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Abstract: Data-driven modeling methods are studied for turbulent dynamical systems with extreme
events under an unambiguous model framework. New neural network architectures are proposed
to effectively learn the key dynamical mechanisms including the multiscale coupling and strong
instability, and gain robust skill for long-time prediction resistive to the accumulated model errors
from the data-driven approximation. The machine learning model overcomes the inherent limitations
in traditional long short-time memory networks by exploiting a conditional Gaussian structure
informed of the essential physical dynamics. The model performance is demonstrated under a
prototype model from idealized geophysical flow and passive tracers, which exhibits analytical
solutions with representative statistical features. Many attractive properties are found in the trained
model in recovering the hidden dynamics using a limited dataset and sparse observation time,
showing uniformly high skill with persistent numerical stability in predicting both the trajectory and
statistical solutions among different statistical regimes away from the training regime. The model
framework is promising to be applied to a wider class of turbulent systems with complex structures.

Keywords: turbulent systems; machine learning; multiscale modeling; long short-term memory

1. Introduction

Extreme events and the related anomalous statistics are fascinating phenomena
universally observed in a wide class of natural and engineering systems [1–5]. An
active, contemporary topic with a grand challenge is understanding, predicting, and
controlling such events using qualitative and quantitative models [6–10]. Dynamical
systems with extreme events are often characterized by strong internal instabilities and
the competing effects of coherent large-scale structures and multiple interacting small-
scale processes [11–13]. The accurate quantification of such features requires solving
complex nonlinear equations among different parameter regimes to draw a complete
picture of the statistical solution profile. Direct strategies by explicitly resolving all the
scales with many repeated evaluations become inefficient and often impractical due to
the very high computational overload [14,15]. Effective modeling and parameterization
methods are still needed to capture the key dynamical features with computational
efficiency and robustness to the noise errors amplified by inherent instabilities.

Data-driven modeling using machine learning ideas [16–19] has become one appeal-
ing approach to learn the unresolved physical processes given sufficient data covering
complete solution regimes. Such data-driven strategies have shown potential in recovering
unresolved subscale dynamics which are difficult to derive via first principles [20–22], or
suffer high computational cost in direct approaches [23–27]. The increasing amount of
observational data further helps the development of various data-driven models to advance
the understanding of the underlying physical mechanisms and thus to provide fast and
accurate solvers [28–32]. In the case of learning model dynamics showing extreme events
and anomalous statistics, however, the available data for training are often restricted with
incomplete observations (such as a limited dynamical regime and sparse measurements)
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and are polluted with various model errors (such as amplified noise and uncertainties
from the model instability, as well as the imperfect model approximation). The challenge
remains to find a universally applicable model framework with uniform prediction skill
among different statistical regimes that are beyond the limited training dataset. Large
model uncertainty and exponentially growing model error often lead to the breakdown of
long-time prediction typical for complex turbulent systems without a complete physical
understanding. An effective model of turbulent dynamical systems requires computational
stability against noises and perturbations.

In this paper, we aim to investigate useful machine learning techniques to recover the
unresolved components of complex physical systems with coupled multiscale processes. In the
development of new machine learning strategies, it is useful to start with simplified prototype
models, where the key dynamical structures of interests can be identified for a thorough
understanding. We propose a group of unambiguous models for both the understanding of
key dynamical structures in generating the representative extreme phenomena, and also the
development of effective machine learning strategies based on explicit physical structures. The
unambiguous models are drawn from geophysical turbulence [33–35], and accept analytically
tractable conditional Gaussian structures incorporating essential processes of multiscale flow
interaction and the turbulent transport of passive tracers. The system generates representative
anisotropic flows with topographic blocking, qualitatively resembling those observed in
the midlatitude ocean and atmosphere [36–38], and passive tracer fields exhibiting strong
extreme events with skewed or fat-tailed probability distributions comparable to laboratory
experiments [6,29,37,39]. In addition, the model fits into the general conditional Gaussian
framework [32,40–42], which provides explicit analytic formulas by expressing the small-scale
variables as a group of Gaussian processes depending on the realizations of the observed
large-scale process. The explicit analytical formulas draw a detailed characterization of the
trajectory solution structures as well as the anomalous statistics. Based on the explicit solutions
of the detailed large–small-scale interaction mechanism, effective machine learning methods
are developed, only replacing the unresolved small-scale processes by data-driven models.
Such simple but comprehensive equations are shown to serve as a group of unambiguous test
models for the central problems in the development of data-driven strategies with various
datasets and model architectures.

Contributions of This Work

We introduce novel modeling strategies that are able to learn the hidden dynamical
processes coupled with multiple temporal and spatial scales. The neural network model
can be trained under a single set of data with sparse time measurements, and the trained
model is capable of predicting different types of extreme events and distinct statistical
features among various dynamical regimes where data are unavailable. By construction,
the new neural network architectures provide an accurate higher-order approximation of
the original dynamics informed of its essential physical structures. The coupled multiscale
processes are modeled efficiently by exploiting the conditional Gaussian structure and de-
composing the full model into smaller subsystems that are easier to be learned. In addition,
the model stability for long-time iterations is effectively improved through training with a
feasible loss function considering multistep outputs, including model errors.

In building the neural network model, the original long short-term memory (LSTM)
network [43,44] is improved by adding detailed inner connections to track the correlated
long-time history in the data from turbulent signals. The new neural networks are applied
for multiple small scales for efficient modeling, and the outputs for different scales are
combined in the explicit large-scale mean flow equation to introduce physics-based updates
to the learning process. We improve the idea in [31,32] to introduce the loss function for the
optimization procedure by combining the use of a new relative entropy distance [45,46] and
the standard mean square error. The calibration of model approximation errors is made to
focus on the dominant shapes of the turbulent signals instead of an exhausting fitting of
the unnecessary pointwise turbulent errors. With the combined contributions of the new
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designs of model architectures and loss functions, the proposed neural network model
overcomes the inherent difficulties of early divergence and large training errors common
among the traditional LSTM networks [17,47].

The neural network model is then tested on the proposed unambiguous model from
geophysical turbulence with the large mean flow interacting with two small-scale modes.
The model provides the simplest setup restricted to a two-mode interaction, while still
maintaining a variety of dynamical regimes displaying different types of extreme events
for testing the skill of the neural network. The neural network model focusing on the
small-scale processes is trained in one statistical regime from the available partial data.
Then, the trained model can be applied universally for various scenarios with distinct
non-Gaussian statistics. By applying the model to different datasets in the prediction stage,
we show the predictive capability in the trained model to recover the key dynamics from
incomplete data and limited information. The model also allows a sparse dataset with
longer time measurement steps, showing stable performance for long-time prediction. The
model with unresolved processes can be further generalized to a wider class of complex
turbulent systems [1,48,49] to construct computationally efficient, reduced models with
nonlinear high-order feedback [26,27].

In the rest part of the paper, the unambiguous model framework with explicit solutions
and representative statistical regimes is introduced in Section 2. The general machine
learning strategy to learn the complex dynamical processes is constructed in Section 3. Then,
the neural network model is combined with the explicit physical structures in the dynamical
system in Section 4 to capture extreme events and the statistical features. Numerical tests
are carried out in a two-mode topographic model in Section 5 as an illustration for the
scope of skill of the strategy. A summary with discussions for future research directions is
given in Section 6.

2. An Unambiguous Model Framework for the Investigation of Extreme Events

We first propose a group of prototype models with tractable mathematical structures
to serve as a clean testbed for the investigation of the various distinctive phenomena found
in natural systems. The models are constructed by including the key features in realistic
turbulent systems, such as a wide variety of extreme events and anomalous statistics
with fat-tailed or skewed probability density functions (PDFs). The prior information
of the dynamical system is then exploited for guidelines to design new neural network
architectures in the next sections.

2.1. General Formulation of the Unambiguous Mathematical Models

A general mathematical framework for a wide group of systems can be introduced in
the following abstract form for the multiscale states u = (u1, u2) ∈ RN1+N2

du1 =[A0(t, u1) + A1(t, u1)u2]dt + Σ1(t, u1)dW1,

du2 =[B0(t, u1) + B1(t, u1)u2]dt + Σ2(t, u1)dW2.
(1)

Usually, u1 ∈ RN1 can be viewed as the observed slow process and u2 ∈ RN2 as the
unobserved fast states in a much larger phase space N2 ≫ N1. A conditional Gaussian
framework [42,50] is developed based on the general formulation (1), where u2 can be
expressed as a Gaussian process given the complete history of u1(s) |s≤t

p(u2(t) | u1(·)) = N (ū2(t; u1(·)), R2(t; u1(·))),

where ū2, R2 are the conditional mean and covariance matrix depending on the realization
of u1. This implies that the final probability distribution for the process u2 can be expressed
as a mixture conditional on different realizations of the ‘observables’ u1. Still, the full
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probability distribution of the system (1) could be highly non-Gaussian as a combination of
all the probability realizations from the above conditional Gaussian structure

p(u2, t) ∼
ˆ

p(u2(t) | u1)dµ(u1),

where µ(u1) is the probability measure for the entire observed process u1(s), s ≤ t. As a
further comment, many realistic turbulent systems such as those found in climate forecast
may not exactly follow the conditional Gaussian structure (1). Therefore, usually, additional
approximations are needed with the introduction of imperfect model errors.

Topographic Barotropic Model with Large-Scale Mean Flow Interaction and Strong
Small-Scale Feedbacks

We focus on a special group of the general model framework (1) with reference
to geophysical turbulent flows. The topographic barotropic system [33,34] models the
complex interactions of a large-scale mean flow U and small-scale vortical fluctuations q in
quasi-geostrophic turbulence

∂q
∂t

+ v · ∇q = D(∆)ψ + Fq, (2a)

dU
dt

+

 
∂h
∂x

ψ′ = −dUU + FU . (2b)

The topographic model is defined on the two-dimensional doubly periodic plane
x ∈ D = [−π, π]2 for simplicity, with the potential vorticity q, stream function ψ, and flow
velocity v defined as

q = ∇2ψ′ + h + βy, ψ = −U(t)y + ψ′, v = ∇⊥ψ =
(
U − ∂yψ′, ∂xψ′). (3)

Above, the small-scale stream function ψ′ is separated from other large-scale terms.
There exists a multiscale coupling between the small-scale fluctuations (2a) and the large-
scale uniform mean flow (2b) through the domain-averaged quantity

ffl
∂h
∂x ψ′ ≡ 1

|D|
´

D
∂h
∂x ψ′

with |D|, the computational domain area. The model (2) combines several crucial features
in geophysical turbulence [1,35]: the effects of topography (h), rotation (β), external forcing
(Fq, FU), frictions D(∆) for the fluctuation states (for example, Ekman drag r and higher-
order dissipation ν∆2) and linear damping dU acting on the large-scale mean flow U. It is
easy to check that the model fits into the general framework (1) by setting u1 = U as the
large-scale mean flow and u2 = q for all the small-scale processes.

