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Abstract

We introduce a data assimilation strategy aimed at accurately capturing key non-Gaussian structures in

probability distributions using a small ensemble size. A major challenge in statistical forecasting of nonlinearly

coupled multiscale systems is mitigating the large errors that arise when computing high-order statistical mo-

ments. To address this issue, a high-order stochastic-statistical modeling framework is proposed that integrates

statistical data assimilation into finite ensemble predictions. The method effectively reduces the approxima-

tion errors in finite ensemble estimates of non-Gaussian distributions by employing a filtering update step that

incorporates observation data in leading moments to refine the high-order statistical feedback. Explicit filter

operators are derived from intrinsic nonlinear coupling structures, allowing straightforward numerical implemen-

tations. We demonstrate the performance of the proposed method through extensive numerical experiments

on a prototype triad system. The triad system offers an instructive and computationally manageable platform

mimicking essential aspects of nonlinear turbulent dynamics. The numerical results show that the statistical

data assimilation algorithm consistently captures the mean and covariance, as well as various non-Gaussian

probability distributions exhibited in different statistical regimes of the triad system. The modeling framework

can serve as a useful tool for efficient sampling and reliable forecasting of complex probability distributions

commonly encountered in a wide variety of applications involving multiscale coupling and nonlinear dynamics.

1 Introduction

Predicting the distinct statistical behaviors observed in nonlinear dynamical systems involving multiple spatial and
temporal scales remains a fundamental challenge across various natural and engineering problems [11, 21, 30, 28].
One primary difficulty arises from accurately quantifying the multiscale nonlinear interactions between the large-
scale mean state and small-scale stochastic fluctuations amplified by inherent instability. Such interactions often lead
to non-Gaussian probability distributions characterized by high-order statistics and intermittent extreme events,
driven by the intricate multiscale coupling mechanism [7, 40, 37]. Developing efficient computational algorithms
capable of capturing these critical non-Gaussian probabilistic features remains a central issue in practical appli-
cations [18, 39, 12]. Ensemble-based methods combined with data assimilation strategies [18, 16, 6, 1] have been
successfully applied for recovering leading-order statistics in linear dynamical systems from noisy and partial obser-
vations. However, as nonlinear coupling effects become dominant, low-order approaches such as Kalman filters often
suffer inherent difficulties and fail to capture the essential higher-order moment statistics [23, 33, 32]. As a result,
accurate and efficient methods for quantification and prediction of these high-order statistics and the associated
non-Gaussian probability distributions are still needed for reliable forecasting of the complex phenomena.

We consider the nonlinear statistical forecast problem formulated as the following general stochastic dynamical
equation (SDE) [23, 35] describing the uncertainty evolution of the random state u ∈ R

d starting from random
initial state u (0;ω) ∼ µ0 and driven by stochastic forcing and nonlinear interactions

du

dt
= Λu+B (u, u) + F (t) + σ (t) Ẇ (t;ω) . (1.1)
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On the right hand side of the above equation (1.1), the first term, Λ = L − D, represents linear dispersion and
dissipation effects, where L∗ = −L is an energy-conserving skew-symmetric operator; and D < 0 is a negative
definite operator. Inhomogeneous forcing effects are introduced in a deterministic component, F , and a stochastic
component represented by a Gaussian random process, σ (t) Ẇ (t;ω). Most importantly, nonlinear coupling effect
has a non-negligible contribution in the dynamical system introduced via a quadratic form, B (u, u), which satisfies
the energy conservation law by u · B (u, u) = 0. The model structures in (1.1) are representative in a wide variety
of multiscale systems in many fields [17, 15, 30]. In computing key statistical predictions in the model state u,
the low-order moments become intricately connected to the high-order statistical information due to the nonlinear
coupling B (u, u). Conventional ensemble Kalman filters [10, 9, 4] neglecting the higher-order moments information
usually become insufficient. In this case even with low dimensionality d, finite ensemble approximation frequently
suffers from collapse of particles, with the group of particles concentrating in the center region of the PDF and failing
to capture the outliers charactering the key non-Gaussian statistics and extreme events [25, 40, 32]. Thus effective
algorithms require to capture the entire probability density functions (PDFs) including high-order information using
a moderate ensemble size to maintain the affordable computational cost.

In this paper, we introduce a practical modeling and computational strategy designed to accurately capture
the probability distributions and key statistical characteristics of the solution to (1.1). Based on the theoretical
framework presented in [35] and the statistical filtering approach in [1], we develop a detailed data assimilation
algorithm aimed at achieving accurate statistical prediction in finite ensemble approximation of potentially highly
non-Gaussian probability distributions. To cope with the computational limitation in practical applications, the
ensemble of simulated samples needs to be constrained in a small size. We propose to correct the large fluctuating
errors that commonly appear using small ensemble size by exploiting partial observation data of the low-order
statistical moments. An effective data assimilation algorithm is then formulated to improve the model accuracy
by capturing the higher-order moment information and reduce the high computational cost at the same time. In
particular, we conduct detailed numerical study on the proposed ensemble data assimilation scheme based on the
systematic statistical modeling framework and applied on a representative triad system [24] with multiple distinctive
statistical regimes.

The main ideas in constructing the data assimilation model using statistical observation data is illustrated in the
flow chart in Figure 1.1. We propose to compute the probability distribution ρ of the model state u in (1.1) using
the more tractable stochastic-statistical equations (2.2). The target probability distribution will be approximated
by an empirical probability distribution ρN through an interacting particle simulation of the stochastic coefficients
Z. However, in practice this ensemble-based approach will often become insufficient to accurately capture the
essential PDF structures when only a small sample size N is available. To study the uncertainty from a finite
sample size, we consider the continuous distribution ρ

(

·; yN
)

of each particle Zi as a P
(

R
d
)

-valued random field
defined by (2.7). The randomness is introduced due to the finite sample estimation of the leading moments yN (ω)
in the statistical equation (2.9). This leads to a natural filtering problem to find the optimal state estimation of the
random field ρ based on the observation data Gt generated by the low-order statistical moments with respect to the
probability distribution. The optimal filter solution ρ̂ then can be found through the projection on the space of Gt-
measurable square-integrable random fields and is given by the Kalman-Bucy filter (2.11) as an infinite-dimensional
functional equations. To propose an efficient computational strategy to solve ρ̂, a new stochastic process Z̃ ∼ ρ̃ is
introduced so that they can provide consistent high-order statistics ẼH = Hρ̂ according to the observation function
H . In particular, the governing SDE for the new process Z̃ (2.12) is derived with explicit forms of the filtering
coefficients a,K in (3.9). Finally, this new probability distribution ρ̃ can be computed efficiently by a finite sample
approximation ρ̃N which provides accurate high-order statistical consistency and generates samples giving a better
representation of the target distribution of the model.

ρt ∈ P
(

R
d
)

ρNt = 1
N

∑N
i=1 δZi ρt

(

·; yN (ω)
)

ρ̂t = E [ρt | Gt]Z̃ ∼ ρ̃t | Gtρ̃Nt | Gt

{

Zi
}

L∗
(

yN
)

PGt

ẼH
(

Z̃
)

= Hρ̂tK
(

Z̃; ρ̃t

)

, a
(

Z̃; ρ̃t

)

{Z̃i}

Figure 1.1: Flow chart illustrating ideas in constructing the data assimilation model for statistical forecast.
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In the structure of this paper, we first review the general multiscale modeling framework and develop the data
assimilation model based on the coupling structure in the stochastic-statistical model in Section 2. Then, the detailed
the ensemble data assimilation equations involving the explicit filtering operators and practical computational
algorithms are constructed in Section 3. The performance of the new data assimilation model and its skill in
recovering both leading-order mean and covariance and the crucial higher-order statistical feedbacks are extensively
tested under a representative prototype triad system demonstrating different statistical regimes in Section 4. A
summarizing discussion and potential future research directions are given in Section 5. Additional proofs of the
results used in the main text and more details on the intuition and applications of the triad system are listed in
Appendices A and B.

2 An integrated multiscale modeling framework with data assimilation

To start with, we describe the multiscale modeling strategy for the statistical solution to the general system (1.1).
In particular, the resulting coupled stochastic-statistical equations and the associated ensemble approximation can
be naturally combined with data assimilation for improved sampling of the target probability distributions.

2.1 The coupled stochastic-statistical formulation for multiscale dynamics

To characterize the uncertainty in the stochastic model state, the solution u is represented as a random field
(denoted by ω) and decomposed into the multiscale composition of a statistical mean state ū = E (u) and stochastic

fluctuations u′ in a high-dimensional representation under a proper orthonormal basis {v̂k}
d
k=1, that is,

u (t;ω) = ū (t) + u′ (t;ω) = ū (t) +

d
∑

k=1

Zk (t;ω) v̂k. (2.1)

Above, ū represents the statistical mean field of the dominant largest scale structure; and Z (t;ω) = {Zk (t;ω)}
d
k=1

are the stochastic processes characterizing the uncertainty in the fluctuation processes u′ on each eigenmodes v̂k.
Such decomposition is commonly used, for example, in the describing the zonal jets in geophysical turbulence and
the coherent radial flow in fusion plasmas [38, 26].

Under the decomposition (2.1), we can separate the full statistics in the original stochastic state u by the
leading two statistical moments ū, R and a mean-zero stochastic process Z governed by a coupled statistical and
stochastic dynamical equations. In particular, the statistical dynamical equations describing the evolution of the
mean ū (t) ∈ R

d and covariance R (t) ∈ R
d×d can be derived as

dū

dt
= Λū+B (ū, ū) + F +

d
∑

k,l=1

B (v̂k, v̂l)E (ZkZl) ,

dR

dt
= L (ū)R+RLT (ū) +Qσ +QF (E (Z ⊗ Z ⊗ Z)) .

(2.2a)

Accordingly, the stochastic process Z (t;ω) ∈ R
d satisfies the following stochastic differential equation coupled with

the leading-order statistical moments (ū, R) solved from (2.2a)

dZ = L (ū)Zdt+Qv (Z ⊗ Z −R) dt+ σdW. (2.2b)

In the statistical equations (2.2a), we define the stochastic forcing Qσ = σσT from the white noise process, the
coupling coefficients L (ū) due to interactions between the mean and covariance, and QF due to the higher-order
moments feedback from the triad modes Z⊗Z⊗Z = {ZmZnZk}m,n,k. In stochastic equation (2.2b), Qv represents

the stochastic quadratic coupling between modes from Z⊗Z = ZZT . The explicit expressions for these coefficients
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can be found according to the nonlinear coupling function B (u, u) for all the modes k, l = 1, · · · , d as

Lkl (ū) =v̂k · [Λv̂l +B (ū, v̂l) +B (v̂l, ū)] ,

QF,kl =

d
∑

m,n=1

[γkmnE (ZmZnZl) + γlmnE (ZmZnZk)] ,

Qv,k =

d
∑

m,n=1

γkmn (ZmZn −Rmn) ,

(2.3)

with the coupling coefficients γkmn = v̂k ·B (v̂m, v̂n).
The above coupled stochastic-statistical equations (2.2) provide a self-consistent closed system for recovering

the statistical solution of u. The leading-order moments ū and R are solved by the statistical equations (2.2a)
involving the higher-order moments of the stochastic coefficients Z, and all high-order statistical information is
recovered through the law ρ of the stochastic process Z from (2.2b) dependent on the solutions {ū, R}. More
detailed discussions on the derivation and advantages of this new formulation can be found in [35]. It demonstrates
that this new set of equations provides consistent statistical solutions with the original system (1.1), while enjoys
additional advantages of more adaptive to various model reduction and data assimilation strategies [23, 24].

