction on the test dataset using the standard
machine learning procedure in A, which motivates this work.

2 General mathematical formulation for complex systems with uncer-
tainty

In this section, we give a quick overview of a general moment closure formulation for a class of complex nonlinear
systems that is common in natural and engineering problems and formulate an efficient machine learning reduced-
order model. One representative feature that makes the moment closure problem challenging in such complex
systems is the nonlinear energy-conserving interaction that transports energy across scales. The general formulation
of the turbulent dynamical systems can be characterized by the canonical equations of the state variable u ∈ RN
in a high-dimensional phase space,

du

dt
= (L+D) u +B (u,u) + F + σẆ. (1)

On the right hand side of the equation (1), the first two components, (L+D) u, represent linear dispersion and
dissipation effects, where L∗ = −L is an energy-conserving skew-symmetric operator for dispersive effects; andD < 0
is a negative definite operator for dissipations. The nonlinear effect in the dynamical system is introduced through
a quadratic form, B (u,u) [18] that arise in a discretization of the nonlinear advection in fluid mechanics. Besides,
the system is usually subject to time-dependent external forcing effects that are decomposed into a deterministic
component, F (t), and a stochastic component represented by a Gaussian random process, σ (t) Ẇ (t;ω). It needs
to be emphasized that in many situations F might be spatially inhomogeneous, and thus, introduce anisotropic
structures into the system.

One way to characterize the effect of internal instabilities and the uncertainties from the initial state and
forcing in the turbulent system (1) is through a statistical description for the time evolution of the moment of
the state variable u. While in principle the dynamical equations of the statistical moments follow the backward-
Kolmogorov PDE (which is the L2 adjoint of the Fokker-Planck equation that characterizes the evolution of the
density function p(u, t)), it remains challenging to computationally solve such a PDE, especially when state space
dimension, N , is large. The Monte-Carlo approach [13, 27], which uses an ensemble of solutions of (1) subjected

3



to initial and forcing perturbations, provides an alternative means to quantify the essential statistics that quantify
the uncertainties through empirical ensemble averages.

2.1 The exact formulation for statistical mean and stochastic fluctuation interactions
Despite its simplicity, a direct ensemble forecast obtained from integrating the original model (1) has several
difficulties in accurately recovering the key model statistics in a high dimensional space. First, the ensemble
size required to maintain the accuracy will grow exponentially in direct ensemble simulation of the full model as
the dimension of the system increases. This requirement may not be computationally desirable, especially when
online predictions under new initial conditions and forces are needed, and subsequently motivates the need for
reduced-order modeling. On the other hand, turbulent systems often contain strong internal instability and mixed
spatio-temporal structures. These features pose some computational challenges for developing effective reduced-
order models directly under the original model formulation, especially when the reference dynamical system is
nonlinear and non-Gaussian.

To address these difficulties, we introduce a statistical-stochastic decomposition of the model state u, so that
the mean-fluctuation interactions can be identified. Efficient model reduction strategies will be proposed where
data-driven components can be introduced naturally to account for the unresolved fluctuation interactions. To
achieve this, we view the model state u as a random field and project it onto the composition of a statistical mean
and stochastic fluctuations in a finite-dimensional representation under a suitable orthonormal basis {ei}Ni=1 as,

u (t;ω) = ū(t) + u′(t;ω) = ū (t) +

N∑
i=1

Zi (t;ω) ei, (2)

where ū (t) = 〈u (t)〉 (here and after, we use 〈·〉 to denote the statistical expectation about the PDF p (u, t)),
represents the statistical expectation of the model state, i.e. the mean field; and {Zi (t;ω)} as the mean-zero
stochastic coefficients measuring the uncertainty in fluctuation processes u′ along each eigenmode direction ei. The
statistical uncertainty among the fluctuation modes can be characterized by the covariance between the stochastic
modes.

By taking the statistical (ensemble) average over the original equation (1) and using the mean-fluctuation
decomposition (2), the evolution equation of the statistical mean state ū is given by the following dynamical equation,

dū

dt
= (L+D) ū +B (ū, ū) +

N∑
i,j=1

RijB (ei, ej) + F, (3)

where R := 〈ZZ∗〉 denotes the second-order covariance matrix of the stochastic coefficients Z = {Zi}Ni=1. The
term B (ū, ū) represents the nonlinear interactions between the mean state, and RijB (ei, ej) is the higher-order
feedback from the fluctuation modes to the mean state dynamics. Next, by projecting the above equation (1) to
each orthonormal basis element ei we obtain the evolution equation for the stochastic fluctuation coefficients,

dZi
dt

=

N∑
j=1

Aij (ū)Zj +

N∑
m,n=1

γimn (ZmZ
∗
n −Rmn) + σẆ · ei, (4)

where Aij (ū) = [(L+D) ej +B (ū, ej) +B (ej , ū)] · ei characterizes the quasilinear coupling between the mean
state ū and the fluctuations u′ =

∑
i Ziei. The interactions between the fluctuation modes of different scales are

summarized in the second term on the right hand side of (4) with the coupling coefficient γimn = B (em, en) · ei.
Alternatively, from the stochastic equation (4) we directly obtain the exact evolution equation of the covariance
matrix R,

dR

dt
= A (ū)R+RA∗ (ū) +QF +Qσ, (5)

where A (ū) is the same quasilinear operator from (4) containing instability represented by its positive eigenvalues,
while QF is the nonlinear energy flux, which includes all the third moments 〈ZmZnZi〉 feedback to balance the
the unstable linear growth. The term Qσ,kl =

∑
m (ek · σm) (σm · el) is the contribution from the unresolved white

noise forcing. Detailed expression for the equation (5) can be found in [18].
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As a further remark on this mean-fluctuation formulation of the original system, we could use either the stochastic
equation (4) or the equivalent statistical covariance equation (5) to model the uncertainty in each fluctuation mode
ei. In fact, a data-driven statistical closure model combining (3) and (5) has been developed in [22] to effectively
capture the leading-order statistical responses in mean and variance of homogeneous turbulent dynamics. On the
other hand, the statistical-stochastic formulation using (3) and (4) enjoys the advantage of more flexibility to run
ensemble forecasts for both uncertainty quantification and data assimilation, and compute statistical quantities
other than the covariance. In addition, this statistical-stochastic model can naturally estimate inhomogeneous
statistics and avoids the main issue with the purely statistical formulation in (3), (5) in preserving the positive-
definite covariance estimation.

2.2 A generic statistical-stochastic closure model for mean and variance statistics
Now, we present the main idea in the efficient combined statistical-stochastic model to effectively capture the central
statistical features. To effectively reduce the computational cost in finding the solution of high dimensional phase
space, we introduce a proper low wavenumber truncation so that only the most important leading modes in the
subset I (for example, the subset I can be taken to include the most energetic modes ei in the projection (2) with
the largest mean energy and/or variances) are resolved, that is,

uI = ūI +
∑
i∈I

Ziei, (6)

where ūI = PrIū =
∑
i∈I ūiei is a low-dimensional representation of the mean state and Zi denotes the stochastic

coefficients corresponding to the low-dimensional subset of the full state space |I| = K � N . Inspecting the coupling
terms in the true dynamics (3) and (4), several difficulties will emerge for accurate modeling of the detailed coupling
mechanisms in the constrained reduced-order representation (6). First, the high-order nonlinear coupling terms in
the mean and fluctuation equations consist of a multiscale interaction of modes along the entire spectrum, while
we only have access to a subset I of the resolved mean and fluctuation modes. Second, inherent instability in the
fluctuation modes Zi due to the quasilinear coupling with ū through Aij (ū) poses challenge in constructing a
stable dynamical model that can accurately predict the statistical responses to various perturbations. Third, the
fluctuation components Zi are stochastic processes coupled to the statistical mean equation, making direct modeling
of the random trajectories very expensive.

2.2.1 Effective closure equations for the mean and fluctuations

First, we introduce the reduced statistical mean equation by projecting the full equation (3) to the resolved low-
dimensional subspace

dūI

dt
= (L+D) ūI + PrIB

(
ūI , ūI

)
+
∑
i,j∈I

RijPrIB (ei, ej) + FI + Θm. (7)

In the above equation, only the projected dynamics in the reduced subspace are resolved. Here, the unresolved
mean feedback that we denoted as Θm accounts for the residual (or truncation error) induced by the projection,
namely the difference between the right hand side of the full model in (3) and the first three resolved components in
the right-hand-side of (7). Various statistical closure strategies have been developed [18, 16] using the parametric
approximation of the unresolved structures. In this paper, we aim to design a machine learning scheme to identify
this unresolved process directly from data.

