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Abstract

State estimation in multi-layer turbulent flow fields with only a single layer of partial observation remains a
challenging yet practically important task. Applications include inferring the state of the deep ocean by exploit-
ing surface observations. Directly implementing an ensemble Kalman filter based on the full forecast model is
usually expensive. One widely used method in practice projects the information of the observed layer to other
layers via linear regression. However, when nonlinearity in the highly turbulent flow field becomes dominant, the
regression solution will suffer from large uncertainty errors. In this paper, we develop a multi-step nonlinear data
assimilation method. A sequence of nonlinear assimilation steps is applied from layer to layer recurrently. Fun-
damentally different from the traditional linear regression approaches, a conditional Gaussian nonlinear system
is adopted as the approximate forecast model to characterize the nonlinear dependence between adjacent layers.
The estimated posterior is a Gaussian mixture, which can be highly non-Gaussian. Therefore, the multi-step
nonlinear data assimilation method can capture strongly turbulent features, especially intermittency and extreme
events, and better quantify the inherent uncertainty. Another notable advantage of the multi-step data assimilation
method is that the posterior distribution can be solved using closed-form formulae under the conditional Gaus-
sian framework. Applications to the two-layer quasi-geostrophic system with Lagrangian data assimilation show
that the multi-step method outperforms the one-step method with linear stochastic flow models, especially as the
tracer number and ensemble size increase.

1 Introduction
Data assimilation has been widely applied in state estimation in the atmosphere and ocean (Ghil and Malanotte-
Rizzoli, 1991; Kalnay, 2002; Griffa et al., 2007; Kalnay et al., 2011). Many practical applications require estimat-
ing the states of a multi-layer flow field using observations from only a single layer. Examples include inferring the
state of the deep ocean by exploiting surface observations (Molcard et al., 2005) and estimating upper atmospheric
conditions using near-surface observations (Mou et al., 2023). These problems are particularly challenging since
information gets lost as it propagates across layers due to its turbulent nature and the associated uncertainties. Ad-
dressing such challenges requires methods capable of accurately capturing information transferred across layers in
highly turbulent systems.

One natural way to assimilate a multi-layer flow field is to implement an ensemble Kalman filter (EnKF)
directly (Evensen et al., 2022; Carrassi et al., 2018; Lee et al., 2017) based on the full forecast model. The
advantage of such a method is that the forecast model accounts for the nonlinear dependence between layers
characterized by the forecast model, allowing an effective information transfer across adjacent layers. Yet, the
main difficulty in such a method lies in its computational cost since running the full forecast model is usually
expensive, let alone generating an ensemble of simulations. One widely used alternative in practice is to project
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the information of the observed layer to other layers via linear regression (Molcard et al., 2005). However, due to
the highly turbulent nature of the underlying flow field, the accuracy of the state estimation via linear regression
may suffer from large uncertainty.

This paper aims to develop an efficient nonlinear data assimilation algorithm that effectively propagates infor-
mation from the observed to unobserved layers. Our primary focus is on a widely relevant oceanographic problem:
recovering ocean velocity fields from surface tracer observations, although the method holds significant potential
for a wide range of atmospheric and climate science issues. Tracers are Lagrangian observations that move with
the flow. They are particularly useful for the state estimation of ocean flow fields, where the deployment of fixed
Eulerian observation stations is challenging (Griffa et al., 2007; Molcard et al., 2003; Gould et al., 2004). Exam-
ples include ocean surface drifters (Centurioni et al., 2017), deep-ocean profiling floats (Gould et al., 2004), sea
ice floes (Mu et al., 2018; Chen et al., 2022a), and ballons (Businger et al., 1996). Beyond the multi-layer flow
structures, data assimilation exploiting Lagrangian tracers, known as Lagrangian data assimilation (Mariano et al.,
2002; Ide et al., 2002; Kuznetsov et al., 2003; Molcard et al., 2003, 2005), introduces another unique challenge:
the observational process is intrinsically nonlinear. The nonlinear observational process adds further complexity to
assimilating multi-layer flow fields, as the nonlinearities in both the observational process and the interdependence
between layers need to be handled appropriately.

Early practices of Lagrangian data assimilation ignore the nonlinearity and treat the Lagrangian observations as
Eulerian (Carter, 1989; Ishikawa et al., 1996). Ide et al. (2002) addresses the nonlinearity by augmenting the flow
model with a tracer dynamical model, with the posterior solved by the extended Kalman filter (EKF). Molcard et al.
(2003) explicitly considers the variational derivative of the observation operator based on the optimal interpola-
tion (OI) method. Despite promising results in experiments with quasi-geostrophic and primitive equation models
(Molcard et al., 2003; Özgökmen et al., 2003), it has been proven that an accurate linear approximation of the
observation operator is nearly unreachable (Piterbarg, 2008). Apte et al. (2008) applied the EnKF in Lagrangian
data assimilation followed by investigating the nonlinear effects on EnKF (Apte and Jones, 2013). In addition
to its nonlinear nature, Lagrangian data assimilation often involves high-dimensional systems, making advanced
numerical methods, such as the particle filter (PF) (van Leeuwen et al., 2019) and the Markov chain Monte Carlo
(MCMC) as smoother (Apte et al., 2008), computationally expensive. Recent advancements in higher-dimensional
Lagrangian data assimilation include the development of hybrid strategies (Slivinski et al., 2015) and localized
methods, such as the use of the local ensemble transform Kalman filter (LETKF) in the Geophysical Fluid Dy-
namics Laboratory (GFDL) Modular Ocean Model (Sun and Penny, 2019) and its application to a sea ice model
for assimilating sea ice floe trajectories (Chen et al., 2022a).

Chen et al. (2014) proposed a theoretical framework for Lagrangian data assimilation that rigorously allows the
nonlinear observation process. The theory was later put into practice (Chen and Fu, 2023), which involves adopting
linear stochastic models (LSMs) as a reduced-order forecast model in the spectral space to reduce computational
cost and avoid interpolation errors and extra costs of coordinate transformation. Although the nonlinear Lagrangian
data assimilation framework proposed by Chen et al. (2014) accounts for the nonlinearity in observations, it is re-
stricted to utilizing linear forecast models for flow variables. Therefore, corrections from the data-containing layer
can only linearly propagate across layers. An example of linear projection of corrections based on layer correlations
is given by Molcard et al. (2005). Linear projection methods can be inaccurate when the flow is highly turbulent
with deep layers. It is thus crucial to develop a computationally efficient approach that can handle nonlinearity not
only in the observational process but also in the flow model, particularly when the nonlinear dependence between
variables across different layers is predominant. How to effectively propagate corrections across layers to address
flow nonlinearity remains an open question in both Lagrangian and Eulerian data assimilation.

In this paper, a multi-step data assimilation scheme for multi-layer flow fields is developed that handles nonlin-
earity in both the observational process and the underlying flow field across different layers. The scheme begins by
exploiting tracer observations to update the data-containing layer using the nonlinear Lagrangian data assimilation
scheme in Chen and Fu (2023). In the subsequent step, samples are drawn from the posterior of the previous assim-
ilated layer and treated as pseudo-observations to update the next layer. A conditional Gaussian nonlinear system
is systematically adopted as the approximate forecast model to characterize the nonlinear dependence between
adjacent layers, which aims to capture the features of the strong turbulence in the underlying flow and facilitate
uncertainty quantification. The resulting posterior is a Gaussian mixture distribution as in Majda et al. (2014).
The procedure is then repeated sequentially for each layer until all layers are assimilated. The method has several
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desirable features. First, the Gaussian mixture posterior is a non-Gaussian distribution that has the potential to
better characterize intermittency and extreme events appearing in the underlying turbulent flow field. Second, fun-
damentally different from linear regression, the conditional Gaussian nonlinear forecast model explicitly accounts
for nonlinear layer dependencies. Third, the conditional Gaussian nonlinear forecast model allows us to derive a
closed-form analytic solution for posterior distribution. The analytic formulae make the solver more robust and
accurate.

The rest of the paper is organized as follows. Section 2 describes the multi-step data assimilation for a multi-
layer flow field with surface observations. A one-step method with linear stochastic flow models is also described
for comparison. Section 3 applies the data assimilation methods to the two-layer quasi-geostrophic system. Section
4 presents the data assimilation results, sensitivities to parameters, and computational cost analysis. Section 5 gives
conclusions and discussions.

2 Data assimilation methods for multi-layer flows
The multi-step data assimilation strategy for multi-layer flow fields is presented in this section. First, a general
formulation of multi-layer flow fields with only surface observation is described. Then, we introduce the condi-
tional Gaussian nonlinear system, which allows closed analytic formulae for solving posterior statistics and can be
integrated seamlessly with the multi-step data assimilation algorithm. We derive the multi-step data assimilation
scheme based on a rigorous formulation by applying the proposed nonlinear data assimilation algorithm sequen-
tially to each layer from top to bottom and adopting an efficient ensemble approximation. Note that a one-step data
assimilation method with linear stochastic flow models is introduced for comparison.