2.2 Predicting probability density functions using statistical observation data

A practical approach for numerically implementing the coupled stochastic-statistical equations (2.2) is to adopt a
particle approximation to the probability distribution of the stochastic variable Z. Thus the expectations required

in the statistical equations (2.2a) can be estimated through an empirical average of the samples Z =
{

Zi
}N

i=1

ρN (z, t) =
1

N

N
∑

i=1

δ
(

z − Zi (t)
)

, E
N (f (Z)) =

1

N

N
∑

i=1

f
(

Zi
)

. (2.4)

Therefore, the statistical solution can be computed by solving the following equations as an interacting particle
system by evolving the ensemble Z

dZi

dt
= L

(

ūN
)

Zi +Qv

(

Zi ⊗ Zi −RN
)

+ σẆ i, i = 1, · · · , N,

dūN

dt
= ΛūN +B

(

ūN , ūN
)

+
∑

k,l

B (v̂k, v̂l)E
N (Zk ⊗ Zl) + F,

dRN

dt
= L

(

ūN
)

RN + RNLT
(

ūN
)

+QF

(

E
N (Z⊗ Z⊗ Z)

)

+Qσ

+ ǫ−1
(

E
N [Z⊗ Z]−RN

t

)

.

(2.5)

Several modifications are introduced in the numerical model (2.5) compared to the original equations (2.2). Instead
of computing the exact law ρ (z, t) of the stochastic process Z by solving the PDE (2.6), a finite particle approx-
imation in the form of (2.4) is used to estimate the crucial higher moments feedback in the mean and covariance
equations. The samples are generated by a McKean-Vlasov SDE implicitly dependent on all the sample trajectories
through the statistical solutions ūN , RN . In addition, a relaxation term with an additional parameter ǫ > 0 is added
to the covariance equation for RN to enforce consistency in the finite particle approximation of the covariance. It is
found that this term is essential for maintaining stable numerical especially with strong mean-fluctuation coupling
from the term L (ūt) (see Figure 4.3 in Section 4.1).

It can be shown [14] that the empirical measure ρN converges to the law of each Zi, ρN → ρ, as N → ∞. The
solution of the probability distribution ρ of Zi is given by the corresponding Fokker-Planck equation

∂ρ

∂t
= L∗ (ū, R) ρ := −∇ ·

[

L (ū) zρ+Qv

(

zzT −R
)

ρ
]

+
1

2
∇ · [∇ · (Qσρ)] , (2.6)

where L∗ is the adjoint of the generator L that is dependent on the mean ū and covariance R. Still, a major
difficulty remains if only a very small number of samples N is affordable to estimate the empirical distribution
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ρN . Furthermore, the internal instability (that is, the positive eigenvalues in L (ū) due to the mean-fluctuation
coupling B (ū, v̂l) · v̂k) may lead to fast growth of the sample errors and quick divergence of the numerical solutions
(see [24, 31] and Figure 4.2 in Section 4.1.2). This sets an inherent obstacle for efficient computation of the
statistical solutions in the multiscale coupling system. To address this inherent difficulty, we assume that additional
observation data y = {ū, R} containing only the first two moments is available to improve the prediction of the
probability distribution ρN from the stochastic samples. Especially when the nonlinear coupling plays a dominant
role in the dynamics, many non-Gaussian features will emerge in the probability distribution ρ. Our goal is then to
filter the non-Gaussian PDF ρ of Z containing crucial higher-order statistics by taking into account observations
from the leading two moments that are easy to access.

In order to introduce the data assimilation strategies to improve the prediction of the computational model,
we rewrite the coupled stochastic-statistical equations (2.5) as a conditional linear system about the probability
distribution ρ of the ensemble member Zi and the empirical moments ūN , RN also become stochastic processes

∂tρ =L∗
(

ūN , RN
)

ρ,

dūN =
[

EHm (Z) + hm
(

ūN
)]

dt+ ΓN
mdBm,

dRN =
[

EHv (Z) + hv
(

ūN , RN
)]

dt+ ΓN
v dBv.

(2.7)

Above, L (ū, R) is given by the infinitesimal generator in (2.6) and ρ is the continuous density solution. In the
equations for ūN , RN , we summarize all the deterministic terms (that is, all terms in (2.5) beside the ones with
E
N ) in the functions hm and hv respectively. Higher-order moment feedbacks can be then written as expectations

with respect to the continuous probability distribution ρ. The explicit expressions for the observation functions
Hm ∈ R

d and Hv ∈ R
d×d can be found from the expressions in (2.3) as quadratic and cubic functions about z

Hm
k (z) =

d
∑

p,q=1

γkpqzpzq, Hv
kl (z) =

d
∑

p,q=1

(γkpqzpzqzl + γlpqzpzqzk) . (2.8)

Importantly, notice that the additional noise terms with coefficients
(

ΓN
m,Γ

N
v

)

are introduced in the observed states
(

ūN , RN
)

to calibrate the errors from finite ensemble approximation. In fact, we can assume that the empirical
average in the mean and covariance equations can be both decomposed into the expectation with ρ and the additional
noise as a correction term to the finite sample estimation

E
NH (Z) dt = EH (Z) dt+ ΓNdB. (2.9)

Thus, the additional noise term ΓNdB is used to represent the fluctuating error from the N samples approximation
to the true expectation EH (Z). It is confirmed from the numerical tests in Section 4.2.1 that (2.9) offers desirable
characterization of the approximation errors in practical applications. In this way, the coupled system (2.7) sets
up a standard linear filtering problem given by the signal process ρ as a P

(

R
d
)

-valued stochastic process and the

observation process Gt = σ {y (s) , s ≤ t} with y (t) =
{

ūN (t) , RN (t)
}

satisfying the linear equation with respect
to the signal process ρ

dy = [Hρ+ h (y)] dt+ ΓdB, Hρ = EH (Z) =

∫

H (z)ρ (z) dz, (2.10)

where H becomes a linear operator acting on the probability density ρ with H = [Hm, Hv], h = [hm, hv], and
ΓdB = [ΓmdBm,ΓvdBv].

Applying the Kalman-Bucy filter in the infinite-dimensional Hilbert space [19, 8] for the stochastic process ρ in
(2.7) conditional on the observation processes in (2.10), we find the optimal high-order filter solution ρ̂ = E [ρ | Gt]
satisfying the following closed system of functional equations

dρ̂ = L∗ (y) ρ̂dt+ ĈH∗Γ−2 {dyt − [Hρ̂+ h (y)] dt} ,

dĈ =
[

L∗ (y) Ĉ + ĈL (y)
]

dt− ĈH∗Γ−2HĈdt,
(2.11)

where Ĉ (ω) : L2
(

R
d
)

→ L2
(

R
d
)

is the self-adjoint covariance operator with Ĉ∗ = Ĉ. The idea of filtering the
probability distributions starts from the Fokker-Planck filter in [1], and a systematic filtering model is developed
in [35] based on the specific nonlinear coupling structure in the stochastic-statistical model (2.2). Still, it remains
intractable to directly solve the functional system (2.11). The final step is to construct effective ensemble solvers
for the above optimal filter solution ρ̂.
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2.3 The approximate ensemble filter with consistent high-order statistics

As a final step, we introduce a practical strategy to efficiently compute the optimal filtering solution ρ̂ based on the
observed statistics. The idea is to construct a surrogate process Z̃ so that the corresponding probability distribution
of Z̃ ∼ ρ̃ can serve as an effective representation of the optimal filter solution ρ̂. Then, efficient particle approaches
can be adopted to capture the probability distribution of Z̃ instead of solving the infinite-dimensional equations
(2.11).

Associated with the forecast equation (2.5) for the stochastic process Z, given N particles for the sampling

solution of the stochastic state, Z̃ =
{

Z̃i
}N

i=1
, we can construct the following filtering updating equation with an

additional update according to the observation in the second line

dZ̃i =L
(

ūN
)

Z̃idt+Qv

(

Z̃i ⊗ Z̃i −RN
)

dt+ σdW̃ i

+am
(

Z̃i; ρ̃
)

dt+Km
(

Z̃i; ρ̃
)

dIm + av
(

Z̃i; ρ̃
)

dt+Kv
(

Z̃i; ρ̃
)

dIv,
(2.12)

where the innovations Im, Iv for the statistical observations are defined based on the observation data dy = (dū, dR)
as

dIm (t) = dū−
[

Hm
(

Z̃i
)

+ hm
(

ūN
)

]

dt,

dIv (t) = dR −
[

Hv
(

Z̃i
)

+ hv
(

ūN , RN
)

]

dt.
(2.13)

In the new filter equation (2.12) for the stochastic process Z̃, the first line follows the same dynamical equation
(2.2b) as the forecast step, while the second line introduces additional control correction based on the observation
data. The new functionals known as the Kalman gain K and the drift a are defined based on the probability
distribution of Z̃i ∼ ρ̃, and needs to be solved by the equations (2.15) shown below. Notice that the filter equation
(2.12) is also dependent on the first two moments

(

ūN , RN
)

which can be solved by integrating the two statistical
equations in (2.5). In addition, we need to introduce continuous observations to estimate dyt in the filtering scheme.
Assume that the observation data yn = y (tn) comes at times tn = n∆t with a short observation interval ∆t. We
can approximate the increment at tn in the observation data from the linear interpolation for t ∈ (tn, tn+1]

dy (t) ≃ ∆yn = yn+1 − yn. (2.14)

Furthermore, even though consecutive observations are required in a short interval for the estimate of ∆yn, we may
not require to have continuous observation data at each time updating step. The updating step of data assimilation
in the second line of the equation (2.12) can be applied only at the steps when observation data ∆yn is received.

Finally, the development of effective filtering scheme then relies on the construction of the Kalman gain operators
(Km,Kv) and the drift terms (am, av) in the second line of the filter update in (2.12) based on the observation
functions Hm, Hv. In general, these terms should be chosen so that the probability distribution ρ̃ of the constructed
stochastic Z̃i can correctly reflect the optimal filter solution ρ̂ in (2.11). From the standard procedure of developing
the mean field evolution equations [5, 29], they can be solved according to the probability distribution ρ̃ of Z̃, such
that

−∇ ·
(

KT ρ̃
)

= ρ̃Γ−2
[

H
(

Z̃
)

− Ẽ (H)
]

, a = ∇ ·
(

KΓ2KT
)

−KΓ2∇ ·KT . (2.15)

Theoretical analysis [35] shows that the high-order filtering equation (2.12) generates consistent statistics with
the optimal filter solution (2.11) in the analysis update if the above conditions (2.15) are satisfied. Importantly,

high-order statistics according to the nonlinear observation operators H in (2.8), Ẽ
[

H
(

Z̃
)]

= Hρ̂, are preserved

in the filter updating equation. This indicates that the new filtering model for Z̃ is able to capture the crucial
high-order statistics in the optimal filter solution ρ̂ rather than only the first two moments in the linear ensemble
Kalman filters. However, efficient ways to compute the Kalman gain and drift operators through (2.15) are still
needed without losing the essential high-order moments information. In the next section, we will propose easy-
to-implement schemes to compute these key filter operators K and a without the need to solve the distribution
function ρ̃.
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3 Ensemble data assimilation schemes maintaining high-order statistics

In this section, we construct a practical numerical scheme for the ensemble filtering equation (2.12). The goal is to
generate a better empirical representation (2.4) of the probability distribution using only a small ensemble size. The
accurate computation of the model statistics requires that the non-Gaussian statistics involved in the observation
function Hm and Hv are properly represented in the filtering update. This leads to several key treatments in the
construction of the filtering operators. In particular, we exploit the detailed structures of the observation functions
to derive explicit expressions for the functions am,Km and av,Kv in the filter equation.

3.1 Construction of detailed filter operators with nonlinear observation functions

Assuming that the first s components of the mean and covariance are observed, we can derive the filter operators
(a,K) by exploiting the specific quadratic and cubic structures of the observation functions Hm ∈ R

s andHv ∈ R
s×s

for all the observed modes 1 ≤ k, l ≤ s

Hm
k (z) =

∑

p,q

γkpqzpzq,

Hv
kl (z) =

∑

p,q

γkpqzpzqzl + γlpqzpzqzk,
(3.1)

where we define the coefficient γkpq = v̂k · B (v̂p, v̂q) according to (2.8). The following property of the observation
functions Hm, Hv can be found from direct computation using the above quadratic and cubic structures.

Lemma 1. The observation functions Hm and Hv defined in (3.1) satisfy

z · ∇Hm (z) =
∑

j

zj∂jH
m = 2Hm (z) ,

z · ∇Hv (z) =
∑

j

zj∂jH
v = 3Hv (z) .