Second, we consider the stochastic closure for the fluctuation equation (4). Again we concentrate on modes in
the subset I as in (6). Let ZI = PrIZ =

{
Zi
}
i∈I be the vector of the resolved fluctuation modes. Similar to

the statistical mean closure (7), we propose to construct a projected dynamical model for the resolved modes and
learn the unresolved feedback with a properly designed data-driven model. Specifically, the resulting reduced-order
fluctuation equation for the stochastic coefficients Z becomes

dZI

dt
= A

(
ūI
)
ZI + σẆI + Θv, (8)

where Θv denotes the residual induced by the projection, namely the difference between the right hand side of the
full model in (5) and the first two resolved components in the right-hand-side of (8).
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Notice that the quasilinear coefficient Aij (ū) = [(L+D) ej +B (ū, ej) +B (ej , ū)] · ei for i, j ∈ I includes the
mean-fluctuation interaction leading to inherent internal instability for turbulent dynamics (that is, with positive
eigenvalues in A (ū)). While this linear instability is suppressed in the full model by the second term in (4), or
equivalently by QF in (5), dynamical instability can occur in the reduced-order model, especially when the term
Θv is numerically approximated with an arbitrary class of hypothesis models. To construct a stable approximate
dynamical equation that can suppress instability induced by the marginally stable dynamics in (8), we introduce a
more detailed parameterization for the unresolved process as

Θv = −DZI + Σ
˙̃

W, (9)

where the white noises ˙̃
W are independent to Ẇ. Here, D and Σ are coefficient matrices to be approximated (see

(12) below). In (9), the parameters D and Σ are introduced to play the equivalent role as the nonlinear flux term
QF in the corresponding statistical equation (5): the parameter D is introduced to act as the equivalent damping
suppressing the unstable positive growth rate, while the parameter Σ is to account for the energy source from
the nonlinear exchange of energy. The effective decomposition in (9) generalizes the idea in the statistical closure
model for nonlinear energy mechanism [22, 18]. Here, effective parameters D,Σ will be constructed by fitting to the
consistent covariance statistics. Applying Itô’s lemma to f(ZI) = 1

2ZI(ZI)∗ and taking expectation, we obtain,

dRI

dt
= A

(
ūI
)
RI +RIA∗

(
ūI
)

+QIσ +QIF ,

where RI =
〈
ZI(ZI)∗

〉
is the covariance matrix of the resolved fluctuation modes, and QIF is the nonlinear flux

induced by the coupling from different stochastic coefficients and the truncation error. When Θv is parameterized
by (9), the Itô’s lemma for the flux parameterization is given by,

QIF = −DRI −RID∗ + ΣΣ∗. (10)

While such a choice of parameterization is ideal, it is difficult to numerically find D and Σ that satisfy (10) as the
covariance RI is a time-dependent variable. To avoid such a practical issue, we consider fitting to the stationary
(equilibrium) statistics,

QIF ≈ −D̃RIeq −RIeqD̃∗ + Σ̃Σ̃∗ := Q̃, (11)

where RIeq denotes the stationary covariance statistics of the resolved modes in I that can be empirically estimated.
In the above approximation, we introduced the notations Q̃, D̃, and Σ̃ to denote the approximate model (or pa-
rameterization). The above approximation in (11) is to first enforce equilibrium consistency in the unperturbed
case and then assume the identity is still valid for small perturbations. The approximation in (11) becomes exact
equality at the long-term limit guaranteeing the final convergence to the equilibrium covariance statistics of the
unperturbed dynamics. With this approximation, we can decompose the approximate model into a positive and a
negative definite component Q̃ = (Q̃)+ − (Q̃)−. Then the effective damping and noise matrix can be approximated
accordingly by fitting the negative and positive-definite components, respectively, as

D ≈ D̃ :=
1

2
(Q̃)−(RIeq)−1, ΣΣ∗ ≈ Σ̃(Σ̃)∗ := (Q̃)+. (12)

The above approximation is based on the equivalent roles of the effective damping and noise as discussed above. We
note that the equilibrium covariance matrix RIeq is nonsingular, and a well-conditioned matrix when the variance
is not too small. This motivates the choice of modes in I with large variance energy spectra. When the covariance
matrix is diagonally dominant, we found that a further simplification can be made to avoid the computational
complexity of realizing the matrix factorization above. The general framework above, (7)-(9) with the approximate
coefficients D̃ and Σ̃ in (12), will be implemented on an explicit model next in Section 3 as a concrete example of
the idea.

2.2.2 An ensemble-based statistical and stochastic model

Finally, we need to couple the statistical mean equation (7) and the stochastic equation (8) for the fluctuation modes.
The resolved mean state ūI enters the fluctuation equation (8) through the quasilinear term A

(
ūI
)
. Especially,
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it induces positive growth rate among the unstable modes. Inversely, the statistical mean equation (7) depends on
the covariance feedback from the resolved modes RI , which will be empirically estimated by a Monte-Carlo average
over an ensemble of solutions of the fluctuation equation (8). Denoting the ensemble solutions of the fluctuation
equation (8) as {ZM,(i)}i=1,...,M the second-order moment can be estimated empirically as,

RI =
〈
ZI(ZI)∗

〉
≈ RM :=

1

M − 1

M∑
i=1

ZM,(i)(ZM,(i))∗. (13)

With this empirical estimation, we have the complete general reduced-order statistical-stochastic closure model as,

dūM

dt
= (L+D) ūM + PrIB

(
ūM , ūM

)
+
∑
i,j∈I

RMij PrIB (ei, ej) + FI + Θm

dZM

dt
= A

(
ūM
)
ZM + σẆI −DMZM + ΣM

˙̃
W,

(14)

where Θm is the nonlinear mean feedback defined in (7). The coefficients DM and ΣM will be parameterized
following the approximation in (12),

DM :=
1

2
(QM )−(RIeq)−1, (ΣM )(ΣM )∗ := (QM )+, (15)

where the model QM = (QM )+ − (QM )− approximates QIF is defined to follow (11),

QM := −DMRI −RI(DM )∗ + ΣM (ΣM )∗.

The closure model (14) with parameterization (15) provides a new formulation for the leading order statistics by
combining the statistical mean equation with the stochastic fluctuation dynamics. Subsequently, the data-driven
closure is adopted by fitting the standard Long Short Term Memory (LSTM) models to learn the unresolved terms
Θm and QM . In Section 3, we will provide specific examples of (14) induced by the moment closure of homogeneous
and inhomogeneous turbulence dynamics.

2.2.3 Empirical loss functions based on an information metric

It is important to design a suitable criterion for the loss function that reflects the appropriate quantity of interests,
which are the response mean and variance statistics rather than the individual trajectory of the stochastic fluctu-
ations [28, 6]. In fact, we demonstrate numerically in A that fitting the stochastic components of (14) directly to
the pathwise trajectory of (8) given the true mean ūI often leads to overfitting, thus does not provide accurate
statistical prediction when testing on new inputs. In this context new inputs correspond to new initial values and
forcing perturbations as in the numerical tests. However, fitting to the mean and variance statistical responses
corresponding to the same trajectory solutions (that lead to an overfitted model when trajectory is fitted) produces
a closure model with accurate statistical predictions on new inputs.

A natural way to fit the statistics is to consider the information distance as it allows one to measure the errors
between the probability distributions achieved from the empirical average of the ensemble simulations. Particularly,
we consider the following practical metric based on Kullback-Leibler (KL) divergence [10, 15] of two empirical
measures induced by the response mean and variance statistics of the underlying dynamics in (1) and the reduced-
order model in (14), respectively. The KL divergence offers a balanced calibration between the statistical errors in
the mean and variance. Let δū := ūδ − ūeq and δR := Rδ − Req be the response mean and covariance statistics
of the underlying dynamics in (1) subject to additional damping and forcing of small 0 < δ � 1 perturbation
amplitudes in addition to the reference damping and forcing parameters. Here, the response statistics are defined
as the differences between the time-dependent statistics subject to the additional damping and forces and the
equilibrium statistics, ūeq and Req, corresponding to the solutions with reference damping and forcing that can
be empirically estimated offline by an ensemble simulation of the underlying system in (1). Analogously, we also
define δūM := ūMδ − ūeq and δRM := RMδ − Req as the corresponding statistical responses of the reduced-order
model in (14), where D and FI are perturbed by additional damping and forcing of amplitude δ. Assuming that
the perturbed distributions vary smoothly under parameter δ and denoting diag(R) as the diagonal matrix whose
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diagonal entries are Rk, the KL-divergence between Gaussian measures πδ = N (ūeq + δū, diag(Req + δR)) and
πMδ = N (ueq + δūM , diag(Req + δRM )) can be written as,

KL(πδ, π
M
δ ) = KL(πeq, π

M
eq ) +

1

2

∑
k∈I

R−1eq,k(δūk − δūMk )2 +
1

4

∑
k∈I

R−2eq,k(δRk − δRMk )2 +O(δ3), (16)

where δūk and δūMk denote the k-th component of the mean responses δū and δūM , respectively, and Req,k, δRk,
and δRMk denote the k-th diagonal component of the matrices Req, δR, and δRM , respectively. The choice of fitting
only the diagonal entries of the response statistics is reasonable when the covariance is diagonally dominant with
small non-diagonal entries. In practice, an accurate proxy of the non-diagonal entries of Req may not be available
since such accurate training data may require a simulation with a very large ensemble size especially if the full
model is high-dimensional. So, fitting to inaccurate non-diagonal entries in Req may introduce additional errors. In
Section 4.3, we show that fitting to only the diagonal entries of Req with the following loss function still produces
an accurate estimation for the variance response.

Since KL(πeq, π
M
eq ) = 0 by equilibrium consistency, we propose the following loss function,

L(θ) =

T∑
j=1

(
1

2

∑
k∈I

R−1eq,k(δūk(tj)− δūMk (tj ; θ))
2 +

1

4

∑
k∈I

R−2eq,k(δRk(tj)− δRMk (tj , θ))
2

)
, (17)

which measures the signal and dispersion contribution at discrete time indices {tj = j∆t}j=0,...,T to the discrepancy
of the response mean and variance statistics between the underlying dynamics and the reduced-order model to be
fitted. We specify the loss function to depend on θ, denoting parameters in the class of models used to approximate,
Θm and QM . When a neural-network model is used, then θ corresponds to the neural-network model parameters.