Using the flow solution of (2), we can introduce an additional equation modeling the
turbulent transport of passive tracers through the advection and diffusion of the passive
tracer density field T(x, t)

∂T
∂t

+ v · ∇T = −dTT + κ∆T, (4)

where the advection flow v = ∇⊥ψ is provided by the velocity solution in (3), and the tracer
field is subject to damping and diffusion effects due to parameters dT and κ on the right-
hand side. A wide variety of properties are found and analyzed under this tracer frame-
work (4) for both theories and applications in turbulent transport and diffusion [6,29,51].
Again, the tracer Equation (4) can be also categorized into the general framework (1) with
u2 = T and no direct feedback to the flow state u1 = v. Instabilities and uncertainties are
introduced through the multiscale interactions [35,52] in the above flow system (2) as well
as the passive tracer field (4). The prediction of both the large and small processes from the
partially observed data and unknown dynamics forms a general challenge for the accuracy
and stability.
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Despite the simplicity, the stringent paradigm models for multiscale coupled flow
(2) and passive tracer (4) fields exhibit complex statistics characterizing a number of
crucial realistic phenomena, such as the atmospheric blocking, topographic instability, and
nonlinear energy transfer through scales [1,33]. The tractable dynamical structures in the
simplified models enable a series of detailed analyses for the mathematical understanding
of various physical processes [24,35] and the construction of comprehensive computational
strategies [29,34,53].

2.2. Analytical Solutions from the Conditional Gaussian Models

Still, the model (2a) couples all the small-scale fluctuation modes through the nonlinear
advection term on the left-hand side. This will lead to very complex dynamical structures
for the analysis. Here, in order to find more analytically tractable solutions, we propose
further simplification to the original system so that we are able to focus on the most
important mean–fluctuation interactions in determining the final flow structure.

Starting from the topographic barotropic model (2) and the corresponding passive
tracer Equation (4) on the periodic domain D, we project the states of the flow velocity field
v = ∂xψ and the tracer density field T on the Fourier spectral space by

v(x, t) = ∑
k

v̂k(t)eikl·x, T(x, t) = ∑
k

T̂k(t)eikl·x + αy. (5)

Above, the layered topography [29] is applied along one characteristic wavenumber
direction l with |l| = 1 (for simplicity, we take lx = 1, ly = 0 in the following analytical
results without loss of generality). In addition, a background mean gradient profile αy
along the y direction is assumed for the tracer density field. The layered topography
eliminates the nonlinear interactions between the fluctuation modes, thus enabling us to
focus on the coupling effect between the large and small scales. Then, we aim to find
the trajectory and statistical solutions of the following coupled flow system under the
spectral representation.

dv̂k
dt

− i
(

k−1β − kU
)

v̂k + ĥkU = −dk v̂k + σv,kẆk, (6a)

dU
dt

− ∑
k

h∗k v̂k = −dUU + σUẆ0. (6b)

Above, through orthogonal projection (5), the linear terms are decoupled into each
spectral mode v̂k(t). The integration representing topographic stress on the left-hand side
of (2b) becomes the summation over all the spectral modes from the inner product. In
particular, the nonlinear coupling between small-scale modes in (2a) vanishes due to the
assumed layered topography along one wavenumber direction l. The additional unresolved
effects are summarized in the white noise as Fq,k = σv,kẆk and FU = σUẆ0. Accordingly,
the associated passive tracer equation is given by

dT̂k
dt

= (−γT,k − ikU(t))T̂k − αv̂k, (6c)

with γT,k = dT + κk2 and white noise amplitudes σv,k, σU defined for small and large scales.
The shear flow modes v̂k serve as a forcing on the passive tracer mode T̂k induced by
the mean gradient α. The detailed derivation of the equations and their properties are
discussed in [6,29,34] with many applications.

In particular, we refer to the large-scale mean flow U as the ‘observed state’ that is
measured at a time frequency ∆t (note that this is usually much longer than the admissible
integration time step in the direct numerical scheme); the small-scale velocity modes v̂k
with important feedback to the mean flow equation are treated as the unresolved states. In
the following sections, the neural network model is designed to predict all the unresolved
small-scale processes v̂k, T̂k without pre-knowledge of the original dynamical model (6a).
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And together with the neural network output, Equation (6b) can be used to update the
solution of the large-scale U with different noise levels σU .

2.2.1. Explicit Solutions to the Topographic Model with Damping and Stochastic Forcing

The conditional Gaussian structure in the spectral flow and tracer model (6) enables to
derive closed analytic formulas for discovering the typical properties in the topographic
flow field and passive tracer solutions. It shows that the statistics in the velocity and tracer
modes v̂k, T̂k in (5) can be determined by the statistics in U. These analytic formulas help to
provide an improved understanding of the rich physical phenomena observed in both the
flow and tracer fields, under which the machine learning models can be constructed. Below,
we list the main conclusions, where the detailed derivations can be found in Appendix A.

First, we can find the long-time steady-state solution when the initial state becomes
irrelevant. Following the decoupled dynamics from the diagonal coefficients of each
wavenumber (6a), the conditional trajectory solution of the steady-state small-scale mode
(that is, for t ≫ 1 large enough to ‘forget’ its initial information) can be written as

v̂k(t; U(·)) = −
ˆ t

0
e−γv,k(t−s)−ikU[s,t]

[
ĥkU(s)ds + σv,kdWk(s)

]
, (7)

with the coefficients γv,k = dk − ik−1β and U[s, t] ≡
´ t

s U(τ)dτ depending on one realiza-
tion of the zonal mean solution of U(s) during the entire time period 0 < s ≤ t. Similarly
with the above formula for the shear flow solution v̂k, the corresponding solution for the
passive tracer Equation (6c) can be solved based on the advection flow

T̂k(t; U(·)) = α

γR,k

ˆ t

0
e−γT,k(t−s)−ikU[s,t]

[
eγR,k(t−s) − 1

][
ĥkU(s)ds + σv,kdWk(s)

]
, (8)

with the effective damping and dispersion relation γR,k = γT,k − γv,k. Note that the above
state solutions at time t are dependent on the entire history of the large-scale mean flow
U. The above explicit Formulas (7) and (8) for the trajectory solutions of flow and tracer
modes imply that we can recover the small-scale flow and tracer trajectories based on
the information from the large-scale mean flow information. This provides an instructive
guideline for the solution structures with the small- and large-scale interaction mechanisms.

2.2.2. Statistical Solutions for the Mean and Variance

Next, we compute the steady-state statistical solutions of the flow and tracer modes
based on the conditional trajectory Formulas (7) and (8). We assume that the large-scale
mean flow U reaches a statistical steady state with dominant leading order moments.
Therefore, the mean and variance of the small-scale modes can be written in terms of
the equilibrium mean Ū, variance rU , and the autocorrelation function RU of the large-
scale flow.

Using the leading order expansion of the moments, the mean state for the shear flow
modes can be computed by

v̄k ≡ ⟨v̂k⟩ =− ĥk

ˆ t

0
e−γv,k(t−s)

〈
e−ikU[s,t]U(s)

〉
ds

=− ĥk

ˆ t

0
ei(k−1β−kŪ)se−dks−k2rU JU(s)(Ū − ikrU IU(s))ds.

(9)

Above, we denote Ū = ⟨U⟩, rU =
〈
(U − Ū)

2
〉

, and the autocorrelation function

RU(τ) = r−1
U ⟨U(τ)U(0)⟩ (with ⟨·⟩ represents the statistical expectation at equilibrium).
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The time-dependent operators IU , JU are computed from the integration of the autocorrela-
tion function RU

IU(t) =
ˆ t

0
RU(τ)dτ, JU(t) =

ˆ t

0
(t − τ)RU(τ)dτ.

Only the first two moments of the stochastic process U are used in the above computa-
tion of the statistical expectation

〈
e−ikU[s,t]U(s)

〉
. Accordingly, the tracer mean state can

be also derived based on the statistics of the mean flow U in a similar fashion using the
trajectory solution

T̄k ≡
〈

T̂k
〉
=− αĥk

γR,k

ˆ t

0
e−γT,k(t−s)

[
eγR,k(t−s) − 1

]〈
U(s)e−ikU[s,t]

〉
ds

=− αĥk
γR,k

ˆ t

0
e−γT,ks−k2rU JU(s)e−ikŪs(eγR,ks − 1)(Ū − ikrU IU(s))ds,

(10)

with the new dispersion relation γR,k = γT,k − γv,k. Thus, we see that the tracer and flow
means v̄k and T̄k are closely linked. The second-order moments of the flow and tracer
modes can be computed by multiplying the corresponding states on both sides of (7) and
(8) depending on the statistics and time correlations of the zonal mean flow statistics of U.
Then, the flow velocity variance rvk for each mode becomes

rvk ≡
〈
|v̂k|2

〉
=

1
2dk

[∣∣σv,k
∣∣2 + 2

∣∣∣ĥk

∣∣∣
2
Re

ˆ ∞

0
e−(dk+ik−1β)τ

〈
U(0)U(τ)e−ikU[0,τ]

〉
dτ

]
. (11)

The tracer variance rTk =
〈
|T̂k|2

〉
can also be found similarly. The above expres-

sion for the variance is linked to the triad correlation of the large-scale steady-state flow〈
U(0)U(τ)e−ikU[0,τ]

〉
. We can compute the expectation in terms of the statistics in the

mean flow, that is, Ū, rU and RU . The explicit expression can be found in Appendix A.
From the above explicit formulas for the flow and tracer statistics, we observe the

already complicated structures in the leading statistics from coupling between large and
small scales as well as the flow and tracer interaction. In particular, in order to resolve
the mean and variance of the small-scale flow and tracer modes, it shows that detailed
higher-order moments are required from the large-scale mean state U. This often demands
huge amounts of data and expensive computational cost to achieve a desirable accuracy.
On the other hand, the above mean and variance Formulas (9)–(11) with the conditional
Gaussian structures imply that the essential leading-order statistical information among all
small-scale processes can be recovered from the statistical measurements in the large-scale
mean flow. The informed statistical solutions can offer crucial guidance for the construction
of combined physics and data-driven models in the following section. Therefore, machine
learning strategies will be designed to find the unresolved small-scale dynamics directly
from data, while explicit physics equations will be used for capturing extreme features in
the large-scale mean state. In particular, the trained machine learning model can greatly
reduce the computational cost of directly running the expensive full model, and provide an
efficient alternative way to predict the small-scale processes without the further requirement
of intense data.