(3.2)

With the above symmetry in the observation functions (3.2), we are able to find explicit expressions for the
Kalman gain and drift operators that enable efficient computation of these terms. In the following, we summarize
the useful results and formulas and put detailed derivations in Appendix A.

3.1.1 The explicit forms of the Kalman gain and drift operators

With the above explicit relations for the observation functions, we can first find special solutions to the equation
(2.15) to recover the Kalman gain operator K (z; ρ̃), that is,

−∇ ·
(

KT ρ̃
)

= ρ̃Γ−2
[

H
(

Z̃
)

− H̄
]

,

where H = Hm or Hv is the stretched vector and H̄ = Ẽ

[

H
(

Z̃
)]

. Still, we would like to avoid directly solving

the above equation since the probability distribution ρ̃ is usually intractable and can be only estimated from an
ensemble approach. By multiplying H on both sides, the identity for K implies a necessary condition

Ẽ
[

KT∇H
]

= Γ−2CH , (3.3)

where CH = Ẽ

[

(

H − H̄
) (

H − H̄
)T

]

is the second-order moment of H with respect to ρ̃. Then we may solve

instead the above equation to find proper candidate for the gain function Kt. In this way, we can compute the
detailed expressions for the Kalman gain operators based on the explicit forms and their particular symmetry in
the observation functions (3.2).

Proposition 2. The following Kalman gain operators Km ∈ R
d×s and Kv ∈ R

d×s2 satisfy the equation (3.3)

Km (Z) =
1

2
Z
[

Hm (Z)− H̄m
]T

Γ−2
m ,

Kv (Z) =
1

3
Z
[

Hv (Z)− H̄v
]T

Γ−2
v .

(3.4)
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with the state vector Z ∈ R
d, observation function Hm ∈ R

s, Hv ∈ R
s2 , observation noises Γm ∈ R

s×s
sym, Γv ∈ R

s2×s2

sym ,

and H̄ = Ẽ [H (Z)].

Next, the function a (z; ρ̃) can be directly solved from the explicit solutions of K in (3.4) according to

a = ∇ ·
(

KΓ2KT
)

−KΓ2∇ ·
(

KT
)

. (3.5)

We can also find the explicit forms of the drift terms through direct computation using (3.5) and again the specific
structures in observation functions (3.2).

Proposition 3. With the forms of Kmand Kv in (3.4), the corresponding drift terms satisfying (3.5) can be found
as

am (Z) =
1

4
Z
[

Hm (Z)− H̄m
]T

Γ−2
m

[

3Hm (Z)− H̄m
]

,

av (Z) =
1

9
Z
[

Hv (Z)− H̄v
]T

Γ−2
v

[

4Hv (Z)− H̄v
]

.

(3.6)

Notice that the solution to (3.3) only satisfies a necessary condition for the original equation for the Kalman
gain. Still, it already accounts for the crucial high-order statistics with respect to ρ̃ involving in the nonlinear
observation functions (3.1). Therefore, the achieved explicit forms of Kalman gain and drift terms (3.4) and (3.6)
can serve as suitable candidate for the construction of high-order filtering schemes. It shows to be a better choice
than that in the standard EnKF scheme (shown next in Section 3.2 and the numerical comparisons in Section 4)
which only considers Gaussian projection of ρ̃ thus neglects the crucial high-order statistics information in H .

3.1.2 Numerical implementation of the filter operators

Based on the explicit expressions of the filtering operators in (3.4) and (3.6), we are able to construct direct
algorithms for effective implementation of the filtering scheme. At each time updating step tn, the mean and
covariance can be computed by integrating the statistical equations (2.5)

∆ūNn = ūNn+1 − ūNn =

∫ tn+1

tn

[

E
NHm

(

Z̃ (s)
)

+ hm
(

ūN (s)
)

]

ds,

∆RN
n = RN

n+1 −RN
n =

∫ tn+1

tn

[

E
NHv

(

Z̃ (s)
)

+ hv
(

ūN (s) , RN (s)
)

]

ds.

(3.7)

Above, the empirical expectation E
N (·) is computed as in (2.4) using the ensemble average of all the simulated

samples from the filter equation (2.12). Then the filtering updating step combines the observation data (∆ū,∆R)
in (2.14) and the model forecast (3.7) to get an optimal estimate for the ensemble distribution for Z̃i as

Z̃i
n+1 =Ẑi

n+1 + (am∆t+Km∆Im) + (av∆t+Kv∆Iv) ,

Ẑi
n+1 =Z̃i

n + L
(

ūNn
)

Z̃i
n∆t+Qv

(

Z̃i
n ⊗ Z̃i

n −RN
)

∆t+ σ∆W̃ i
n.

(3.8)

Above, we split the filtering procedure in the standard two-step process, where Ẑi gets the forecast step update for
the stochastic state then the prior forecast is corrected through the filtering operators when the observation data
is available. The following proposition provides the explicit expressions for directly computing the filter updates
using the samples and observation data.

Proposition 4. Given the observations (∆ū,∆R) and the model predicted increments
(

∆ūN , RN
)

, the filtering

updating step in the filtering equation (3.8) can be computed directly based on the ensemble member Z̃i as

am∆t+Km∆Im =
1

2

[

Z̃iH ′T
m

(

Z̃i
)

Γ−2
m

]

(

∆ū −∆ūN
)

+
∆t

2

[

Z̃iH ′T
m

(

Z̃i
)

Γ−2
m

]

H̄m +
∆t

4

[

Z̃iH ′T
m

(

Z̃i
)

Γ−2
m H ′

m

(

Z̃i
)]

,

av∆t+Kv∆Iv =
1

3

[

Z̃iH ′T
v

(

Z̃i
)

Γ−2
v

]

(

∆R−∆RN
)

+
∆t

3

[

Z̃iH ′T
v

(

Z̃i
)

Γ−2
v

]

H̄v +
∆t

9

[

Z̃iH ′T
v

(

Z̃i
)

Γ−2
v H ′

v

(

Z̃i
)]

.

(3.9)
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with H̄ = E
N
[

H
(

Z̃

)]

and H ′ = H
(

Z̃
)

− H̄.

Using the explicit formulas in (3.8), we can directly update each filtering sample Z̃i during the time updating
interval containing the higher-order moments information in the observation functions Hm and Hv. To summarize,
the dynamical equations for the particles are coupled through the empirical average among all the samples according
to Algorithm 1.

Algorithm 1 Ensemble probability filter with statistical observations

Model Setup: Introduce discrete time step ∆t with M∆t = T . The sequence of statistical observations are given
by the increments of the mean and covariance ∆yn = {∆ūn,∆Rn} measured at the time instants tn = n∆t.

Initial condition: At initial time t = 0, draw an ensemble of samples
{

Z̃i
0

}N

i=1
from the initial distribution ρ̃0.

1: for n = 0 while n < M , during the time updating interval t ∈ [tn, tn+1]. do

2: Integrate the samples to the next time step
{

Ẑi
n+1

}

using forecast model in the second equation of (3.8).

3: Integrate statistical mean and covariance to
{

ūNn+1, R
N
n+1

}

by (3.7) using the average of all samples.
4: Compute the filtering update terms with the explicit formulas in (3.9) with the observation data ∆yn.

5: Update the samples
{

Z̃i
n+1

}

from the prior states
{

Ẑi
n+1

}

using the first equation of (3.8).

6: end for

Remark. 1. In practical implementations, it is observed that some outliers of the samples Z̃i may introduce
occasional instability by creating some extremely large values in the high-order terms in (3.9). To improve sta-

bility in the highly unstable regime, it is found useful to use the expectation values E
N
[

Z̃H ′T
(

Z̃
)

Γ−2
]

and

E
N
[

Z̃H ′T
(

Z̃
)

Γ−2H ′
(

Z̃
)]

instead of each ensemble evaluation to improve filter stability without sacrificing too

much accuracy.
2. High computational cost may still exist for solving a high-dimensional SDE (2.12). This difficulty could

be addressed by the reduced-order algorithms such as the random batch methods [33, 34]. We aim to combine
the efficient forecast models with the data assimilation strategy in high-dimensional problems in the following-up
research.

3.2 Comparison with ensemble Kalman filter schemes

In comparison, we also illustrate the common strategy used in ensemble Kalman filters [5]. Assuming that the
Kalman gain K is a deterministic matrix with no randomness, this leads to the following choice of the deterministic
Kalman gain matrix independent of Z̃, and a zero drift term due to the constant Kalman gain according to the
equation (2.15)

K = Ẽ

[

Z̃
(

H
(

Z̃
)

− H̄
)T

]

Γ−2 = C̃ZHΓ−2, and a = 0. (3.10)

where the covariance matrix C̃ZH is given by the cross-covariance between the process Z̃ and the observation

function H
(

Z̃
)

. The ensemble Kalman filter scheme then follows with the following filter equations

Z̃i
n+1 =Z̃i

n + L
(

ūNn
)

Z̃i
n∆t+Qv

(

Z̃i
n ⊗ Z̃i

n −RN
)

∆t+ σ∆W̃ i
n

+C̃ZHmΓ−2
m

{

∆ū−
[

Hm

(

Z̃i
n

)

+ hm

]

∆t
}

+ C̃ZHvΓ−2
v

{

∆R −
[

Hv

(

Z̃i
n

)

+ hv

]

∆t
}

,
(3.11)

where the covariance ĈZH = Ẽ
N

[

ẐH ′
(

Ẑ

)T
]

is computed according to the empirical average among all the sample

forecast Z̃n+1 from the second equation of (3.8). The above updating scheme (3.11) is usually referred to as the the
ensemble Kalman filter (EnKF). It has been shown that the EnKF approach can effectively drive the probability
density functions to the equilibrium such as using the ensemble Fokker-Planck filter [1].

However, in our modeling framework involving the coupled stochastic-statistical system, the high-order moments
are playing a central role as the high-order feedbacks in the statistical equations (2.2a) for accurate statistical
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prediction. Notice that in the EnKF approach, constant Kalman gains Km and Kv matrices are used independent
of each sample realization. It adopts the Gaussian projection on the stochastic process Z thus only statistics up
to the second-order moments are considered in the filter update. As a result, this approximation deliberately
neglected the crucial high-order statistics contained in the observation functions Hm and Hv. Compared with the
more precisely calibrated filter operators (3.9), directly applying the EnKF in the coupled stochastic-statistical

model (2.5) may miss the crucial high-order statistical information in the sampled observation H
(

Z̃i
)

thus lead

to larger errors and instability in the filter updates. The degeneracy of particles failing to capture the essential
high-order information in the EnKF prediction is demonstrated in Figure 4.9 and 4.10 from direct numerical tests.

3.3 Convergence of the statistical ensemble filter approximation

In this final part, we discuss the convergence of the discrete numerical scheme for the statistical estimates using

finite ensemble approximation. Let ρ̃N (z, t) = 1
N

∑N
i=1 δ

(

z − Z̃i (t)
)

be the random field from the finite ensemble

approximation of the N stochastic samples from (3.8), and ρ̃ (z, t) is the corresponding continuous distribution of
the P

(

R
d
)

-valued random field from the law of each stochastic process Z̃t in (2.12) conditional on the observations
Gt.

First, assume that the initial samples
{

Z̃i
0

}N

i=1
are drawn i.i.d. from the initial distribution ρ̃0, and the a unique

solution exists for the McKean-Vlasov SDE (2.12) for each sample Z̃i ∼ ρ̃. From the established conclusions from
the limit of the N interacting particle system [27, 14], the empirical probability distribution ρ̃N estimated with
finite samples will converge to the continuous measure ρ̃ as the ensemble size N → ∞. In addition, we will need
the following assumptions on the structures of the coupled stochastic-statistical equations (2.2)

Assumption 5. Assume that the model dynamics functions B : Rd × R
d → R

d and L : Rd → R
d×d in the mean

and covariance equations (2.2a) are Lipschitz continuous, that is, there is a constant β > 0 so that

|B (u, u)−B (v, v)| ≤ β |u− v| , ‖L (u)− L (v)‖ ≤ β |u− v| .