From the classical supervised learning perspective [21], the loss function (17) for the regression problem compares
the real-valued labels,

y := (δūk(tj), δRk(tj) : ∀j ∈ {1, . . . , T}, k ∈ I) , (18)

the statistical responses of the underlying dynamics in (1), to the predicted labels,

yM :=
(
δūMk (tj), δR

M
k (tj) : ∀j ∈ {1, . . . , T}, k ∈ I

)
(19)

the statistical response induced by the reduced-order model in (14). For convenience of the discussion, let us define
the operatorM as yM =M(x), where x denotes the initial conditions of (14) (which will include the appropriate
inputs for Θm and QM ). We will specify the input variable x in Section 3.4 corresponding to a specific reduced-order
model accounting for the inputs of Θm and QM . With this notation, we write the loss function L(θ) := L(θ, y, yM )
to emphasize its dependence on the label (18) and predicted label (19). The supervised machine learning training
corresponds to minimizing the following empirical risk function,

Rn(θ) :=
1

n

n∑
i=1

L(θ, yi, y
M
i ), (20)

which is an empirical average of the loss function over n training data (xi, yi)i=1,...,n. Here, we should emphasize
that yMi =M(xi) is the predicted response statistics (real-valued label) corresponds to the input xi. In Section 3.4,
we will specify the input variable x of a specific example of (14) and provide a pseudo-algorithm to evaluate the
operatorM. In Section 4.1, we will provide more detailed discussion on the generation of training data.

3 Machine learning strategies for modeling unresolved structures with
strong instability

To illustrate the key idea in the data-driven modeling framework to capture leading statistics, we display the
detailed construction of the general model described in Section 2 in a step-by-step fashion on the L-96 system
as one representative example. First, we start with a simpler case only including homogeneous statistics. Then,
the inhomogeneous model is developed by adding additional structures subject to the inhomogeneous damping
and forcing effects. Especially in modeling systems with chaotic dynamics, a crucial issue is to construct stable
approximate dynamical equations that can avoid the inherent instability in the system.
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3.1 Lorenz ’96 system as a representative test model
In this section, we realize the closure modeling approach described in Section 2 on a simple prototypical example that
exhibits a range of statistical features that arose in chaotic dynamics. Particularly, we consider the 40-dimensional
Lorenz ’96 (L-96) system [14] of state variables u = (u1, u2, ..., uN )

> with general spatially inhomogeneous damping
and forcing,

duj
dt

= (uj+1 − uj−2)uj−1 − dj (t)uj + fj (t) , j = 1, · · · , N = 40. (21)

This ODE system is defined with a periodic boundary condition mimicking geophysical weather dynamics on a
midlatitude belt of roughly 32,000 km. The choice of N = 40 grid points corresponds to a spatial discretization of
about 800 km which is the length scale of Rossby radius observed in nature. Various statistical features that reflect
the real observations in nature can be generated by the simple model (21). Especially, inhomogeneous processes
are introduced by the spatially varying damping and forcing effects dj and fj as a generalization to the standard
L-96 model configuration with uniform damping dj ≡ deq = 1 and forcing fj ≡ Feq = 8 (some explicit forms of the
inhomogeneous forcing and damping that we use in our numerical are illustrated in Fig. 4.2 in Section 4). This
will lead to more complicated inhomogeneous statistics in the mean modes as well as the non-zero off-diagonal
covariances. To compare with the abstract form (1), we can write the linear and quadratic operators for L-96
system as

L+D = diag (−d1, · · · ,−dN ) , B (u,v) =
{
u∗i−1 (vi+1 − vi−2)

}N
i=1

and project the state variables onto the Fourier basis ek =
{
ei2πk

l
N

}N
l=1

considering the periodic boundary condition.
We aim to deduce moment closure equations for (21) that include inhomogeneous structures in the statistical

mean and stochastic fluctuation modes. In order to achieve this, we project the general inhomogeneous forcing and
damping as well as the model state onto each spectral mode such that

fj = f̂0 +
∑
k 6=0

f̂ke
i2πk jN , dj = d̂0 +

∑
k 6=0

d̂ke
i2πk jN ,

uj(t, ω) = ūj (t) +
∑
|k|≤N/2

Zk (t;ω) ei2πk
j
N .

(22)

Above, we denote the homogeneous components of the forcing and damping as f̂0 and d̂0, respectively, corre-
sponding to the Fourier mode k = 0. Notice that in the decomposition in (22), the state variable uj = ūj + u′j is
decomposed into the statistical mean ūj and the fluctuations u′j , which is then written as a linear combination of
the fluctuation modes Zk in Fourier coordinates. We will further decompose the mean state into the contributions
of the homogeneous and inhomogeneous terms as,

ūj(t) = û0(t) +
∑
|k|≤N/2

ûk (t) ei2πk
j
N ,

where ûk(t) corresponds to the k-th Fourier mode of the mean ūj . If ūj = ū is spatially homogeneous, then the
zeroth mode û0(t) is precisely the homogeneous mean ū(t). This observation implies that the non-zero Fourier
modes characterize the inhomogeneity of the dynamical processes.

3.1.1 Statistical mean dynamics

Projecting Equation (21) to different spectral modes, we obtain the statistical mean equation for the homogeneous
and inhomogeneous components

dû0
dt

=− d̄û0 −
∑
k 6=0

d0,kûk + f̂0 +
∑
|k|≤N/2

(
|ûk|2 +

〈
|Zk|2

〉)
γk, (23a)

dûk
dt

=−
∑
|m|≤N/2

dk,mûm + f̂k +
∑
|m|≤N/2

(ûmûk−m + 〈ZmZk−m〉) γ∗me−i2π
k
N , (23b)
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with the uniform damping rate d̄ = 1
N

∑
j dj , and the damping coefficients for each inhomogeneous mode dk,m =

1
N

∑
j dje

i2π(m−k) jN = d̂k−m. The nonlinear coupling between different scales is connected by the coefficient γk =

e−i
4πk
N − ei

2πk
N . Notice that the first equation (23a) only contains homogeneous dynamics (no cross-correlation

between different wavenumbers k). In addition to the homogeneous mean mode û0, we also need to compute the
inhomogeneous mean modes ûk if inhomogeneous forcing and damping effects are included.

3.1.2 Stochastic coefficient dynamics

The dynamical equation for the stochastic coefficients can be attained by subtracting the mean dynamics (23) from
the original equation (21) and subsequently projecting it to each spectral mode. Following these steps, we have the
governing equation for the stochastic coefficients Zk as,

dZk
dt

= −
∑
|m|≤N/2

dk,mZm +
∑
|m|≤N/2

µk,mûk−mZm +
∑
|m|≤N/2

(ZmZk−m − 〈ZmZk−m〉) γ∗mei2π
−k
N , (24)

with the coupling coefficient µk,m = ei2π
k−2m
N + ei2π

2m−k
N − ei2πm−2k

N − ei2π−k−m
N . On the right-hand-side of (24),

the first term denotes linear damping, the second term characterizes the coupling through the homogeneous and
inhomogeneous means, and the third term characterizes the nonlinear coupling between the fluctuation modes
between different scales.

For a complete investigation of the energy transferring mechanism subject to linear and nonlinear interactions,
we can also derive the corresponding dynamical equation for the covariance Rkl = 〈ZkZ∗l 〉 according to (5)

dRkl
dt

=− 2d̄Rkm −
(
γ−k + γ∗−k

)
û0Rkl

−
∑
m6=k

(
dk,mRml + d∗l,mRkm

)
+
∑
m6=k

(
µk,mûk−mRml + µ∗l,mû

∗
l−mRkm

)
+
∑
m6=0

〈ZmZk−mZ∗l 〉 γ∗mei2π
−k
N +

〈
Z∗mZ

∗
l−mZk

〉
γme

i2π l
N .

(25)

The homogeneous effects due to damping and mean interaction are summarized in the first row of (25). The
inhomogeneous damping and mean interactions are shown in the second row of (25). Higher-order feedbacks from
the third-order moments with non-Gaussian statistics among all the spectral modes enter the covariance equation
in the third row of (25).

In the following, we describe the step-by-step construction of the data-driven reduced-order model on the L-96
system as a canonical example, following the same reduced modeling approach that is stated for the more abstract
model in (3) and (4) on the particular case (23) and (24).

3.2 Hybrid statistical-stochastic model for homogeneous statistics
We start with the simple model set up with homogeneous damping and forcing, dj := γ, fj := f , in (22) together
with homogeneous initial perturbations u0,j := u0. In this case, the mean and fluctuation equations in (23) and
(24) can be simplified as

dū

dt
= −γū+

∑
k

Rkγk + f, (26a)

dZk
dt

= − (γ + γkū)Zk +
∑
m 6=0

ZmZk−mγ
∗
me

i2π−k
N , (26b)

with γk = e−i
4πk
N − ei 2πkN , ū = û0, d̄ = γ, and Rk := Rkk = 〈ZkZ∗k〉 denotes the variance of the stochastic coefficient

Ẑk (t;ω). Under the homogeneous statistics, the statistical mean state becomes a scalar and the covariance matrix
becomes diagonal, that is,

ūj = ū = û0, ûk := 0, k 6= 0, and Rkl = Rkδkl.
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Figure 3.1: The time evolution of the quasilinear growth rate computed for each spectral mode k of the L-96 model.
Different lines are subject to the initial perturbations described in Section 4.1.