2.3. Different Statistical Regimes of Flow and Tracer Fields in the Two-Mode Model

Before the construction of data-driven models to learn the turbulent dynamics, we
first illustrate the typical dynamical and statistical structures found in the flow and tracer
solutions using direct numerical simulations. The above analytical Formulas (7) and (8)
show that the flow and tracer models reach various dynamical regimes relying on mean flow
statistics in U, while from the mean flow Equation (6b), the solution of the zonal mean flow
U in turn is determined by the combined feedback from the small-scale fluctuation modes.
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Here, we choose a prototype two-mode topographic model under the simplest setting
using only two Fourier modes, k, 2k. Accordingly, a two-mode topography can be adopted
as a combination of the two scales

h = H1(cos kx + sin kx) + H2(cos 2kx + sin 2kx)

The two-mode system includes five coupling modes (U, v̂±1, v̂±2) for the flow equa-
tions and

(
T̂±1, T̂±2

)
for the passive tracer state. This simple two-mode formulation keeps

the central interaction mechanism between the mean flow and fluctuation modes, which
is still able to create a wide range of remarkably different statistical regimes representing
different kinds of extreme events. Therefore, we use this model as a basic test model to
display the various distinctive statistical regimes, and then as a standard testbed for the
design of neural network architectures in the following sections.

To illustrate different model statistics, our strategy is to modify the major driv-
ing effect from the topographic stress H = H1 = 2H2. The other model parameters
are fixed as β = 2, dU = dk = 0.0125, σU = σk = 1

2
√

2
for the flow equations, and

dT = 0.1, κ = 0.001 for the tracer equation. These parameters are picked according
to [34,42] to simulate realistic climate scenarios. The typical trajectory solutions from
direct numerical simulations are shown in Figure 1 with different topographic forcing
strengths H. We observe the distinct dynamical structures under this simple two-mode
model setup. With a weak topographic stress H = 1, the mean flow displays a slow
varying time scale with intermittent extreme values on the negative side. Strong extreme
events are triggered in both the small-scale flow and tracer states as the large-scale U
reaches regimes of positive values. In contrast with a strong topographic stress H = 10,
the mean flow U develops a fast oscillating time scale on top of the slow transiting pack-
ages of extreme events. The time scale difference appears more obvious between the
flow and tracer fields. The tracer modes show a much slower time scale in comparison
with the flow modes, and strong skewness with multiscale structures.
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Figure 1. Time series of the flow and tracer trajectory solutions in the two parameter regimes with
weak topographic stress H = 1 (left) and strong topographic stress H = 10 (right).

For a detailed comparison of the solution statistics, the probability density functions
(PDFs) and autocorrelation functions (ACFs) are shown in Figure 2 for the two topographi-
cal regimes. In the strongly forced regime H = 10, the mean flow U displays near-Gaussian
statistics, while both the flow v and tracer T modes generate highly skewed PDFs. The
fat-tailed or skewed PDFs are generated due to the uncertainty in the mean flow field
U interacting with the small-scale conditional Gaussian processes v̂k or T̂k. In the auto-
correlation functions, strong scale separation is also found with a fast mixing oscillating
process in the flow states for both U and v, while the tracer modes for T have a much more
slowly decaying mixing process. This can be also observed in the time series in Figure 1.
In contrast in the weak topography case H = 1, the mean flow U develops fat-tailed
non-Gaussian statistics in the PDF. The small-scale flow and tracer modes also display fat
tails consistent with the time series. In the autocorrelation functions, the mean flow U has
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a much slower mixing rate in comparison with the fast-mixing modes in both the flow
and tracer. The strong scale separation makes it very difficult to learn the complete model
dynamics purely from data. It requires the accurate modeling of all scales at the same
time during the training of the data-driven models to correctly represent the dynamics and
maintain a stable scheme.
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Figure 2. PDFs and ACFs for flow and tracer states with strong (upper) and weak (lower) topographic
stress H. The results for large-scale state U and the leading small-scale modes v̂k, T̂k are compared.
The Gaussian fits of the PDFs with the same mean and variance are plotted in dashed lines.

3. Neural Network Architecture for Correlated Dynamical Processes

In this section, we describe the general neural network architecture to learn the
correlated dynamical processes in turbulent systems. Based on the model framework
in Section 2, various statistical regimes can be found from the same dynamical model
depending on different sets of data in the large-scale state. The main goal here is to
construct an effective machine learning model to capture the complex dynamics in a
uniform fashion among different statistical regimes. In the following, we propose several
new structures to the basic long short-term memory (LSTM) network [43] for modeling
dynamical updates with long measurement time interval ∆t. A new set of loss functions
based on relative entropy is also proposed to respect the turbulent nature of the extreme
solution trajectories.

3.1. Architecture of the Neural Network Model

First, we provide a brief description of the main components in the neural network
model designed to approximate a continuous dynamical system in the general form

dy
dt

= f (x, t), (12)

where y ∈ Rn is the target state to be predicted and x ∈ Rd represents all the re-
lated input variables (explicit examples for the input and output data are shown next in
Section 4 using the topographic model). f is the unknown dynamical map to be learned
by the machine learning scheme from data. Adopting the general dynamical structures
of the form (12), the neural network architecture is designed by (i) a residual network
to approximate the increment at each time step; (ii) an LSTM chain to incorporate the
correlated time sequence; and (iii) a multistage link inside each LSTM cell to capture the
coupled dynamics in the model.
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3.1.1. Residual Network to Capture the Dynamical Model Update

In the first place, for the machine learning approximation of the dynamical increment
in (12), we adopt a residual network structure for the time increment of the unresolved
dynamical functional

yM
t = yM

t−1 + ∆t f M
m ({xt−m, · · · , xt−1}). (13)

Above, f M
m : Rd×m → Rn is the neural network approximation for the unknown

dynamical model f . The input data consist of a correlated sequence of measurements
{xi}t−1

i=t−m with xi ∈ Rd evaluated at m time instants ahead of the prediction time t, and the
new target state yt ∈ Rn is predicted for the next measurement time t from its adjacent state
yt−1. In neural network predictions, multiple previous time steps {xt−m, · · · , xt−1} are
taken together as the input to include long-time correlations from the data. The updating
time step ∆t = tn+1 − tn is determined by the two adjacent measurements xn and xn+1,
and is usually longer than the integration step dt required for numerical stability in the
direct numerical scheme of the original system (12). In addition, the input data sequence
{xi} may also include measurement error and the integrated model error from the output
in the previous prediction steps.

3.1.2. LSTM Network to Approximate Time-Correlated Unresolved Processes

To accurately present the time series with a long memory and correlation time, we start
with the basic structure of the LSTM network [43,47] for the realization of the increment
updating functional f M

m . The LSTM network consists of m LSTM cells hi+1 = Lc(xi, hi; W)
with the same structure and parameters W. The cells are connected by the intermediate
hidden state hi ∈ Rh. The long-time correlation is represented by feeding the sequential
data into each cell element accordingly. The full LSTM chain is linked by the m sequential
cell structures (the connection is illustrated in Figure 3).

Lc (·;W)

hi

LSTM h(1)

LSTM h(2)

LSTM h(3)

hi+1xi

h0

Lc (·;W)xt�m

h1

· · ·

Lc (·;W)xt�2

hm�1

Lc (·;W)xt�1

hm fm

Lc (·;W)

1

hi

LSTM h(1)

LSTM h(2)

LSTM h(3)

hi+1xi

h0

Lc (·;W)xt�m

h1

· · ·

Lc (·;W)xt�2

hm�1

Lc (·;W)xt�1

hm ho

1

'

&

$

%

Lc (·;W)

hi

LSTM h(1)

LSTM h(2)

LSTM h(3)

hi+1xi

h0

Lc (·;W)xt�m

h1

· · ·

Lc (·;W)xt�2

hm�1

Lc (·;W)xt�1

hm ho

Lc (·;W)

1

Figure 3.1: Illustration of the neural network structure for the connect LSTM chain and the inner structure in each
LSTM cell with three inner stages of the same structure.

3.2 Different metrics for calibrating the loss error
The last issue for the construction of the neural network is to define a proper loss function L measuring the error in
the model prediction yM compared with the target yt. In training the LSTM network (3.3), though only the last
output is used for the prediction of the next state, the intermediate cell outputs also produce meaningful predictions
for the earlier states (that is, the cell i with input xi can give prediction for the state yi+1 for i < m). Therefore,
we measure the output sequence of the last l outputs (for example, the second half l = m/2) in the error metric.

The proper choice of a feasible loss function L also plays a crucial role to guide the optimization procedure to
an efficient convergence with emphasize on both the multi-scale temporal structures and the occurrence of extreme
events along the time-series. We compare three different choices for the cost L (x,y) to compare the difference
between the model output x

.
= yM and the truth target y

.
= yt:

• The L2 distance:

L2 (x,y) = kx � yk2
2 =

1

M

MX

j=1

|xj � yj |2 ; (3.7a)

• The relative entropy loss:

LKL (x,y) =
1

M

MX

j=1

X

i

ỹ
(j)
i log

ỹ
(j)
i

x̃
(j)
i

; (3.7b)

• Mixed loss by an L2-relaxation with the relative entropy loss:

Lmix (x,y) = LKL (x,y) + ↵L2 (x,y) . (3.7c)

The L2 distance (3.7a) measuring the mean square error is the most common choice of the loss function by comparing
pointwise measurements of errors. In the case with data from turbulent models, small fluctuations in the solutions
may end up with an unnecessarily big contribution in the L2 loss. The pointwise measurement thus may add
too much emphasis on the accumulated errors from small turbulent fluctuations. On the other hand, we aim to
capture the dominant emerging features such as the extreme events. Thus the relative entropy loss (3.7b) enjoys
the advantage of focusing on the main coherent features of the solution invariant under small shifts in the extreme
value locations. The input data in (3.7b) are also rescaled and measured separately from the partition functions
x̃±

i = exp(xi/T±)P
i exp(xi/T±) , with T+ > 0, T� < 0 weighting the importance of the positive and negative extreme values as

suggested in [26].
The mixed cost function in (3.7c) is shown to enjoy the advantages of the two forms of cost functions (3.7a)

and (3.7b). The combination accounts both the small-scale fluctuation and the dominant extreme events in the
turbulent solution. The L2-relaxed form is useful to fit the various small-scale structures in the solution, while the

10

Figure 3. Illustration of the connection for the LSTM chain and the inner structure in each LSTM cell
with three inner stages of the same structure.

hm = Lc(m){h0; xt−m, · · · , xt−i, · · · , xt−1} ≡ Lc(xt−1) ◦ · · ·Lc(xt−i) · · · ◦ Lc(xt−m)(h0). (14)

In the above LSTM chain i = 0, · · · , m − 1, the input data xt−m+i are fed into the
corresponding i-th LSTM cell, and hi is the hidden state output from the previous cell i − 1
and input for the next adjacent cell i. For simplicity, the initial value of the hidden state is
often set as zero, h0 = 0 (the model dependence on the initial value appears weak with a
LSTM chain of moderate length m from the numerical tests). The final hidden state output
hm from the last step of the LSTM chain goes through another single layer of the fully
connected network to give the model approximation of the dynamical increment for f

f M
m = σ

(
W f hm + b f

)
, (15)
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where W f , b f are the linear map and bias coefficients of the final layer, and σ is a nonlinear
activation function, such as the rectified linear unit (ReLU). The detailed structure for the
LSTM cell with multiple gates is listed in Appendix B.1.