2.1 A multi-layer flow system with surface Lagrangian observations
A multi-layer flow field together with Lagrangian tracer trajectory observations constrained on the surface layer
can be described in the general form:

dxℓ
dt

= v1(xℓ, t)+ΣxẆℓ, ℓ= 1, . . . ,L (1a)

dv
dt

= (L+D)v+B(v,v)+F+ΣvẆv, (1b)

where xℓ = (xℓ,yℓ)T is the observed displacement of the ℓth tracer, and v = (. . . ,vi, . . .)
T, i = 1, . . . , I is the unob-

served flow velocity field that consists of planar velocities vi = (ui,vi) of I layers. The tracers are assumed to be
massless so that the velocity of each tracer is identical to the surface layer’s velocity v1. In the general formulation
of the flow equation, L and D are linear operators representing dispersion and dissipation effects, respectively.
B(v,v) is a quadratic form that contains nonlinear effects. F is a deterministic forcing term. The randomness is
introduced by ΣẆ, where Ẇ is the derivative of Wiener process, also known as Gaussian white noise, and Σ is
the noise strength matrix. The abstract flow formulation (1b) models a rich class of turbulent dynamical systems,
enabling precise analysis in a list of quantitative and qualitative models Majda (2016) and many applications Majda
and Qi (2018); Qi and Liu (2023a,b).

The massless passive tracer equation (1a) provides a clean yet comprehensive formulation to investigate the
fundamental challenges in Lagrangian data assimilation. Specifically, the tracer velocity v1(xℓ, t) has a nonlinear
dependence on the tracer displacement xℓ, making the observation process nonlinear. Apte et al. (2008) shows that
a tracer driven by the linearized shallow water model can already have a nonlinear trajectory. On top of that, the
flow model (1b) introduces additional nonlinearity from its coupling term B(v,v). This intrinsic nonlinearity of
Lagrangian data assimilation makes the analysis difficult in theory and the optimal solution almost intractable in
practice (Ide et al., 2002; Molcard et al., 2003; Chen et al., 2014).
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2.2 The conditional Gaussian nonlinear system
The conditional Gaussian nonlinear system (CGNS) is a rich class of nonlinear systems that has the following
structure (Liptser and Shiryaev, 2013; Chen and Majda, 2018; Chen et al., 2022b):

du1

dt
= A0(u1, t)+A1(u1, t)u2 +Σ1(u1, t)Ẇ1, (2a)

du2

dt
= a0(u1, t)+a1(u1, t)u2 +Σ2(u1, t)Ẇ2, (2b)

where u1 ∈CN1 and u2 ∈CN2 are vectors of complex state variables. A0 and a0 are vectors. A1 and a1 are matrices.
Σ1Ẇ1 and Σ2Ẇ2 are independent white noises multiplied by noise strength matrices. A rich class of turbulent sys-
tems belongs to the CGNS family, including the noisy Lorenz 63 system (Lorenz, 1963), the Boussinesq equation,
and the rotating shallow water equations, to name a few. Many other systems can systematically be approximated
by conditional Gaussian statistical models, which greatly enriches the application of CGNS in fluid dynamics.
More examples and applications can be found in Chen and Majda (2018); Chen and Qi (2024).

One notable feature of the CGNS is that A0, a0, A1, a1, Σ1 and Σ2 are nonlinear functions of u1. As a result,
the whole coupled system can be highly nonlinear, and the marginal distributions of u1 and u2 can be strongly
non-Gaussian. Another important feature, that there are only linear terms of u2 in (2), brings a crucial feature of
CGNS — the conditional Gaussian property. That is, once a trajectory of u1(s) for s ≤ t is given, u2 conditioned
on u1(s) becomes a linear Gaussian process. Therefore, the conditional distribution is Gaussian

p(u2(t)|u1(s≤ t))∼N
(
µ2(t),R2(t)

)
, (3)

with mean µ2(t) and covariance R2(t) solvable through closed analytic formulae (Liptser and Shiryaev, 2013)

dµ2

dt
= (a0 +a1µ2)+R2A

∗
1(Σ1Σ

∗
1)
−1
(

du1

dt
− (A0 +A1µ2)

)
, (4a)

dR2

dt
= a1R2 +R2a

∗
1 +Σ2Σ

∗
2− (R2A

∗
1)(Σ1Σ

∗
1)
−1(A1R2). (4b)

In data assimilation, u1 is considered as the observation with continuous-in-time trajectories, while u2 is the un-
observed state to be filtered, and p

(
u2(t)|u1(s ≤ t)

)
is the posterior distribution we aim for. With the analytic

formulae (4), µ2(t) and R2(t) can be solved exactly. Thus, the CGNS is useful for state estimation, parame-
ter estimation, and uncertainty quantification, especially in complex high-dimensional systems. We refer to data
assimilation based on solving (4) as conditional Gaussian data assimilation (CGDA) hereafter.

2.3 Multi-step data assimilation based on the multi-layer flow and CGDA
Comparing the flow-observation system (1) to the CGNS (2), the flow equations (1) can be fitted into the CGNS
framework by dropping the quadratic term B(v,v) (and assuming constant noise strengths). However, this may lead
to severe model simplification in most real-world applications, as nonlinearities often contribute a dominate part of
the flow model’s dynamics. A multi-step data assimilation method is proposed here, bypassing oversimplification
and preserving parts of the flow model’s quadratic nonlinearities.

Instead of treating the coupled multi-layer flow-observation system altogether, we perform data assimilation
layer by layer, from top to bottom (i.e., from surface to deep ocean). First, assimilate tracer observations to recover
the surface-layer flow. Then, generate samples from the surface-layer flow posterior. These samples are treated
as pseudo-observations to recover the lower-layer flow in the second data assimilation step. The new posterior is
sampled and this procedure is sequentially applied proceeding to the following lower layer until the bottom layer
is recovered. At each data assimilation step, the upper layer is considered as the observation, and the lower layer
is to be recovered.

The multi-step data assimilation procedure described above is formulated as follows. Without loss of generality,
consider a two-layer flow field with surface observations. We are interested in the conditional probability density
function (PDF) (which is the posterior distribution in data assimilation),

p
(
v(t)|{x(s)}s≤t

)
, (5)
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where v(t) = (v1(t),v2(t))T are the planar velocities at time t, with subscripts indicating the respective layers.
{x(s)}s≤t is one realization of the tracer trajectories up to time t. The upper-layer (surface-layer) posterior is
straightforward to obtain, as the surface tracers are directly driven by the surface flow. We focus on the lower-layer
posterior, which can be written in the marginalized form

p
(
v2(t)|{x(s)}s≤t

)
=

ˆ
Ωv1(t)

p
(
v1(t),v2(t)|{x(s)}s≤t

)
dv1

=

ˆ
Ωv1(t)

p
(
v2(t)|v1(t),{x(s)}s≤t

)
p
(
v1(t)|{x(s)}s≤t

)
dv1,

(6)

where the conditional probabilities p
(
v1(t)|{x(s)}s≤t

)
and p

(
v2(t)|v1(t),{x(s)}s≤t

)
can be given by the corre-

sponding upper-layer and lower-layer posteriors in data assimilation. However, one needs to be very cautious
here, as there is a nuance between conditional probability and posterior that could introduce errors. This will be
explained in more detail at the end of this subsection.

Next, we approximate the integral by sampling from the upper-layer posterior and use these samples as pseudo
observations to get the lower-layer posterior. An ideal sampling strategy considers the temporal correlations with
dynamical consistency. The approximated lower-layer posterior is given by the empirical average of the finite
samples

p
(
v2(t)|{x(s)}s≤t

)
≈ 1

Ns

Ns

∑
n=1

p
(
v2(t)|v(n)1 (t),{x(s)}s≤t

)
, (7)

where v(n)1 is the nth posterior sample out of total Ns samples.
Specifically, to apply CGDA in the multi-step data assimilation, we adopt a linear stochastic model to approx-

imate the flow field, and use CGDA to obtain the upper-layer posterior p
(
v1(t)|{x(s)}s≤t

)
during the first data

assimilation step. More details of the first step are given in section 2.4 and further illustrated in section 3.2 with an
application to the two-layer quasi-geostrophic system. As the tracer observations appear in the upper layer, they
play a much more important role in helping estimate the state in this layer than the subsequent layers. This allows
the use of a simplified forecast system based on surrogate linear stochastic dynamics. Next, we sample trajectories
{v1(s)}s≤t from the upper-layer posterior. An optimal strategy for sampling trajectories of the unobserved vari-
able, given one realization of the observed variable, exists in the CGNS framework (Chen and Majda, 2020). The
lower-layer posterior is, therefore, approximated by

p
(
v2(t)|v(n)1 (t),{x(s)}s≤t

)
≈ p
(
v2(t)|{v(n)1 (s)}s≤t ,{x(s)}s≤t

)
= p
(
v2(t)|{v(n)1 (s)}s≤t

)
.