Thus we do not need to consider the inhomogeneous mean equation (23b) involving ûk and the cross-correlations
between different spectral mode 〈ZkZ∗l 〉 , k 6= l. On the other hand, nonlinear dynamics and non-Gaussian statistics
still play a central role due to the strongly coupled feedbacks in equations (26). Different scales are mixed in
the feedbacks with summations over all the wavenumbers. In particular, the system may contain strong internal
instability through the mean-fluctuation interactions. For example, in (23b) strong positive growth rate will occur
when û0 = ū > 0 for modes with Reγk < 0. To illustrate this, we plot in Figure 3.1 the quasilinear growth rate
− (γ + γkū) of each spectral mode in the L-96 model, subject to different initial perturbations (that we will describe
in Section 4.1). Positive value implies instability of the mode. We notice that the instabilities occur on a wide
range of modes depending on the initial value perturbations and their intermittent occurences create a practical
challenge for learning a dynamically stable model and accurate prediction of model statistics.

3.2.1 Direct modeling of the unresolved feedbacks

Using the hybrid statistical-stochastic model (26), it requires the computation of the statistical expectation Rk =
〈ZkZ∗k〉 for the mean equation (26a) from the solution of the stochastic equation (26b). In practice, this can be
achieved by ensemble simulation of the stochastic coefficients Zi. With the ensemble approximation in (13), the
analog of the closure model in (14) in this example for the homogeneous case is given by:

dūM

dt
= −γūM +

∑
k∈I

(
1

M − 1

M∑
i=1

Z
M,(i)
k (Z

M,(i)
k )∗

)
γk + Θm + f,

dZ
M,(i)
k

dt
= −

(
γ + γkū

M
)
Z
M,(i)
k + Θv

k, k ∈ I, i = 1, · · · ,M.

(27)

In (27), ZM,(i) = (Z
M,(i)
k ), k ∈ I, i = 1, · · · ,M is each (independent) ensemble member in the ensemble simulation

of the fluctuation equations, I is the set containing the resolved fluctuation modes corresponding to the largest
variances. Its statistical feedback in the mean equation is approximated by the empirical ensemble average in (13).

In the above model, we consider I to include modes with largest variances but still only accounting for a small
portion of the total energy (that is, k = 7 − 13, see Figure 3.2(a)) so that the leading order dynamics can be
replicated. The resolved fluctuations provide the explicit variance feedback and nonlinear coupling in the mean
and fluctuation equations, whereas the data-driven component behaves as a higher-order correction. Comparing
the reduced-order model (27) with the full exact model (26), the process Θm models the variance feedback to the
mean dynamics among all the unresolved small-scale modes k ∈ {−N/2 + 1, . . . , N/2}\I. In addition, Θm also
accounts for the approximation error in the resolved variances from the empirical ensemble average from a finite
sample size, M . In the stochastic equations for ZMk , the model Θv

k approximates the total contribution from the
nonlinear coupling among all the fluctuation modes.
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3.2.2 Stable dynamical equations with effective damping and noise

First, to overcome the instabilities occurring on unstable modes, where γ + γkū < 0 (see Fig. 3.1), we follow the
strategy discussed in Section 2.2.1. Next, instead of an extensive pointwise calibration of each stochastic trajectory
of Z(i)

k , we propose to only measure the error in the ensemble statistics discussed in Section 2.2.2, so that the high
computational cost in training is effectively avoided while the statistical accuracy is also maintained. Notice that
for the homogeneous case, the dynamical equation for the covariance matrix R in (5) can be simplified. Particularly,
R only has nontrivial diagonal components Rk that satisfied,

dRk
dt

= −2γRk − (γk + γ∗k) ūRk +QF,k, (28)

where QF is a diagonal matrix for the high-order statistical nonlinear fluxes.
In this homogeneous case, the proposed statistical-stochastic model in (14) is simplified to,

dūM

dt
= −γūM +

∑
k∈I

(
1

M − 1

M∑
i=1

Z
M,(i)
k (Z

M,(i)
k )∗

)
γk + Θm + f,

dZ
M,(i)
k

dt
= −

(
γ + γkū

M
)
Z
M,(i)
k −DM

k Z
M,(i)
k + ΣMk Ẇ

(i)
k , k ∈ I, i = 1, · · · ,M,

(29)

where Dk and Σk are parameterized as in (15).

DM
k = −

min
{
QMk , 0

}
2Req,k

,

ΣMk =
√

max
{
QMk , 0

}
.

(30)

We should point out that the component-wise decomposition (30) is only possible since the statistics is homogeneous,
and thus, avoiding an expensive matrix decomposition to identify the positive and negative definite components,
(QM )+ and (QM )−, respectively, that satisfy QM := (QM )+ − (QM )− for non-diagonal matrix QM .

In section 3.4, we will specify the class of machine learning models to identify Θm
k and QMk in terms of time delay

embedding of these variables, respectively, in addition to the time delay embedding of the mean and variance. Before
discussing this, we consider a slight modification to the closure model above to accommodate for inhomogeneous
statistics in the next section.

3.3 The statistical-stochastic model for inhomogeneous statistics
Next, we consider to predict the mean and variance responses under a more general case with inhomogeneous
statistics introduced by spatially inhomogeneous forcing and initial perturbations. For this case, we have the
additional observations for the inhomogeneous equations (23) and (24):

• The homogeneous mean state ū = û0 is subject to feedbacks from not only the variances Rk (as in the
homogeneous case), but also the energy in the inhomogeneous mean states |ûk|2;

• The inhomogeneous mean modes ûk are subject to the cross interactions between the mean states û0ûk and
the cross-covariances 〈ZkZ0〉;

• The stochastic coefficients Zk are subject to the cross interactions between the mean and the fluctuation
modes as well as the nonlinear coupling between different wavenumber modes.

In the inhomogeneous case, it is expensive to resolve the cross interaction terms between the entire spectrum. In
Figure 3.2, we plot the typical spectra for the mean and variance under several different inhomogeneous perturba-
tions. First, we should point out that the homogeneous mean û0 and variance Rk for 7 ≤ k ≤ 13 are still dominant
under various inhomogeneous forces. While including these non-trivial modes in I is sufficient for homogeneous
modeling, excluding other modes (such as 1 ≤ k ≤ 6) whose mean energy spectra are significantly increased under
inhomogeneous forces will produce a poor statistical recovery. In general, the reduced model should include modes
that are significantly excited by the inhomogeneous perturbations, which makes the modeling choice slightly more
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Figure 3.2: Equilibrium statistics of the L-96 model with inhomogeneous perturbations. First row: equilibrium
spectra of energy in the mean and variance covariance (unperturbed homogeneous case in dashed line). Second
row: the equilibrium covariance under several inhomogeneous forcing and damping effects.

complicated than that of the homogeneous case. From Figure 3.2(b), we also notice that the covariance matrices
of the perturbed dynamics are diagonally banded with the detailed structure depending crucially on the pertur-
bations. While the non-diagonal components are non-negligible, they are much smaller compared to the diagonal
components. This scale separation poses an additional computational challenge for an accurate estimation of the
non-diagonal covariance components, which is crucial for stable modeling of the inhomogeneous components as
shown in (23b).

Given these statistical features, we consider a diagonal closure model for the feedback from the higher-order
moments, measuring only the statistics in the inhomogeneous mean and diagonal variances. Particularly, we consider
the dynamical closure equations for the homogeneous mean û0, inhomogeneous mean ûk, and the fluctuation modes
Zk corresponding to the resolved subset k ∈ I as follows:

dûM0
dt

=−
∑
j∈I

d0,j û
M
j + f̄ +

∑
k∈I

(∣∣ûMk ∣∣2 +RMk

)
γk + Θm

0 ,

dûMk
dt

=−
∑
`∈I

dk,`û
M
` + f̂k − γkûM0 ûMk + Θm

k ,

dZ
M,(i)
k

dt
=−

∑
`∈I

dk,`Z
M,(i)
` − γkûM0 Z

M,(i)
k −DM

k Z
M,(i)
k + ΣMk Ẇ

(i)
k ,

(31)

which is an example of (14). Here dk,m are defined as in (23a)-(23b). The variance feedback RMk in the mean
equation is defined as the diagonal component of (13) attained with M samples. Also, the feedbacks from the non-
diagonal covariance entries are not computed explicitly in the second equation in (31) due to their relatively small
amplitudes. Following the homogeneous case, we introduce Θm

0 ,Θ
m
k to account for the truncation error and the

feedbacks in the homogeneous and inhomogeneous mean state from unresolved small-scale processes. The stabilizing
decomposition for effective damping DM

k and noise ΣMk is constructed exactly as in (30), except that the model QMk
in (30) is fitted to the higher-order statistical flux QF,k induced by the inhomogeneous dynamics for the variance
component,

dRk
dt

= −
∑
m∈I

(
dk,mRmk + d∗k,mRkm

)
− (γk + γ∗k) ūRk +QF,k, (32)

replacing (28) of the homogeneous case. In this diagonal closure modeling, we should point out that the element-wise
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decomposition (30) can still be performed and thus avoiding the matrix decomposition QM := (QM )+− (QM )− for
non-diagonal case.

In this inhomogeneous model, we make a final remark that the proposed closure QMk is to account for modeling
error induced by: i) the higher-order moment feedback to the variance; ii) the variances of the unresolved modes
k ∈ Ic; and iii) the neglected cross-covariances Rk`, k 6= ` that are not explicitly computed in the model. In
Section 4, we will empirically show that the proposed diagonal reduced-order model, which is numerically efficient,
does not introduce significant error to the prediction of the mean and variance statistics.
An extension from the previous work. In the previous work where only modeling homogeneous dynamics is
considered [22], in addition to not having non-homogeneous mean modes, {ûk}k∈I,k 6=0, we also employed a closure
to the diagonal model for Rk in (28). In that work, we employed the same fitting as in (30) to QF,k ≈ QMk , and
considered the following closure model for the variance dynamics,

dRMk
dt

= −2γRMk − (γk + γ∗k) ūRMk − 2DM
k R

M
k + (ΣMk )2. (33)

Compare to the dynamics of ZM,(i)
k in (31), the diagonal model in (33) does not capture the feedback from different

modes through
∑
`∈I dk,`Z

M,(i)
` in (31). The current approach with (31) is analogous to extending the previous

approach in (33) to include the non-diagonal second-order statistical interactions. Indeed, one can see that in the
limit of large ensemble size, the covariance dynamics of (31) is identical to that achieved by imposing the diagonal
closure in (30) to approximate the third-order moments in (32),

dRkl
dt

=− 2d̄Rkm −
(
γ−k + γ∗−k

)
û0Rkl

−
∑
m6=k

(
dk,mRml + d∗l,mRkm

)
+
∑
m6=k

(
µk,mûk−mRml + µ∗l,mû

∗
l−mRkm

)
+ (−2DM

k R
M
k + (ΣMk )2)δkl.