3.1.3. Modified Connections in the LSTM Cell Admitting Dynamical Structures

To adapt to the dynamical features using the LSTM net (14), we introduce additional
modifications to the standard architecture. Considering that we usually have measurements
at a larger time interval ∆t, it is useful to introduce multiple inner update stages as the
unresolved intermediate time steps to achieve higher-order accuracy in the final neural
network output. In addition, using a single-stage update with the original LSTM will often
lead to quick divergence in time iterations due to the inherent internal instability in the
turbulent systems (such as the direct numerical tests in [27]).

We introduce a multistage structure in the one-step time update in each LSTM cell
Lc(x, h). The idea is to fill in multiple unresolved finer time stages inside the large mea-
surement time step ∆t of the available data. It is comparable to introduce a higher-order
integration scheme for the discretized dynamical Equation (12)

yt+∆t − yt =

ˆ t+∆t

t
f (x(τ))dτ ≈

s

∑
l=1

bt,lf
l
t.

Inside each LSTM cell for a one-step update of size ∆t, we can generalize the cell
structure to link concatenated basic layers of the inner connected LSTM units. It corresponds
to building a multistage scheme in updating the present state to the next time step with a
higher-order accuracy. Therefore, inside each LSTM cell i with input data xi and the input
hidden state hi, we can compute multiple output layers for each layer output j = 1, · · · , s

h(j)
i = LSTM

(
xi,

j−1

∑
l=0

ajlh
(l)
i

)
, h(0)

i = hi. (16)

Above, ajl are learnable model parameters for the i-th layer output. The intermediate

stage outputs
{

h(0), · · · , h(j−1)
}

are stacked together with the coefficients ajl as the input
for the next stage j. The model parameters in the LSTM units are kept the same for different
stages j = 1, · · · , s since it is aimed to approximate the same dynamical functional f
ultimately. Thus, the total size of the model parameters is not increased. The final hidden
state output of this cell is computed with the combination of all the hidden layer outputs
along the series of LSTM predictions:

hi+1 =
s

∑
j=1

bjh
(j)
i , (17)

whereas the additional coefficients ajl , bj are added to the training parameters altogether,
learned directly from the data in the optimization process.

In summary, the neural network model consists of the LSTM chain (14) with m inputs
from the previous measured states xt−i, i = 1, · · · , m along the time series to approximate
the dynamical increment f M ∼ yt − yt−1 at the next prediction time instant t. Importantly,
the inner cells in the LSTM chain adopt the additional multistage scheme (17). The addi-
tional structures introduced in the model are shown to effectively improve the accuracy
and robustness in both the training and prediction stages. The neural network connections
are illustrated in Figure 3 for the entire LSTM chain and the inner structure of each cell.

3.2. Different Metrics for Calibrating the Loss Error

The last issue for the construction of the neural network is to define a proper loss
function L measuring the error in the model prediction yM compared with the target yt.
In training the LSTM network (14), though only the last output is used for the prediction
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of the next state, the intermediate cell outputs also produce meaningful predictions for
the earlier states (that is, the cell i with input xi can give a prediction for the state yi+1 for
i < m). Therefore, we measure the output sequence of the last l outputs (for example, the
second half l = m/2) in the error metric.

The proper choice of a feasible loss function L also plays a crucial role to guide the
optimization procedure to an efficient convergence with emphasize on both the multiscale
temporal structures and the occurrence of extreme events along the time series. We compare
three different choices for the cost L(x, y) to calibrate the difference between the model
output x .

= yM and the truth target y .
= yt:

• The L2 distance:

L2(x, y) = ∥x − y∥2
2 =

1
M

M

∑
j=1

∣∣xj − yj
∣∣2; (18a)

• The relative entropy loss:

LKL(x, y) =
1
M

M

∑
j=1

∑
i

ỹ(j)
i log

ỹ(j)
i

x̃(j)
i

; (18b)

• Mixed loss by an L2-relaxation with the relative entropy loss:

Lmix(x, y) = LKL(x, y) + αL2(x, y). (18c)

The L2 distance (18a) measuring the mean square error is the most common choice of
loss function, comparing the pointwise measurements of errors. In the case with data from
turbulent models, small fluctuations in the solutions may end up with an unnecessarily big
contribution in the L2 loss. The pointwise measurement thus may add too much emphasis
on the accumulated errors from small turbulent fluctuations. On the other hand, we aim
to capture the dominant emerging features such as the extreme events. Thus, the relative
entropy loss (18b) enjoys the advantage of focusing on the main coherent features of the
solution invariant under small shifts in the extreme value locations. The input data in (18b)
are also rescaled and measured separately from the partition functions x̃±i =

exp(xi/T±)
∑i exp(xi/T±)

,
with T+ > 0, T− < 0 weighting the importance of the positive and negative extreme values
as suggested in [31].

The mixed cost function in (18c) is shown to enjoy the advantages of the two forms of
cost functions (18a) and (18b). The combination accounts for both the small-scale fluctuation
and the dominant extreme events in the turbulent solution. The L2-relaxed form is useful to
fit the various small-scale structures in the solution, while the relative entropy emphasizes
the extreme values in the solutions. In practice, the parameter α can take a relatively small
value just as a penalty term (we pick α = 0.1 in all the following numerical experiments as
an empirical choice from different tests; it is worthwhile to carry out a systematic study
for the choice of this parameter). The modified model with the above multistage inner
connection in the LSTM cell is show to allow a larger learning rate in the stochastic gradient
descent process, so it enjoys faster convergence and stability compared with the original
models. The method is shown to be fairly robust to the choice of hyperparameters.

4. Learning Multiscale Dynamics Informed of the Physical Model

Now, we apply the general machine learning model discussed in Section 3 for the
prediction of multiscale dynamical systems with extreme events. The clean structures in the
unambiguous model (6) provide a desirable testbed with rich statistical features. According
to the conditional Gaussian properties shown in Section 2, the neural network is designed
for multiscale processes with unstable interactions. The optimized network is shown to
have robust performance among different statistical regimes (explicit examples will be
shown next in Section 5). The strategy is also generalizable to a wider class of complex
systems with interacting scales.
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4.1. General Model Setup and the Neural Network Model

For the topographic barotropic model (6), depending on the realization of the large-
scale mean flow solution U, the trajectory solutions for the flow and tracer modes can be
computed by integrating the exact Equations (6a) and (6c)

v̂k(t + ∆t) = v̂k(t) + F̂v
k (U(·), v̂k) = v̂k(t) +

ˆ t+∆t

t

{[
i
(

k−1β − kU
)
− dk

]
v̂k − ĥkU

}
ds,

T̂k(t + ∆t) = T̂k(t) + F̂T
k
(
U(·), v̂k, T̂k

)
= T̂k(t) +

ˆ t+∆t

t

[
(−γT,k − ikU)T̂k − αv̂k

]
ds.

(19)

Above, we use F̂v
k and F̂T

k to represent the unresolved dynamics in the fluctuation
modes in different scales. The tracer modes T̂k are passively advected by the advection flow
field (U, v), while the flow modes v̂k also give a combined contribution to the evolution of
the large-scale mean flow state U. With solutions for the unresolved states, we can then
compute the zonal mean flow solution by directly integrating Equation (6b) forward in time

U(t + ∆t) = U(t) +
ˆ t+∆t

t
fU(v)dτ + σU

s

∑
j=1

∆WU,j. (20)

Above, the deterministic component on the right-hand side of the equation is sum-
marized in the operator fU(v) = ∑k h∗k v̂k − dUU. The first term represents the topographic
stress from the combined feedback from all the small-scale modes, and the second term
serves as a friction from the boundary. The last white noise forcing introduces additional
uncertainty to the system with different noise amplitudes σU . In addition, the time integra-
tion about fU(v) also includes model approximation error since we only have the model
output from the neural network at two adjacent time measurements at t and t + ∆t, and
the data observation time ∆t is often larger than the desired integration time step dt.

We then apply the general neural network framework (13) to the specific set of
Equation (19) for both the flow and tracer modes. In practice, the input data can be chosen
to include all state variables, including both large- and small-scale flow and tracer modes
x =

{
U, v̂k, T̂k

}
, and the prediction targets are set as the unresolved small-scale flow and

tracer modes y =
{

v̂k, T̂k
}

at the next prediction time among all the wavenumbers k. The
length of the LSTM net m can be determined according to the decorrelation time of the state
so that m∆t ∼ Tdecor, where Tdecor =

´ R(s)ds is the integrated autocorrelation function
characterizing the mixing time scale.

4.1.1. Decoupled Neural Networks for Multiscale Dynamics

As we have shown in the model analysis in Section 2, one of the main challenges
in learning the turbulent dynamics is to resolve the strong scale separation between the
coupled processes. The smaller scale mode with a larger wavenumber usually exhibits
faster mixing time and smaller variance (see from the explicit formulas and numerical
examples in Section 2.3). For efficient modeling, we can decompose the high-dimensional
systems according to the different scales, and propose a neural network model focusing
on one specific scale structure so that the multiscale structure is better represented. The
resulting neural networks also become easier to train since we decompose the large system
into several smaller subsystems, requiring fewer model parameters.

