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This work introduces the “potential vorticity (PV) bucket brigade”, a mechanism for ex-

plaining the resilience of vortex structures in magnetically confined fusion plasmas and

geophysical flows. Drawing parallels with zonal jet formation, we show how inhomoge-

neous patterns of mixing can reinforce, rather than destroy non-zonal flow structure. We

accomplish this through an exact stochastic Lagrangian representation of vorticity trans-

port, together with a near-integrability property which relates coherent flow topology to

fluid relabeling symmetries. We demonstrate these ideas in the context of gradient-driven

magnetized plasma turbulence, though the tools we develop here are model-agnostic and

applicable beyond the system studied here.
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Despite the conception of turbulence as a mixing phenomenon, large-scale coherent flows such

as jets, vortices, and waves are found to coexist with turbulence in a broad range of natural

and engineered systems. Often associated with transport barriers known as Lagrangian coher-

ent structures (LCSs),1 examples of particular interest to this work include Jupiter’s alternating

zonal bands and the coherent vortices within them,2–4 as well as Earth’s jet streams and persis-

tent weather patterns that arise from long-lived meanders known as atmospheric blocking.5,6 In

magnetically confined fusion plasmas, important examples include the sheared E ×B flows that

form in high-confinement-mode (H-mode) plasmas,7 and zonally banded patterns of turbulence

resembling “E ×B staircases” observed in simulations and experiments.8–11

Due to the similarity in form between the magnetic and Coriolis force, strongly magnetized

plasmas and strongly rotating geophysical flows exhibit strikingly analogous behaviors. A key

similarity is the conservation of potential vorticity (PV) in idealized models, a scalar material in-

variant linked to fluid element relabeling symmetries.12–14 Another key link is the presence of drift-

Rossby waves, a class of unidirectionally propagating waves supported by fluid drifts in plasma

contexts, and gradients of the Coriolis parameter or topography in geophysical contexts.

Understanding the dynamics of zonal jet flows and drift-Rossby waves in turbulent systems is

crucial to unraveling the mechanisms of anomalous transport of heat and particles in magnetically

confined fusion plasmas,15 characterizing energy and momentum budgets in planetary climate

systems,16,17 and enhancing the predictability of extreme weather events.18,19 A major obstacle in

this endeavour is the breaking of the statistical symmetries of turbulence by the large-scale struc-

tures. An important example of this is given by the PV staircase, used to understand the resilience

of zonal jets in planetary atmospheres and magnetized plasmas.20,21 In the staircase paradigm,

zonal flows imprint onto the statistics of the turbulence, creating a spatially inhomogeneous pat-

terning of mixing which in turn reinforces the existing zonal flow structure. Spatial inhomogeneity

precludes usage of the Wiener-Khinchin formula, so characterizations of turbulence in terms of

Fourier power spectra cannot give a complete description of the two-point statistics of the velocity

or other quantities, necessitating other approaches.22,23

In this work, we propose the “potential vorticity bucket brigade” as a way to understand the

self-consistent transport effected by coherent vortices in 2d and quasi-2d drift-Rossby wave tur-

bulence in the presence of zonal flows. In analogy with the PV staircase, we argue that spatially

inhomogeneous patterns of mixing due to the presence of coherent vortices leads to the reinforce-

ment, rather than the destruction, of the vortices. We demonstrate how this patterning arises from
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Drift-Rossby wave eigen-
modes support nearly-

integrable flow topology

Topology dictates chaotic
tangles that mediate

inhomogeneous transport

Zonally inhomogeneous
transport reinforces
vortices via β -effect

Vortices reinforce zonal
jet waveguide via PV
staircase mechanism

FIG. 1. Flowchart illustrating key elements of the potential vorticity bucket brigade. The two boxes on the
right describe the mechanism itself, while the two on the left describe its origins.

topological features of the Lagrangian flows associated with drift-Rossby eigenmodes in a zonal

jet waveguide. We approach this by addressing the four linked subproblems in Fig. 1, which

constitute the key elements of the mechanism.

Governing Equations.—We study 2-dimensional plasma flows, and define unit vectors x̂ point-

ing radially outward and ŷ pointing zonally in the electron diamagnetic drift direction. The geo-

physical equivalents are that x̂ points northwards and ŷ points westwards. The background mag-

netic field points out of the plane in the direction x̂∧ ŷ. Rossby waves and electron-branch drift

waves propagate in the ‘retrograde’ direction ŷ relative to the fluid medium. ‘Co-rotating’ vortices

have an out-of-plane sense of rotation aligned with the magnetic field, and correspond to cyclones.

For concreteness, we develop the bucket brigade mechanism in the Dimits shift regime of

flux-balanced Hasegawa-Wakatani (BHW) turbulence using simulation data from a previous

study.24 The BHW model generalizes the Charney-Hasegawa-Mima (CHM) equations25 with

a non-adiabatic electron response.26,27

We work in a doubly periodic domain D = [−Lx/2,Lx/2]× [−Ly/2,Ly/2]. The model equa-

tions can be expressed in terms of the electrostatic potential ϕ(x,y, t), electron density fluctuation

n(x,y, t), and (ion) vorticity ζ (x,y, t) as

D̃t [n] :=
(
∂t +u ·∇−µ∇

2)n = αQ[ϕ −n]+κu, (1a)

D̃t [ζ ] = D̃t [Q[n]]−κu =: f , (1b)

ζ = ∂xv−∂yu = ∇
2ϕ. (1c)

Above, u = (u,v) := (−∂yϕ,∂xϕ) is the E ×B velocity, analogous to the geostrophic flow. µ is

both the viscosity and particle diffusivity, which are set equal here. D̃t is the combined advection-
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diffusion operator. Length and time are normalized to the ion sound gyroradius ρs = 1 and ion

cyclotron frequency ωci = 1, equivalent to the Rossby deformation radius and Coriolis parameter

respectively.