(34)

While one can use this closure model for Rkl, we choose to consider the fluctuation dynamics for ZMk for the
following reasons. First, the closure model for the fluctuation components allows one to estimate statistics other than
covariance RI , whenever improved parameterization of the unresolved feedback from higher-order moments becomes
available. Second, using the ensemble approach, the empirical estimate of the covariance is always symmetric and
positive. While this may not pose any serious issue with the current diagonal closure in (34) provided the K ×K
covariance dynamics is numerically integrated with an adequate ODE solver and time step, preserving the symmetry
can be challenging when more non-diagonal parameterization model QM becomes available. Third, we note that
the fluctuation dynamics in (31) consists of an ensemble of independent K−dimensional model for {ZM,(i)

k }k∈I .
This independent structure allows one to employ a parallel computation for each ensemble member in the model
integration to reduce the time complexity when M > K, and possibly be faster than directly integrating the fully
coupled K ×K system in (34). Particularly, parallel computing will be natural when the neural-network model for
QMk is employed on a GPU cluster.

3.4 Neural network model for the unresolved processes
To parameterize

{
Θm, QMk

}
in (29) or

{
Θm

0 ,Θ
m
k , Q

M
k

}
in (31), we consider using a non-Markovian closure model to

learn these terms, following our previous works in modeling variance closure [22] and trajectory of partially observed
discrete-time ergodic Markov chain [8]. While such a general formulation can be theoretically justified in the context
of predicting time-evolution of state variables (using the discrete Mori-Zwanzig representation and the time delay
Taken’s embedding theory [8, 5]), the dimension of the theoretically justifiable observable in the current application
is too high for a numerically tractable implementation. Particularly, for the statistical-stochastic models in (29)
accountingM ensemble members, identifying a model ofK = |I| variables that depends on L-time delay corresponds
to estimating a map with (MK + 1)L variables, which is a very high-dimensional estimation problem since M � 1
is needed for reasonably accurate ensemble estimations. Rather than learning the entire complicated dynamical
processes, we identify the input of the non-Markovian map to reflect some explicit expression of

{
Θm

0 ,Θ
m
k , Q

M
k

}
as

reported in (23) and design the neural network only to learn these unresolved processes. Particularly, since these
variables are ultimately functions of the statistical quantities, we will identify them as time delay mappings of the
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mean and variances of the resolved components in addition to the time-delay of the variable of interest, neglecting
their dependence on the smaller non-diagonal covariance components.

Following the work in [22], we will consider the class of residual network with vanilla LSTM architecture [9].
For the homogeneous model, the correction terms in both the mean equation (26a) and the fluctuation equations
(26b) are approximated by a neural network with residual structure,

Θm (t`+1) = Θm (t`) + LSTMm (ū (t`−L:`) , {Rk (t`−L:`)} ,Θm (t`−L:`) ; θ) ,

QMk (t`+1) = QMk (t`) + LSTMv
k

(
ū (t`−L:`) , {Rk (t`−L:`)} ,

{
QMk (t`−L:`)

}
; θ
)
,

(35)

where we have used the notation a(t`−L:`) :=
(
a(t`−L), a(t`−L+1), a(t`)) for any dependent variable a and θ to

denote the parameters in the LSTM network. Notice that the right-hand-sides of both equations in (35) are
(2K + 1)L dimensional maps, independent of the ensemble size M . For the inhomogeneous case, the unresolved
model parameters

{
Θm

0 ,Θ
m
k , Q

M
k

}
can also be learned directly by fitting the LSTM neural networks with analogous

residual structure, that is,

Θm
0 (t`+1) = Θm

0 (t`) + LSTMm
0 [ū (t`−L:`) , {ûk (t`−L:`)} , {Rk (tl−m:l)} ,Θm

0 (t`−L:`) ; θ] ,

Θm
k (t`+1) = Θm

k (t`) + LSTMm
k [ū (t`−L:`) , {ûk (t`−L:`)} , {Rk (t`−L:`)} , {Θm

k (t`−L:`)} ; θ] ,

QMk (t`+1) = QMk (t`) + LSTMv
k [ū (t`−L:`) , {ûk (t`−L:`)} , {Rk (t`−L:`)} , {Qvk (t`−L:`)} ; θ] .

(36)

We should point that since the non-diagonal terms in the covariance are small relative to the diagonal components,
we only include the variance components as inputs, and thus, arrive at a problem of estimating time delay embedding
maps with (3K + 1)L variables.

The LSTM model parameters, θ, are attained by minimizing the empirical risk in (20) defined by averaging
the loss function L(θ, yi, y

M
i ) on n training samples of (xi, yi)

n
i=1, where xi takes in the sequences of input data

ū, ûk, Rk and yMi = M(xi) gives the LSTM output. In the following pseudo-code, we provide the computational
steps for evaluating yM =M(x), where the input x corresponding to the statistical-stochastic reduced-order model
in (31) is also stated precisely. We remark that similar pseudo-code is used for the homogeneous case, where the
reduced-order model in (31) is replaced with (29) and the LSTM closure models in (36) is replaced with (35). In
the homogeneous case, the input x does not have {ûk}k∈I .

4 Predicting leading-order statistics of the L-96 system
In this section, we numerically validate the prediction skill of the proposed reduced-order statistical-stochastic
models to recover the leading-order statistics on different statistical structures in the L-96 system. In particular,
we consider two representative regimes, generating homogeneous and inhomogeneous statistics. The homogeneous
regime provides a simpler test case for validating the proposed algorithm on chaotic complex systems with strong
instability and non-Gaussian statistics. The inhomogeneous regime serves as a more challenging problem induced
by nonlinear spatio-temporal interactions and non-zero cross-correlations. We organize the section as follows: First,
we report the experiment configuration and the training data generation in Section 4.1. Then, we report the results
for the homogeneous and inhomogeneous cases in Sections 4.2 and 4.3, respectively.

4.1 Model configuration and training dataset for the L-96 system
To generate the training data (or the label y in (18)), we first integrate the L-96 system under homogeneous
reference forcing Fref = 8 and damping dref = 1. The equation is integrated using the 4th-order Runge-Kutta
scheme with a small time step dt = 0.001, and the data is subsequently sampled at every 10 steps. Thus we have
the data sampling step ∆t = 0.01. The use of larger sampling step size, while introduce additional numerical
discretization, is to reflect the practical situation when frequent measurements are not often available, especially
if efficient numerical integration with larger time step is used. Subsequently, we compute the empirical mean and
variance ūeq and Req,k, over these discrete time realizations.

To produce a unified training data set independent of the particular forcing and damping perturbations, we
sample the transient state statistics from only an initial perturbation of the ensemble samples of the following form

u(i) := αūeq +
√
β
(
u
(i)
ref − ūeq

)
, i = 1, . . .M = 500, (37)
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Algorithm 1 Evaluating the label yM =M(x, θ) corresponds to the reduced-order statistical-stochastic model.

Input: x consists of û0, ûk, Rk at time t−L, . . . , t0 and Z(i)
k at time t0, where ∆t = t` − t`−1 for all k ∈ I and

i = 1, . . . ,M . (θ denotes the parameters in the LSTM model.)
Output: yM consists of δûM0 , δûMk , δR

M
k for all k ∈ I at times t1, . . . , tT .

Require: ` = 1, T > 0
while ` < T do

• Compute the unresolved fluxes Θm
0 ,Θ

m
k , Q

M
k at t = t` for the mean and variance using the LSTM model in

(35) or (36), evaluated at the input parameter value θ, with the time-delay inputs from the previous L time
steps;

• Evaluate the perturbed mean states ûMδ,0, û
M
δ,k at time t` using the mean models (the first two equations

in (31)). Subsequently, we attain the response mean statistics δûM0 (t`) := ûMδ,0(t`) − ûeq,0 and δûMk (t`) :=

ûMδ,k(t`)− ûeq,k, where ûeq,0, ûeq,k are the reference equilibrium mean;

• Update the effective damping and noise DM
k ,Σ

M
k at time t` using the decomposition in (30) of the statistical

flux model QMk (t`);

• Update the stochastic coefficients ZM,(i)
δ,k (t`) by solving the third equation in (31) for each ensemble member

with the effective damping and noise corrections.