Exploiting the conditional Gaussian structure, small-scale modes v̂k, T̂k in (19) become
decoupled conditional on the large-scale mean state U, while the mean state U is updated
by the physical model (20) from the combined feedback from different scale modes. In
particular, for the two-mode model, it is natural to propose two separate neural networks
for the wavenumbers for capturing different scale dynamics which are coupled finally
through the large-scale dynamics of U. The general framework for learning the dynamical
structure of the two-mode topographic barotropic system (6) can be modeled together



Entropy 2024, 26, 522 14 of 34

using the multiscale neural network models
{

f M
k
}

and the explicit physical dynamics for
the observed large-scale state U

yn+1(k) = yn(k) + f M
k ({xn−m:n(k)}; W); (21)

Un+1 = Un + ∆tFU({yn,n+1}) + σU
√

∆tξn. (22)

Above, the neural network model f M
k in (21) is used to learn the detailed single-

scale dynamical updates in each small-scale mode. The large-scale dynamics is integrated
explicitly using the physical dynamics from the output data of the neural network. Thus, the
true large-scale physical dynamics can be introduced directly to the training model. FU(y)
gives the approximation for the deterministic integration, while additional uncertainty is
introduced from the white noise forcing ξ. For computing the explicit integration, we use
the mid-point rule combining the input and output data

∆tFU(yn,n+1) =

ˆ t+∆t

t
fU(v)dτ =

∆t
2
[ fU(vn) + fU(vn+1)], (23)

where vn is the model input and vn+1 is the model prediction at the next time step for
the numerical integration of the term fU(v) in (20). In this way, the predicted state U will
incorporate information from the neural networks and the large-scale physical process.

As a remark, above, we apply the neural network to the example of the simplest
two-mode model so that we are able to carry out a detailed investigation for the various
features in the neural network model using the explicit model solutions. However, the idea
for modeling multiscale structures can be easily generalized to higher-dimensional systems
with multiple interacting scales. For example, a high-dimensional system can be decom-
posed into block-diagonal subsystems using the conditional Gaussian framework [24,42].
Then, the neural network model can be applied to each block approximating a series of
subsystems focusing on different scales.

4.1.2. Multistep Training Loss Including Time-Dependent Data

Above, the model (21) and (22) gives a one-step prediction with a time step size ∆t
for the long time series. In practice, we would like to use the trained network model
for long-time prediction even beyond the decorrelation time of the system. Then, there
comes the problem of numerical stability and robustness from the accumulation of model
approximation errors amplified through the repeated updating steps with strong internal
model instability. To address this issue, a multistep model output is used in optimizing the
loss function during the training process.

In training for the turbulent model with high degrees of instability, the loss function is
expected to guide the neural network to gain the skill to detect the occurrence of bursting
extreme events as well as the complex structures in the dynamical model. Therefore, instead
of simply training the model from a one-step output, we iterate the system (21) and (22)
forward in time up to n steps using the model output as the initial data for the next iteration.
The general form of the loss function can be designed by the total loss along the N updates
with the proper cost L in (18)

Ln =
n

∑
i=1

wiL
(

F(i)
M (x; W), y(i)

)
. (24)

Above, the LSTM model (21) is trained online, combining the output from the physics
model (22) during the time iterations. F(i)

M is the push forward operator from recursively
running the model up to n∆t, and y(i) is the target state to be compared. The weights wi
offer a balanced calibration of the model output series. A convenient choice of the weights
is to use the autocorrelation function wi =

∣∣Ry(i∆t)
∣∣ for the corresponding state in the

measurement. This provides a balanced quantification for the prediction error, where the
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prediction for longer future time is tolerated with the smaller weight wi. Note that the
‘multistep’ training here involves time updating with n iterations, which is different from
the ‘multistage’ neural network architecture in Section 3.1 inside one time update ∆t.

To exploit the conditional Gaussian structure of the two-mode model with different
statistics, we divide the data for training and prediction according to the large-scale mean
flow U. Based on the explicit solutions, data in a moderate regime (with a relatively small
white noise forcing σU) are used to train the model parameter under the loss function (24).
The trained model is then applied to predict the solutions among different statistical regimes
from near-Gaussian to highly skewed PDFs according to different noise levels of σU (see
the results in Section 5.3 and Appendix B). The model is shown to be robust to model errors
from multistep iterations and noise from the above multistep training strategy.

4.2. Metrics to Measure the Accuracy in Training and Prediction

Finally, the proper metrics should be proposed to calibrate the accuracy in the model
training results and predictions. In the training stage with a batch of M samples, the neural
network is iterated N steps for a sequence of model outputs at time tn = n∆t, n = 1, · · · , N.
One direct way to compute the training error is through the L2 distance among all the M
training samples and in the N-step outputs. The batch averaged relative mean square error
(BMSE) can be defined as

BMSE =
1
M

M

∑
i=1

∑N
n=1

∥∥∥y(n)
m,i − y(n)

t,i

∥∥∥
2

∑N
n=1

∥∥∥y(n)
t,i

∥∥∥
2 , (25)

where y(n)
m,i is the model output in the i-th sample and at the n-th step model output, and

y(n)
t,i is the corresponding target state at time step tn = n∆t. The relative error is normalized

by the L2-norm for the true state
∥∥∥y(n)

t,i

∥∥∥
2

where all the samples are summed with index i,
and thus the BMSE error measures the training accuracy according to the total variability
among the batch samples.

In the prediction stage, we need to track the development of errors in time when the
solution is achieved by recursively iterating the optimized model using the outputs. First,
for the trajectory prediction for a long time series, we can calibrate the trajectory error at
each single prediction time t by comparing the error with the equilibrium variance of the
state. The normalized mean square error (NMSE) for prediction accuracy can be defined by
the averaged error of M test samples

NMSE(n) =
1
M

M

∑
i=1

σ−2
y

∥∥∥F(n)
M (x0,i)− y(n)

t,i

∥∥∥
2
, (26)

where σ2
y =

〈
|yt|2

〉
is the variance of the predicted state at equilibrium. FM is the optimized

model operator, and the prediction at the time t = n∆t from the initial state x0 is computed
by iterating the model n times. Next, it is also useful to measure the statistical accuracy in
mean and variance from the statistical model with ensemble solutions. Therefore, we can
define the statistical mean error (SME) and statistical variance error (SVE) as

SME =
|⟨ym⟩ − ⟨yt⟩|2〈

|y′
t|2
〉 , SVE =

∣∣∣
〈
|y′

m|2
〉
−
〈
|y′

t|2
〉∣∣∣

〈
|y′

t|2
〉 . (27)

Above, we use ⟨ f ⟩ = 1
M ∑M

i=1 fi to represent the statistical expectation computed by
averaging among the samples. ⟨ym⟩, ⟨yt⟩ are the ensemble means for the model prediction
and target data statistics;

〈
|y′

m|2
〉

,
〈
|y′

t|2
〉

are the variances about the fluctuation states
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y′ = y − ⟨y⟩. Instead of the pointwise measurement of errors in (26), the statistical errors
in (27) calibrate the model’s skill in capturing the representative statistical moments in an
ensemble solution.

5. Predicting Extreme Events and Related Statistics using the Neural Network Model

In this section, we study the learning and prediction skill in the developed neural
network model guided by the tractable model framework of the coupled topographic flow
and tracer system. As analyzed in the explicit formulas in Section 2, the simple system is
able to generate a variety of regimes with distinctive statistics and various extreme events.
The new model architectures described in Section 3 are applied to capture the essential
multiscale dynamics in both the turbulent flow and passive tracer fields at the same time,
using a single set of data. In particular, we focus on two representative statistical regimes
with strong H = 10 and weak H = 1 topography (as illustrated in Figure 1).

The data are collected through a long-time simulation of the original topographic
model (6). The entire dataset is divided into two sections with short time trajectories for
training and a new set of long time series to check the prediction accuracy:

• In the training stage, the time trajectory is segmented into batches of short sequences
for training the neural network model parameters. Usually, the model is only updated
a small number of steps of length n∆t (say, n = 10 in the standard test case) for
efficient training.

• In the prediction stage, the optimized model is used for prediction along a long time
sequence. The prediction model is iterated recurrently using the previous outputs up
to a long-time N∆t (say, N = 50, 000 iterations).

In the training stage, a huge computational overload will be generated if we measure
the errors in the model outputs for too many iteration steps because we need to back-
propagate all the way to the first step in computing the gradient of the final loss function
(24). Therefore, a smaller number of model update n is preferred for saving memory
and efficiency. In the prediction stage, on the other hand, we need to keep iterating
the model output for the next forecast step to a long-time prediction time. Thus model
approximation errors will accumulate in time, and this requires stability in the constructed
model, especially for the highly turbulent regime with strong inherent internal instability.

In the benchmark model, we fix the standard model hyperparameters as the input
LSTM chain length m = 100, the hidden state in the LSTM cell h = 50, measurement time
step in the data ∆t = 0.1 (which is 10 times the numerical integration step dt = 0.01 in
the direct numerical scheme). In the multistep training loss in (24), the training model
is iterated forward n = 10 times. This accounts for a time length T = n∆t = 1 which is
still much shorter than the decorrelation time of the slow modes (see the autocorrelation
functions in Figure 2). The detailed neural network model configuration and parameters
are listed in Appendix B.2.

5.1. Training and Prediction with Different Loss Functions

First, we compare the training performance under different metrics of the loss functions
to measure the training error. During the training procedure, we generate a long time series
with 10,000 measurements in time, and divide the dataset into smaller batches with batch
size 100 to train each batch with 100 iterations. Then, the model is trained repeatedly over
the same data for 100 epochs. The learning rate starts with lr = 0.005, and is decayed by 0.5
of its previous value twice, at epoch numbers 50 and 80.

Here, the models with same architecture and hyperparameters are trained under the
same set of data but optimized using the three different types of loss functions (18a)–(18c)
as the optimization target. The L2 mean square error (18a) is the most common choice for
the error metric, while for training turbulent signals with intermittency and extreme events,
it is found that the introduction of the KL divergence (18b) is effective for capturing the
dominant extreme values [31]. In the mixed metric (18c) for loss, the KL divergence is still
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taking the dominant role with the L2 error creating an additional balancing effect with a
small weight α = 0.1.