n is the fluctuation about some background density profile n0(x) with fixed gradient n′0(x) =

−κ . Note n is analogous to layer height perturbations in geophysical contexts and κ is analogous

to the β -effect parameter. α is the adiabaticity parameter, and models a non-adiabatic electron

response due to finite resistivity. Q[χ] := χ − 1
Ly

∫ Ly/2
−Ly/2 χ dy is the non-zonal projection operator

used to model the differing electron response to zonally-symmetric ϕ . f captures vorticity gener-

ation terms, which will be explained in detail later. The BHW equations converge to the modified

CHM equations in the adiabatic limit α → ∞ and tend to have very strong zonal flows.27–30

Turbulence in BHW results from a resistive drift-wave instability driven by the density gradient

κ . The Dimits shift is a transitional regime where gradients are large enough to drive a primary

linear instability but not large enough to develop a uniformly turbulent state.31 This regime is

expected to be relevant to magnetically confined fusion plasmas due to rapid increase of turbulent

fluxes above marginality.32

Combining (1a) and (1b) gives the evolution equation for the BHW potential vorticity (PV)

q+κx,

D̃t [q+κx] = 0 (2)

where q := ζ − Q[n]. In plasma contexts, the PV can also be related to the ion gyrocenter

density.33,34 The velocity field cannot be recovered from the PV alone, so for studying flow pat-

terns it is also useful to explicitly consider the transport and generation of the vorticity ζ .

Stochastic Lagrangian Representation.—To link Eulerian and Lagrangian representations of

the flow, we make use of the Feynman-Kac formula, which can be thought of as a stochastic

generalization of the method of characteristics.

Fix some measurement time T . Following Ref. 35, D̃t is associated with the backwards Itô

stochastic differential equation (SDE) on s ≤ T ,

d̂Ãs
T (x) = u(Ãs

T (x),s) ds+
√

2µ d̂W̃(s); (3a)

ÃT
T (x) = x. (3b)

Here, d̂ denotes the backward Itô differential and W̃(s) is a vector Brownian motion. d̂ is the

4



time-reverse of the usual forward Itô differential d. Reparameterizing time by σ := T − s would

replace d̂ with d and ds with −dσ .

The SDE (3) governs the motion of tracers starting from a given terminal point x ∈ D at time T

and flowing backwards in time parameterized by s, perturbed by white noise. Ãs
T (x) is a random

variable taking values in D that tracks the tracer motion: given a realization of the noise W̃(s), a

tracer will flow from (x,T ) to (Ãs
T (x),s). The stochastic backwards-time evolution arises naturally

from considering the adjoint of the forward-time evolution associated with D̃t .

Often we want to integrate the vorticity ζ (x,T ) with respect to some function η(x). Suppose

η(x) =w(x)p(x) for some probability density p(x) and weight function w(x), and define a random

variable X distributed according to p(x). Then for any time s < T , via Feynman-Kac:

∫
D

ζ (x,T )η(x) dx = E [ζ (X,T )w(X)]

= E
[

ζ (Ãs
T (X),s)w(X)+

∫ T

s
f (Ãτ

T (X),τ)w(X)dτ
]

(4)

where expectations E are taken over realizations of Ãs
T (X) with random terminal conditions X.

Physically, the first line expresses the Eulerian vorticity integral as a weighted average over

a mass of infinitesmal Lagrangian fluid elements spread over p(x). The second line relates the

vorticity of these elements ζ (X,T ) to their vorticity at an earlier time ζ (Ãs
T (X),s) plus the net

vorticity imparted over the interval [s,T ] by non-viscous forces f . The transport of vorticity by vis-

cosity is accounted for by the stochastic motion. Note that stochastic Lagrangian techniques can be

generalized to include boundaries, 3d vortex stretching, nonlocal diffusion, and other effects.35–40

Vortex reinforcement by β -effect.—One Eulerian characterization of vortices is that they corre-

spond to peaks in the vorticity field ζ . Here, we consider the coarse-grained vorticity ⟨ζ ⟩ℓ := gℓ∗ζ ,

which is convolved with gℓ(x) := ℓ−2g(x/ℓ) where g is a 2d unit Gaussian.

We focus on two representative coherent vortices over a time interval [0,99.5]. To compute

⟨ζ ⟩ℓ using (4), we fix a measurement time T = 99.5 and initialize a Gaussian patch of stochastic

tracers at time s = T inside the vortices, then evolve them backwards in time until s = 0. This

corresponds to taking η = gℓ with w(x) = 1. Representative frames from a video showing the

evolution of the tracers are shown in Fig. 2 (Multimedia available online).

Noting (4) is linear in f , we identify four contributions to the coarse-grained vorticity ⟨ζ ⟩ℓ =
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FIG. 2. Two zoomed-in frames from a video showing stochastic tracers (green, pink) at different times
s = 99.5,0 plotted on top of the potential vorticity field q+κx. Additionally, histograms of the x positions
of the tracers are plotted at the bottom of the frames, showing the resulting skewed distribution of tracers.
Profiles of the instantaneous zonally-averaged zonal flow U (cyan) and zonally-averaged PV q̄+κx (orange)
are shown as well. (Multimedia available online)
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FIG. 3. Time traces of the contributions to the coarse-grained vorticity ⟨ζ ⟩ℓ for the two tracer patches in
Fig. 2. s evolves backwards from the measurement time T . The four solid lines in color will always add up
to ⟨ζ ⟩ℓ measured at T , shown in dashed gray.