In addition, the nonlinear coefficients γkmn = v̂k · B (v̂m, v̂n) in (2.2b) are uniformly bounded, that is, there exists
a constant C > 0, so that for all k,m, n

|γkmn| ≤ C.

Given the observations Gt, we have for any test function ϕ ∈ C2
b

(

R
d
)

the empirical measure ρ̃N converges to
the continuous distribution for each sample ρ̃

〈

ρ̃N , ϕ
〉

=
1

N

N
∑

i=1

ϕ
(

Z̃i
)

→ E

[

ϕ
(

Z̃
)

| Gt

]

= 〈ρ̃, ϕ〉 , (3.12)

a.s. as N → ∞. Furthermore, there is the error estimate for the empirical estimate
〈

ρ̃Nt , ϕ
〉

:= E
Nϕ =

1
N

∑

ϕ
(

Z̃i (t)
)

and 〈ρ̃t, ϕ〉 := Ẽ

[

ϕ
(

Z̃ (t)
)]

for T > 0

E

[

sup
0≤t≤T

∣

∣

〈

ρ̃Nt , ϕ
〉

− 〈ρ̃t, ϕ〉
∣

∣

2
]

≤
CT

N
‖ϕ‖2∞ . (3.13)

Proofs on (3.12) and (3.13) follow from the law of large numbers and can be found in such as Theorem 9.18 of [2].
Next, we consider the finite ensemble and discrete time estimation of the statistical mean and covariance states

in the filtering solution. The statistical equations for the continuous solutions (ū, R) can be written based on their
explicit coupling dynamics (2.2a) and the high-order terms according to the observation functions Hm, Hv in (2.8)
with respect to the continuous probability Z̃ ∼ ρ̃

dū

dt
= Λū (t) +B (ū (t) , ū (t)) + F + ẼHm

(

Z̃ (t)
)

,

dR

dt
= L (ū (t))R (t) +R (t)L (ū (t))

T
+Qσ + ẼHv

(

Z̃ (t)
)

.

(3.14)
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On the other hand, the numerical mean and covariance estimates
(

ūN,δ, RN,δ
)

from the discrete time numerical

updates and with the ensemble approximation
{

Z̃i
}

are computed from the equations (3.7) with respect to the

discrete empirical distribution ρ̃N

dūN,δ

dt
= ΛūN,δ (τ (t)) +B

(

ūN,δ (τ (t)) , ūN,δ (τ (t))
)

+ F +
1

N

N
∑

i=1

Hm
(

Z̃i (τ (t))
)

,

dRN,δ

dt
= L

(

ūN,δ (τ (t))
)

RN,δ (τ (t)) +RN,δ (τ (t))L
(

ūN,δ (τ (t))
)T

+Qσ +
1

N

N
∑

i=1

Hv
(

Z̃i (τ (t))
)

,

(3.15)

where the forward Euler scheme is adopted with the discrete time update using a constant τ (t) = n∆t during
the time interval t ∈ [tn, tn+1]. Above in (3.14) and (3.15), we neglect the last relaxation term with ǫ since it
will automatically vanish with the resulting consistency. Notice that ūN,δ, RN,δ and ū, R are stochastic processes

due to the random samples
{

Z̃i
}

and the conditional expectation dependent on the observations Gt. We have the

following result for the convergence of finite ensemble N and finite time step ∆t approximation to the continuous
model prediction.

Theorem 6. If Assumption 5 is satisfied and under the same initial condition, the statistical solution
(

ūN,δ
n , RN,δ

n

)

=
(

ūN,δ (tn) , R
N,δ (tn)

)

of the finite ensemble model (3.15) with discrete time step ∆t converges to the true statistical
state (ūn, Rn) = (ū (tn) , R (tn)) of the continuous model (3.14) with the error estimates

E

[

sup
n∆t≤T

∣

∣ūN,δ
n − ūn

∣

∣

2
]

≤

(

C1,T∆t +
C2,T

N

)

‖Hm‖∞ ,

E

[

sup
n∆t≤T

∥

∥RN,δ
n −Rn

∥

∥

2
]

≤

(

C′
1,T∆t +

C′
2,T

N

)

(‖Hm‖∞ + ‖Hv‖∞) ,

(3.16)

where C1,T , C2,T , C
′
1,T , C

′
2,T are constants depending on the final time T .

Proof. First, considering the mean equations in (3.14) and (3.15) from the same initial state, we have

ūN,δ (t)− ū (t) =

∫ t

0

[

M
(

ūN,δ (τ (s))
)

−M (ū (s))
]

ds+

∫ t

0

[〈

ρ̃Nτ(s), H
m
〉

− 〈ρ̃s, H
m〉

]

ds,

where we define M (u) = Λu + B (u, u) + F and assume that the forcing F and Qσ are constants for simplicity.
Using the Lipschitz condition for M from Assumption 5 and applying Cauchy-Schwarz inequality, there is

E

[

sup
t≤T

∣

∣ūN (t)− ū (t)
∣

∣

2
]

≤ 2Tβ2
E

∫ T

0

∣

∣ūN,δ (τ (s))− ū (s)
∣

∣

2
ds+ 2TE

∫ T

0

∣

∣

∣

〈

ρ̃Nτ(s), H
m
〉

− 〈ρ̃s, H
m〉

∣

∣

∣

2

ds

≤ C1T

∫ T

0

E

[

sup
s′≤s

∣

∣ūN,δ (s′)− ū (s′)
∣

∣

2
]

ds+ C2T
2∆t ‖Hm‖2∞ +

C3T
2

N
‖Hm‖2∞ . (3.17)

Above in the first term of the last inequality, we estimate the error by comparing the discretized time solution
ūN,δ (τ (t)) following (3.15) with the corresponding continuous time solution ūN,δ (t)

∣

∣ūN,δ (τ (t))− ūN,δ (t)
∣

∣

2
≤ |t− τ (t)|2

[

∣

∣M
(

ūN,δ (τ (s))
)∣

∣

2
+
∣

∣

∣

〈

ρ̃Nτ(t), H
m
〉∣

∣

∣

2
]

≤ ∆t2
(

‖M‖2∞ + ‖Hm‖2∞

)

.

Thus the error estimation follows
∣

∣ūN,δ (τ (s))− ū (s)
∣

∣

2
≤ 2

∣

∣ūN,δ (τ (s))− ūN,δ (s)
∣

∣

2
+2

∣

∣ūN,δ (s)− ū (s)
∣

∣

2
≤ C∆t2 ‖Hm‖2∞+2 sup

s′≤s

∣

∣ūN,δ (s′)− ū (s′)
∣

∣

2
.

And for the second term involving expectation of Hm, the convergence of the empirical measure (3.13) gives

E

[

∣

∣

∣

〈

ρ̃Nτ(t), H
m
〉

− 〈ρ̃t, H
m〉

∣

∣

∣

2
]

≤ 2E

[

∣

∣

∣

〈

ρ̃Nτ(t), H
m
〉

−
〈

ρ̃Nt , H
m
〉

∣

∣

∣

2
]

+ 2E
[

∣

∣

〈

ρ̃Nt , H
m
〉

− 〈ρ̃t, H
m〉

∣

∣

2
]

≤

(

C∆t+
CT

N

)

‖Hm‖2∞ .
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Finally applying Grönwall’s inequality to (3.17), we get the mean state estimate in (3.16).
Next, under a similar fashion, we have

RN,δ (t)−R (t) =

∫ t

0

L (ū (s))
[

RN,δ (τ (s))−R (s)
]

ds+

∫ t

0

[

L
(

ūN,δ (τ (s))
)

− L (ū (s))
]

R (s) ds

+

∫ t

0

[

L
(

ūN,δ (τ (s))
)

− L (ū (s))
] [

RN,δ (τ (s))−R (s)
]

ds+ c.c.

+

∫ t

0

[〈

ρ̃Nτ(s), H
v
〉

− 〈ρ̃s, H
v〉
]

ds.

Above, c.c. represents the symmetric terms from the transposes RL (ū)
T
. Again, using the Lipschitz condition of

L in Assumption 5, ‖L (u)‖ ≤ β |u|+ β1, we can compute errors from the covariance equation

E

[

sup
t≤T

∥

∥RN,δ (t)−R (t)
∥

∥

2
]

≤ C1Tβ
2
E

[

sup
t≤T

|ū|2
∫ T

0

∥

∥RN,δ (τ (s))−R (s)
∥

∥

2
ds

]

+ C2Tβ
2
E

[

sup
t≤T

∣

∣ūN,δ (t)− ū (t)
∣

∣

2
sup
t≤T

‖R (t)‖2
]

+ C3E

∫ T

0

∣

∣

∣

〈

ρ̃Nτ(s), H
v
〉

− 〈ρ̃s, H
v〉
∣

∣

∣

2

ds+ CT∆t
2.

Using the uniform boundedness of ū, R and (3.13) for Hv together with the previous error estimate of the mean

state for E

[

supt≤T

∣

∣ūN,δ (t)− ū (t)
∣

∣

2
]

, we reach the final covariance error estimate in (3.16).

Theorem 6 guarantees that the discrete numerical scheme of the approximating ensemble filter model can
recover the leading-order statistics in mean and covariance. It implies that the performance of the ensemble filter
estimation relies on the accurate approximations of the expectation of the observation functions Hm, Hv. Usually,
the higher-order moments in Hm and Hv in (3.1) become extremely difficult to capture with a small sample size.
This leads to the rapidly growing model errors (as in Figure 4.2 shown in the numerical tests). On the other hand,

the design of the new high-order filtering scheme guarantees consistent statistics Ẽ

[

H
(

Z̃t

)]

in the observation

functions with the optimal filter solution ρ̂ (see Theorem 7 in [35]). This leads to the much improved performance
of the the statistical forecasts using the new filter model.

4 Numerical performance on the prototype triad system

Using the explicit equations (3.9), we now test the performance of the proposed data assimilation algorithm on
a prototype triad system with instructive implications to many practical applications. The triad system [23] is

given by a three-dimensional ODE system for the state u = (u1, u2, u3)
T with both linear and nonlinear coupling

combined with stochastic forcing

du1

dt
=λ2u3 − λ3u2 − d1u1 +B1u2u3 + σ1Ẇ1,

du2

dt
=λ3u1 − λ1u3 − d2u2 +B2u3u1 + σ2Ẇ2,

du3

dt
=λ1u2 − λ2u1 − d3u3 +B3u1u2 + σ3Ẇ3.

(4.1)

It can be seen that the above triad system (4.1) fits into our general formulation (1.1), where the model coefficients

Λ =





−d1 −λ3 λ2
λ3 −d2 −λ1
−λ2 λ1 −d3



 , B (u,u) =





B1u2u3
B2u3u1
B3u1u2



 ,

contain the linear skew-symmetric (off-diagonal) and dissipation (diagonal) operator, together with the nonlinear
quadratic coupling B (u,u) satisfying energy conservation with B1 + B2 + B3 = 0. The triad system can serve
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as an elementary building block of many more general turbulent systems emphasizing the key energy conserving
nonlinear interactions. Though low-dimensional, this system can demonstrate a wide variety of different statistical
regimes (as shown next in Figure 4.1), making it a nice first test model for a thorough study of the prediction skill
of the proposal ensemble filtering strategy in dealing with different statistical features.

4.1 Typical statistical regimes in the triad system

One attractive feature of the triad system (4.1) as a prototype test model is that it is able to generate a wide
variety of dynamical regimes demonstrating distinctive statistical features ranging from near-Gaussian to highly
non-Gaussian probability distributions. This sets up a desirable testbed for examining the skill of different statistical
prediction methods in dealing with vastly different statistical dynamics.