The training errors under different loss functions are compared in the upper panel of
Figure 4. We compute the batch averaged mean square errors (25) for the flow and tracer
states during training iterations for the two test regimes with strong and weak topography
H = 10 and H = 1. The BMSE represents the averaged relative error in the training batch,
so it serves as an index for training accuracy in each epoch. In general, all the three metrics
are effective to improve the model accuracy through training iterations. The mixed metric
gains the highest overall training accuracy among the flow and tracer states, and decays to a
smaller error value in a faster rate than that of the other two metrics. The faster convergence
implies that the mixed metric loss function is easier and more efficient to train to reach a
higher accuracy with much fewer required training epochs.
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Figure 4. Comparison of training and prediction errors under three different loss functions L for
optimization: L2 loss (MSE), KL divergence (KLD), and the mixed loss combining these two. Training
iterations of the batch averaged mean square errors are shown in the upper panel with logarithmic
scale along the y coordinate. The prediction normalized mean square errors are compared in the
lower panel measured at recurrent predictions of 500 time steps up to T = 50.

Next, to check the prediction skill and stability of the trained neural network models
optimized under the three different loss functions, we compare the errors (26) under a new
dataset for the prediction of a relatively long time series of L = 500 steps (that is, up to time
T = L∆t = 50 far beyond the model decorrelation time, see the autocorrelation functions
in Figure 2). The model prediction in the previous time step is used recurrently for the
prediction in the next time instant; thus, prediction errors will accumulate in time. One
important issue is to check whether the trained neural network model can stay robust to
the increasing level of errors in the input data. The lower panel of Figure 4 compares the
evolution of prediction errors during the time updates. In the weak topography case H = 1,
the three optimized models all stay stable within finite errors during the iterative updates.
Still, the optimal model trained with the mixed loss function gives the most accurate long-
time accuracy with the smallest error in both flow and tracer states during the entire time.
The models with the other two loss metrics generate much larger prediction errors for the
longer prediction range. In the strong topography case H = 10, the stronger coupling
between the large and small scales increases the instability in the system. The models
under the MSE and KLD loss perform well only in the starting time but eventually become
unstable as the errors diverge to infinity. In contrast, the model under the mixed loss
function stays stable with high accuracy during the entire prediction process. This further
confirms the crucial role in selecting the proper loss function for the robust performance of
turbulent systems with instability.
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5.2. Maintaining Model Stability by Measuring Multiple Forward Steps

Another important issue we would like to check is the number of forward steps n
used in training the loss function (24)

Ln =
n

∑
i=1

wiL(Fi∆t(x), yi∆t),

where the model i-th step output Fi∆t(x) is compared with the target data yi∆t under the
most effective mixed loss metric L, and wi = R(i∆t) is the weighting factor from the
autocorrelation function. The most straightforward way is to measure the error in a single-
step LSTM net output n = 1. However, as we have discussed in the previous section,
this may lead to severe instability with exploding errors for long trajectory iterations of
the model.

To address this problem, we adopt the multistep training strategy using multiple
model outputs to be measured in the loss function L(x, y) with n > 1. In order to capture
the dynamical variability in a longer time range, we iterate the training model forward in
time with moderate steps n = 10. The errors will accumulate in time, and the loss function
at different forward times is compensated for by the decaying autocorrelation function
R(t). As a cost, more memory will be consumed during the back-propagating of the entire
network. However, as we will show next, the cost can be controlled by using an even
smaller number of steps (such as n = 5) to reach the desirable training performance.

5.2.1. Training and Prediction Errors with Different Forward Time Steps

Again, we first compare the training performance in the models measuring different
forward steps in the training metric. We focus on the improvement by using a multistep
forward model n = 5, 10 in contrast with a single-step training n = 1. Figure 4 displays
the training loss and accuracy during the training iterations. The value of the loss function
decays faster to the final optimized level in the multistep training cases. And a larger
forward step n = 10 improves the overall accuracy compared with a smaller step n = 5.
For the training accuracy, the single-step model n = 1 suffers a barrier to reach high
accuracy compared with the other two models with multiple steps n = 5 and n = 10. The
two models with different forward steps n = 5, 10 can reach comparable amplitudes of
final training error, while the multistep model n = 10 gains a higher accuracy and stability
for long trajectory prediction.

Then, we compare the prediction skill in the three trained models on a new set of data
for model evaluation. As previously, we run an ensemble prediction and recursively iterate
the model outputs for the next step prediction up to the final prediction time T = 50 (with
500 iterations). The lower panel of Figure 5 compares the normalized MSEs using trained
models with one-step n = 1 and multistep n = 5, 10 training. The multistep trained models
gain very high accuracy in both the flow and tracer modes. The errors stay small during
the entire prediction process; thus, the model approximation errors from the previous steps
will not damage the accuracy in the future forecasts, implying the robustness of the trained
model. On the other hand, the one-step trained model becomes insufficient to maintain the
accuracy as the forecast step increases. The predicted solution stays accurate for the starting
period of time, then diverges as the errors accumulate in time. Notice the logarithmic scale
in the y coordinate for a much larger error in the n = 1 case.
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Figure 5. Upper: the evolutions of loss function values and the BMSEs during training iterations
for models with different training forward steps n = 1, 5, 10. Lower: normalized MSEs in model
prediction with an ensemble prediction of M = 500 samples up to time T = 50. Performance of
the trained models with different forward time steps n = 1, 5, 10 in optimization are compared.
Logarithmic scale is applied along the y coordinate.

5.2.2. Trajectory Prediction Including Multiple Time Scales

In addition, to provide a better illustration for the predicted solutions from models
with different training steps, we plot one realization of the trajectories using the trained
models with single and multistep training. Figure 6 shows one typical solution trajectory
compared with the truth from the direct model simulation. The variance of the sample
errors is plotted by the shaded area around the solution line to characterize the uncertainty
in the ensemble prediction. Consistent with the previous observation from the errors, the
multistep training model has good agreement with the truth in the prediction through the
large number of model iterations. The multistep trained model also maintains the overall
accuracy with very small variance in errors.

In contrast, the single-step trained model can only stay accurate for a short time from
the initial state, while the model approximation errors quickly drive the model prediction
away from the target trajectory as errors grow in time during the iterations. Large deviation
from the truth is developed in time gradually, and the samples give increasingly large
variance among the errors from different trajectory predictions. In particular, in the tracer
time series, the solutions display two contrasting time scales with a fast oscillating small
scale on top of the long-time slowly varying profile. The one-step trained model fails to
track the rapid variability in the solution, and strong instability in the system leads to large
error variances. The multistep training model, on the other hand, captures both time scales
with very small error variance for uniformly high accuracy and stability among all the
samples during the entire simulation time.
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Figure 6. Trajectory prediction of flow and tracer solutions compared with the truth from direction
model simulations. Performance of the trained models with different forward time steps n = 1, 10
are compared. The sample error variance is marked by the shared area around the prediction. The
multistep training case n = 10 has stable performance with tiny error variance.

5.3. Long-Time Prediction in Different Dynamical Regimes

In the final test, we check the model prediction for the long-time trajectory and
statistical solutions of the advection flow states and the passive tracers. This is first used to
confirm the long-time stability of the neural network scheme with errors accumulated in
time through the time iterations; next, the same trained model is used to predict the key
statistical features with different noise-forcing levels to show the scope of skills in the model.
To evaluate the prediction accuracy in the neural network models, we adopt two approaches
by examining both the deterministic trajectory solution and the statistical solution:

• Trajectory prediction: the neural network is used for the pathwise prediction for
one trajectory solution from a particular initial state with uncertainties from input
value and white noise forcing. Solution trajectories are solved very efficiently with
N = 50,000 iterations (with time step size ∆t = 0.1 to the final simulation time
T = 5000).

• Statistical prediction: the neural network is used to recover from data key statistical fea-
tures in leading-order statistics generated by different white noise forcing amplitudes.
Instead of focusing on the pathwise solutions, it is often more useful with practical
importance to learn the representative statistical structures directly.

In confirming the universality of the trained model, the neural network model is trained
using a limited dataset from a single white noise-forcing regime σUẆ0 of moderate ampli-
tude σU = 10σ0 = 1

2
√

2
in the large-scale flow equation. The small-scale flow and tracer

dynamics are learned based on this dataset, then the trained model is applied for the
various dynamical regimes by changing the noise forcing amplitude σU . This can also serve
as a way to confirm that the true dynamical structure is indeed learned from the model
rather than being due to purely the overfitting of the data.

5.3.1. Trajectory Prediction with the Trained Model in Different Dynamical Regimes

In the trajectory prediction through the neural network model, we first check the
detailed prediction skill for the multscale flow and tracer structures and the occurrence of
extreme events. Even though high instability exists, preventing the long-time predictability,
we can exploit the conditional Gaussian structure of the model and achieve accurate
pathwise prediction. The conditional solution of the small-scale solutions v̂k(U(·)) together
with the passive tracer modes T̂k(U(·)) can be predicted from the trained neural network
efficiently given the observed solution of the large-scale process U.

The long-time trajectory predictions in the weak and strong topographic stress regimes
and the noise forcing σU = 10σ0 are shown in Figures 7 and 8. The true model solution
and statistics can be found in Figures 1 and 2 in Section 2. The solutions display very
strong intermittent bursts of extreme events in both small-scale flow and tracer models
companied by a very fast oscillating scale. Strong time-scale separation also exists between
the advection flow states (U, v) and the passive tracer T. The neural network model is
shown to accurately track such features in time and keep the high accuracy during the
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model iterations for the entire duration. This trajectory prediction shows explicitly the skill
of the proposed neural network model to learn and recover the true model dynamics.
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Figure 7. Long-time trajectory prediction of the flow and tracer solutions with weak topographic
stress H = 1 up to T = 5000. The reference states from the direct model simulation (left panel) are
compared with the model prediction (right) using the trained neural network model.
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Figure 8. Long-time trajectory prediction of the flow and tracer solutions with strong topographic
regime H = 10 up to T = 5000. The reference states from the direct model simulation (left panel) are
compared with the model prediction (right) using the trained neural network model.

In addition, the same trained neural network model can be used for the prediction
with different white noise-forcing levels σU in the large-scale mean flow Equation (6b).
Notice that the small-scale Equation (6a) to be learned from the neural network has the
same fixed dynamics, while different noise levels σU can induce distinct statistical features
in both small- and large-scale states. This guarantees the validity of the trained model
among different statistical regimes once the essential dynamics is learned from data. In
Appendix B.4, we show the prediction results with a smaller or larger effect of white noise
forcing σU = σ0 and σU = 20σ0 using the same trained neural network model to recover
the unresolved small-scale solutions. It is further confirmed the universal prediction skill
in the trained model among different statistical regimes, and the optimal performance is
not purely through the overfitting of the training data.