⟨ζp⟩ℓ+ ⟨ζn⟩ℓ+ ⟨ζκ⟩ℓ+ ⟨ζ∆⟩ℓ. The first three are

⟨ζp⟩ℓ = E
[
ζ (Ãs

T (X),s)
]
, (5a)

⟨ζn⟩ℓ = E
[
Q[n](X,T )−Q[n](Ãs

T (X),s)
]
, (5b)

⟨ζκ⟩ℓ = E
[
κ x̂ ·

(
Ãs

T (X)−X
)]
. (5c)

Meanwhile, ζ∆ accounts for hyperviscous dissipation added for numerical stability as well as

numerical error from discretizing the PDEs and SDEs, not explicitly included in (4).

The equivalence of the time integrals of f with the expressions above can be shown using Itô’s
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lemma, and can also be seen as a consequence the PV evolution law (see supplementary material).

In Fig. 3, we plot these quantities for the two patches of tracers shown in Fig. 2. Note ⟨ζ∆⟩ℓ
remains small, showing numerical error is negligible.

Now focusing on physical quantities, ζp is the value of vorticity that would arise from passive

stirring with no generation. Due to turbulent mixing and dissipation, we expect ⟨ζp⟩ℓ to decay to

0 as s gets further from T . If this process was dominated by the diffusive exchange of fluid, i.e.

due to an impenetrable Lagrangian transport barrier surrounding the vortex, ⟨ζp⟩ℓ would decay on

the diffusive timescale ℓ2/µ ∼ O(103). Meanwhile, if it was dominated by turbulent mixing with

no transport barrier, ⟨ζp⟩ℓ would decay on the advective timescale ω−1
vortex ∼ O(101), estimated

using the vortex rotation rate ωvortex. Fig. 3 shows that ⟨ζp⟩ℓ decays at a rate between these two

timescales, so neither limiting case applies. This is supported by Fig. 2, which suggests a partial

barrier to transport of tracers out of the vortex.

Now, we turn to ζn and ζκ to understand how vorticity generation balances turbulent losses.

These terms, corresponding to the two terms in f , track changes in vorticity due to the accumula-

tion of ion polarization charge necessary to maintain quasineutrality with the non-zonal Q[n] and

background κx components of the electron density respectively. In geophysical contexts, ζn and

ζκ would track changes in vorticity due to (non-topographic) vertical vortex stretching and the

β -effect respectively.

Fig. 3 indicates that the β -effect term ⟨ζκ⟩ℓ is responsible for maintaining the observed vortic-

ity. Since ⟨ζκ⟩ℓ is proportional to the average change in the x position of the tracers, this process

can be understood kinematically through the tendency for co-rotating vortices to entrain tracers

from larger x, as illustrated by the histograms in Fig. 2. Similarly, counter-rotating vortices tend

to entrain tracers from smaller x. Although this effect is well-known in geophysical contexts,18,41

here we emphasize the analogy with PV staircases. The coherent vortices are linked to partial

transport barriers that create the zonally inhomogeneous mixing necessary to sustain the vortices

at the observed amplitudes.

Chaotic Tangles.—To explain why this pattern of transport occurs, we first focus on the vortex

patch located around x ≈ 5. The distribution of tracers at s = 68 is shown in Fig. 4a. Notice that

the tracers exiting the vortex are drawn out into long filaments. Close to where they attach to the

vortex, the tracer filaments transversally intersect filaments in the PV field.

The transversally intersecting filaments relate to the presence of attracting and repelling La-

grangian coherent structures (LCSs) in the flow, collectively referred to as hyperbolic LCSs. In
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FIG. 4. (a) Tracers in green overplotted on the PV field for one band of vortices, showing transversal
filamentary structures. (b) Plot of forward and backward finite-time lyapunov exponents (FTLEs), with
attracting/repelling exponents in red/blue respectively. The time history of a single tracer filament is over-
plotted. (c) Streamplot showing flows in the co-moving frame induced by drift-Rossby wave eigenmodes.
Flow toplogy is shown with separatrices and O-points with sense of rotation in green and the nontwist torus
in orange. Level sets of the wavy PV are shown in purple. (d-f) are similarly marked plots.

planar flows, attracting (repelling) LCSs can be defined as material curves which have strong

transverse attraction forward (backwards) in time.1 By computing finite-time Lyapunov exponents

(FTLEs), shown in Fig. 4b, we can heuristically detect the presence of hyperbolic LCSs.42 Notice

that PV filaments, advected forward in time, align with the attracting LCSs in red. Tracer filaments,

advected backwards in time, align with the repelling LCSs in blue. Similar to past studies,43–46 we

find transversally intersecting attracting and repelling LCSs, indicative of the chaotic tangle-like

structure.

Using these LCSs, we can explain the tendency for chaotic transport to reinforce the vortex.

Fig. 4b shows the time evolution of one tracer filament over five equally spaced snapshots from

s = 0 at step 1 to s = 99.5 at step 5. In step 1, the tracer filament transversally crosses PV filaments

outside the vortex. Transport of PV into the filament is dominated by diffusion, akin to a ‘bucket’

of fluid being filled diffusively with PV.

Backwards in time from step 2 → 1, tracers are stretched by their attraction to the repelling

LCSs. Forwards in time 1 → 2 this stretching is undone. Advective transport then overtakes

diffusive PV transport in steps 2 → 4, akin to the ‘bucket’ being passed along by the vortical flow.
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Notably, in step 3 → 4 the tracers pass through the vortex boundary in a manner reminiscent of

lobes passing through a turnstile.47,48

Finally, in step 5 the tracers are fully entrained into the vortex, emptying the ‘PV bucket’ into

the vortex. The net movement of the tracers was from larger to smaller x, strengthening the vortex

via the β -effect. Many of these filaments form during the backwards evolution of the tracer patch,

akin to a ‘brigade’ of ‘PV buckets’.