• Compute the empirical variances of the perturbed coefficients, RMδ,k(t`) = 1
M−1

∑M
i=1 Z

M,(i)
δ,k (t`)(Z

M,(i)
δ,k (t`))

∗.
Subsequently, compute the response variance δRMk (t`) := RMδ,k(t`)−Req,k, where Req,k denotes the equilib-
rium variance of the unperturbed system;

• Update ` = `+ 1;

end while

where {u(i)
ref}i=1,...,M denotes a set of M = 500 samples randomly drawn from a long discrete trajectory of solutions

of the L-96 system corresponding to the reference damping and forcing Fref , dref . New initial ensembles are generated
by perturbing the mean through the parameter α and the variance through the parameter β. Figure 4.1 plots several
realizations of the statistical responses for the mean and variance subject to different perturbation parameters α, β.
The converging trajectories of the mean and variance also illustrate the decorrelation time that characterizes the
mixing rate of the states. The solutions will finally converge to the unperturbed equilibrium within the decorrelation
time around T = 1.5, which is a time scale that we expect the prediction skill to be accurate over the testing data.
For training, we will consider 6 different values for each α, β ∈ {0.5, 0.7, 0.9. . . . , 1.5}, resulting to 6×6 = 36 different
initial perturbation cases.

Based on these initial conditions, we have 36 trajectories of transient statistics for the reference systems (see some
of these trajectories in Figure 4.1). To increase the number of training data in the homogeneous case, we consider 4
additional external constant forcings, Fδ = Fref + δF , where δF ∈ {−1,−0.5, 0.5, 1} in addition to reference forcing
with δF = 0. With these additional perturbations, we have 36 × 5 = 180 trajectories of the response mean, δū,
and variance statistics, {δRk}k∈I , at discrete time t` = `∆t ∈ [0, 2]. For training data, we ignore the solutions
beyond 2 time units since most of the statistical quantities at these times are constant. We partition the statistics
on time interval [0, 2] into 10 overlapping sub-intervals, each of time length 1.1 units: [0, 1.1], [0.1, 1.2], . . . , [0.9, 2].
On each sub-interval, since the discrete time step is ∆t = 0.01, we have statistics at 111 data points. Following
the notation in Pseudo-code 1, we label these statistical timeseries as the quantities at t` = −L, . . . , 0, 1, . . . , 10,
with L = 100. We will use the first L + 1 = 101 data points of {u(i)}i=1,...,M , ū and {Rk}k∈I to construct the
input data x. Particularly, we take FFT on ū(t`) ∈ RN to attain û0(t`) and {ûk(t`) : k ∈ I} for ` = −100, . . . , 0.
For the homogeneous case, it is clear that û0 = ū and ûk = 0 when k 6= 0. We also use the decomposition in
(22) on {u(i)(t0)}i=1,...,M to attain an ensemble perturbation {Z(i)

k (t0) : k ∈ I, i = 1, . . . ,M}. This completes the
construction of an input x for each partition. Finally, we take the last 10 data points of δū(t`) and {δRk(t`)}k∈I
at ` = 1, . . . , 10 as the label data y on each partition.

Accounting for the number of sub-interval from the partition, we have a total of n = 36 × 5 × 10 = 1800
training data (xi, yi)i=1,...,n for the homogeneous case. For the inhomogeneous case, we consider 16 different
forcings and dampings, where in each case, the forcing is chosen to be one of the four cases: reference case δf = 0
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Figure 4.1: Statistical responses of the total energy in the mean and the total variance of the L-96 system. Different
lines represent the different amplitudes of mean perturbation α ∈ [0.5, 1.5]. Left: β = 0.5; right: β = 1.5.

or {δfj = 1.5 sin( 2πkj
N )}k=1,2,3 and the damping is one of the four cases: reference damping δd = 0 or {δdj =

0.5 sin(2πkj
N )}k=1,2,3. Effectively, these inhomogeneous forcings and dampings (see Figure 4.2) exerted a single

Fourier mode k = 1, 2 or 3. Applying the same temporal partitioning as in the homogeneous case on each trajectory
of response statistics, we have a total of n = 36× 16× 10 = 5760 training data for the inhomogeneous case.
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d
j
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Figure 4.2: Inhomogeneous forcing and damping perturbations on top of the equilibrium state Feq = 8 and deq = 1.
Perturbations are added to wavenumbers k = 1, 2, 3.

The training procedure is to solve the empirical risk minimization task of (20), where the average is over the
training pairs (xi, yi)i=1,...,n discussed above. In the empirical risk function in (20), the predicted label, yMi =
M(xi, θ) is computed using Pseudocode 1. Computationally, the optimization problem is to find the parameters
θ in the LSTM models in (35) or (36) that is used in the first step of Pseudo-code 1. The hyper-parameters of
the LSTM network are summarized in Table 1. We solve this optimization problem using the stochastic gradient
descent (SGD) algorithm with batch size 1 to minimize the computational cost (as we do not find any advantage
of using larger batch sizes). The learning rate is reduced by 50% at iteration steps 25, 50, and 75. Once the model
is trained, denoting θ∗ as the parameter obtained the from SGD algorithm, we use Pseudocode 1 to evaluate the
response statistics,M(xnewi , θ∗), corresponding to new input xnewi that is not in the training data set.

4.2 Training and prediction of the homogeneous statistical regime
First, we consider the homogeneous perturbation case using uniform perturbations in the forcing F = Feq + δfe0.
Only the most energetic leading modes, I = {k : 6 ≤ |k| ≤ 12}, are resolved in the fluctuation equation for ZMk
(compared to total 40 modes). Here, the target is to predict the homogeneous mean state ū = ūe0 and the diagonal
variance in resolved mode Rk = 1

M−1
∑
i Z

(i)
k (Z

(i)
k )∗ based on the ensemble solutions.

We first show the evolution of the errors during the training iterations in Figure 4.3(a). The first row plots the
values of the empirical risk function (20), where the training errors in the predicted mean, ūM , and variance, RMk ,
are computed based on the empirical average of the ensemble of solutions with training inputs, {xi}ni=1. The neural
network model is trained with 100 repeating epochs and a small number of forwarding steps T = 10. The result
shows that the loss function can be minimized to small values after a much smaller number of iterations (around 40
epochs). Correspondingly, the mean square errors (MSE(f, fM ) = 1

n

∑n
i=1 |fi − fMi |2) of the homogeneous mean ū

and the total variance of resolved modes trRM =
∑
k∈I R

M
k can be both effectively minimized to very small values.
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total training epochs 100

ensemble size 500

SGD batch size 1

initial learning rate 0.001

learning rate reduction at iteration step 25, 50, 75

time step size between two measurements ∆t 0.01

LSTM sequence length L 100

forward prediction steps in training T 10

LSTM hidden state size h 100

Table 1: Hyper-parameters for training the standard Long-Short-Term-Memory (LSTM) neural network model
using stochastic gradient descent (SGD).

This indicates the accurate fitting of both the mean and statistics in the reduced order model. The variance of the
sample errors is also plotted by the shaded area around the lines, which is reduced to negligibly small values. The
decay of training error demonstrates the effectiveness of the training process in reducing the model errors uniformly
among all the training samples. For more detailed comparisons of the training performance, we also plot the training
errors in the neural network outputs of the unresolved flux terms Θm and QMk in (35) that are not directly compared
in the loss function. In this case, we found that the error in Θm, which is not measured directly in the loss function,
decays. On the other hand, the discrepancy between the model constructed flux, QMk , and the statistical flux, QF,k,
actually increases. This is not a surprise since we used the decomposition in (11) to determine DM

k and ΣMk . Recall
that this parameterization uses the equilibrium variance Req,k to avoid the elaborate computational cost induced
by fitting to the more ideal time-dependent variance, Rk, as suggested in (11).

In the forecast stage, the trained model is applied to predict the key statistics under perturbations of initial
conditions that are different from the training input data. We should point out that the model output in the forecast
stage at time ti is the result of iterating the model i steps, thus the model errors are accumulated through these
iterations, and attaining accurate prediction becomes challenging for the unstable modes with a positive growth
rate as illustrated in Figure 3.1. The prediction errors in the mean state and variance from the empirical ensemble
average are plotted in the first row of Figure 4.4. The errors in the test solutions with different perturbations of
initial conditions are compared during the time evolution up to a long time T = 2.5 with 250 iterations (beyond
the decorrelation time Tdecorr ≈ 1.5 of the state). The result suggests that the trained model produces accurate
statistical predictions under various tested perturbations of initial conditions. Particularly, the errors in both mean
and variance in resolved fluctuation modes remain small during the prediction time interval shown. This confirms
the stable model dynamics using the effective damping and forcing introduced in this reduced model.

We also report the prediction skill for the smaller number of samples in the second and third row of Figure 4.4.
Specifically, the prediction errors using smaller ensemble sizes M = 100, 50 are compared using the same model
that is trained with an ensemble of size M = 500. Compared with the larger ensemble case M = 500 in the first
row, the errors begin to grow as the ensemble size decreases. This is expected since the estimated statistics via
ensemble average become less accurate. However, we can still see that the prediction is accurate in most of the test
cases. A more detailed comparison between the statistical predictions of the mean, the trace of the variance, and
the variance of each resolved mode under three forcing perturbations are shown in Figure 4.5. Consistent with the
prediction errors in Figure 4.4, the evolution of the mean and variances starting from three pairs of initial conditions
and forcings is captured accurately when M = 500. When the ensemble size is reduced to M = 100, there is a
slight increase in errors, however, the overall qualitative transient behavior in each resolved mode is still accurately
predicted. When the ensemble size is reduced to M = 50, the performance accuracy varies wildly. Under large
forcing perturbations δF = ±1 (see the first and third columns), the prediction accuracy significantly deteriorates.
Under the reference perturbation with δF = 0 in the second column, the statistics are accurately predicted.
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(a) Errors in mean and total variance during training iterations
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(b) Errors in the unresolved fluxes during training iterations

Figure 4.3: Training errors using the reduced-order model (29) for the homogeneous statistical regime. The first row
shows the evolution of the loss function and MSEs in the predicted mean and variance. The second row compares
the difference between the true flux and the neural network outputs in mean Θm and QMk .