5.3.2. Statistical Prediction in Leading Statistics for Different Noise Forcing

At last, we show the skill in the neural network model to recover the model statistics
among various statistical regimes. By inspecting the analytical analysis results from the original
model and the direct simulations of the original model, a wide variety of distinct statistics are
generated under the same model framework. The same trained neural network model is then
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applied to predict the statistical features under these different forcing scenarios by varying
the white noise-forcing amplitude σU. The conditional dynamics for the small-scale flow and
tracer states stay the same for different noise levels. The question is whether the trained neural
network model is capable of recovering the different statistics in a uniform way from changing
the noise-forcing strength σU for the large-scale mean state.

The model is trained based on a single set of data, being especially unaware of the
strong extreme event regimes with a large amplitude from a large forcing. To measure
the accuracy in the prediction of the leading statistics, we use the relative statistical er-
ror metrics (27) for measuring the accuracy in the ensemble mean and variance. In the
tests, we run an ensemble prediction of M = 5000 trajectories and iterate the model for
N = 500 steps. The statistics are computed from the model output in the last 200 steps
when the steady state is reached. The neural network model enjoys the advantage to run a
large ensemble very efficiently compared with the direct simulation.

Table 1 lists the statistical prediction for systems with different white noise-forcing
strengths σU = 10σ0, 20σ0. In general, the neural network model shows uniformly high
skill in recovering the leading statistics in mean and variance among the different statistical
regimes. The statistical mean error (SME) calibrates the deviation in the ensemble mean
from the ensemble prediction in each of the flow and tracer modes. The statistical mean
error stays in small values and keeps very high accuracy. The statistical variance (SVE) cali-
brates the deviation in the ensemble variance compared with the truth. This characterizes
the model uncertainty in each mode, and thus is a more interesting quantity to measure.
The modes become more energetic with higher uncertainty, as the white noise forcing σU
increases. The statistical errors grow with the larger value of σU , while they all stay as small
values for an overall accurate statistical prediction.

Table 1. Statistical error in mean (SME) and variance (SVE) from the ensemble prediction of the
trained neural network model. The two parameter regimes with topographic stress H = 1 and
H = 10 are compared. The same trained model is used for the statistical prediction with different
white noise amplitudes σU = 10σ0, 20σ0.

σU = 10σ0

U v̂1 v̂2 T̂1 T̂2

H = 1
SME 3.03 × 10−4 2.49 × 10−5 5.53 × 10−4 1.96 × 10−5 7.60 × 10−4

SVE 7.26 × 10−3 6.57 × 10−2 3.12 × 10−2 7.50 × 10−2 3.57 × 10−2

H = 10
SME 5.34 × 10−4 2.87 × 10−4 9.16 × 10−4 4.29 × 10−2 8.05 × 10−2

SVE 9.25 × 10−1 8.82 × 10−2 8.51 × 10−2 5.31 × 10−2 6.75 × 10−2

σU = 20σ0

U v̂1 v̂2 T̂1 T̂2

H = 1
SME 7.98 × 10−2 8.50 × 10−3 2.03 × 10−2 6.18 × 10−2 1.92 × 10−2

SVE 1.92 × 10−1 2.40 × 10−1 2.57 × 10−1 2.51 × 10−1 2.49 × 10−1

H = 10
SME 2.84 × 10−5 6.77 × 10−2 2.53 × 10−1 4.60 × 10−2 1.44 × 10−2

SVE 9.00 × 10−1 4.68 × 10−1 4.03 × 10−1 4.41 × 10−1 2.03 × 10−1

6. Summary and Discussion

We study effective machine learning strategies to predict the various anomalous
statistics and the occurrence of extreme events in complex turbulent systems using an
unambiguous model framework. The model is derived from the geostrophic barotropic
flow and turbulent passive tracer transport [29,34] that share many similarities with natural
and laboratory observations [8,54]. The coupled system is characterized by interacting mul-
tiscale processes in time and space, leading to very complicated dynamical structures. The
attractive statistical features include exact formulas for flow and tracer solutions, explicit
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nonlocal structures in flow and tracer modes, and the intermittent probability distributions
with fat-tails and skewed PDFs. The tractable solutions of the model framework facilitate a
systematic analysis of crucial multiscale properties with both mathematical theories and the
development of novel numerical strategies. Detailed data-driven models are constructed to
recover these statistical features from limited observed data combined with model noises.

We consider two approaches of using machine learning techniques to predict rep-
resentative model solutions and statistics based on the conditional Gaussian properties:
(i) a neural network to learn the unresolved small-scale dynamics and directly predict
the trajectory solutions guided by the conditional Gaussian framework, and (ii) using the
neural network to recover the crucial statistical moments among different regimes. New
architectures are designed on the LSTM network with a residual network structure to
predict the dynamical update of the unresolved small-scale states. The individual model
outputs in different scales are combined in the explicit large-scale mean flow equation to
inform the model with physical dynamics. Multiscale effects in large and small scale flow
states as well as in the tracers are considered in the model construction and training proce-
dures. We find the major observations in model performance using the simple two-mode
topographic model:

• The trained neural network model shows uniformly high skill in learning the true
dynamics. The improved model architecture enables a faster convergence rate in
the training stage, and more accurate and robust predictions under different forcing
scenarios. A longer time updating step is permitted allowing data measured at sparse
time intervals.

• The choice of a proper loss function for the optimization of model parameters is shown
to have a crucial role to improve the accuracy and stability in the final trained neural
network. A mixed loss function using the relative entropy loss together with a small
L2 loss correction is shown to effectively improve the accuracy in training for complex
systems with extreme events.

• A multistep training process, that is, using multiple iterative model outputs in training
the loss function, is useful to improve model stability against the accumulated model
errors during long-time iterations. The prediction skill of the model can be improved,
and training efficiency is maintained by measuring only small update steps during
the training procedure.

• The solution trajectory can be tracked by the neural network model with high accuracy
and stability in a long time series prediction for the key multiscale structures with
extreme events in flow and tracer states.

• Different model statistics in ensemble mean and variance can be predicted with
uniform accuracy among different dynamical regimes using the same neural network
model trained from a single set of data.

The promising results just set the starting point for a series of interesting future research
directions for the next stage. The neural network model provides the exact structure to
incorporate the conditional Gaussian framework and multiscale nonlinear dynamics. A
direct generalization is to use the neural network model to prediction explicit higher-order
statistics as well as the non-Gaussian PDFs in the flow and tracer fields. This framework is
also ready to be generalized to a wider group of complex models with a large number of
interacting modes and contributions from different scales by assigning the neural networks
to capture processes with different scales. This conditional independent construction of
models is easy to parallelize and thus becomes especially convenient for the implementation
on GPUs. The neural network framework also shows potential to be combined with the
linear and nonlinear response theories for the development of statistical data assimilation
and control of high-dimensional systems [55–57]. Thus, efficient statistical model reduction
strategies [26,27] can be directly applied to learn the dynamical structure from the nonlinear
interactions directly from data.
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Appendix A. Details about the Derivations for the Flow and Tracer Model Solutions

In this appendix, we show the detailed derivation of the representative statistical
solutions in the topographic flow and passive tracer fields. We can rewrite the original
dynamical flow and tracer Equation (6) for each spectral mode as

dU
dt

= ∑
k

h∗k v̂k − dUU + σUẆ0.

dv̂k
dt

= iωv,k(U)v̂k − l2
x ĥkU − dv,kω̂k + σv,kẆk,

dT̂k
dt

= iωT,k(U)T̂k − dT,kT̂k − αv̂k,

(A1)

where the dispersion relations for the shear flow and tracer are defined by the mean
flow state

ωv,k = lx

(
k−1β − kU

)
, ωT,k = −k(U + u),

and the small-scale velocity field is directly related with the vortical mode ω̂k through the
Fourier expansion

u = ily ∑
k

k−1ω̂keikl·x, v = −ilx ∑
k

k−1ω̂keikl·x.

Usually, for simplicity, we just set lx = 1 and ly = 0; thus, we can focus on the cleaner
case, where the zonal flow cross-sweep is purely contributed from a large-scale solution of
U, while the small-scale modes give all the shear flow fluctuations v̂k.

Appendix A.1. Explicit Statistical Solutions for the Flow Field

First, we can compute the trajectory solution for the shear flow v directly by integrating
the second equation of (A1)

v̂k = −
ˆ t

0
e(−dv,k+ik−1β)(t−s)e−ikU[s,t]

[
ĥkU(s)ds + σv,kdWk(s)

]
. (A2)

Above, we define U[s, t] ≡
´ t

s U(τ)dτ, including the history of the large-scale solution
U |s≤t, and assume the initial state is unrelated for a long-time statistical solution. Further-
more, by substituting the solution (A2) back into the large-scale mean flow Equation (6b),
the trajectory solution of the large-scale mean flow U can be computed as a closed system
from the integro-differential equation

dU
dt

+

ˆ t

0
∑
k

e(dv,k−ik−1β)(t−s)e−ikU[s,t]
[∣∣∣ĥk

∣∣∣
2
U(s)ds + ĥ∗k σv,kdWk(s)

]
= −dUU + σUẆ0. (A3)

Thus, the solution of the mean flow U can be determined by the coupling effect from
topographic stress h and the white noise forcing in both small and large scales.