(8)

The condition on tracers can be omitted because tracers do not directly affect the lower-layer flow once the upper-
layer flow information is completely given. During the second data assimilation step, we approximate the quadratic
terms of v2 by nonlinear functions of v1 and conditionally linear functions of v2 to fit a conditional Gaussian model,
and perform CGDA to solve p

(
v2(t)|{v(n)1 (s)}s≤t

)
(see section 3.2 for more details). In this way, the nonlinearity

of the upper layer is preserved at the second data assimilation step. The resulting lower-layer posterior distribution
is a mixture of Gaussians. We refer to the multi-step data assimilation based on CGDA as multi-step CGDA
hereafter. An overview of the multi-step CGDA is shown in Fig. 1.

Notice that a few approximations are introduced in the above deviations that may introduce errors. First, we
use an approximate linear flow model to recover the upper-layer flow from tracers and a conditional Gaussian flow
model to recover the lower-layer flow. Model errors come in as some nonlinearities are dropped. Second, there
are sampling errors in the Monte-Carlo marginalization. In (6) the marginalization is taken over v1(t) at one time
instance, but in practice, the marginalization is taken over the entire filtered trajectory {v1(s)}s≤t . This makes
the marginalization more difficult because the space of v1(s),s ≤ t is very high dimensional. Last, as mentioned
earlier, a nuance between conditional probability and posterior can introduce errors from (6) to (8). According to
the standard definition of conditional probability, v1 — on which v2 is conditioned in p

(
v2(t)|v1(t),{x(s)}s≤t

)
—

should be one realization without uncertainty. However, uncertainty is inherited by sampling from the posterior as
pseudo-observations. Therefore, (6) is only an approximation when applying it to assimilating the lower layers.
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Figure 1: An overview of the multi-step CGDA scheme.

2.4 Details on the one-step CGDA with linear stochastic flow models
Here, We provide more details on using a linear stochastic flow model to perform CGDA, following the approach
described by Chen and Fu (2023). This will serve as the first step in multi-step CGDA to recover the uppermost
layer. Then, the conditional Gaussian nonlinear systems will be adopted as nonlinear forecast models to infer
the flow field in the lower layers recursively. See the above subsection for more details. Note that this method
can be also used as a stand-alone data assimilation scheme, where the recovery of the lower layers is equivalent
to using a linear regression. The performance of such a method will be compared to the multi-step CGDA to
explain the benefits of preserving additional quadratic nonlinearities of the flow model in the latter method. It
involves a full linearization of the multi-layer flow system, a spectral decomposition, and an eigendecomposition
of the linearized flow model and developing reduced-order linear stochastic models (LSMs) for the eigenmodes.
The tracer equation (1a) in conjunction with LSMs for the flow form a CGNS, allowing CGDA to be directly
performed. For the simplicity of the statement, consider an incompressible flow field.

First, we drop the nonlinear terms of v and stochastic terms in (1b) to obtain a linearized flow model. Then, we
can rewrite the linearized flow equation in terms of the stream function ψ = (. . . ,ψi, . . .)

T. The relation between
the ith layer’s incompressible flow velocity and the corresponding stream function is

vi =

(
∂ψi

∂y
,−∂ψi

∂x

)T

. (9)

This rewriting reduces the number of variables and equations. The linearized stream function equations have the
general form of

∂ψ

∂ t
= L [ψ], (10)

where L is a linear operator following the linear part of (1b) (see explicit example next in section 3.2).
One way to solve such a linear partial differential equations (PDEs) system (10) is to apply the Fourier trans-

form, in the x variable, to both sides of the equations (Olver, 2014). This will give us a system of ordinary
differential equations (ODEs) for the Fourier coefficients ψ̂k(t):

dψ̂k

dt
= L̂kψ̂k, (11)
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where the wavenumber k= (kx,ky)∈Z2. L̂k is a matrix related to the linear operator L . Recall that for a first-order
linear ODE system, the general solution is a linear superposition of pure exponentials:

ψ̂k(t) =
G

∑
g

eλg,ktrg,k, g = 1, . . . ,G (12)

where {λg,k} and {rg,k} are the eigenvalues and eigenvectors of L̂k, respectively. Let ψ̂Eg,k(t) = eλg,kt with ψ̂Eg,k
denoting the gth eigenmode. The solution to the original PDEs (10) is therefore

ψ(x, t) =
K

∑
k

eik·xψ̂k(t) =
K

∑
k

G

∑
g

eik·x
ψ̂Eg,k(t)rg,k, (13)

where K is a finite set that contains the Fourier wavenumbers. eik·x is the two-dimensional Fourier basis function.
The eigenvectors {rg,k} determine the weights of combining the eigenmodes.

With the eigenvectors in hand, we can use a linear stochastic model instead of the pure exponential eλg,kt to
better characterize the time evolution of ψ̂Eg,k. The linear stochastic model that we adopt has the following form:

dψ̂Eg,k

dt
= (−γg,k + iωg,k)ψ̂g,k + fg,k +σg,kẆg,k, (14)

where −γg,k and ωg,k represent the damping/dissipation and phase, respectively, which are associated with the
eigenvalue. fg,k is a constant forcing term. The stochastic noise σg,kẆg,k mimics the unresolved turbulent features
originally caused by the nonlinearity. The model (14) is known as the complex Ornstein–Uhlenbeck (OU) process
(Gardiner, 2009). The complex OU process can exactly match the mean and variance of data, and is a proper
approximate model when the distribution of ψ̂Eg,k is nearly Gaussian. It has been applied as an effective surrogate
forecast model in data assimilation (Farrell and Ioannou, 1993; Berner et al., 2017; Branicki et al., 2018; Majda
and Chen, 2018; Li and Stechmann, 2020; Harlim and Majda, 2008; Kang and Harlim, 2012).

The CGDA is applied to ψ̂Eg,k(t) in the spectral space. The physical variables are reconstructed by the inverse
Fourier transform. If we want to convert to the velocity, based on (9) we have

vi(x, t) =
K

∑
k

eik·x
ψ̂i,k(t)ζk, (15)

where ζk = (iky,−ikx)
T, and ψ̂i,k is the Fourier coefficient of ith-layer stream function.

The motivation for using spectral decomposition and eigendecomposition is mainly to reduce computational
costs. Spectral methods are commonly used by PDE solvers. Notably, it is natural to apply mode truncation with
spectral methods and LSMs to reduce the computation burden since the time evolution of different modes is de-
coupled in the LSMs. Therefore, only a small subset of modes that contain significant energy is retained in the
surrogate forecast model. Moreover, spectral representation avoids the expensive back-and-forth transformation
between Eulerian and Lagrangian coordinates in Lagrangian data assimilation. By decoupling the original sys-
tem through eigendecomposition, the coefficient matrix a1 and noise level matrix Σ2 becomes diagonal, which
significantly accelerates the matrix manipulations in CGDA.

3 Application to the two-layer quasi-geostrophic system
In this section, we illustrate detailed ideas described in section 2 by giving an example application to the two-layer
quasi-geostrophic (QG) equations.
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3.1 Two-layer QG equations
The two-layer quasi-geostrophic flow with topography reads (Qi and Majda, 2016)

∂q1

∂ t
+ J(ψ1,q1)+β

∂ψ1

∂x
+U1

∂

∂x
∇

2
ψ1 +

k2
d
2

(
U1

∂ψ2

∂x
−U2

∂ψ1

∂x

)
=−ν∆

sq1, (16a)

∂q2

∂ t
+ J(ψ2,q2)+β

∂ψ2

∂x
+U2

∂

∂x
∇

2
ψ2 +

k2
d
2

(
U2

∂ψ1

∂x
−U1

∂ψ2

∂x

)
=−

(
U2

∂h
∂x

+κ∇
2
ψ2

)
−ν∆

sq2. (16b)

The potential vorticity disturbance in the upper layer (i = 1) and lower layer (i = 2) is defined as

q1 = ∇
2
ψ1 +

k2
d
2
(ψ2−ψ1), q2 = ∇

2
ψ2 +

k2
d
2
(ψ1−ψ2)+h. (17)

Topography is introduced by h in the lower layer equation. (U1,U2) is the mean flow that can be decomposed as

U1 =U0 +U, U2 =U0−U, (18)

where U0 is the constant mean structure and U is the shear between the two layers. J(A,B) = AxBy−AyBx repre-
sents the Jacobian operator. kd =

√
8/Ld is the baroclinic deformation wavenumber corresponding to the Rossby

radius of deformation Ld . β is the Rossby parameter. On the right-hand sides, the Ekman damping κ∇2ψi only
exists in the lower layer for the bottom friction, and hyperviscosity terms ν∆sqi are added in both layers. For
simplicity, we consider the case of equal layer depth, H1 = H2 = H/2, a large-scale topography h, and a zero mean
flow U0 = 0 and U = const. The boundary condition is periodic in both x and y directions.