Focusing now on the vortex patch around x ≈ 12.5, the filament kinematics are more compli-

cated. Comparing Fig. 4d to Fig. 4e, we can again see that tracer filaments tend to align with

repelling LCSs and PV filaments align with attracting LCSs. In contrast to the earlier case, tracers

can leave the vortex through the transversal LCS intersections in either the ‘upstream’ (prograde)

or ‘downstream’ (retrograde) directions. Following the repelling LCSs, upstream tracers tend to

be re-trapped into vortices leading to no overall transport in x, whereas downstream tracers get lost

at larger x. The net effect, as quantified in Fig. 3, is that the vortex is reinforced.

Nearly-integrable Flow Topology.—We now turn to explain how the tangled LCSs can arise

from the self-consistent dynamics of the fluid. Linearizing around the zonally and temporally

averaged zonal flow and density profiles results in an eigenvalue equation for modes which prop-

agate in y but are localized in x (see the supplementary material). Plotted in Fig. 4c and f are

approximations to the flow fields using the zonal flows plus 3-4 eigenmodes in each case. These

eigenmodes tend to have growth rates which are marginally unstable.24 Streamplots are shown for

the instantaneous frozen velocity field in a frame of reference co-moving with the phase velocity

of the dominant eigenmode.

Comparing Fig. 4c,f with Fig. 4b,e, there is a clear resemblance between the observed hyper-

bolic LCSs and the eigenmode streamline topologies. Furthermore, these resemble topologies ob-

served for Rossby waves propagating in the Bickley jet and the related standard nontwist map.49–51

The larger vortices exhibit a homoclinic nontwist topology, and are linked to drift-Rossby waves

“trapped” in the retrograde jets.52 The smaller vortices exhibit a heteroclinic nontwist topology,

and are linked to waves localized near the sharp PV interface associated with the prograde jets.

Despite their resemblance to linear structures, the vortices here are large amplitude. PV per-

turbations from the vortices can be as large as the corrugations of the zonal PV, which in turn

can be as steep as the background PV gradient. Furthermore, for the large vortices the max-

imal vortex rotation rates ωvortex ≈ 0.23 are close to the maximal FTLEs λlyap ≈ 0.23, so the

Kubo number Ku ∼ ωvortex/λlyap ≈ 1 signals strong turbulence and the breakdown of quasilinear
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theory.53,54 Note that trapping in elliptic (vortex-like) regions has been observed in other regimes

of Hasegawa-Wakatani turbulence.55

Linear dispersion is also not necessarily balanced against nonlinear effects, unlike the case for

KdV-like drift-Rossby solitons.56 For example, the variation in vortex sizes seen in in Fig. 4d

evolves like an amplitude modulation of a λy = Ly/6 carrier wave with an observed group velocity

of vgr,obs ≈−0.61, close to the linear group velocity of vgr,eig ≈−0.64 and differing from the linear

phase velocity of vph,eig ≈−0.4.

To explain why the eigenmode flow topology persists, we build on the near-integrability prop-

erty for drift-Rossby eigenmodes proposed in Ref. 57. The PV being an integral of motion in the

ideal case implies a commutation condition between the Lagrangian flows and a fluid element rela-

beling symmetry generated by the PV, which can be used to extend Liouville integrability beyond

Hamiltonian flows like the one studied here.24 Near-integrability states that the ‘wavy’ eigenmode

plus zonal background PV is a formally optimal near-integral of motion, suggesting that integrable

flow topology due to relabeling symmetries can persist in wave-induced Lagrangian flows. This is

illustrated in Fig. 4c,f, where the contours of the wavy PV are nearly aligned with the eigenmode

streamlines. The alignment of the hyperbolic LCSs with the eigenmode streamlines shows that the

formal near-integrability survives in practice, suggesting that these LCSs originate from separatrix

splitting in the nearly-integrable flow.

PV Staircases.—Finally, we observe that the vortices induce radially inhomogeneous mixing

compatible with the PV staircase paradigm. For the heteroclinic-type vortices in the prograde jets,

mixing tends to occur on the flanks of the jets, further sharpening the PV jump which supports

the jet. For the homoclinic-type vortices in the retrograde jets, the non-twist torus has a much

stronger meander. Upon zonal averaging, this leads to the flattened PV region which supports

the retrograde jets. These jets then act as waveguides that localize the drift-Rossby eigenmodes,

quenching the growth of most gradient-driven instabilities.24,52 Only a small number of drift-

Rossby wave eigenmodes are excited to large amplitude, playing the role of coherent horizontal

convection rolls, and closing the loop on the bucket brigade.

Discussion.—We summarize this work with two aphorisms covering the key elements in Fig. 1.

“Topology begets flow”: This work demonstrates that inhomogeneous mixing arising from flow

topology is fundamental, rather than incidental, to the maintenance of flow patterns observed in a

minimal model of gradient-driven drift-wave turbulence. The coherent vortices support themselves

through the entrainment of a ‘brigade’ of ’PV buckets’ whose kinematics are mediated by chaotic
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tangles in the Lagrangian flow. “Flow begets topology”: This topology is seen to arise from a near-

integrability property of drift-Rossby wave eigenmodes arising from a fluid element relabeling

symmetry. Only a few of the eigenmodes are excited due to localization by the zonal jet waveguide

maintained by radial transport from the vortices, closing the feedback cycle.

The PV bucket brigade mechanism is broadly consistent with universal pictures for spatiotem-

poral pattern formation in fluid systems near marginal stability.58,59 In this context, the exact

stochastic Lagrangian representation of vorticity transport demonstrates that even when the eigen-

mode amplitudes are large, the net effect of the convective nonlinearity is to maintain the strength

of the coherent flow patterns against mixing and dissipation. Thus, the mechanism can be viewed

as an argument for the applicability of single-mode descriptions of the flow.