Figure 4.4: Prediction errors using the trained reduced-order model (29) for the homogeneous statistical regime.
MSEs of initial conditions that are different than the training input data (in thin colored lines) in the mean state
and ensemble variance are compared together with the overall average of all the test cases (in thick black line).
Errors using different ensemble sizes M = 500, 100, 50 to recover the statistics are also compared.
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Figure 4.5: Prediction of the statistical mean and variance using the trained reduced-order statistical-stochastic
model for homogeneous statistics. The predictions of the mean and total variance with different ensemble sizes
M = 500, 100, 50 are compared. The first, second and third columns show predictions starting from an initial
condition that does not belong to the training input data under three forcing perturbations δF = −1, 0, 1 that were
used to generate the training data set, respectively.
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Figure 4.6: Training relative entropy loss and MSEs during training iterations of the reduced stochastic model.

4.3 Training and prediction of the inhomogeneous statistical regime
Finally, we consider the model prediction skill in the challenging case induced by inhomogeneous statistics. As we
have discussed in Section 4.1, we train the model using data generated by applying inhomogeneous damping and
forcing on the first three leading modes, which corresponds to spatially periodic forcing and damping corresponding
to these wave numbers as shown in Figure 4.2.

As in the previous section, we first display the training results using the reduced-order model (31) to learn
and recover the inhomogeneous statistics of the perturbed L-96 system. In this inhomogeneous case, the resolved
mean modes include the inhomogeneously forced and damped wavenumbers k = 1, 2, 3, and the resolved fluctuation
modes include still the most energetic ones 6 ≤ |k| ≤ 12. The evolution of the errors during training iterations is
displayed in Figure 4.6. Similar to the homogeneous case, the errors can be effectively minimized within the 100
training epochs in both the homogeneous mean û0 = ū and variance Rk as well as all the inhomogeneous mean
Fourier coefficients ûk. Again, it is useful to notice that the error in the variance feedback QMk actually increases
during the training process. As in the homogeneous case, this discrepancy is due to the use of coefficients DM

k and
ΣMk attained by equilibrium fitting in (30) as a way to realize the decomposition in (11).

Next, we check the long-term prediction of the trained model for capturing the inhomogeneous mean and
variance, starting from new initial conditions that are different from the training input data. As in the homogeneous
case, instead of iterating the model in a small number of steps (10 forward steps) in the training stage, the
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prediction stage iterates the optimized model in 175 steps to achieve prediction up to 1.75 model unit time. The
first row of Figure 4.7 shows the prediction MSEs in the homogeneous and inhomogeneous mean state and resolved
variance under three inhomogeneous forcing and damping cases on wavenumbers k = 1, 2, 3 as in Figure 4.2, for
new perturbations on the initial mean and sample variance as in (37). This is to check the model responses in
leading order statistics subject to the inhomogeneous statistical structures induced by the forcing and damping.
It shows that the trained reduced-order model produces accurate prediction skill on both the homogeneous and
inhomogeneous components among all the different test cases. The next three rows of Figure 4.7 display the detailed
comparison of the true and predicted statistics corresponding to the same initial condition for three different damping
and forcing perturbations (that are imposed to obtain the MSE in the first row). The predicted inhomogeneous
mean state in the first three modes and responses in leading variance mode are also compared in Figure 4.8 for the
three different perturbation cases.

While all previous numerical experiments were focused to capture statistical responses under new initial state
perturbations, we further test the model prediction for mean and variance responses to different external forcing
perturbations. The additional forcing perturbations are exerted on either the homogeneous mean state δf =
0.5 + 1.5 sin(2πj

N ) or the inhomogeneous leading mean modes δf = f1 + f2 + f3, with fk = sin( 2πkj
N ) + cos( 2πkj

N ),
where these additional constant mean forces are not in the training data set. Figure 4.9 shows that the closure
model predicts the statistical responses accurately under these different forcing perturbations.

We should point out that for inhomogeneous cases, the inhomogeneous mean and cross-covariances play an
important role. Thus the the dynamics of covariance in (5) is fully coupled with the inhomogeneous mean modes.
This fact makes accurate dynamical modeling of even just the variance components nontrivial since one has to
account for the interaction with all other modes. In addition, the inherent instability in the dynamical model will
amplify the unavoidable small errors in the neural network output at each time iteration step and accumulate them
in time. Despite these challenging issues, we found that the proposed reduced-order model can accurately predict
the response mean and variance statistics under different initial and forcing perturbations for a long prediction time
beyond the decorrelation time of the states before the error starts to accumulate in time.

5 Summary
In this paper, we proposed a generic statistical-stochastic closure modeling framework for effective ensemble pre-
diction of leading order statistics in complex systems containing strong instability and interactions among different
spatio-temporal scales. The mean dynamics are modeled with a set of statistical equations that represents the
homogeneous and inhomogeneous components subject to external perturbations. The fluctuation dynamics, which
characterize the uncertainty among the multiscale modes, are modeled with a stochastic formulation. The mean
equations are coupled with the covariance matrix that is empirically estimated using the ensemble prediction of
the fluctuation terms. On the other hand, the stability of the fluctuation dynamics depends on the mean state.
Such a formulation guarantees the positive definiteness of the covariance matrix. A reduced-order closure strategy
is formulated to resolve the most energetic mean and variance modes for efficient computation with an ensemble
simulation. Subsequently, machine learning tools are adopted to identify non-Markovian models for the nonlinear
feedback from unresolved processes and imperfect model errors.

To combat instability and allow for a scalable training procedure, we considered a closure model with an
effective damping and noise parameterization of the form (9). Here, the damping coefficients and noise amplitudes
are identified with a non-Markovian model that is designed to be consistent with the unperturbed equilibrium
covariance statistics in the long term. Further diagonal approximation is employed in our numerical examples
where the covariance statistics are diagonally dominant. Finally, efficient training of the neural network model
under limited training dataset is achieved by measuring only the statistical output using an information metric-
based loss function, fitting to the available training response mean and variance statistics. With such a training
procedure, we effectively avoid the usually exhausting process of fitting of a large number of high-dimensional
stochastic trajectories that often leads to overfitting as illustrated in A.

We numerically found that the proposed approach is effective in identifying stable dynamics with accurate
statistical prediction. The dimension of the reduced-order model is of order K (1 +M), where the resolved state
dimension K � N is much smaller than the dimension of the full state, N . Thus, a smaller ensemble size M is
needed to sample the lower dimensional resolved subspace. The skill of the reduced-order statistical-stochastic model
is tested on several statistical regimes of the L-96 system, including the homogeneous and inhomogeneous statistics
produced by exerting different types of forcing and damping perturbations. In the simpler homogeneous case, the
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Figure 4.7: Upper panel: Prediction errors in the homogeneous mean ūM0 , resolved inhomogeneous mean ūMk =∑
k∈I û

M
k and total variance trRM =

∑
k∈I r

M
k with inhomogeneous forcing and damping. Errors with different

initial perturbations are plotted in thin colored lines and the total averaged error is plotted in thick black lines.
Lower panel: Prediction of the homogeneous and resolved inhomogeneous mean, and total resolved variance for the
same initial state perturbation that is not in training data set. Each column corresponds to a specific choice of
damping and forcing that is used to generate the training data set. The true solution is in solid blue line and the
model prediction is in dashed orange line.

trained model showed uniformly high skill in dealing with different perturbations. In this case, the reduced-order
model only resolves the first seven most energetic complex-valued leading Fourier modes. In the inhomogeneous
case, the situation becomes more challenging. Inhomogeneous perturbations exert the mean energy of some Fourier
modes with low variance energy and the covariance becomes non-diagonal although it is still diagonally dominant.
Including three additional Fourier modes corresponding to the largest mean energy in the reduced-order model, we
achieve accurate predictions of the leading mean and variance states on various nontrivial inhomogeneous statistical
regimes and obtain a model that remains stable for at least up to the decorrelation time of the states. However,
we should also point out that there is no guarantee that the present model does not blow up if we keep iterating
for longer times since the closure parameterization ignores the non-diagonal component of QF which may suppress
conditional linear instability.

While the numerical results are encouraging, constructing an improved parameterization that accounts for non-
diagonal components of the unresolved feedback QF that can guarantee stable dynamics for a long time under
various perturbations induced by the learning and the temporal discretization errors remains an open issue. While
finding a stable parameterization for QF is a general problem, we also believe that this issue is related to an open
problem in linear response theory for chaotic dynamical systems. The study of the validity of linear response in [1] is
crucially important to predicting the response at the steady state of the perturbed dynamical system. Particularly,
the main goal of such a study is to check whether the perturbed system has an invariant measure that is smooth
(under appropriate topology) as a function of the parameters that reflect the perturbations. If such a condition is
invalid, then small perturbations induced by the learning error of the approximate closure model will generate a
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Figure 4.8: Detailed prediction results of the statistical mean state in the first three inhomogeneous modes, and
the predicted variance in each resolved mode. The three columns represents 3 typical test cases with different
perturbations.
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Figure 4.9: Prediction of the mean and total resolved variance with external forcing perturbation on the mean
δf = 0.5+1.5 sin(x) (upper) and on the first 3 inhomogeneous modes δf = f1 +f2 +f3 (lower) with inhomogeneous
statistics. The true solution is in solid blue line and the model prediction is in dashed orange line.
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drastic change in the dynamical behavior, and thus, prohibit us to emulate accurate long-time statistics.

Data availability
The codes are written in Python and are available on GitHub (https://github.com/qidigit/non-Markovian-closure-
LSTM).