3.2 Reduced-order stochastic models
Here, we present details of developing reduced-order approximate models to the fully coupled two-layer QG
model (16). First, the LSMs of eigenmodes (as described in section 2.4), by keeping only linear terms of the
flow equations, are proposed. These LSMs are used in the first step of the multi-step CGDA, which can also
work as a standalone one-step method. Since the tracers are directly driven by the surface layer, the observations
play an important role in recovering the surface-layer flows, and therefore, a crude forecast model with linear
approximations is often sufficient. Next, a conditional Gaussian approximation is proposed to better characterize
the nonlinear coupling.

3.2.1 LSMs of eigenmodes

To build LSMs of eigenmodes in spectral space for the two-layer QG equations, we first linearize (16) by neglecting
the Jacobian terms. The linearized two-layer QG system has the following form:

∂q1

∂ t
+β

∂ψ1

∂x
+U1

∂

∂x
∇

2
ψ1 +

k2
d
2

(
U1

∂ψ2

∂x
−U2

∂ψ1

∂x

)
=−ν∆

sq1, (19a)

∂q2

∂ t
+β

∂ψ2

∂x
+U2

∂

∂x
∇

2
ψ2 +

k2
d
2

(
U2

∂ψ1

∂x
−U1

∂ψ2

∂x

)
=−

(
U2

∂h
∂x

+κ∇
2
ψ2

)
−ν∆

sq2, (19b)

The viscous term −ν∆sqi and Ekman damping term −κ∇2ψ2 are high-order terms and thus can be neglected. The
constant forcing term−U2∂h/∂x is also neglected for the purpose of linear analysis. Plug (17) into (19), we obtain
the equations with ψ being the only unknown

∂

∂ t

(
∇

2
ψ1 +

k2
d
2
(ψ2−ψ1)

)
+β

∂ψ1

∂x
+U1

∂

∂x
∇

2
ψ1 +

k2
d
2

(
U1

∂ψ2

∂x
−U2

∂ψ1

∂x

)
= 0, (20a)

∂

∂ t

(
∇

2
ψ2 +

k2
d
2
(ψ1−ψ2)

)
+β

∂ψ2

∂x
+U2

∂

∂x
∇

2
ψ2 +

k2
d
2

(
U2

∂ψ1

∂x
−U1

∂ψ2

∂x

)
= 0. (20b)
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Applying the Fourier transform in the x variable leads to a system of ODEs for ψ̂k in the form of (11) for each
wavenumber k. The eigenvalues and eigenvectors of the coefficient matrix L̂ satisfy the following eigenequation

λkrk =−M−1
k Nkrk,

Mk =

[
−(|k|2 + k2

d
2 ),

k2
d
2

k2
d
2 ,−(|k|

2 +
k2

d
2 )

]
, Nk = kx

[
β −|k|2U +

k2
d
2 U,

k2
d
2 U

− k2
d
2 U,β + |k|2U− k2

d
2 U

]
.

(21)

Solving this 2×2 eigenequations gives two eigenvalues and two eigenvectors

λ{1,2},k =
kx

(
β (k2

d +2|k|2)±
√

β 2k4
d +4|k|4(−k4

d + |k|4)U2
)

2|k|2(k2
d + |k|2)

,

r{1,2},k =

−2U |k|4∓
√

β 2k4
d +4|k|4(−k4

d + |k|4)U2

k2
d(β −2|k|2U)

,1

T

,

(22)

where the subscripts 1,2 is corresponding to the positive or negative sign before the square root.
We can continue to develop LSMs and obtain the stochastic solution as described in Section 2.4. The resulting

LSMs can be written in the following form

dΨE

dt
= (−ΓE + iΩE)ΨE +FE +ΣEẆE, (23)

where ΨE = [· · · ψ̂E1,k, · · · ψ̂E2,k, · · · ]T is a 2|K |×1 column vector that contains the Fourier coefficients of the two
eigenmodes, with |K | denoting the number of elements in set K . ΓE and ΩE are diagonal matrices corresponding
to the damping and phase coefficients, respectively. FE is the forcing vector. ΣE is a diagonal matrix of noise
coefficients.

3.2.2 Conditional Gaussian nonlinear stochastic model

Next, we develop a conditional Gaussian nonlinear model serving as the forecast model in the second data assimi-
lation step for the two-layer QG system. Instead of completely neglecting the nonlinear coupling term as in (19),
we only drop the quadratic terms of lower layer ψ2 in (16) while keeping the remaining nonlinear terms. This leads
to the following nonlinear model with the conditional Gaussian structure

∂q1

∂ t
+ J(ψ1,q1)+β

∂ψ1

∂x
+U1

∂

∂x
∇

2
ψ1 +

k2
d
2

(
U1

∂ψ2

∂x
−U2

∂ψ1

∂x

)
=−ν∆

sq1, (24a)

∂q2

∂ t
+ J(ψ2,

k2
d
2

ψ1 +h)+β
∂ψ2

∂x
+U2

∂

∂x
∇

2
ψ2 +

k2
d
2

(
U2

∂ψ1

∂x
−U1

∂ψ2

∂x

)
=−U2

∂h
∂x
−κ∇

2
ψ2−ν∆

sq2. (24b)

The modified system (24) fits into the CGNS framework (2). Applying discrete Fourier transform to ψ1 and ψ2,
we have

∂q1,k

∂ t
=−ikx

(
(β −U1|k|2−

k2
d
2

U2)ψ1,k +
k2

d
2

U1ψ2,k

)
− Jk(ψ1,q1)−ν |k|2sq1,k, (25a)

∂q2,k

∂ t
=−ikx

(
(β −U2|k|2−

k2
d
2

U1)ψ2,k +
k2

d
2

U2ψ1,k +U2hk

)
+κ|k|2ψ2,k− Jk(ψ2, q̃2)−ν |k|2sq2,k, (25b)

where ψi,k = ψ̂i,k(t)eik·x is the Fourier mode of ψi. The Fourier modes of q1 and q2 are

q1,k =−(|k|2 +
k2

d
2
)ψ1,k +

k2
d
2

ψ2,k,

q2,k =−(|k|2 +
k2

d
2
)ψ2,k +

k2
d
2

ψ1,k +hk.

(26)
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The Jacobian term Jk(ψ,q) is given by assigning summands in J(ψ,q) to the kth mode

Jk(ψ,q) =
K ,K

∑
m,n

m+n=k

(mxny−mynx)ψnqm. (27)

(25) can be written in the form of [
−(|k|2 + k2

d
2 ),

k2
d
2

k2
d
2 ,−(|k|

2 +
k2

d
2 )

][
∂

∂ t ψ1,k
∂

∂ t ψ2,k

]
=

[
RHS1
RHS2

]
. (28)

Diagonalizing the coefficient matrix with Gaussian elimination, and plugging in RHS1,RHS2, and (18), we obtain

∂ψ1,k
∂ t

=Ck

(
ikx

((
(|k|2 +

k2
d
2
)β −|k|4U

)
ψ1,k +(

k2
d
2

β + k2
d |k|

2U)ψ2,k−
k2

d
2

Uhk

)
+ D̃1,k + J̃1,k

)
, (29a)

∂ψ2,k
∂ t

=Ck

(
ikx

(
(

k2
d
2

β − k2
d |k|

2U)ψ1,k +

(
(|k|2 +

k2
d
2
)β + |k|4U

)
ψ2,k− (|k|2 +

k2
d
2
)Uhk

)
+ D̃2,k + J̃2,k

)
, (29b)

where Ck = 1/
(
|k|2(|k|2 + k2

d)
)

is a normalization constant. D̃i,k and J̃i,k correspond to the damping and Jacobian
terms, with exact forms given in appendix C.

The final step is to plug ψk = ψ̂k(t)eik·x into (29) and add stochastic terms. Through basic algebraic manipu-
lations, we will arrive where ∂ ·/∂ t becomes d ·/dt. This gives rise to the conditional Gaussian stochastic model
for the QG:

dΨ1

dt
= A0(Ψ1, t)+A1(Ψ1, t)Ψ2 +Σ1Ẇ1, (30a)

dΨ2

dt
= a0(Ψ1, t)+a1(Ψ1, t)Ψ2 +Σ2Ẇ2, (30b)

where Ψi = [· · · ψ̂i,k, · · · ]T is a |K |×1 column vector that contains the ith layer’s Fourier coefficients. A0(Ψ1, t)
and a0(Ψ1, t) are |K |×1 column vectors. A1(Ψ1, t) and a1(Ψ1, t) are |K |× |K | matrices. The exact forms of
A0, a0, A1, and a1 are given in appendix C. Σ1Ẇ1 and Σ1Ẇ2 are stochastic noises that compensate the unresolved
terms.

3.2.3 Model calibration and evaluation

For calibrating the LSMs (23), four parameters — damping ΓE, phase ΩE, forcing FE, and noise strength ΣE, must
be calibrated by matching four statistics of data — mean, variance, real and imaginary parts of the decorrelation
time (Chen, 2023). For calibrating the conditional Gaussian stochastic models (30), we recompute all the coeffi-
cients using linear regression, which is equivalent to adding closures. In this paper, we assume the deterministic
coefficients are known, only calibrating the stochastic noise strength Σ1 and Σ2 by matching one-step residual
variances. See appendices A5.1 and A5.2 for more details about the model calibration.