Although the system studied here is highly idealized, the topological structures and other key

parts of the bucket brigade mechanism align with phenomenology observed in similar physical sys-

tems. The homoclinic-type vortices connected to drift-Rossby wave eigenmodes studied here bear

strong resemblance to Ω-type atmospheric blocks.18,19 The heteroclinic-type vortices resemble

structures seen in Kelvin-Helmholtz wave instabilities60 and high Reynolds number wall-driven

2d channel flow.61 Near-integrability can also play a role in organizing flows with broad spectra of

active modes.57 Given the rich variety of structures exhibiting Lagrangian coherence in nature,1,62

it would be interesting to see if ideas based on stochastic Lagrangian techniques and relating inte-

grability with relabeling symmetries can be used to describe structure formation beyond the system

studied here.

SUPPLEMENTARY MATERIAL

A supplemental appendix that includes detailed equations, some additional derivations, and

numerical methods is available online.
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Appendix A: Detailed Equations

First, we derive the contributions to the coarse-grained vorticity in equations (5) in the main

text by explicitly integrating the generation terms in the vorticity evolution equation. Applying

Feynman-Kac to equation (1b) in the main text, we get

ζ (x,T ) = E[ζ (Ãs
T (x),s)]

+E
[∫ T

s
(D̃t [Q[n]])(Ãτ

T (x),τ) dτ
]

+E
[∫ T

s
−κu(Ãτ

T (x),τ) · x̂ dτ
] (A1)

Starting with the ζκ term, note that the SDE (3) in the main text is equivalent to the stochastic

integral

x− Ãs
T (x) =

∫ T

s
u(Ãs

T (x),s) ds+
∫ T

s

√
2µ d̂W̃(s). (A2)

The second term on the right-hand side of (A2) is a backward martingale which has zero average,
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so the expectation gives

E[x− Ãs
T (x)] = E

[∫ T

s
u(Ãs

T (x),s) ds
]
. (A3)

Taking the dot product of this equation with −κ x̂ recovers the ζκ term, and averaging over X gives

the expression for ⟨ζκ⟩ℓ in the main text.

The integral for ζn can be evaluated via Itô’s lemma,

d̂Q[n](Ãs
T (x),s) = (D̃t [Q[n]])(Ãs

T (x),s) ds

+
√

2µ d̂W̃(s) ·∇Q[n](Ãs
T (x),s) (A4)

In the stochastic integral form, the second term on the right-hand side corresponds to a backwards

martingale which has zero average, so

E
[
Q[n](x,T )−Q[n](Ãs

T (x),s)
]

= E
[∫ T

s
(D̃t [Q[n]])(Ãτ

T (x),τ) dτ
]

(A5)

which recovers the ζn term.

We remark here that BHW differs from the modified Hasegawa-Wakatani (MHW) equations

in this term, as the vorticity generation term in MHW is fMHW := D̃t [n]− κu compared to the

‘flux-balanced’ f = D̃t [Q[n]]−κu used by BHW. This change guarantees zero net particle flux in

the adiabatic limit for BHW.

The contributions to the coarse-grained vorticity can also be derived from the the PV evolution

law. For brevity, let Q := q+κx be the BHW PV. From Itô’s lemma, we have

d̂[Q(Ãs
T (x),s)] = d̂W̃(s) ·∇Q(Ãs

T (x),s) (A6)

where we have used the fact that D̃t [Q] = 0, so the drift term is zero. Taking the expectation of

the integral form of the above equation gives

E[Q(Ãs
T (x),s)] = E[Q(x,T )] (A7)
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Substituting Q = ζ −Q[n]+κx on both sides and rearranging gives the desired terms for ζp, ζn,

and ζκ .

To derive equations for the eigenvalues and eigenfunctions, take a background zonal flow pro-

file U(x) and split the fields into zonal and fluctuating components q = q̄(x) + q̂(x)ei(kyy−ωt),

n = n̄(x)+ n̂(x)ei(kyy−ωt). Then,

ω q̂(x) = kyU(x)q̂(x)− ky(q̄′(x)+κ)ϕ̂(x)+ iµ(∂ 2
x − k2

y)q̂(x), (A8a)

ω n̂(x) = kyU(x)n̂(x)− ky(n̄′(x)−κ)ϕ̂(x)+ iα(ϕ̂(x)− n̂(x))+ iµ(∂ 2
x − k2

y)n̂(x), (A8b)

ϕ̂(x) = (∂ 2
x − k2

y)
−1 [q̂(x)+ n̂(x)] . (A8c)

The PDEs (1) in the main text are solved using a pseudo-spectral method with a 4th-order

Runge-Kutta scheme for the time integration. The SDEs (3) for the Feynman-Kac formula in

the main text are solved using a 4th-order Runge-Kutta scheme for the deterministic part, and a

Maruyama scheme for the stochastic part. Grid-based data from the simulations are interpolated

using 3rd-order Hermite polynomial interpolation in space and linear interpolation in time. The

expectation over terminal conditions and realizations of the Brownian noise is approximated by

Monte Carlo sampling. The eigenfunction equations (A8) are discretized using a spectral method.

REFERENCES

1G. Haller, “Lagrangian Coherent Structures,” Annual Review of Fluid Mechanics 47, 137–162

(2015).
2P. S. Marcus, “Jupiter’s Great Red Spot and Other Vortices,” Annual Review of Astronomy and

Astrophysics 31, 523–569 (1993).
3A. R. Vasavada and A. P. Showman, “Jovian atmospheric dynamics: an update after Galileo and

Cassini,” Reports on Progress in Physics 68, 1935–1996 (2005).
4P. L. Read, “The Dynamics of Jupiter’s and Saturn’s Weather Layers: A Synthesis After Cassini

and Juno,” Annual Review of Fluid Mechanics 56, 271–293 (2024).
5V. Wirth, M. Riemer, E. K. M. Chang, and O. Martius, “Rossby Wave Packets on the Midlatitude

Waveguide—A Review,” Monthly Weather Review 146, 1965–2001 (2018).