Acknowledgments
The research of D.Q. was partially supported by the start-up funds and the PCCRC Seed Funding provided by
Purdue University. The research of J.H. was partially supported by the NSF grants DMS-1854299, DMS-2207328,
DMS-2229435, and the ONR grant N00014-22-1-2193.

A Trajectory training and prediction using the direct stochastic model
In this Appendix, we demonstrate the limitation of the standard learning procedure with a loss function that
measures the discrepancies between stochastic trajectories. Since the reduced-order model couples a statistical
quantity that depends on empirical variance of a stochastic fluctuation, fitting trajectories of an entire statistical-
stochastic system (such as (27)) can be numerically demanding, especially when M is large. In the following, we
will conduct an experiment fitting only the stochastic component of (27) by assuming that the time series of the
underlying mean ū is always available for us, and thus, ignoring the error induced by finite ensemble size M in the
mean dynamics. While this scenario is not useful for real-time prediction, we will demonstrate that the standard
machine learning procedure may not produce an effective learning even in such a simple case when the proposed
damping and forcing parameterization in (11) is not used.

Specifically, we parameterize Θv
k in (27) by minimizing an empirical risk defined with the following loss function,

L(θ,ZI ,ZM) :=
∑
k∈I

|Zk − ZMk |2, (A1)

where,

dZMk
dt

= − (γ + γkū)ZMk + Θv
k,

Θv
k(ti+1) = Θv

k(ti) + LSTMm (ū (ti−L:i) , {Rk (ti−L:i)} ,Θv
k (ti−L:i) ; θ) .

(A2)

In this numerical experiment, the input data is

x =
(
ZMk (ti), ū(ti−L:i), Rk(ti−L:i),Θ

v
k(ti−L:i)

)
∈ R(2K+1)L+K .

and output is y = Z ∈ RK . In this homogeneous statistics case, we set I = {k : 6 ≤ |k| ≤ 12} as in Section 4.2, which
results in K = |I| = 14. Setting L = 100 as in Table 1, this learning problem is to find a (2K + 1)L + K = 2914
dimensional map, which is quite high-dimensional. We fit this into the fluctuation coefficients {Zk : k ∈ I}
corresponding to the statistical training data for homogeneous case discussed in Section 4.1. Since we are fitting
each realization of the fluctuation, the size of training data set is n = 1800 × 500, accounting M = 500 ensemble
members.

The training and prediction performance of the direct stochastic model is shown in Figure A1. The loss and
mean square errors (MSEs) in the coefficients Zk and unresolved flux term Θv

k during training iterations are shown
in the first row of Figure A1. It appears that the training is effective with the pointwise errors minimized among all
the trained samples. Then the trained model is tested on both the previous training data and the new prediction
data away from the training set. The predicted trajectories are recurrently updated in time for a large number
of iterations up to a long time T = 3 (300 iterations compared with only 10 iterations in training). The first 6
most energetic stochastic modes Zk are plotted in the second row of Figure A1 in several samples. Testing on
trajectories in the same training set, the predicted solution stays accurate for a while before the solution begins to
diverge in time. Referring to the converging rate in Sec. 4.1, the predicted solutions always begin to diverge around
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the decorrelation time Tdecorr ∼ 1.5 when the autocorrelation decays to zero. This implies the inherent barrier
in training the individual stochastic trajectories beyond the decorrelation time for a turbulent system containing
instability.

More importantly, the trained model fails to predict stochastic trajectories away from the training set. Using
new trajectories that are not included in the training data, the prediction diverges immediately and shows no skill in
capturing the true trajectory. This shows a typical example of overfitting in training a neural network model. In this
specific example, we suspect that the failure can be attributed to combinations of several issues. First, we suspect
that the required amount of data to capture the large degrees of uncertainties in this high-dimensional problem is
much larger than what we used in this experiment. Second, the stochastic components of the dynamical equations
(A2) are all conditionally unstable modes. With this inherent stability, identification of a stable neural-network
modeling becomes a challenging issue, especially if no additional structures are imposed as in our experiments where
the standard LSTM model with the residual structure in (A2) is used. In addition to these issues, the Monte-Carlo
error induced by the empirical average in (13) will amplify difficulties which translates into a numerically expensive
training procedure when the true u is not available in which one has to also learn the unresolved term Θm in (27).

This practical issue motivates the idea of fitting response statistics discussed in Section 2.2.3, especially when
we are mostly interested in the statistical prediction of moments generated by the ensemble averages. As for the
instability issue, we consider the use of damping and forcing parameterization discussed in Section 2.2.1 on the
neural-network models.
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Figure A1: Training and prediction using the direct stochastic model. The first row shows the training iterations of
errors. The second row shows predicted time trajectories of stochastic coefficients Zk in the most energetic modes
k = 7, 8, 9, 10, 11, 12. Several different sample trajectories are compared: the 3 samples on the left using the training
data set and the 3 samples on the right using the new prediction data set. The truth is in solid blue lines while the
model prediction is in dashed orange lines.

25



References
[1] Viviane Baladi. Linear response, or else. arXiv preprint arXiv:1408.2937, 2014.

[2] Nan Chen and Di Qi. A physics-informed data-driven algorithm for ensemble forecast of complex turbulent
systems. arXiv preprint arXiv:2204.08547, 2022.

[3] Geir Evensen. The ensemble kalman filter: Theoretical formulation and practical implementation. Ocean
dynamics, 53:343–367, 2003.

[4] Masataka Gamahara and Yuji Hattori. Searching for turbulence models by artificial neural network. Physical
Review Fluids, 2(5):054604, 2017.

[5] Faheem Gilani, Dimitrios Giannakis, and John Harlim. Kernel-based prediction of non-Markovian time series.
Physica D: Nonlinear Phenomena, 418:132829, 2021.

[6] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep learning. MIT press, 2016.

[7] John Harlim. Model error in data assimilation. In C. Franzke and T. O’Kane, editors, Nonlinear and Stochastic
Climate Dynamics. Cambridge University Press, 2017.

[8] John Harlim, Shixiao W. Jiang, Senwei Liang, and Haizhao Yang. Machine learning for prediction with missing
dynamics. Journal of Computational Physics, page 109922, 2020.

[9] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural Computation, 9(8):1735–1780,
November 1997.

[10] Solomon Kullback. Letter to the editor: The Kullback-Leibler distance. American Statistician, 1987.

[11] Cecil E Leith. Climate response and fluctuation dissipation. Journal of Atmospheric Sciences, 32(10):2022–
2026, 1975.

[12] Marcel Lesieur. Turbulence in fluids: stochastic and numerical modelling, volume 488. Nijhoff Boston, MA,
1987.

[13] Martin Leutbecher and Tim N Palmer. Ensemble forecasting. Journal of computational physics, 227(7):3515–
3539, 2008.

[14] Edward N Lorenz. Predictability: A problem partly solved. In Proc. Seminar on predictability, volume 1, 1996.

[15] Andrew Majda, Rafail V Abramov, and Marcus J Grote. Information theory and stochastics for multiscale
nonlinear systems, volume 25. American Mathematical Soc., 2005.

[16] Andrew J Majda. Introduction to turbulent dynamical systems in complex systems. Springer, 2016.

[17] Andrew J Majda and John Harlim. Filtering complex turbulent systems. Cambridge University Press, 2012.

[18] Andrew J Majda and Di Qi. Strategies for reduced-order models for predicting the statistical responses and
uncertainty quantification in complex turbulent dynamical systems. SIAM Review, 60(3):491–549, 2018.

[19] Andrew J Majda and Di Qi. Linear and nonlinear statistical response theories with prototype applications to
sensitivity analysis and statistical control of complex turbulent dynamical systems. Chaos: An Interdisciplinary
Journal of Nonlinear Science, 29(10):103131, 2019.

[20] Romit Maulik, Omer San, Adil Rasheed, and Prakash Vedula. Subgrid modelling for two-dimensional turbu-
lence using neural networks. Journal of Fluid Mechanics, 858:122–144, 2019.

[21] Mehryar Mohri, Afshin Rostamizadeh, and Ameet Talwalkar. Foundations of machine learning. MIT press,
2018.

[22] Di Qi and John Harlim. Machine learning-based statistical closure models for turbulent dynamical systems.
Philosophical Transactions of the Royal Society A, 380(2229):20210205, 2022.

26



[23] Di Qi and Andrew J Majda. Low-dimensional reduced-order models for statistical response and uncertainty
quantification: Two-layer baroclinic turbulence. Journal of the Atmospheric Sciences, 73(12):4609–4639, 2016.

[24] Sebastian Reich and Colin Cotter. Probabilistic forecasting and Bayesian data assimilation. Cambridge Uni-
versity Press, 2015.

[25] Themistoklis P. Sapsis and Andrew J. Majda. Statistically accurate low-order models for uncertainty quantifi-
cation in turbulent dynamical systems. Proceedings of the National Academy of Sciences, 110(34):13705–13710,
2013.

[26] Anand Pratap Singh, Shivaji Medida, and Karthik Duraisamy. Machine-learning-augmented predictive mod-
eling of turbulent separated flows over airfoils. AIAA journal, 55(7):2215–2227, 2017.

[27] Zoltan Toth and Eugenia Kalnay. Ensemble forecasting at NCEP and the breeding method. Monthly Weather
Review, 125(12):3297–3319, 1997.

[28] Christopher KI Williams and Carl Edward Rasmussen. Gaussian processes for machine learning, volume 2.
MIT press Cambridge, MA, 2006.

[29] Robert Zwanzig. Nonequilibrium statistical mechanics. Oxford university press, 2001.

27