We use several statistical metrics to evaluate the calibration, specifically for the QG system. They are the kinetic
energy (KE), the available potential energy (APE), the total energy (E), and the enstrophy (E ). See more details
in appendix A5.3 about how these metrics are defined and calculated. Notably, the LSMs of eigenmodes with a
diagonal ΣE may fail to capture the energy of layer flows, even though they are well-calibrated. Because a diagonal
ΣE means the noises of different eigenmodes are independent of each other. However, the correlations among
noises can exist in realistic data from nonlinear QG equations (see appendix A5.4 for the conversion between
eigenmodes energy and layers energy). This can be solved by allowing correlated noises in the LSMs, which
improves the linear modeling. Note that in such a case, ΣE is no longer diagonal, which increases computational
burden in data assimilation. More details of the LSMs with correlated noises are put in Appendix B.
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3.3 Lagrangian CGDA for the two-layer QG model
Finally, we construct the CGNSs and give the analytic formulae for solving posterior statistics, which are used in
the one-step and the multi-step CGDA.

3.3.1 One-step CGDA with linear stochastic flow Model

The Lagrangian tracer equation (1a) together with the linear stochastic flow model (23) form a conditional Gaussian
system:

Observations:
dX
dt

= A(X, t)ΨE +ΣXẆX, (31a)

Underlying flow:
dΨE

dt
= aΨE +FE +ΣEẆE, (31b)

where X = (. . . ,xl , . . . ,yl , . . .)
T is a 2L×1 dimensional vector containing the displacements of all the Lagrangian

tracers. The matrix a = −ΓE + iΩE. Assuming observation noises are independent, ΣX is a diagonal matrix.
Particularly, A(X, t) is a 2L×2|K | matrix given by

A= ZH

with Z=



...
· · · eik·xl ζ

(1)
k · · ·

...
· · · eik·xl ζ

(2)
k · · ·

...


,H=


. . . . . .

r(1)1,k r(1)2,k
. . . . . .

 (32)

where Z is a 2L×|K |matrix with (Zl,k,Zl+L,k)
T = eik·xlζk. H is a |K |×2|K |matrix with Hk,k = r(1)1,k,Hk,k+|K |=

r(1)2,k and other entries being 0. The superscript (1) and (2) denote the first and second elements of a vector, respec-
tively. Note that H transform the eigenmodes to the first layer, as HΨE =Ψ1, where Ψ1 = [· · · ψ̂1,k, · · · ]T contains
the Fourier coefficients of the first-layer stream function, and Z does the conversion from stream function to veloc-
ity and inverse Fourier transform. This can be derived from (15).

The analytic formulae for solving the posterior mean and covariance of ΨE(t) given tracer trajectory observa-
tion X(s≤ t) are as follows

dΨ̄E

dt
= (FE +aΨ̄E)+(RA∗)(ΣXΣ

∗
X)
−1
(

dX
dt
−AΨ̄E

)
, (33a)

dRE

dt
= aRE +REa

∗+ΣΨEΣ
∗
ΨE
− (REA

∗)(ΣXΣ
∗
X)
−1(ARE

∗). (33b)

3.3.2 Multi-step CGDA

Recall that the CGDA based on linear stochastic flow models serves as the first step of multi-step CGDA. After
getting the posterior of surface-layer flow via (33), we can sample pseudo-observations from the posterior. Here
we use a backward sampling formula (Chen and Majda, 2020)

←
dΨE

dt
= (−FE−aΨE)+ΣEΣ

∗
ER
−1
E (Ψ̄E−ΨE)+ΣEẆE, (34)

where
←
d·/dt denotes the backward derivative, i.e., the negative of the usual derivative. The formula (34) runs

backward from t = T to t = 0, with initial samples drawn from the posterior N
(
Ψ̄E(T ),RE(T )

)
. It is the optimal
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backward sampling formula for the unobserved variables in CGDA (Chen and Majda, 2020). The conversion form
eigenmodes to upper layer is realized through HΨE =Ψ1 , where H is defined in (32).

With pseudo-observations of the upper layer, we perform CGDA based on the nonlinear conditional Gaussian
stochastic model (30) for each pseudo-observation Ψ

(n)
1 as described in (8). The posterior mean and covariance of

the lower layer for the nth sample are solved by the analytic formulae (4), with u1 and u2 replaced by Ψ
(n)
1 and

Ψ
(n)
2 . The ultimate lower-layer posterior combining all samples is a mixture of Gaussians according to (7).

3.4 Experimental design
The multi-step CGDA and the one-step CGDA with LSMs are tested in the two-layer QG problem. The QG model
runs using the fourth order Runge Kutta pseudo-spectral scheme for Nt = 205,000 time steps with a time step
dt = 0.002, in a double periodic domain [−π,π)2 with K = 128 grid points (also Fourier modes) in each direction,
so the total number of grid points is K2 = 16384. The initial 5000 time steps are excluded from the analysis
to allow for spin-up. The QG simulations serve as the ground truth, with default parameters outlined in Table
1. Synthetic tracer observations are generated based on the true ocean field at every time step, with independent
observation noises of strength σx = σy = 0.1. Unless specified otherwise, L = 256 tracer observations are used in
data assimilation. The data assimilation experiments start from an equilibrium state and run for 200,000 time steps.
There is no initial error or uncertainty. The reduced-order stochastic models are calibrated on QG simulations. Only
the Fourier modes within a truncation radius r = 16 from the (0,0) mode (797 modes in total) are integrated and
filtered in data assimilation. By default, the multi-step CGDA uses Ns = 16 ensembles.

Table 1: Default non-dimensional parameters of the two-layer QG model.

Deformation wavenumber kd = 10
Rossby parameter β = 22
Zonal mean flow U0 = 0
Zonal shear flow U = 1
Ekman damping κ = 9
Hyperviscosity ν = 10−12

Topography h = 40
(

cos(x)+2cos(2y)
)

The root-mean-square error (RMSE) is the metric used for evaluation, which is defined as

RMSE =

√√√√ 1
K2

K

∑
ky=1

K

∑
kx=1

(ψa
(kx,ky)

−ψ t
(kx,ky)

)2,

where the subscripts kx and ky denote the grid index in x and y direction, respectively. The superscript a denotes
analysis, the quantity to be evaluated. And the superscript t denotes the truth. For time series, the time mean of
RMSEs is used as the single scalar metric for evaluation.

The data assimilation methods are evaluated in two regimes of the QG system. As β decreases, the QG
system becomes more turbulent (Fig. 2). We choose β = 111 and β = 22, which result in moderately turbulent
and strongly turbulent flow structures, respectively. Snapshots of the typical vorticity field of the two test cases
are shown in Fig. 2, illustrating complex flows with distinctive features. Notably, the linearized QG system (19)
becomes unstable when β gets larger. In contrast, the modified conditional-Gaussian-QG system (24) is stable for
all choices of β , because the dropped quadratic terms in the conditional-Gaussian-QG system do not break the
total energy conservation in the original QG system (Vallis, 2017).

Sensitivities of data assimilation methods to the ensemble size Ns and tracers number L are tested using the
default parameters configuration. In addition to the data assimilation experiments with surface tracer observations,
we also compare the nonlinear conditional Gaussian flow model to the linear flow model in both free forecasts and
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Figure 2: Snapshots of the potential vorticity field of QG simulations for (a) strongly turbulent regime β = 22 and
(b) moderately turbulent regime β = 111.

data assimilation with direct upper-layer observations as a complementary demonstration of the benefits of incor-
porating additional quadratic terms. Finally, we test the multi-step CGDA with a constant posterior covariance,
which is estimated from long-term statistics, similar to the three-dimensional variational method (3DVAR; Lorenc,
1986). Using constant covariance can dramatically reduce computational costs. The detailed calibration results are
described in appendixes A and B.

4 Numerical Results

4.1 Comparison of the one-step CGDA and the multi-step CGDA in the strongly turbu-
lent regime

For the default configuration, Fig. 3 shows the trajectories and log-scale PDFs of the upper- and lower-layer stream
functions at one physical location. The one-step CGDA using a linear flow model well recovers the upper-layer
flow with 256 tracers. Compared to the one-step CGDA, the multi-step CGDA that incorporates a nonlinear flow
model better recovers the lower-layer flow, as reflected both in the trajectories and PDFs. This is further confirmed
by the RMSE in the posterior time series (Fig. 4). The multi-step CGDA has a posterior mean RMSE of 0.291 for
ψ2, significantly smaller than the one-step CGDA’s mean RMSE of 0.400.

Figure 5 displays the snapshots of the potential velocity field. The truth is constructed from the truncated
Fourier modes as the data assimilation posterior for comparison. The multi-step CGDA better recovers the flow,
revealing finer structures and small-scale features compared to the one-step CGDA, as highlighted by the green
circles. We further inspected the posterior distributions of different data assimilation methods. Figure 6 shows the
snapshots of posterior PDFs at three different displacements. For case (a), both the one-step CGDA and multi-step
CGDA have a (nearly) Gaussian posterior. In contrast, for cases (b) and (c), the multi-step CGDA gives either a
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Figure 3: Trajectories and the corresponding log-scale pdfs of ψ1 and ψ2 at displacement (x,y) = (−2.4,−2.4).
Black lines are true signals from QG. Red lines are one-step CGDA posterior. Blue lines are multi-step CGDA
posterior. Black dash lines are fitted Gaussian pdfs of the truth. Only a window of time 150 < t < 200 is shown
for the trajectories.