14

https://doi.org/10.1146/annurev-fluid-010313-141322
https://doi.org/10.1146/annurev-fluid-010313-141322
https://doi.org/10.1146/annurev.aa.31.090193.002515
https://doi.org/10.1146/annurev.aa.31.090193.002515
https://doi.org/10.1088/0034-4885/68/8/R06
https://doi.org/10.1146/annurev-fluid-121021-040058
https://doi.org/10.1175/MWR-D-16-0483.1


6N. Nakamura and C. S. Y. Huang, “Atmospheric blocking as a traffic jam in the jet stream,”

Science 361, 42–47 (2018).
7F. Wagner, “A quarter-century of H-mode studies,” Plasma Physics and Controlled Fusion 49,

B1–B33 (2007).
8G. Dif-Pradalier, G. Hornung, P. Ghendrih, Y. Sarazin, F. Clairet, L. Vermare, P. H. Diamond,

J. Abiteboul, T. Cartier-Michaud, C. Ehrlacher, D. Estève, X. Garbet, V. Grandgirard, Ö. D.

Gürcan, P. Hennequin, Y. Kosuga, G. Latu, P. Maget, P. Morel, C. Norscini, R. Sabot, and

A. Storelli, “Finding the Elusive ExB Staircase in Magnetized Plasmas,” Physical Review Letters

114, 085004 (2015).
9G. Hornung, G. Dif-Pradalier, F. Clairet, Y. Sarazin, R. Sabot, P. Hennequin, and G. Verdoolaege,

“E×B staircases and barrier permeability in magnetised plasmas,” Nuclear Fusion 57, 014006

(2017).
10W. Liu, Y. Chen, R. Ke, G. McKee, Z. Yan, K. Fang, Z. Yang, Z. Gao, Y. Tan, and G. R. Tynan,

“Evidence of E × B staircase in HL-2A L-mode tokamak discharges,” Physics of Plasmas 28

(2021), 10.1063/5.0022679.
11L. Qi, M. Choi, J.-M. Kwon, and T. Hahm, “Role of zonal flow staircase in electron heat

avalanches in KSTAR L-mode plasmas,” Nuclear Fusion 61, 026010 (2021).
12P. Müller, “Ertel’s potential vorticity theorem in physical oceanography,” Reviews of Geophysics

33, 67–97 (1995).
13A. J. Thorpe and C. H. Bishop, “Potential vorticity and the electrostatics analogy: Ertel—Rossby

formulation,” Quarterly Journal of the Royal Meteorological Society 121, 1477–1495 (1995).
14N. Padhye and P. Morrison, “Fluid element relabeling symmetry,” Physics Letters A 219, 287–

292 (1996).
15P. H. Diamond, S. I. Itoh, K. Itoh, and T. S. Hahm, “Zonal flows in plasma - A review,” Plasma

Physics and Controlled Fusion 47, R35–R161 (2005), arXiv:1302.4625.
16Y. Wang, A. Gozolchiani, Y. Ashkenazy, Y. Berezin, O. Guez, and S. Havlin, “Dominant Im-

print of Rossby Waves in the Climate Network,” Physical Review Letters 111, 138501 (2013),

arXiv:1304.0946.
17T. Woollings, C. Li, M. Drouard, E. Dunn-Sigouin, K. A. Elmestekawy, M. Hell, B. Hoskins,

C. Mbengue, M. Patterson, and T. Spengler, “The role of Rossby waves in polar weather and

climate,” Weather and Climate Dynamics 4, 61–80 (2023).
18A. M. Altenhoff, O. Martius, M. Croci-Maspoli, C. Schwierz, and H. C. Davies, “Linkage of

15

https://doi.org/10.1126/science.aat0721
https://doi.org/10.1088/0741-3335/49/12B/S01
https://doi.org/10.1088/0741-3335/49/12B/S01
https://doi.org/10.1103/PhysRevLett.114.085004
https://doi.org/10.1103/PhysRevLett.114.085004
https://doi.org/10.1088/0029-5515/57/1/014006
https://doi.org/10.1088/0029-5515/57/1/014006
https://doi.org/10.1063/5.0022679
https://doi.org/10.1063/5.0022679
https://doi.org/10.1088/1741-4326/abc976
https://doi.org/10.1029/94RG03215
https://doi.org/10.1029/94RG03215
https://doi.org/10.1002/qj.49712152612
https://doi.org/10.1016/0375-9601(96)00472-0
https://doi.org/10.1016/0375-9601(96)00472-0
https://doi.org/10.1088/0741-3335/47/5/R01
https://doi.org/10.1088/0741-3335/47/5/R01
https://arxiv.org/abs/1302.4625
https://doi.org/10.1103/PhysRevLett.111.138501
https://arxiv.org/abs/1304.0946
https://doi.org/10.5194/wcd-4-61-2023


atmospheric blocks and synoptic-scale Rossby waves: a climatological analysis,” Tellus A: Dy-

namic Meteorology and Oceanography 60, 1053 (2008).
19R. H. White, K. Kornhuber, O. Martius, and V. Wirth, “From Atmospheric Waves to Heat-

waves: A Waveguide Perspective for Understanding and Predicting Concurrent, Persistent, and

Extreme Extratropical Weather,” Bulletin of the American Meteorological Society 103, E923–

E935 (2022).
20D. G. Dritschel and M. E. McIntyre, “Multiple Jets as PV Staircases: The Phillips Effect and

the Resilience of Eddy-Transport Barriers,” Journal of the Atmospheric Sciences 65, 855–874

(2008).
21Ö. D. Gürcan and P. H. Diamond, “Zonal flows and pattern formation,” Journal of Physics A:

Mathematical and Theoretical 48, 293001 (2015).
22K. Srinivasan and W. R. Young, “Zonostrophic Instability,” Journal of the Atmospheric Sciences

69, 1633–1656 (2012).
23J. B. Parker and J. A. Krommes, “Zonal flow as pattern formation,” Physics of Plasmas 20,