4.1.1 Statistical regimes with distinctive statistical features

The interaction in triad systems (4.1) constitutes the generic linear and nonlinear coupling mechanism between any
three modes in larger systems with quadratic nonlinearity. A direct three-dimensional Galerkin truncation of many
complex turbulent dynamics possesses the energy-conserving nonlinearity as in the general formulation (1.1). For
example , a direct link can be built to interpret the triad system as a prototype three-mode interaction with forward
and backward energy cascades in geophysical turbulence (see Appendix B.1). The random forcing together with
the damping term simulates the inhomogeneous effects of the interaction with other modes that are not resolved
in the projected three dimensional subspace. Thus, the stochastic triad system can serve as a qualitative model
for a wide variety of turbulent phenomena regarding energy exchange and cascades and supply important intuition
for many phenomena [11, 13, 20]. They also provide elementary test models with subtle features for prediction,
uncertainty quantification, and state estimation. Additional dynamical and statistical properties of the triad system
are summarized in Appendix B.

In our testing cases, we consider the following three typical dynamical regimes of the triad system (4.1) containing
representative statistical structures. Model parameters used for the three test regimes are listed in Table 1.

• Regime I: Near-Gaussian regime with equipartition of energy. This regime considers the convergence to a
Gaussian equilibrium distribution with the competition of linear and nonlinear effects. The equipartition of

energy, that is,
σ2
1

2d1
=

σ2
2

2d2
=

σ2
3

2d3
= σ2

eq, is designed so that a Gaussian distribution, peq ∼ exp
(

− 1
2σ

−2
eq |u|2

)

,

will be reached at the final equilibrium state. The linear and nonlinear parameters are chosen to have
comparable values to induce strong interactions during the transient state;

• Regime II: Nonlinear regime with forward energy cascade. This regime focuses on strong quadratic coupling
with weak linear damping and forcing effects. Skew-symmetric linear terms are set to be zero and only small
damping and noise effects are added. The first mode u1 is set to have large initial mean and covariance while
the other two modes u2, u3 only have small initial values. This induces strong energy cascades from u1 to the
other two less energetic modes u2, u3 driven by the dominant nonlinear coupling;

• Regime III: Unstable regime with dual energy cascades. This regime is used to simulate the inherent internal
instability observed in turbulent systems. The instability is introduced by a negative damping in the first
mode u1, while the other two modes u2, u3 are stable with positive damping. On the other hand, the first
mode is weakly forced by stochastic forcing while the other two are strongly excited by random noises. The
nonlinear coupling first makes that energy cascades forwardly from mode u1 to the other less energetic modes
u2, u3 then backwardly from the excited modes u2, u3 back to u1.

The initial state u0 ∼ N (ū0, r0) is set to satisfy an independent Gaussian distribution with mean ū0 and variance
r0. The true statistical solutions of the triad system (4.1) in the above dynamical regimes are solved through direct
Monte-Carlo simulations. We run an ensemble of MC = 1× 105 particles, which shall be enough for capturing the
statistics in a three-dimensional phase space. A fourth-order Runge-Kutta scheme with time step ∆t = 1 × 10−3

is used to integrate the system in time. The stochastic forcing is simulated through the standard Euler-Maruyama
scheme. The initial ensemble is chosen from a standard Gaussian random sampling with the mean ū0 and variance
r0 listed in Table 1. In particular, we choose B1 > 0 and B2, B3 < 0 to induce nonlinear instability (see the stability
analysis in (B6)). The model is run up to a final time T = 10 where near equilibrium state is reached.
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(B1, B2, B3) (λ1, λ2, λ3) (d1, d2, d3) (σ1, σ2, σ3) ū0 r0

regime I (1,−0.6,−0.4) (3,−2,−1) (0.2, 0.1, 0.1) (1.58, 1.12, 1.12) (2, 1.6,−2) (0.5, 0.5, 1)

regime II (1,−0.6,−0.4) (0, 0, 0) (0.02, 0.01, 0.01) (0.5, 0.35, 0.35) (3,−0.1, 0.1) (0.5, 0.01, 0.01)

regime III (2,−1,−1) (0.09, 0.06,−0.03) (−0.4, 2, 2) (0.1, 0.32, 0.32) (2, 1, 1.5) (0.5, 5, 10)

Table 1: Parameters for the triad system (4.1) in the three test regimes.

(a) Regime I

(b) Regime II

(c) Regime III

Figure 4.1: Joint PDFs at t = 5 of triad modes u1, u2, u3 in the three test regimes shown in scatter plots from a
direct MC simulation using MC = 1× 105 samples. The density of particles is represented by colors in the scatter
plots.

The projected probability distributions of the triad state p (u, t) captured by the direct Monte-Carlo simulations
are demonstrated in Figure 4.1. Representative non-Gaussian probability distributions are observed among all test
regimes with distinctive statistical structures. The first test regime is the simplest but nevertheless representative
showing the route of transient convergence to equipartition of energy. Still, as we will show in the following nu-
merical tests in Section 4.2, higher-order moments are playing an pivoting role in this case and cannot be simply
ignored in determining the correct final near-Gaussian equilibrium distribution. The second test regime emphasizes
the nonlinear quadratic coupling between the three modes, leading to more complicated non-Gaussian probability
distributions. In particular, we observe the wider spread of the samples in the scatter plots representing extreme
events that are crucial but difficult to capture with a small ensemble. The third test regime introduces stronger inter-
actions and dual energy cascades between the interacting modes. This leads to a strange attractor with star-shaped
joint-distribution, showing a strongly nonlinear regime dominated by highly non-Gaussian statistics. Especially in
this regime, the negative damping d1 = −0.4 in the first mode introduces persistent internal instability into the
system. In addition, the skew-symmetric linear interaction terms add extra emphasis on the cross-covariances. This
regime becomes especially interesting and challenging because of the strong and inherent instability.
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Figure 4.2: Statistical forecasts using the stochastic-statistical model with N = 100 samples. Different realizations
of the mean ū1 and variance r1 are plotted in comparison with the truth in black lines. The third row plots the
Lyapunov exponent of the system indicating instability.

4.1.2 Small ensemble prediction with the coupled stochastic-statistical model

We start with testing direct forecast of the coupled stochastic-statistical model (2.5) to capture key model statistics.
Using this coupled modeling framework, the statistical equations will be used to compute the leading moments ūN

and RN , combined with an ensemble simulation for the stochastic coefficients
{

Zi
}N

i=1
aiming to capture the high-

order moments feedback. To cope with the realistic scenario where only a small number of samples are affordable,
we check the model forecast skill using a moderate ensemble size N = 100, in contrast to the truth in the previous
section generated by MC = 1 × 105 samples. Due to the dominant nonlinear coupling terms, the higher-order
moments feedback are involved in the statistical equations (2.2a), requiring accurately capturing the non-Gaussian
statistics from the limited samples even only to predict the leading-order mean and covariance. This sets an
especially challenging problem demanding good characterization of the non-Gaussian distributions (including the
extreme outliers observed in the PDFs in Figure 4.1) using only the small number of samples.

First, the direct numerical predictions by running the coupled stochastic-statistical model in the three test
regimes are shown in Figure 4.2. To demonstrate the unavoidable large amount uncertainty induced through the
small ensemble forecast, we plot multiple realizations of the mean and variance trajectories

(

ūN , RN
)

from different
randomly sampled initial stochastic state Zi using the small sample size N = 100. Model errors in the mean and
variance forecasts are shown to rapidly grow in time among all three test regimes starting from accurate initial
states. To further illustrate the development of such errors, we also plot the Lyapunov exponent, that is, the
real parts of eigenvalues of the linearized matrix L (ū) in (2.2a), characterizing the inherent instability due to
the interaction with the mean state. Positive eigenvalues indicate the unstable growth rate that amplifies small
uncertainties in the variance. It can be observed clearly that persistent instability maintains in time amplifying
the spread of different realizations of the solutions in all three test regimes, especially in regimes II and III which
are experiencing stronger unstable growth during longer time periods. In the exact equation (2.2a), such unstable
growth rate will be marginally balanced by the higher moments terms through the nonlinear coupling between the
states. However, due to the insufficient representation of the highly non-Gaussian structures (as illustrated later
in Figure 4.9) with the limited number of samples, larger errors are introduced into the system. As a result, the
trajectories of the mean and variance fail to track the truth and quickly diverge from the initial state. The accuracy
of the predicted mean and variance will improve if we increase the number of samples N as indicated in Theorem 6.
However, this will usually require an enormous sample size (due to the T dependence in the coefficients in (3.16))
even in this low-dimensional example, making any direct numerical approach impractical. These examples offer a
typical illustration of the inherent difficulty in accurate prediction of model statistics when only a small sample size
is affordable.

In addition, to further enforce the convergence of the numerical scheme, we show that the additional relaxation
term added in the covariance equation of the numerical model (2.5) is essential especially in the regimes with
stronger instability. In Figure 4.3, we plot the model prediction of the variance in the most unstable mode u1 in
regime III by directly applying the forecast model. It shows that without the relaxation term ǫ−1 = 0 enforcing the
consistency between the sample approximation E

N
[

ZZT
]

and the covariance Rt, large numerical errors will start
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Figure 4.3: Model prediction of the variance in the most unstable mode u1 with and without the additional relaxation
term.

to develop in time even using an extremely large sample size. This is due to the persistent model instability among
the states (see also the last row of Figure 4.2 for the internal growth rate). On the other hand, it shows that the
numerical errors can be effectively corrected by just introducing a small relaxation term with a small parameter
ǫ−1 = 0.1, thus accurate statistical convergence is guaranteed for the long-term time integration. In all the following
numerical tests, we adopt this small relaxation parameter ǫ−1 = 0.1.

4.2 Numerical performance using the data assimilation model

Next, we demonstrate that the proposed data assimilation model can effectively improve both stability and accuracy
in the prediction of the key statistics of the triad system. Furthermore, it shows that maintaining the high-order
correction terms constructed in the new filtering equation (3.9) is essential to achieve stable statistical prediction
compared with the ensemble Kalman filters (3.11) where only the low-order moments information is used.

4.2.1 Calibration of observation noises

In setting up the filtering equations, we need to first estimate the observation noises ΓN
m and ΓN

v in (2.7) based on
the finite ensemble size N . From the direct model simulations for ūN and RN in Figure 4.2, it shows that it is
reasonable to treat yNt =

(

ūN , RN
)

as a stochastic process and the randomness generated from the errors in the
finite ensemble approximation in (2.9), such that the empirical estimate E

NHdt = EHdt + ΓNdB. In general, we
can only expect upper bounds for the errors in the empirical averages as in (3.16) regarding to the sample size N
and observation function H . Still in practical implementations, it is sufficient to get an estimate of the noise levels
of ΓN

m and ΓN
v . In particular, we propose the following equations for the observation states according to (2.10)

where we assume that error from the finite sample is dominant in the observation equation, that is

dyt = EHdt,

dyNt = E
NH = EHdt+ ΓN

s dB.

Above, yt is the true deterministic observed states ū, R, and yNt is the stochastic observation process modeled with
an additional noise term accounting for the randomness with finite ensemble estimation. Therefore, we find the
following way to estimate the observation errors by assuming that the noise amplitude remains a constant in time
for simplicity

E

(

∥

∥yNt − yt
∥

∥

2
)

≈

∫ t

0

(

ΓN
s

)2
ds ≈ t

(

ΓN
)2
. (4.2)

In Figure 4.4, we plot the estimated noise amplitudes in the observed states of mean and variance using (4.2)

using different sample sizes N . The numerical results confirm the N− 1
2 convergence rate (3.16) found in Theorem 6

depending on the sample size N . It also provides a systematic way to estimate the observation noise level in different
filtering model simulations according to the scaling law without repeating the different ensemble simulations many
times.

4.2.2 Prediction of the statistical mean and covariance

Now, we compare the performance of the high-order data assimilation model in the triad system. To be adaptive to
the general high-dimensional systems, we focus on testing the forecast skill of the models using a small sample size.
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Figure 4.4: Estimate of the observation noise with different sample sizes N . The noise parameters for the mean Γm

and covariance Γv are computed based on the three modes of the triad system.