Figure 4: Posterior RMSE series of one-step CGDA (red) and multi-step CGDA (blue) for ψ1 and ψ2. Only a
window of time 150 < t < 200 is shown.

bimodal or skewed posterior, demonstrating its capability to capture non-Gaussian posterior distributions with a
mixture of Gaussians.

4.2 Comparison of data assimilation skills in the two test regimes
Consistent results are obtained in the moderately turbulent regime β = 111. Table 2 summarizes the posterior mean
RMSEs of data assimilation methods in the two regimes. The multi-step CGDA has smaller posterior mean RMSEs
than the one-step CGDA in both regimes. Notably, both data assimilation methods achieve smaller posterior errors
in the moderately turbulent regime β = 111 than in the strongly turbulent regime β = 22. The performance
difference between the one-step CGDA and the multi-step CGDA shrinks as the flow becomes less turbulent,
where linear structures become more dominant, as expected. Therefore, the advantages of multi-step CGDA over
one-step CGDA are more pronounced in more intermittently unstable and turbulent flows.
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Figure 5: Snapshots of the potential vorticity field constructed from truncated Fourier modes with truncation radius
r = 16. (a) truth, (b) one-step CGDA posterior, and (c) multi-step CGDA posterior. The left column is the upper
layer and the right column is the lower layer.
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Figure 6: Snapshots of the posterior pdfs at three different displacements, (a) nearly Gaussian case, (b) bimodal
case, and (c) skewed case. The truth is marked with a black straight line. The one-step CGDA posterior (red) is
Gaussian. The multi-step CGDA posterior (blue) is a mixture of Gaussians, and is smoothed with Gaussian kernel
density estimation.

Table 2: Time mean RMSEs of one-step CGDA and multi-step CGDA with different β .

β = 22 β = 111
One-step CGDA 0.400 0.137

Multi-step CGDA 0.291 0.113

4.3 Sensitivity to data assimilation parameters
Figure 7 shows the posterior mean RMSEs with different ensemble sizes. For the default configuration, the multi-
step CGDA with only two ensemble members achieves smaller posterior errors than the one-step CGDA. This
demonstrates the benefits of the multi-step CGDA that incorporates nonlinearities of the flow model. As the en-
semble size increases, the posterior errors of multi-step CGDA rapidly decrease at first and then gradually level off.
One can select a proper ensemble size to balance the trade-off between assimilation accuracy and computational
cost.

Figure 8 presents the posterior mean RMSEs varying with the number of tracers. The infinite-tracers case
is solved conceptually by assuming that the upper-layer flow is directly and fully observed (see appendix C for
details). As the number of tracers increases, both data assimilation methods produce lower posterior errors, with
the multi-step CGDA achieving a faster error reduction rate than the one-step CGDA. Thus, the benefits of multi-
step CGDA become more significant as the number of tracers increases.

Figure 9 shows the time mean RMSEs of free forecasts given by the bare-truncated linear flow model (19), the
calibrated linear stochastic flow model (23), the bare-truncated conditional Gaussian nonlinear flow model (24),
and the calibrated conditional Gaussian nonlinear stochastic flow model (30). Whether bare-truncated or calibrated,
the conditional Gaussian nonlinear flow models exhibit slower error-growing rates than the linear flow models
in short-term forecasts. For data assimilation with frequent observations, the short-term forecast performance is
indicative enough for model evaluation. Therefore, the benefits of preserving additional nonlinearities in multi-step
CGDA are further validated.

4.4 Computational cost
Finally, we summarize the computational cost of the multi-step CGDA focusing on recovering the lower layer
from upper-layer pseudo-observations using a nonlinear conditional Gaussian flow model. The initial one-step
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Figure 7: Time mean posterior RMSEs of one-step CGDA and multi-step CGDA with different ensemble sizes.

Figure 8: Time mean posterior RMSEs of one-step CGDA and multi-step CGDA with different tracer numbers.
The infinite-tracers case is solved conceptually with the upper-layer flow being directly and fully observed.
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Figure 9: RMSE series of the two-layer flow model free forecasts. Red solid lines indicate a bare-truncated linear
flow model. Red dashed lines indicate a calibrated linear stochastic flow model. Blue solid lines indicate a bare-
truncated conditional Gaussian nonlinear flow model. Blue dashed lines indicate a calibrated conditional Gaussian
nonlinear stochastic flow model. The upper row corresponds to the upper layer. The lower row corresponds to the
lower layer.

CGDA that recovers surface flow from tracers can be substituted by other methods, which is not our focus here.
Specifically, a single step of the CGDA using the nonlinear flow model has three computationally intensive parts:
the backward sampling (34), the assembling of coefficient matrices (55) and (56), and the update of posterior mean
and variance using (4).

The computational cost of multi-step CGDA algorithm largely depends on three input sizes: the assimilation
steps Nt , the ensemble size Ns, and the cardinality of truncated Fourier modes set |Ktr|, where Ktr⊆K . Consider a
single assimilation step with one ensemble member; the cost of backward sampling is led by matrix multiplication
and inversion, leading to an asymptotic complexity of O(|Ktr|2). The assembling of coefficient matrices involves
calculating the linear terms, assigning the nonlinear terms, and aggregating linear and nonlinear terms, resulting in
a cost of O(|Ktr|2). The update of mean and covariance cost O(|Ktr|3), with the cost led by matrix multiplication.
Therefore, the total cost of a single step of CGDA using a nonlinear flow model is O(Nt×Ns×|Ktr|3) in the worst
case.

However, it is possible to reduce the computational cost in practice. For backward sampling, leveraging the
diagonal property of matrices a, ΣE, and RE can reduce the cost to O(|Ktr|). A constant covariance matrix can
be used. Therefore, only the mean update is needed, which further reduces the computational costs. Figures 10
and 11 show the execution time of the one-step CGDA with linear flow model, multi-step CGDA, and multi-
step CGDA with constant covariance as a function of truncation radius and ensemble size, respectively. Using
a constant covariance matrix nearly cuts the cost by half, as shown in Fig. 11. In the QG application, using a
constant covariance achieves a mean posterior RMSE of 0.303, which is close to the multi-step CGDA’s 0.291 and
significantly lower than the one-step CGDA’s 0.400.

5 Conclusion and final discussions
A nonlinear closed-form data assimilation scheme is developed for multi-layer flow fields with surface observa-
tions. The multi-step CGDA accounts for the nonlinearity in both observations and flow, with analytic formulae
to solve the posterior mean and covariance. This is achieved by sequentially filtering each layer from top to bot-
tom. The multi-step CGDA is tested in the two-layer QG model compared to the one-step CGDA with linear flow
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Figure 10: The execution time (wall-clock time) of one-step CGDA with linear flow model (red), multi-step CGDA
(blue), multi-step CGDA with constant covariance matrix (purple) varying with the Fourier modes truncation radius
r. The square of truncation radius r2 is proportional to |Ktr|. Both axes are displayed in log scale in order to reveal
the linear relation. The data assimilation methods are run for 10 assimilation steps. The multi-step data assimilation
methods have 2 ensemble members.

Figure 11: The same as Fig. 10, except for varying with ensemble size Ns. The truncation radius is fixed to r = 16.
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models. The multi-step CGDA produces smaller posterior RMSE than the one-step CGDA and can capture non-
Gaussian posteriors. Consistent results are found for different turbulent regimes of the two-layer QG model, with
the benefits of multi-step CGDA amplified as the tracer number and ensemble size increase. In particular, using
a constant covariance can greatly reduce computational costs while maintaining relatively good filter performance
in certain cases.

Compared to the OI method that linearly connects corrections across layers (Molcard et al., 2005), the one-step
CGDA with linear stochastic flow models connects layers via eigenvectors. These two methods are equivalent
when both the observation and flow are linear Gaussian processes. However, in Lagrangian data assimilation, the
observation process is inherently nonlinear. Although the OI method can use a nonlinear flow model to provide the
prior, the Gaussian assumption does not hold. In comparison, the one-step CGDA allows a nonlinear observation
process with the nonlinearity exactly considered in the formulation. Furthermore, the multi-step CGDA can handle
flow model nonlinearity in its subsequent steps, thus better propagating the corrections across layers. Future studies
could apply the multi-step CGDA to flow fields with more than two layers to validate this.

The backward smoother sampling formula is used to generate pseudo-observations of the upper layer. This
leads to an unbiased estimation but is impractical in the online filtering setting. An optimal filter-based forward
sampling formula is needed to test the conclusions in filtering practice. For scenarios where a smoother is applica-
ble, the smoother version of the multi-step CGDA can be utilized for parameter estimation. For instance, constant
forcing parameters, such as topography, can be estimated using the multi-step conditional Gaussian smoother. Po-
tential applications include recovering the ocean bottom topography based on surface tracer observations and the
associated uncertainty quantification.