100703 (2013).
24N. M. Cao and D. Qi, “Nearly integrable flows and chaotic tangles in the Dimits shift regime of

plasma edge turbulence,” Physics of Plasmas 30 (2023), 10.1063/5.0158013.
25C. Connaughton, S. Nazarenko, and B. Quinn, “Rossby and drift wave turbulence and zonal

flows: The Charney–Hasegawa–Mima model and its extensions,” Physics Reports 604, 1–71

(2015).
26A. Hasegawa and M. Wakatani, “Plasma Edge Turbulence,” Physical Review Letters 50, 682–

686 (1983).
27A. J. Majda, D. Qi, and A. J. Cerfon, “A flux-balanced fluid model for collisional plasma

edge turbulence: Model derivation and basic physical features,” Physics of Plasmas 25, 102307

(2018).
28D. Qi, A. J. Majda, and A. J. Cerfon, “A flux-balanced fluid model for collisional plasma edge

turbulence: Numerical simulations with different aspect ratios,” Physics of Plasmas 26 (2019),

10.1063/1.5083845, arXiv:1812.00131.
29D. Qi and A. J. Majda, “Flux-balanced two-field plasma edge turbulence in a channel geometry,”

Physics of Plasmas 27, 032304 (2020).
30D. Qi, A. J. Majda, and A. J. Cerfon, “Dimits shift, avalanche-like bursts, and solitary prop-

agating structures in the two-field flux-balanced Hasegawa–Wakatani model for plasma edge

16

https://doi.org/10.1111/j.1600-0870.2008.00354.x
https://doi.org/10.1111/j.1600-0870.2008.00354.x
https://doi.org/10.1175/BAMS-D-21-0170.1
https://doi.org/10.1175/BAMS-D-21-0170.1
https://doi.org/10.1175/2007JAS2227.1
https://doi.org/10.1175/2007JAS2227.1
https://doi.org/10.1088/1751-8113/48/29/293001
https://doi.org/10.1088/1751-8113/48/29/293001
https://doi.org/10.1175/JAS-D-11-0200.1
https://doi.org/10.1175/JAS-D-11-0200.1
https://doi.org/10.1063/1.4828717
https://doi.org/10.1063/1.4828717
https://doi.org/10.1063/5.0158013
https://doi.org/10.1016/j.physrep.2015.10.009
https://doi.org/10.1016/j.physrep.2015.10.009
https://doi.org/10.1103/PhysRevLett.50.682
https://doi.org/10.1103/PhysRevLett.50.682
https://doi.org/10.1063/1.5049389
https://doi.org/10.1063/1.5049389
https://doi.org/10.1063/1.5083845
https://doi.org/10.1063/1.5083845
https://arxiv.org/abs/1812.00131
https://doi.org/10.1063/1.5136281


turbulence,” Physics of Plasmas 27, 102304 (2020), arXiv:2006.10554.
31A. Dimits, B. Cohen, N. Mattor, W. Nevins, D. Shumaker, S. Parker, and C. Kim, “Simulation

of ion temperature gradient turbulence in tokamaks,” Nuclear Fusion 40, 661–666 (2000).
32P. H. Diamond and T. S. Hahm, “On the dynamics of turbulent transport near marginal stability,”

Physics of Plasmas 2, 3640–3649 (1995).
33C. J. McDevitt, P. H. Diamond, Ö. D. Gürcan, and T. S. Hahm, “Poloidal rotation and its relation

to the potential vorticity flux,” Physics of Plasmas 17, 112509 (2010).
34J. Madsen, J. J. Rasmussen, V. Naulin, A. H. Nielsen, and F. Treue, “Gyrofluid potential vorticity

equation and turbulent equipartion states,” Plasma Physics and Controlled Fusion 57, 054016

(2015).
35G. L. Eyink, A. Gupta, and T. A. Zaki, “Stochastic Lagrangian dynamics of vorticity. Part 1.

General theory for viscous, incompressible fluids,” Journal of Fluid Mechanics 901, A2 (2020).
36G. L. Eyink, “Stochastic line motion and stochastic flux conservation for nonideal hydromag-

netic models,” Journal of Mathematical Physics 50 (2009), 10.1063/1.3193681.
37D. D. Holm, “Variational principles for stochastic fluid dynamics,” Proceedings of the

Royal Society A: Mathematical, Physical and Engineering Sciences 471, 20140963 (2015),

arXiv:1410.8311.
38G. Zhang and D. Del-Castillo-Negrete, “A backward Monte-Carlo method for time-dependent

runaway electron simulations,” Physics of Plasmas 24 (2017), 10.1063/1.4986019.
39N. Besse, “Stochastic Lagrangian perturbation of Lie transport and applications to fluids,” Non-

linear Analysis 232, 113249 (2023).
40M. Yang, G. Zhang, D. Del-Castillo-Negrete, and Y. Cao, “A Probabilistic Scheme for Semi-

linear Nonlocal Diffusion Equations with Volume Constraints,” SIAM Journal on Numerical

Analysis 61, 2718–2743 (2023).
41S. Pfahl, C. Schwierz, M. Croci-Maspoli, C. M. Grams, and H. Wernli, “Importance of latent

heat release in ascending air streams for atmospheric blocking,” Nature Geoscience 8, 610–614

(2015).
42G. Haller, “Lagrangian coherent structures from approximate velocity data,” Physics of Fluids

14, 1851–1861 (2002).
43N. Malhotra and S. Wiggins, “Geometric Structures, Lobe Dynamics, and Lagrangian Transport

in Flows with Aperiodic Time-Dependence, with Applications to Rossby Wave Flow,” Journal

of Nonlinear Science 8, 401–456 (1998).