As illustrated in Figure 4.2, this small sample size has already become insufficient to capture the key statistical
features in the simple triad system, and leads to large fluctuating errors in the prediction of mean and covariance by
directly running the forecast model without using filtering. The additional observation data yn = {ūn, Rn} is then

introduced aiming to correct the errors in the finite ensemble forecast of the stochastic coefficients Z̃n =
{

Z̃i
n

}

in

(2.12). The goal is to generate representative samples Z̃n that can accurately characterize the high-order moments
and PDF structure of model states. Notice that in the filter updating scheme only the information of derivatives
dū, dR of leading-order moments are used from the observation data for the updates of stochastic samples. The
model forecasts of the mean and covariance ūN and RN are still directly updated through the statistical equations
(2.5), thus the observed mean and covariance are not involved in updating the forecast mean and covariance.
Therefore, their accuracy closely replies on the the finite sample estimates of the higher-order moments due to their
nonlinear dynamics. In the following, we check the prediction of mean and covariance using different models as an
indicator for the model skill to capture key high-order statistics in Z̃n.

In Figure 4.5-4.7, we plot the model predictions of the mean, variance, and cross-covariance between the three
modes u1, u2, u3 in the three typical test regimes respectively. The true statistics are compared with the forecast
model without filter (2.5) and two data assimilation models. The first model is the standard EnKF (3.11) using
only the low-order information and a constant Kalman gain in the filter update, while higher-order moments are
considered according to the nonlinear observation operators in the new high-order filter model (3.9). The truth is
captured by running the original triad system (4.1) using a very large ensemble size MC = 1 × 105. Only a small
ensemble size N = 100 is used in the model forecasts for all the tests. Frequent observation data is generated with
the time integration step ∆t = 1× 10−3. First in regime I, the model state will converge to the final near-Gaussian
equilibrium probability distribution. However, this regime demonstrates strong interactions between the linear
operator L and the quadratic nonlinear operator B. This can be illustrated by the persistent positive growth rate
in Figure 4.2. The competing effects lead to strong oscillatory motions between the three modes indicating frequent
exchange of energy between the scales. Non-Gaussian distributions will also be generated during the transient
evolution of the states. As a result, even starting from accurate initial value large errors will gradually develop in
the direct forecast model without filter in both the mean and covariance. The low-order EnKF model can correct
the errors a bit from the forecast but still largely deviates from the true statistical values. In contrast, the high-order
filter maintains the high accuracy in the predictions during the entire evolution time. In regime II, we focus on the
nonlinear effect in the model driving strong cascade from mode u1 to u2, u3. In this case, the system is dominated
by the nonlinear coupling, and an accurate characterization of the high-order feedbacks in the statistical equations
will play a central role in achieving good prediction result. As illustrated in Figure 4.6, the predictions from
the direct forecast model and low-order EnKF quickly diverge from the truth due to their insufficient sampling of
the target probability distributions. This indicates that the stochastic samples in these models failed to correctly
recover the higher-order moments in the nonlinear feedback terms in the statistical equations. Again, the high-order
data assimilation scheme keeps stable and accurate predictions in both the mean and covariance up to the final
prediction time. Finally, regime III sets a most challenging test case containing inherent internal instability from
the linear operator. The nonlinear term then is needed to introduce the stabilizing effect that needs to be accurately
quantified. Similarly to the other two test cases, we observe that the direct forecast model and EnKF fail to track
the target trajectories of the mean and covariance with quick divergence to the truth due to the strong instability
quickly amplifying the errors, while the high-order data assimilation model maintains its high skill against the
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Figure 4.5: Statistical prediction of the mean, variance, and covariance in regime I of the triad system. Results
from the high-order data assimilation model are compared with the direct prediction without filter (2.5) and the
standard EnKF (3.11) with N = 100 samples. The truth is generated with a direct MC approach with MC = 1×105

samples.

Figure 4.6: Statistical prediction of the mean, variance, and covariance in regime II of the triad system, with the
same setup as in Figure 4.6.

persistently instability using only a very small sample size.

4.3 Prediction of probability distributions and non-Gaussian features

The successful prediction of the mean and covariance confirms that the high-order data assimilation model is able
to generate accurate samples covering the entire spread of the probability distribution containing essential non-
Gaussian statistical features. As a more detailed illustration of the model forecast skill, we show the sampled
probability distributions in Figure 4.8. The projected distributions of the joint states are plotted in scatter plots
together with the marginal PDFs of the three states u1, u2, u3. First, it can be observed that the typical non-
Gaussian features are generated in all the three test regimes demonstrating highly skewed or fat-tailed PDFs.
These features make important contribution in the high-order feedback terms in the statistical equations, thus
failing to accurately characterizing their effects in the finite ensemble approximation will lead to quick divergence
that is shown in the statistical prediction. This explains the large errors and unstable performance observed in the
direct model forecast and EnKF shown in Figure 4.5-4.7 due to the insufficient sampling of these key probability
distribution structures. On the other hand, it shows that the high-order data assimilation model drives enough
samples to the suitable extreme locations so that the entire non-Gaussian PDFs are will represented among all
the test regimes. This guarantees the high skill of the data assimilation model to recover the key model statistics
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Figure 4.7: Statistical prediction of the mean, variance, and covariance in regime III of the triad system, with the
same setup as in Figure 4.6.

including high-order moment information without requiring a large ensemble size. The uniformly high accuracy and
stability of the new high-order filtering model among all the three test regimes with distinctive statistical features
demonstrate the universal skill and robustness of the proposed filtering model.

To demonstrate more clearly how the direct forecast model and EnKF approach fail to reach the accurate
time-series predictions in Figure 4.5-4.7, we show one snapshot of the finite ensemble estimate of the probability
distributions. In particular, Figure 4.9 plots the scatter plots of samples representing the joint PDF of u2 and u3 in
the most non-Gaussian regime III. It is shown that the extended four branches of the PDF tail structures are largely
missed in the two models. In the direct forecast model, the small number of samples cannot sufficiently cover the
regions containing extreme events, and only a few samples can reach the extended wings of the distribution. The
corrections from the EnKF however draw the samples even closer to a Gaussian distribution rather than reaching
the non-Gaussian features. In contrast, as shown in Figure 4.8, the new high-order data assimilation model achieves
a much better characterization of the key structures in the probability distribution, thus guarantees accurate
prediction of the statistics. This example demonstrates the crucial role of accurately sampling the non-Gaussian
PDFs in achieving accurate statistical prediction involving the nonlinear dynamics.

As a further illustration of the model prediction of higher-order moments, Figure 4.10 plots the ensemble
recovery of the third-order moments M3 = E (u1u2u3) in the three test regimes of the triad model. M3 appears in
the dynamical equations for the variances and plays a central role of balancing the instability from the linear couple
terms (see the explicit statistical equations in (B10)). First notice that non-zeros values in M3 emerge in all three
regimes, showing the non-negligible role of this high-order feedback term. However, in the direct forecast model
without filter, it can be observed that the sample estimates of M3 are largely missed especially in the bursts of
extreme values. This leads to the final large errors in the statistical predictions in the mean and covariance shown
in Figure 4.5-4.7 as well as confirming the biased estimate of the PDF in Figure 4.9. From the EnKF prediction,
on the other hand, near zero values are assigned to M3 from the samples due to the Gaussian nature of this filter.
This is also consistent with the PDF shown in Figure 4.9 and explains the lack of skill in EnKF prediction of the
key statistics. In contrast, the new high-order filter accurately tracks the true values of M3 in the time-series, thus
guarantees the successful predictions of the key statistics.

Finally, we also check the filter performance using different observation time frequencies ∆tobs and using different
ensemble sizes N . The total root mean square errors (RMSE) for the predicted mean and variance are listed in
Table 2 and 3. For a better quantification of the sample approximation of the PDFs, we also compute the relative
entropy between the truth and the ensemble estimate. As expected, using shorter observation time ∆tobs and a
larger number of sample N will increase the prediction accuracy, while the good performance is maintained even
with less frequent observations and an even smaller ensemble size. It further confirms the robust performance of the
high-order data assimilation model to successfully recover the leading statistics and generate samples that better
represent the key non-Gaussian features in the probability distributions.
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Figure 4.8: Probability distributions of the model states at time t = 5 in the high-order data assimilation model
using N = 100 samples. The 2D scatter plots of the truth (blue) are compared with the ensemble filter solution
(red) as well as the 1D marginal distributions. Gaussian density functions with the same variance are shown in
dashed black lines.

Figure 4.9: Sampling of the target model distribution from a small ensemble forecast using the direct forecast model
without filter (2.5) and the standard EnKF (3.11).

regime I regime II regime III

∆tobs 0.001 0.01 0.05 no filter 0.001 0.01 0.05 no filter 0.001 0.01 0.05 no filter

RMSE in mean 0.0336 0.0584 0.0843 0.3089 0.0216 0.1298 0.1422 0.4799 0.0209 0.1420 0.2403 0.6318

RMSE in variance 0.2631 0.4365 0.5720 1.1285 0.2336 0.6307 0.7680 1.0987 0.5599 1.8973 2.9110 3.9701

Relative entropy 0.2541 0.2105 0.1766 0.4309 0.2408 0.2226 0.2153 0.5475 0.1593 0.2123 0.1409 0.4168

Table 2: Prediction errors with different observation times ∆tobs in three test regimes.
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Figure 4.10: Prediction of the third moment M3 = E (u1u2u3) through the ensemble approximation using the
different models in the three test regimes.

regime I regime II regime III

N 50 100 200 500 50 100 200 500 50 100 200 500

RMSE in mean 0.0946 0.0336 0.0152 0.0126 0.0679 0.0249 0.0207 0.0195 0.0368 0.0209 0.0054 0.0024

RMSE in variance 0.7008 0.2631 0.1716 0.1261 0.3729 0.2651 0.1045 0.0773 1.3474 0.5599 0.4406 0.2379

Relative entropy 0.4868 0.2541 0.1906 0.1536 0.4494 0.3463 0.1546 0.0498 0.4375 0.1593 0.0757 0.0461

Table 3: Prediction errors with different ensemble sizes N using the data assimilation model in three test regimes.

5 Summary

In this paper, we developed an explicit high-order data assimilation framework for effective ensemble prediction
of probability distributions exhibiting highly non-Gaussian statistics. By leveraging observation data from lower-
order statistical moments, the stability and accuracy of statistical predictions are significantly enhanced using a
computational affordable finite ensemble approach. Specifically, detailed filtering operators are derived utilizing the
explicit quadratic and cubic structures of the nonlinear coupling terms, resulting in a straightforward numerical
implementation without high computational cost. We performed comprehensive numerical experiments using an
illustrative triad system, which generates representative turbulent phenomena across different statistical regimes, to
systematically evaluate the skill of the numerical scheme. Inherent computational barriers for accurate statistical
prediction with the finite ensemble approaches are demonstrated under this simple test model. Direct numerical
comparisons demonstrate that accurately capturing non-Gaussian distributions is essential for precise statistical
prediction in highly nonlinear dynamics under restricted sampling constraint. The filtering updates within the
proposed data assimilation model consistently show robust performance in capturing the various types of non-
Gaussian features across multiple tested statistical regimes requiring only on a small sample size and observation data
of leading-moments. In contrast, traditional ensemble Kalman filter approaches with near-Gaussian assumptions
typically fail to capture such crucial high-order statistical information.

Future work of this research will include further enhance the proposed data assimilation strategy by addressing
computational challenges in more complex turbulent systems. In dealing with the high computational cost of a
high-dimensional state, we plan to combine our approach with high-order moment closure methods incorporating
the random batch approximations [33, 34]. The additional model reduction strategies will create practical and
computational efficient algorithms suitable for high-dimensional problems. Immediate applications of these devel-
opments include statistical forecasting in geophysical turbulence [36] and modeling viscoelastic fluids [3]. Further
research may also explore the extension and validation of the modeling and computational framework in broader
classes of multiscale dynamical systems, potentially enabling more accurate predictions of extreme events and other
complex phenomena.
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A Proofs of theorems

Proof of Lemma 1. By taking partial derivatives using the explicit expressions in (3.1), we get

∂jH
m
k = γkjqzq + γkpjzp,

∂jH
v
kl = (γkjqzqzl + γkpjzpzl + γkpqzpzqδlj)

+ (γljqzqzk + γlpjzpzk + γlpqzpzqδkj) .