The assimilation of each layer is modularized in the multi-step data assimilation, meaning it is a general frame-
work. One can switch to alternative data assimilation schemes at any step, not necessarily restricted to CGDA.
For example, a more advanced data assimilation scheme than the one-step CGDA could be used at the first data
assimilation step to improve the recovery of the surface flow. This improvement will propagate downward and
lead to a better recovery of the lower layers as well. In addition, the multi-step CGDA is natural for, but not re-
stricted to, Lagrangian data. Eulerian data is adoptable if its governing equation is provided and the data is frequent
enough. An example work that combines Eulerian and Lagrangian data assimilation under the CGDA framework
is presented in Deng et al. (2024). Besides, covariance inflation (Anderson and Anderson, 1999) can be applied
to the pseudo-observations, which may help compensate for the approximation errors described in Section 2.3 and
further improve the multi-step data assimilation accuracy.
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Appendix A: Calibration of Stochastic Models

5.1 Calibrating LSMs
The parameters γ , ω , f , and σ of the complex OU process can be determined by matching the four statistics
computed from the observational time series. These statistics are the mean m, the variance V , and the real and
imaginary parts of the decorrelation time, T and θ . The latter two can be calculated as follows:

R(s) =
E
[
(ψ̂t − ψ̂∞)(ψ̂t+s− ψ̂∞)

]
var(ψ̂∞)

. (35)

ˆ
∞

0
R(τ)dτ = T − iθ , (36)

where R(s) is the autocorrelation function (ACF). Then the four parameters are uniquely determined by these four
statistical quantities via the following formulae

γ =
T

T 2 +θ 2 , ω =
θ

T 2 +θ 2 , f =
m(T − iθ)
T 2 +θ 2 , and σ =

√
2V T

T 2 +θ 2 . (37)

In practice, an infinite time series is unavailable. Using a truncated time series introduces errors in the estimation of
ACF and decorrelation time. Therefore, we choose an alternative approach to estimate d and ω . By using an ansatz
of the ACF, where the autocorrelation of the real part of ψ̂ equals e−γtcosωt, and the cross-correlation between the
real and imaginary parts equals e−γtsinωt (Majda and Harlim, 2012), we can fit the ansatz to the observations thus
getting γ and ω . Note that when using ACF for fitting, the signs of ω need to be calibrated according to the ones
based on CCF. Because the cosine function is even.

5.2 Calibrating conditional Gaussian stochastic models
Assuming the parameters of QG equations are known, we only calibrate the noise strength Σ1 and Σ2 in the
conditional Gaussian model (30):

σ j,k =

√
var
(
ε̂ j,k(t→ ∞)

)
2

, j = 1,2 (38)

where σ j,k is the diagonal entry of Σ j corresponding to wave number k. ε̂ j,k(t → ∞) is the residual at each time
step for the equilibrium state.

5.3 Evaluation metrics
Several metrics are used for evaluating the model calibration. The energy of ψk is defined as

Eψk = |ψk|2. (39)

The kinetic energy (KE) of the two-layer flow field corresponding to a wave number k is

KEk =
1
2
(|∇ψ1,k|2 + |∇ψ2,k|2) =

k2

2
(|ψ1,k|2 + |ψ2,k|2). (40)
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The available potential energy (APE) for wave number k is

APEk =
k2

d
4
|ψ1,k−ψ2,k|2. (41)

The total energy (E) of the two-layer flow for wave number k is

Ek = KEk +APEk. (42)

The enstrophy (E ) of the two-layer flow for wave number k is

Ek =
1
2
(|q1,k|2 + |q2,k|2). (43)

Note that all the energy in Fourier space is normalized by 1/|K |2 in evaluation. The energy for each Fourier mode
is then distributed into discrete bins of k = 0,1,2, ... according to the magnitude |k|. For example,

Ek =
K

∑
k

⌊|k|⌋=k

(⌈|k|⌉− |k|)Ek +
K

∑
k

⌈|k|⌉=k

(|k|−⌊|k|⌋)Ek, (44)

where ⌊·⌋ and ⌈·⌉ are the floor and ceiling functions, respectively.

5.4 Conversion between eigenmodes energy and layers energy
Suppose ψ1,k = r1ψE1,k + r2ψE2,k is a linear combination of ψE1,k and ψE2,k .Omitting k for convenience, the
energy of ψ1,k is

Eψ1 = |r1ψE1 + r2ψE2|2

= [r1Re(ψE1)+ r2Re(ψE2)]
2 +[r1Im(ψE1)+ r2Im(ψE2)]

2

= r2
1|ψE1|2 + r2

2|ψE2|2 +2r1r2[Re(ψE1)Re(ψE2)+ Im(ψE1)Im(ψE2)]

= r2
1EE1ψ

+ r2
2EE1E2 +2r1r2[Re(ψE1)Re(ψE2)+ Im(ψE1)Im(ψE2)].

A cross term 2r1r2[Re(ψE1)Re(ψE2)+ Im(ψE1)Im(ψE2)] emerges in energy after the linear transformation from
eigenmodes to layers. This means, an exact match of EψE1 ,EψE2 does not necessarily assure a perfect match of
Eψ1 . The cross term can be explicitly considered in the linear stochastic modeling by matching the statistics of
Re(ψE1)Re(ψE2) and Im(ψE1)Im(ψE2).

5.5 Results on two-layer QG system
To evaluate the calibration, we can compare the statistics, including mean, variance, and energy metrics, of the
LSMs to the true signals from QG. We can also plot the trajectories to get an intuitive comparison. The calibrated
LSMs of the eigenmodes match well for the eigenmodes. However, after the transformation to two-layer quantities,
only the mean is matched. Mismatches in variance and energy metrics exist for two-layer quantities but can be
eliminated by allowing correlated noises of eigenmodes (see appendix B for details of the LSMs with correlated
noises and Fig. 12 for energy spectrum results).

Appendix B: Linear Stochastic Models with Correlated Noises

5.6 Model form
To consider the cross terms of two eigenmodes, we let the LSMs have correlated noises:

d
dt


Re(ψ̂E1)
iIm(ψ̂E1)
Re(ψ̂E2)
iIm(ψ̂E2)

=


−γ1, iω1,0,0
iω1,−γ1,0,0
0,0,−γ2, iω2
0,0, iω1,−γ1




Re(ψ̂E1)
iIm(ψ̂E1)
Re(ψ̂E2)
iIm(ψ̂E2)

+


Re( f1)
iIm( f1)
Re( f2)
iIm( f2)

+


σ1,0,cR,0
0,σ1,0,cI
cR,0,σ2,0
0,cI,0,σ2




Re(ẆE1)
iIm(ẆE1)
Re(ẆE2)
iIm(ẆE2)

 (45)
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Figure 12: The energy spectrum of two-layer modes: true signals (blue), LSMs (red), and LSMs with correlated
noises (cyan).

The subscript k denoting wavenumber is omitted here for convenience. Note that the noise coefficient matrix is no
longer diagonal, thus allowing correlation in noise.

5.7 Calibration
For LSMs with correlated noise, the way to calibrate parameters γ , ω , and f remains the same as in appendix 5.1.
Because γ , ω , and f only depend on the mean and decorrelation time. The calibration of σ1, σ2, cR, and cI is a little
more complicated, but can be analytically determined by matching var(ψ̂E1), var(ψ̂E2), cov(Re(ψ̂E1)Re(ψ̂E2)), and
cov(Im(ψ̂E1)Im(ψ̂E2)).

var(ψ̂E1) =
2σ2

1 + c2
R + c2

I
2γ1

,

var(ψ̂E2) =
2σ2

2 + c2
R + c2

I
2γ2

,

cov(Re(ψ̂E1)Re(ψ̂E2)) =
cR(σ1 +σ2)

γ1 + γ2
,

cov(Im(ψ̂E1)Im(ψ̂E2)) =
cI(σ1 +σ2)

γ1 + γ2
.

(46)
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One can derive (46) using the general Itô Formula (Øksendal, 2003). The solution to this system of nonlinear
equations is not unique. But we can rule out some solutions by enforcing certain regularizations, for example,
σ1 ≥ 0 and σ2 ≥ 0. At last, only one solution is adopted:

σ1 =
√

2b3

√√√√b1 +b2−2
√

b1b2−2(b2
3 +b2

4)

(b1−b2)2 +8(b2
3 +b2

4)
,

σ2 =
√

2b4

√√√√b1 +b2−2
√

b1b2−2(b2
3 +b2

4)

(b1−b2)2 +8(b2
3 +b2

4)
,

cR =

√
2

2

(
b1 +

√
b1b2−2(b2

3 +b2
4)

)√√√√b1 +b2−2
√

b1b2−2(b2
3 +b2

4)

(b1−b2)2 +8(b2
3 +b2

4)
,

cI =

√
2

2

(
b2 +

√
b1b2−2(b2

3 +b2
4)

)√√√√b1 +b2−2
√

b1b2−2(b2
3 +b2

4)

(b1−b2)2 +8(b2
3 +b2

4)
,

(47)

where b1 = 2γ1var(ψ̂E1), b2 = 2γ2var(ψ̂E2), b3 =(γ1+γ2)cov(Re(ψ̂E1)Re(ψ̂E2)), and b4 =(γ1+γ2)cov(Im(ψ̂E1)Im(ψ̂E2)).