17

https://doi.org/10.1063/5.0018943
https://arxiv.org/abs/2006.10554
https://doi.org/10.1088/0029-5515/40/3Y/329
https://doi.org/10.1063/1.871063
https://doi.org/10.1063/1.3490253
https://doi.org/10.1088/0741-3335/57/5/054016
https://doi.org/10.1088/0741-3335/57/5/054016
https://doi.org/10.1017/jfm.2020.491
https://doi.org/10.1063/1.3193681
https://doi.org/10.1098/rspa.2014.0963
https://doi.org/10.1098/rspa.2014.0963
https://arxiv.org/abs/1410.8311
https://doi.org/10.1063/1.4986019
https://doi.org/10.1016/j.na.2023.113249
https://doi.org/10.1016/j.na.2023.113249
https://doi.org/10.1137/22M1494877
https://doi.org/10.1137/22M1494877
https://doi.org/10.1038/ngeo2487
https://doi.org/10.1038/ngeo2487
https://doi.org/10.1063/1.1477449
https://doi.org/10.1063/1.1477449
https://doi.org/10.1007/s003329900057
https://doi.org/10.1007/s003329900057


44A. M. Rogerson, P. D. Miller, L. J. Pratt, and C. K. R. T. Jones, “Lagrangian Motion and Fluid

Exchange in a Barotropic Meandering Jet*,” Journal of Physical Oceanography 29, 2635–2655

(1999).
45F. J. Beron-Vera, M. J. Olascoaga, M. G. Brown, H. Koçak, and I. I. Rypina, “Invariant-tori-like

Lagrangian coherent structures in geophysical flows,” Chaos: An Interdisciplinary Journal of

Nonlinear Science 20, 017514 (2010).
46G. Haller and F. J. Beron-Vera, “Geodesic theory of transport barriers in two-dimensional flows,”

Physica D: Nonlinear Phenomena 241, 1680–1702 (2012).
47T.-Y. Koh and R. A. Plumb, “Lobe dynamics applied to barotropic Rossby-wave breaking,”

Physics of Fluids 12, 1518–1528 (2000).
48J. D. Meiss, “Thirty years of turnstiles and transport,” Chaos: An Interdisciplinary Journal of

Nonlinear Science 25, 097602 (2015), arXiv:1501.04364.
49D. Del-Castillo-Negrete and P. J. Morrison, “Chaotic transport by Rossby waves in shear flow,”

Physics of Fluids A: Fluid Dynamics 5, 948–965 (1993).
50D. Del-Castillo-Negrete, J. Greene, and P. Morrison, “Area preserving nontwist maps: periodic

orbits and transition to chaos,” Physica D: Nonlinear Phenomena 91, 1–23 (1996).
51D. Del-Castillo-Negrete, “Chaotic transport in zonal flows in analogous geophysical and plasma

systems,” Physics of Plasmas 7, 1702–1711 (2000).
52H. Zhu, Y. Zhou, and I. Y. Dodin, “Theory of the Tertiary Instability and the Dimits Shift from

Reduced Drift-Wave Models,” Physical Review Letters 124, 055002 (2020), arXiv:1910.05227.
53J. A. Krommes, “Fundamental statistical descriptions of plasma turbulence in magnetic fields,”

Physics Reports 360, 1–352 (2002).
54P. H. Diamond, S.-I. Itoh, and K. Itoh, Modern Plasma Physics (Cambridge University Press,

Cambridge, 2010).
55B. Kadoch, D. Del-Castillo-Negrete, W. J. T. Bos, and K. Schneider, “Lagrangian conditional

statistics and flow topology in edge plasma turbulence,” Physics of Plasmas 29, 102301 (2022).
56L. G. Redekopp, “On the theory of solitary Rossby waves,” Journal of Fluid Mechanics 82,

725–745 (1977).
57N. M. Cao, “Rossby waves past the breaking point in zonally dominated turbulence,” Journal of

Fluid Mechanics 958, A28 (2023).
58J. D. Crawford and E. Knobloch, “Symmetry and Symmetry-Breaking Bifurcations in Fluid

Dynamics,” Annual Review of Fluid Mechanics 23, 341–387 (1991).

18

https://doi.org/10.1175/1520-0485(1999)029<2635:LMAFEI>2.0.CO;2
https://doi.org/10.1175/1520-0485(1999)029<2635:LMAFEI>2.0.CO;2
https://doi.org/10.1063/1.3271342
https://doi.org/10.1063/1.3271342
https://doi.org/10.1016/j.physd.2012.06.012
https://doi.org/10.1063/1.870400
https://doi.org/10.1063/1.4915831
https://doi.org/10.1063/1.4915831
https://arxiv.org/abs/1501.04364
https://doi.org/10.1063/1.858639
https://doi.org/10.1016/0167-2789(95)00257-X
https://doi.org/10.1063/1.873988
https://doi.org/10.1103/PhysRevLett.124.055002
https://arxiv.org/abs/1910.05227
https://doi.org/10.1016/S0370-1573(01)00066-7
https://doi.org/10.1017/CBO9780511780875
https://doi.org/10.1063/5.0098501
https://doi.org/10.1017/S0022112077000950
https://doi.org/10.1017/S0022112077000950
https://doi.org/10.1017/jfm.2023.90
https://doi.org/10.1017/jfm.2023.90
https://doi.org/10.1146/annurev.fl.23.010191.002013


59M. C. Cross and P. C. Hohenberg, “Pattern formation outside of equilibrium,” Reviews of Mod-

ern Physics 65, 851–1112 (1993).
60W. Smyth and J. Moum, “Ocean Mixing by Kelvin-Helmholtz Instability,” Oceanography 25,

140–149 (2012).
61G. Falkovich and N. Vladimirova, “Turbulence Appearance and Nonappearance in Thin Fluid

Layers,” Physical Review Letters 121, 164501 (2018), arXiv:1711.04580.
62E. L. Rempel, A. C. Chian, S. de S. A. Silva, V. Fedun, G. Verth, R. A. Miranda, and M. Gošić,
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