Above, for convenience double appearance of the subindex implies the summation about the index. Next, multiplying
zj and taking the summation about j yield

zT∇Hm
k = zj∂jH

m
k = γkjqzjzq + γkpjzpzj = 2Hm

k ,

zT∇Hv
kl = zj∂jH

v
kl = (γkjqzl + γljqzk) zjzq + (γkpjzl + γlpjzk) zpzj

+ (γkpqzl + γlpqzk) zpzq = 3Hv
kl.

Proof of Proposition 2. We can check the solution (3.4) by directly putting the expressions back into the equation
(3.3). Therefore, for the mean observation we have

Ẽ

[

(Km)
T ∇Hm

]

=
1

2
Γ−2
m Ẽ

[(

Hm − H̄m
) (

ZT∇Hm
)]

= Γ−2
m Ẽ

[

(

Hm − H̄m
)

(Hm)T
]

= Γ−2
m Ẽ

[

(

Hm − H̄m
) (

Hm − H̄m
)T

]

= Γ−2
m CHm

.

Above, the second equality uses the first identity in (3.2) and the third uses Ẽ
[

Hm − H̄m
]

= 0. In the same way,
we can check the case for variance observation only with a difference in the coefficient

Ẽ

[

(Kv)
T ∇Hv

]

=
1

3
Γ−2
v Ẽ

[(

Hv − H̄v
) (

ZT∇Hv
)]

= Γ−2
v Ẽ

[

(

Hv − H̄v
)

(Hv)
T
]

= Γ−2
v Ẽ

[

(

Hv − H̄v
) (

Hv − H̄v
)T

]

= Γ−2
v CHv

.

Proof of Proposition 3. Using the explicit formula in (3.4), we can compute for the mean observation case with
(

Γ−2
m

)

pq
= γ−2

pq

(

KmΓ2
mK

mT
)

ij
=

1

4
ZiZj

∑

p,q

γ−2
pq H

m′
p (Z)Hm′

q (Z) ,
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where we denote H ′ (Z) = H (Z)− H̄ . By taking the divergence on the above identity, we can compute

∇ ·
(

KmΓ2
mK

mT
)

i
=
∑

j

∂j
(

KmΓ2
mK

mT
)

ij
=

1

4

∑

j,p,q

γ−2
pq ∂j

[

ZiZjH
m′
p (Z)Hm′

q (Z)
]

=
1

4

∑

j,p,q

γ−2
pq

[

δijZjH
m′
p (Z)Hm′

q (Z) + ZiH
m′
p (Z)Hm′

q (Z)

ZiH
m′
q (Z)Zj∂jH

m
p (Z) + ZiH

m′
p (Z)Zj∂jH

m
q (Z)

]

=
1

4

∑

p,q

γ−2
pq Zi

[

Hm′
p (Z)Hm′

q (Z) + dHm′
p (Z)Hm′

q (Z)
]

+
1

4

∑

p,q

γ−2
pq Zi

[

2Hm
p (Z)Hm′

q (Z) + 2Hm
q (Z)Hm′

p (Z)
]

=
5 + d

4
Zi

∑

p,q

γ−2
pq H

m′
p (Z)Hm′

q (Z) +
1

2
Zi

∑

p,q

γ−2
pq

[

H̄m
p H

m′
q (Z) + H̄m

q H
m′
p (Z)

]

. (A1)

The second from last equality above again uses the identity (3.2),
∑

j Zj∂jH
m = 2Hm. Notice that additional term

in the last line above due to the mean term H̄m. In the same way, we can use (3.2) again and find

(

∇ · (Km)
T
)

q
=

∑

j

∂j

(

1

2
ZHm′ (Z)

T
Γ−2
m

)

jq

=
1

2

∑

j,p

γ−2
pq ∂j

[

ZjH
m′
p (Z)

]

=
1

2

∑

j,p

γ−2
pq

[

Hm′
p (Z) + Zj∂jH

m
p (Z)

]

=
1

2

∑

p

γ−2
pq

[

dHm′
p (Z) + 2Hm

p (Z)
]

=
d+ 2

2

∑

p

γ−2
pq H

m′
p (Z) +

∑

p

γ−2
pq H̄

m
p .

Thus the second term in (3.5) gives with the above identity

(

KmΓ2
m∇ · (Km)

T
)

i
=

1

2
Zi (H

m′)
T
∇ · (Km)

T

=
d+ 2

4
Zi

∑

p,q

γ−2
pq H

m′
p Hm′

q +
1

2
Zi

∑

p,q

γ−2
pq H̄

m
p H

m′
q . (A2)

Combining the final results in (A1) and (A2), we find

ami = ∇ ·
(

KmΓ2
mK

mT
)

i
−KmΓ2

m∇ ·
(

KmT
)

i

=
3

4
Zi

∑

p

γ−2
pq H

m′
p Hm′

q +
1

2
Zi

∑

p,q

γ−2
pq H̄

m
q H

m′
p (Z)

=
1

4
Zi

∑

p

γ−2
pq H

m′
p

(

3Hm′
q + 2H̄m

q

)

=
1

4
Zi

∑

p

γ−2
pq

(

Hm
p − H̄m

p

) (

3Hm
q − H̄m

q

)

.

This gives the expression for the drift term of the mean in (3.6). Repeating the same procedure for the variance,
we can arrive at the expression for av in a similar fashion.
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Proof of Proposition 4. Using the explicit expressions derived in (3.4) and (3.6) as well as the discrete integration
of (3.7), we can compute the filtering update terms from the observation of the mean as

am∆t+Km∆Im =
1

4
Z
[

Hm (Z)− H̄m
]T

Γ−2
m

[

3Hm (Z)− H̄m
]

∆t

+
1

2
Z
[

Hm (Z)− H̄m
]T

Γ−2
m

[

∆ū −
[

Hm (Z) + hm
(

ūN
)]

∆t
]

=
3

4
ZHm′ (Z)

T
Γ−2
m Hm′ (Z)∆t+

1

2
ZHm′ (Z)

T
Γ−2
m H̄m∆t

+
1

2
ZHm′ (Z)

T
Γ−2
m

[

∆ū−∆ūN −Hm′ (Z)∆t
]

=
1

4
ZHm′ (Z)

T
Γ−2
m Hm′ (Z)∆t+

1

2
ZHm′ (Z)

T
Γ−2
m H̄m∆t+

1

2
ZHm′ (Z)

T
Γ−2
m

(

∆ū−∆ūN
)

.

Above, we define the mean and fluctuation terms, H̄m = E
N
[

Hm
(

Z̃

)]

and Hm′ = Hm
(

Z̃
)

− H̄m, w.r.t. the

empirical ensemble averages. Similarly, we can compute

av∆t+Kv∆Iv =
1

9
Z
[

Hv (Z)− H̄v
]T

Γ−2
v

[

4Hv (Z)− H̄v
]

+
1

3
Z
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Hv (Z)− H̄v
]T

Γ−2
v
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Hv (Z) + hv
(

ūN , RN
)]
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]

=
4
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T
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v Hv′ (Z)∆t+

1

3
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T
Γ−2
v H̄v∆t

+
1

3
ZHv′ (Z)T Γ−2

v

[
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]

=
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T
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.

B Details on the triad system

Here we provide more details on the dynamical and statistical properties on the triad model (4.1).

B.1 A direct link to geophysical turbulent fluid

We can consider the quasi-geostrophic (QG) potential vorticity equation with forcing and dissipation defined on a
two-dimensional periodic domain x ∈ [−π, π]× [−π, π]

∂q

∂t
+∇⊥ψ · ∇q = ν∆q, ∆ψ = q. (B1)

Under projection to the Fourier spectral modes k = (kx, ky) inside a set of finite wavenumber truncation K, the
streamfunction ψ and potential vorticity q can be expressed as

ψ =
∑

k∈K

ψ̂ke
ik·x, q =

∑

k∈K

(− |k|) ψ̂ke
ik·x.

The QG system (B1) then can be expressed for each spectral mode ψ̂k under the above decomposition as

dψ̂k

dt
+

∑

k=−m−n

|n|2

|k|2
m

⊥ · nψ̂mψ̂n = −ν |k|2 ψ̂k.

Therefore, we have the barotropic triads of three wavenumber components, ψ̂k, ψ̂m, ψ̂n, obeying the selecting rule
k+m+ n = 0. Consider an initial condition in which only these three components of a particular triad are excited,
then these three modes will only interact with each other while no other modes will get excited due to the particular
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triad relations as the system evolves in time. By projecting the above equation to the active triad modes, we get
the dynamical equations for the selected modes neglecting the forcing and dissipation terms on the right hand side

dψ̂k

dt
+Akmnψ̂mψ̂n = 0, k+m+ n = 0, (B2)

where Akmn = |n|2

|k|2
m

⊥ · n is the triad interaction coefficient with the detailed symmetry Akmn+Amnk+Ankm = 0,

showing the conservation of kinetic energy,

d

dt

(

|k|2
∣

∣

∣
ψ̂k

∣

∣

∣

2

+ |m|2
∣

∣

∣
ψ̂m

∣

∣

∣

2

+ |n|2
∣

∣

∣
ψ̂n

∣

∣

∣

2
)

= 0.

The typical forward and backward cascades of energy and enstrophy in turbulent flow are characterized by the triad
interactions between the three models. Hence from the above discussion, in the two-dimensional QG turbulence, the
nonlinear energy transfer is exactly governed by the barotropic triads the same as (4.1) in the nonlinear interaction
part. More detailed characterization of these coupling effects with link to geophysical turbulence can be found in
[23].

B.2 Statistical and dynamical properties of the triad system

The triad system (4.1) is subject to stochasticity from the initial state and external forcing.The probability density
function p (u, t) associated with the triad equations satisfies the following Fokker-Planck equation

∂tp = − (B (u,u) + Λu) · ∇up+

3
∑

i=1

(

dip+
1

2
σ2
i ∂

2
ui
p

)

, (B3)

with initial state p (u, t) |t=0= p0 (u). While the original triad system (4.1) is nonlinear, the statistical dynamics
(B3) becomes linear equation for the smooth PDF p. However, in general the explicit solution of the Fokker-Planck
equation is still difficult to achieve due to the nonlinear interaction terms in the triad system.

B.2.1 Equilibrium invariant measure with equipartition of energy

Under a special arrangement about the damping and noise coefficients, one special solution of a Gaussian invariant
measure, peq, can be reached at the equilibrium. Assume that the damping operator di and random noise forcing
σi satisfy the following relation in each component

σ2
eq =

σ2
1

2d1
=

σ2
2

2d2
=

σ2
3

2d3
. (B4)

Therefore, a Gaussian invariant measure can be found with equipartition of energy in each component, that is,

peq (u) = C−1
eq exp

(

−
1

2
σ−2
eq |u|2

)

. (B5)

Above σ2
eq is the equilibrium variance in the Gaussian invariant distribution peq that controls the variability in each

mode. To see this, we can substitute the invariant measure (B5) back into the Fokker-Planck equation (B3). It is
a special case from the Theorem in [22]. In the general case with additional external forcing and inhomogeneous
structure, energy is injected into the modes and transferred to each other due to the nonlinear quadratic interaction
through more complicated mechanism, thus strong nonlinear non-Gaussian statistics with energy cascade and
internal instabilities can be generated. Detailed energy mechanism and stability for the triad system can be found
in [23, 24].

B.2.2 Typical dynamical regimes in the triad system

Though simple in appearance, the triad system (4.1) has representative statistical features including energy cascade
between modes and internal instabilities that can be created in this simple set-up. A fundamental factor in the triad
system is the internal instabilities that make the mean unstable over various directions in phase space as is typical
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for anisotropic fully turbulent systems. Elementary intuition about energy transfer in such models can be gained
by looking at the special situation with only the nonlinear interactions in (4.1). We examine the linear stability of

the fixed point, ū = (ū1, 0, 0)
T
. Elementary calculations show that the perturbation δu1 satisfies dδu1

dt
= 0 while

the perturbations δu2, δu3 satisfy the second-order equations

d2

dt2
(δu2) =

(

B2B3ū
2
1

)

δu2,
d2

dt2
(δu3) =

(

B2B3ū
2
1

)

δu3,

so that we find that there is instability in the states u2, u3 from a non-zero ū1 if B2B3 > 0. Combined with the
energy conservation principle B1 +B2 +B3 = 0, we find that from the initial state (ū1, 0, 0)

the energy in δu2, δu3 grows provided that (B6)

B1 has the opposite sign with B2 andB3.