5.8 CGDA
For LSMs of eigenmodes with correlated noise, the CGDA formulae remain the same as (33). But the size of noise
coefficient matrix ΣE expands to 4|K |×4|K | if cR ̸= cI, because the real and imaginary parts of ΨE needs to be
separated. Fortunately, we observe that cR is close to cI in the QG case. So by letting c = (cR + cI)/2 and replace
cR and cI by c, the size of ΣE can remain unchanged. Only a small modification needs to be made:

ΣE =
√

2



. . . . . .
σ1,k ck

. . . . . .
. . . . . .

ck σ2,k
. . . . . .


. (48)

With proper permutations, ΣE can become a block-diagonal matrix.

one-step CGDA 0.400
one-step CGDA w/ correlated noises 0.372

multi-step CGDA 0.291

Table 3: Time mean RMSEs for one-step CGDA, one-step CGDA using LSMs with correlated noises, and multi-
step CGDA.

Appendix C: Upper Layer Fully Observed Case

5.9 CGDA with linear stochastic flow models
When the upper-layer flow is directly and fully observed, the two-layer linear stochastic flow model itself becomes
conditional Gaussian. From the eigenmodes model (14) and the conversion formulae between two-layer modes
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and eigenmodes, the two-layer linear stochastic flow model can be derived as

dψ̂1,k

dt
= (−Γ1,k + iΩ1,k)ψ̂1,k +(−Γ2,k + iΩ2,k)ψ̂2,k + f1,k +Σ1,kẆE1,k +Σ2,kẆE2,k,

dψ̂2,k

dt
= ((−γ1,k + iω1,k)ψ̂1,k +(−γ2,k + iω2,k)ψ̂2,k + f2,k)d+σ1,kẆE1,k +σ2,kẆE2,k

(49)

where

−Γ1,k + iΩ1,k =
r(1)1,kr(2)2,k(−γE1,k + iω1,k)− r(2)1,kr(1)2,k(−γE2,k +ω2,k)

r(1)1,kr(2)2,k− r(2)1,kr(1)2,k

,

−Γ2,k + iΩ2,k =
r(1)1,kr(1)2,k (−(−γE1,k + iω1,k)+(−γE2,k + iω2,k))

r(1)1,kr(2)2,k− r(2)1,kr(1)2,k

,

−γ1,k + iω1,k =
r(2)1,kr(2)2,k ((−γE1,k + iω1,k)− (−γE2,k + iω2,k))

r(1)1,kr(2)2,k− r(2)1,kr(1)2,k

,

−γ2,k + iω2,k =
−r(2)1,kr(1)2,k(−γE1,k + iω1,k)+ r(1)1,kr(2)2,k(−γE2,k + iω2,k)

r(1)1,kr(2)2,k− r(2)1,kr(1)2,k

,

f1,k = r(1)1,k fE1,k + r(1)2,k fE2,k, f2,k = r(2)1,k fE1,k + r(2)2,k fE2,k,

Σ1,k = r(1)1,kσ1,k, Σ2,k = r(1)2,kσE2,k,

σ1,k = r(2)1,kσ1,k, σ2,k = r(2)2,kσE2,k,

(50)

Write (49) in matrix form,
dΨ1

dt
= A0(Ψ1, t)+A1Ψ2 +Σ1,1ẆE1 +Σ1,2ẆE2,

dΨ2

dt
= a0(Ψ1, t)+a1Ψ2 +Σ2,1ẆE1 +Σ2,2ẆE2,

(51)

where A0 = (−Γ1,1 + iΩ1,1)Ψ1 +F1, A1 = −Γ2,2 + iΩ2,2, a0 = (−Γ2,1 + iΩ2,1)Ψ1 +F2, and a1 = −Γ2,2 + iΩ2,2.
The damping Γi, j, phase Ωi, j, and noise Σi, j parameters are diagonal matrices. The forcing term Fi is a vector. The
conditional Gaussian system (51) has the following formulae to solve posterior mean and covariance of Ψ2 given
past trajectories of Ψ1:

dΨ̄2

dt
= (a0 +a1Ψ̄2)+(Σ̃2 ◦ Σ̃1 +R2A

∗
1)(Σ̃1 ◦ Σ̃1)

−1
(

dΨ1

dt
− (A0 +A1Ψ̄2)

)
, (52a)

dR2

dt
= a1R2 +R2a

∗
1 + Σ̃2 ◦ Σ̃2− (Σ̃2 ◦ Σ̃1 +R2A

∗
1)(Σ̃1 ◦ Σ̃1)

−1(Σ̃1 ◦ Σ̃2 +A1R
∗
2), (52b)

where
Σ̃i ◦ Σ̃ j = Σi,1Σ

∗
j,1 +Σi,2Σ

∗
j,2, i = 1,2; j = 1,2

5.10 CGDA with nonlinear stochastic flow models
In the modified two-layer QG system (29) described in section 3.2, the term D̃i,k that includes the Ekman and
hyperviscosity damping is given by

D̃1,k =−ν |k|2s
(
(|k|2 + k2

d)|k|2ψ1,k−
k2

d
2

hk

)
−κ

k2
d
2
|k|2ψ2,k,

D̃2,k =−ν |k|2s
(
(|k|2 + k2

d)|k|2ψ2,k− (|k|2 +
k2

d
2
)hk

)
−κ(|k|2 +

k2
d
2
)|k|2ψ2,k,

(53)
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and the Jacobian term J̃i,k is

J̃1,k =
K ,K

∑
m,n

m+n=k

∣∣∣∣mn
∣∣∣∣
(
−(|k|2 +

k2
d
2
)(|m|2 +

k2
d
2
)ψ1,nψ1,m +

k2
d
2
(|k|2 +

k2
d
2
)ψ1,nψ2,m +

k4
d
4

ψ2,nψ1,m +
k2

d
2

ψ2,nhm

)
,

J̃2,k =
K ,K

∑
m,n

m+n=k

∣∣∣∣mn
∣∣∣∣
(
−

k2
d
2
(|m|2 +

k2
d
2
)ψ1,nψ1,m +

k4
d
4

ψ1,nψ2,m +
k2

d
2
(|k|2 +

k2
d
2
)ψ2,nψ1,m +(|k|2 +

k2
d
2
)ψ2,nhm

)
,

(54)

in which (mxny−mynx) is written in the form of determinant.
After introducing noises, the modified two-layer QG system (29) can be written as the conditional Gaussian

stochastic model (30) when the upper-layer flow is fully observed. The coefficients A0(Ψ1, t) and a0(Ψ1, t) are
vectors with the elements corresponding to wave number k given by

A0,k =Ck

(
ikx

((
(|k|2 +

k2
d
2
)β −|k|4U

)
ψ̂1,k−

k2
d
2

Uĥk

)

−ν |k|2s
(
(|k|2 + k2

d)|k|2ψ̂1,k−
k2

d
2

ĥk

)
−

K ,K

∑
m,n

m+n=k

∣∣∣∣mn
∣∣∣∣((|k|2 + k2

d
2
)(|m|2 +

k2
d
2
)ψ̂1,nψ̂1,m

)
a0,k =Ck

(
ikx

((
k2

d
2

β − k2
d |k|2U

)
ψ̂1,k− (|k|2 +

k2
d
2
)Uĥk

)

+ν |k|2s(|k|2 +
k2

d
2
)ĥk−

K ,K

∑
m,n

m+n=k

∣∣∣∣mn
∣∣∣∣(k2

d
2
(|m|2 +

k2
d
2
)ψ̂1,nψ̂1,m

)

(55)

A1(Ψ1, t) and a1(Ψ1, t) are matrices with the entries corresponding to wave numbers k in row and wave number
m in column given by

A1,(k,m) =Ck

ikx(
k2

d
2

β + k2
d |k|2U−κ

k2
d
2 |k|

2

ikx
)δk,m +

∣∣∣∣ m
k−m

∣∣∣∣ k2
d
2
(|k|2ψ̂1,k−m− ĥk−m)


a1,(k,m) =Ck

ikx

(|k|2 +
k2

d
2
)β + |k|4U−κ

(|k|2 + k2
d
2 )|k|

2

ikx
−ν |k|2s (|k|2 + k2

d)|k|2

ikx

δk,m

−
∣∣∣∣ m
k−m

∣∣∣∣(|k|2 k2
d
2

ψ̂1,k−m +(|k|2 +
k2

d
2
)ĥk−m

))
(56)

where δk,m = 1 if k = m else δk,m = 0.
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