The elementary analysis in (B6) suggests that we can expect a flow or cascade of energy from u1 to u2 and u3 where
it is dissipated provided the interaction coefficient B1 has the opposite sign from B2 and B3. Then energy cascades
can be induced from the strongly forced unstable energetic mode to the stable less energetic modes with stronger
damping effects.

B.3 Moment equations for the triad system

Here, we provide the detailed moment equations for the mean mean and covariances of the triad state u. First, the
mean state ū = (u1, u2, u3)

T
of the triad model can be written as

dū1 = [(−d1ū1 − λ3ū2 + λ2ū3) +B1ū2ū3 +B1 〈u
′
2u

′
3〉] dt,

dū2 = [(λ3ū1 − d2ū2 − λ1ū3) +B2ū1ū3 +B2 〈u
′
1u

′
3〉] dt,

dū3 = [(−λ2ū1 + λ1ū2 − d3ū3) +B3ū1ū2 +B3 〈u
′
1u

′
2〉] dt,

(B7)

where we use 〈·〉 to represent the expectation. Correspondingly, the stochastic fluctuation u
′ = (u′1, u

′
2, u

′
3)

T
of the

triad model satisfies the following set of SDEs

du′1 = [(−d1u
′
1 − λ3u

′
2 + λ2u

′
3) +B1 (ū2u

′
3 + ū3u

′
2) +B1 (u

′
2u

′
3 − c1)] dt+ σ1dW1,

du′2 = [(λ3u
′
1 − d2u

′
2 − λ1u

′
3) +B2 (ū1u

′
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′
1) +B2 (u

′
1u

′
3 − c2)] dt+ σ2dW2,
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′
1 + λ1u

′
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′
3) +B3 (ū1u

′
2 + ū2u

′
1) +B3 (u

′
1u

′
2 − c3)] dt+ σ3dW3.

(B8)

Above, the stochastic equations are coupled with the cross-covariances c = (c1, c2, c3)
T

that satisfy the following
statistical equations

dc1 = [− (d2 + d3) c1 + λ3c2 − λ2c3 + λ1 (r2 − r3)

+ (B2ū1r3 +B3ū1r2) + (B2ū3c2 +B3ū2c3) +
(

B2

〈

u′1u
′2
3

〉

+B3

〈

u′1u
′2
2

〉)]

dt,
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〉
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dt.

(B9)

And correspondingly, the statistical equations for the variances r = (r1, r2, r3)
T

satisfy the following equations

dr1 =2
[

(−d1r1 + λ2c2 − λ3c3) +B1 (ū2c2 + ū3c3) +B1 〈u
′
1u

′
2u

′
3〉+ σ2

1

]

dt,

dr2 =2
[

(−λ1c1 − d2r2 + λ3c3) +B2 (ū1c1 + ū3c3) +B2 〈u
′
1u

′
2u

′
3〉+ σ2

2

]

dt,

dr3 =2
[

(λ1c1 − λ2c2 − d3r3) +B3 (ū1c1 + ū2c2) +B3 〈u
′
1u

′
2u

′
3〉+ σ2

3

]

dt.

(B10)

26



References

[1] Eviatar Bach, Tim Colonius, Isabel Scherl, and Andrew Stuart. Filtering dynamical systems using observations
of statistics. Chaos: An Interdisciplinary Journal of Nonlinear Science, 34(3), 2024.

[2] Alan Bain and Dan Crisan. Fundamentals of stochastic filtering, volume 3. Springer, 2009.

[3] Xuelian Bao, Chun Liu, and Yiwei Wang. A deterministic–particle–based scheme for micro-macro viscoelastic
flows. Journal of Computational Physics, 522:113589, 2025.

[4] Marc Bocquet, Karthik S Gurumoorthy, Amit Apte, Alberto Carrassi, Colin Grudzien, and Christopher KRT
Jones. Degenerate kalman filter error covariances and their convergence onto the unstable subspace. SIAM/ASA
Journal on Uncertainty Quantification, 5(1):304–333, 2017.

[5] Edoardo Calvello, Sebastian Reich, and Andrew M Stuart. Ensemble Kalman methods: A mean field perspec-
tive. Acta Numerica, 2025.

[6] Emmet Cleary, Alfredo Garbuno-Inigo, Shiwei Lan, Tapio Schneider, and Andrew M Stuart. Calibrate, emulate,
sample. Journal of Computational Physics, 424:109716, 2021.

[7] Will Cousins and Themistoklis P Sapsis. Quantification and prediction of extreme events in a one-dimensional
nonlinear dispersive wave model. Physica D: Nonlinear Phenomena, 280:48–58, 2014.

[8] Ruth F Curtain. Infinite-dimensional filtering. SIAM Journal on Control, 13(1):89–104, 1975.

[9] Arnaud Doucet, Nando De Freitas, Neil James Gordon, et al. Sequential Monte Carlo methods in practice,
volume 1. Springer, 2001.

[10] Geir Evensen. Sequential data assimilation with a nonlinear quasi-geostrophic model using monte carlo methods
to forecast error statistics. Journal of Geophysical Research: Oceans, 99(C5):10143–10162, 1994.

[11] Uriel Frisch. Turbulence: the legacy of AN Kolmogorov. Cambridge university press, 1995.

[12] Yuan Gao, Tiejun Li, Xiaoguang Li, and Jian-Guo Liu. Transition path theory for langevin dynamics on
manifolds: Optimal control and data-driven solver. Multiscale Modeling & Simulation, 21(1):1–33, 2023.

[13] Alexander Gluhovsky and Ernest Agee. An interpretation of atmospheric low-order models. Journal of the
atmospheric sciences, 54(6):768–773, 1997.

[14] Carl Graham, Thomas G Kurtz, Sylvie Méléard, Philip E Protter, Mario Pulvirenti, Denis Talay, and Sylvie
Méléard. Asymptotic behaviour of some interacting particle systems; mckean-vlasov and boltzmann models.
Probabilistic Models for Nonlinear Partial Differential Equations: Lectures given at the 1st Session of the
Centro Internazionale Matematico Estivo (CIME) held in Montecatini Terme, Italy, May 22–30, 1995, pages
42–95, 1996.

[15] Eugenia Kalnay. Atmospheric modeling, data assimilation and predictability. Cambridge university press, 2003.

[16] Kody Law, Andrew Stuart, and Kostas Zygalakis. Data assimilation. Cham, Switzerland: Springer, 214:52,
2015.

[17] Marcel Lesieur. Turbulence in fluids: stochastic and numerical modelling, volume 488. Nijhoff Boston, MA,
1987.

[18] Martin Leutbecher and Tim N Palmer. Ensemble forecasting. Journal of computational physics, 227(7):3515–
3539, 2008.

[19] Robert S Liptser and Albert N Shiryaev. Statistics of random processes II: Applications, volume 6. Springer
Science & Business Media, 2013.

[20] Andrew Majda, Ilya Timofeyev, and Eric Vanden-Eijnden. A priori tests of a stochastic mode reduction
strategy. Physica D: Nonlinear Phenomena, 170(3-4):206–252, 2002.

27



[21] Andrew Majda and Xiaoming Wang. Nonlinear dynamics and statistical theories for basic geophysical flows.
Cambridge University Press, 2006.

[22] Andrew J Majda. Introduction to turbulent dynamical systems in complex systems. Springer, 2016.

[23] Andrew J Majda and Di Qi. Strategies for reduced-order models for predicting the statistical responses and
uncertainty quantification in complex turbulent dynamical systems. SIAM Review, 60(3):491–549, 2018.

[24] Andrew J Majda and Di Qi. Linear and nonlinear statistical response theories with prototype applications to
sensitivity analysis and statistical control of complex turbulent dynamical systems. Chaos: An Interdisciplinary
Journal of Nonlinear Science, 29(10), 2019.

[25] Mustafa A Mohamad and Themistoklis P Sapsis. Sequential sampling strategy for extreme event statistics in
nonlinear dynamical systems. Proceedings of the National Academy of Sciences, 115(44):11138–11143, 2018.

[26] Dwight Roy Nicholson and Dwight R Nicholson. Introduction to plasma theory, volume 1. Wiley New York,
1983.

[27] Karl Oelschlager. A martingale approach to the law of large numbers for weakly interacting stochastic processes.
The Annals of Probability, pages 458–479, 1984.

[28] TN Palmer. Stochastic weather and climate models. Nature Reviews Physics, 1(7):463–471, 2019.

[29] Sahani Pathiraja, Sebastian Reich, and Wilhelm Stannat. Mckean–Vlasov sdes in nonlinear filtering. SIAM
Journal on Control and Optimization, 59(6):4188–4215, 2021.

[30] Joseph Pedlosky. Geophysical fluid dynamics. Springer Science & Business Media, 2013.

[31] Di Qi. Unambiguous models and machine learning strategies for anomalous extreme events in turbulent
dynamical system. Entropy, 26(6):522, 2024.

[32] Di Qi and John Harlim. A data-driven statistical-stochastic surrogate modeling strategy for complex nonlinear
non-stationary dynamics. Journal of Computational Physics, 485:112085, 2023.

[33] Di Qi and Jian-Guo Liu. High-order moment closure models with random batch method for efficient com-
putation of multiscale turbulent systems. Chaos: An Interdisciplinary Journal of Nonlinear Science, 33(10),
2023.

[34] Di Qi and Jian-Guo Liu. A random batch method for efficient ensemble forecasts of multiscale turbulent
systems. Chaos: An Interdisciplinary Journal of Nonlinear Science, 33(2), 2023.

[35] Di Qi and Jian-Guo Liu. Coupled stochastic-statistical equations for filtering multiscale turbulent systems.
arXiv preprint arXiv:2407.04881, 2024.

[36] Di Qi and Andrew J Majda. Rigorous statistical bounds in uncertainty quantification for one-layer turbulent
geophysical flows. Journal of Nonlinear Science, 28:1709–1761, 2018.

[37] Di Qi and Eric Vanden-Eijnden. Anomalous statistics and large deviations of turbulent water waves past a
step. AIP Advances, 12(2), 2022.

[38] Rick Salmon. Lectures on geophysical fluid dynamics. Oxford University Press, USA, 1998.

[39] Simone Carlo Surace, Anna Kutschireiter, and Jean-Pascal Pfister. How to avoid the curse of dimensionality:
Scalability of particle filters with and without importance weights. SIAM review, 61(1):79–91, 2019.

[40] Shanyin Tong, Eric Vanden-Eijnden, and Georg Stadler. Extreme event probability estimation using pde-
constrained optimization and large deviation theory, with application to tsunamis. Communications in Applied
Mathematics and Computational Science, 16(2):181–225, 2021.

28


	Introduction
	An integrated multiscale modeling framework with data assimilation
	The coupled stochastic-statistical formulation for multiscale dynamics
	Predicting probability density functions using statistical observation data
	The approximate ensemble filter with consistent high-order statistics

	Ensemble data assimilation schemes maintaining high-order statistics
	Construction of detailed filter operators with nonlinear observation functions
	The explicit forms of the Kalman gain and drift operators
	Numerical implementation of the filter operators

	Comparison with ensemble Kalman filter schemes
	Convergence of the statistical ensemble filter approximation

	Numerical performance on the prototype triad system
	Typical statistical regimes in the triad system
	Statistical regimes with distinctive statistical features
	Small ensemble prediction with the coupled stochastic-statistical model

	Numerical performance using the data assimilation model
	Calibration of observation noises
	Prediction of the statistical mean and covariance

	Prediction of probability distributions and non-Gaussian features

	Summary
	Proofs of theorems
	Details on the triad system
	A direct link to geophysical turbulent fluid
	Statistical and dynamical properties of the triad system
	Equilibrium invariant measure with equipartition of energy
	Typical dynamical regimes in the triad system

	Moment equations for the triad system