Thus, the mean state for the shear flow modes v̄k ≡ ⟨v̂k⟩ can be computed by taking
the statistical average on both sides of the above Equation (A2)

⟨v̂k⟩(t) = −ĥk

ˆ t

0
e(−dk+ik−1β)(t−s)

〈
e−ikU[s,t]U(s)

〉
ds. (A4)

https://github.com/qidigit/
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Note that the process U is independent of the white noise for the small-scale modes
dWk(t). If we take the Gaussian component (that is, the first two leading moments) of the
mean flow process U, the equality using the identity from the characteristic function of a
multidimensional Gaussian field expresses the coupled expectation as

〈
xeiy

〉
= (⟨x⟩+ icov(x, y))ei⟨y⟩− 1

2 var(y),

applied for correlated Gaussian random variables (x, y). Assuming the equilibrium steady
state as Ū = ⟨U⟩ and rU =

〈
(U − Ū)

2
〉

, we can compute the steady-state correlation as

〈
e−ikU[s,t]U(s)

〉
=

(
Ū − ikrU

ˆ t−s

0
RU(τ)dτ

)
e−ikŪ(t−s)−k2rU JU(t−s), (A5)

with JU(t) = t∗RU =
´ t

0(t− τ)RU(τ)dτ. The autocorrelation functionRU(τ) = ⟨U(τ)U(0)⟩/rU
appears from the cross-correlations between U(s) and U[s, t]. In the statistical steady state,
the mean and variance of the time-dependent process U[s, t] can be found directly as

⟨U[s, t]⟩ =
ˆ t

s
⟨U(τ)⟩dτ = Ū(t − s),

var(U[s, t]) =
ˆ t

s

ˆ t

s

〈
U′(τ)U′(τ′)〉dτdτ′

=2
ˆ t−s

0

ˆ t−τ

s

〈
U′(τ)U′(0)

〉
dτdτ′

=2rU

ˆ t−s

0
(t − s − τ)RU(τ)dτ,

cov(U(s), U[s, t]) =
ˆ t

s

〈
U′(s)U′(τ)

〉
dτ

=

ˆ t

s

〈
U′(0)U′(τ − s)

〉
dτ

=rU

ˆ t−s

0
RU(τ)dτ.

Next, we compute the covariances between the flow mode v̂k at different time instants.
The second-order moment can be found in a similar fashion depending on the statistics
and time correlations of the zonal mean flow statistics of U

⟨v̂k(s)v̂∗k (t)⟩ =
〈ˆ s

0
e(−dk+ik−1β)(s−s′)e−ikU[s′ ,s]

[
ĥkU

(
s′
)
ds′ + σv,kdWk

(
s′
)]

·
ˆ t

0
e(−dk−ik−1β)(t−s′′)eikU[s′′ ,t]

[
ĥ∗k U

(
s′′
)
ds′′ + σ∗

v,kdW∗
k
(
s′′
)]〉

=e−dk(t+s)−ik−1β(t−s)

[ ∣∣σv,k
∣∣2

2dk

(
e2dks − 1

)〈
eikU[s,t]

〉
+

∣∣∣ĥk

∣∣∣
2
ˆ t

0

ˆ s

0
edk(s′+s′′)−ik−1β(s′−s′′)

〈
eik(U[s′′ ,t]−U[s′ ,t])U

(
s′
)
U
(
s′′
)〉

ds′ds′′
]

.

The last equality above uses the independence between the white noises and the mean
flow process among non-intersected intervals. For further simplification, we can compute
the equilibrium statistics as s → ∞, t → ∞ while keep the time lag τ = t − s finite. In
addition, we assume stationarity in time for the zonal flow U, that is, all orders of moments
are invariant in a shift in time. Then, the above correlation can be rearranged into a cleaner
form as
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⟨v̂k(0)v̂∗k (τ)⟩∞ =
e−dkτ−ik−1βτ

2dk

[∣∣σv,k
∣∣2
〈

eikU[0,τ]
〉
+
∣∣∣ĥk

∣∣∣
2
ˆ ∞

−∞
e−(dk+ik−1β)r

〈
U(0)U(r)e−ikU[0,r]

〉
dr
]

. (A6)

From the last term above, we see that the third-order time correlation is required to
compute the covariance between the shear flow modes. This formula is useful to compute
the correlation in the shear flow modes directly from the statistics in the zonal flow state U.
In particular, the equilibrium variance can be found as

rv,∞ ≡
〈
|v̂k|2

〉
∞
=

1
2dk

[∣∣σv,k
∣∣2 + 2

∣∣∣ĥk

∣∣∣
2
Re

ˆ ∞

0
e−(dk+ik−1β)r

〈
U(0)U(r)e−ikU[0,r]

〉
dr
]

. (A7)

Again, by using the characteristic function for coupled Gaussian fields
〈

xyeiz
〉
= [(⟨x⟩+ icov(x, z))(⟨y⟩+ icov(y, z)) + cov(x, y)]ei⟨z⟩− 1

2 var(z),

we can approximate the triad correlation as

〈
U(0)U(τ)eikU[0,τ]

〉
=

[
RU(τ)− i

(
Ū + ikrU

ˆ τ

0
RU
(
τ′)dτ′

)2
]

eikŪτ−k2rU JU(τ). (A8)

Substituting the above explicit expansion back into the variance Formula (A7), the
equilibrium variance for the fluctuation modes can be rewritten as the statistics of the mean
flow U

rv,∞ =
1

2dk

[∣∣σv,k
∣∣2 + 2

∣∣∣ĥk

∣∣∣
2
ˆ ∞

0
e−dkτ−k2 JU(τ)(Ak(τ) cos Θkτ + Bk(τ) sin Θkτ)dτ

]
, (A9)

with the coefficients

Ak = Ū2 +RU(τ)− k2r2
U

ˆ τ

0
RU
(
τ′)dτ′, Bk = 2kŪrU

ˆ τ

0
RU
(
τ′)dτ′, Θk = kŪ + k−1β.

Still notice that the expressions for the mean (A4) and variance (A7) only uses the Gaussian
component of the random process U (that is, up to the second moments in computing the
correlations); thus, errors could be introduced for extreme non-Gaussian situations.

Appendix A.2. Explicit Statistical Solutions for the Passive Tracer

Similarly to the above derivations for the advection flow solutions, we can also follow
the previous steps to compute the corresponding solution for the passive tracer model (4)
based on the topographic flows. Given one realization of the zonal mean flow solution U,
we can first solve the tracer trajectory directly as

T̂k(t) = −α

ˆ t

0
e−γT,k(t−s)−ikU[s,t]v̂k(s)ds, U[s, t] =

ˆ t

s
U
(
s′
)
ds′

The shear flow field is generated from the small-scale state of the topographic model
(A2). Combining the two formulas and rearranging the order in the integration, we obtain
the trajectory solution for the tracer mode

T̂k = α

ˆ t

0
e−γT,k(t−s)−ikU[s,t]

ˆ s

0
e(−dv,k+ik−1β)(s−s′)e−ikU[s′ ,s]

[
ĥkU

(
s′
)
ds′ + σv,kdWk

(
s′
)]

ds

= αe−γT,kt
ˆ t

0
dr
[

ĥkU(r)dr + σv,kdWk(r)
]
e(dk−ik−1β)re−ikU[r,t]

ˆ t

r
dseγR,ks (A10)

=
α

γR,k

ˆ t

0

[
ĥkU(r)dr + σv,kdWk(r)

][
eγR,k(t−r) − 1

]
e−γT,k(t−r)−ikU[r,t]dr, (A11)
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with γR,k = γT,k − dk + ik−1β. In the above formula, we make use of the property that
the same wave speeds kU[s, t] in the tracer and flow equations cancel each other out by
exchanging the integration order. For the mean state of the tracer, we can also compute the
simplified expression for the mean tracer state

〈
T̂k
〉
(t) =

αĥk
γR,k

ˆ t

0

[
eγR,k(t−r) − 1

]
e−γT,k(t−r)

〈
U(r)e−ikU[r,t]

〉
dr

= − αĥk
γR,k

ˆ t

0

(
e(−dk+ik−1β)s − e−γT,ks

)
e−ikŪs−k2rU JU(s)

(
Ū − ikrU

ˆ s

0
RU(τ)dτ

)
ds.

(A12)

Above, again, the cross-correlation can be computed based on the first two-order
moments in (A5). The process U(0 : r) is independent of the white noise Wk(r). Then, we
can compute the second-order moment of the tracer

〈∣∣T̂k
∣∣2
〉
(t) =

α2
∣∣γR,k

∣∣2 e−2dkt

[
σ2

v,k

2γT,k

(
e2γT,kt − 1

)
+ 2
∣∣∣ĥk

∣∣∣
2
ˆ t

0
dr
ˆ t−r

0
dτ
〈

U(r)U(r + τ)e−ikU[r,r+τ]
〉]

. (A13)

Above, the first component is from the white noise forcing, and the second component
is due to the contribution from the topographic effect. As a result, it will include the time
correlation in the zonal mean process U. If we further assume that the process has reached
the stationary state, the last time-lag correlation can be simplified using the expanded
formula in (A8)

〈
U(r)U(r + τ)e−ikU[r,r+τ]

〉
=
〈

U(0)U(τ)e−ikU[0,τ]
〉

.

Especially when there is no clear scale separation between the flow and tracer dynam-
ics, the above formula could become very complicated. This also leads to the various very
complicated statistical solutions shown in the flow and tracer fields.

Appendix B. More Details about the Neural Network Model Results

Here, we provide more details about the neural network configuration used for the
tests in the main text as well as more discussions on the numerical performance.

Appendix B.1. Details about the Inner Connections in the LSTM Cell

The LSTM is designed to learn the multiscale temporal structures along time series. In
the computational cell of the LSTM network, it consists of the basic building block as

LSTMt :=

ft =σg

(
W f xt + U f ht−1 + Vf ct−1 + b f

)
,

it =σg(Wixt + Uiht−1 + Vict−1 + bi),

ct = ft ⊗ ct−1 + it ⊗ tanh(Wcxt + Ucht−1 + bc),

ot =σg(Woxt + Uoht−1 + Voct + bo),

ht =ot ⊗ tanh(ct).

(A14)

Above, the σg(x) = 1
1+e−x is the sigmoid activation function, and ⊗ represents the

elementwise product. The model cell includes forget, input, and output gates ft, it, ot,
and the cell state ct. The gates are updated through a simple fully connected linear map
with coefficients W, U, V, b. The hidden process {ht−m, · · · , ht−1, ht} represents the time
series of the unresolved processes after each single time step in the next immediate time
instant. In the above structure (A14), we also add the previous cell state ct−1 to inform the
gates information in f , i, o in their updates. It is shown this can also improve the model
performance. The final output data are given by a final linear layer yt = Wyht mapping the
hidden states ht (usually with a larger dimension) back to the output state yt.
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Appendix B.2. Neural Network Algorithm for Training and Prediction in the Two-Mode Model

We summarize the neural network algorithm developed in the main text. In the numer-
ical tests, we follow the benchmark model setup described in the following Algorithm A1.

Algorithm A1: The improved LSTM network with the fully connected inner structure
(16) and (17) is used to learn the small-scale dynamics for v̂k, T̂k :

• Input data:
{

U,Rev̂k, Imv̂k,ReT̂k, ImT̂k
}

for modeling dynamical updates of v̂k and
T̂k, evaluated at m previous time steps tn−m+1, tn−m+2, · · · , tn, with the time lag
tn − tn−m+1 = m∆t ∼ Tdecorr determined by the decorrelation time;

• Output data: the unresolved modes
{
Rev̂k, Imv̂k,ReT̂k, ImT̂k

}
at the next prediction

time tn+1 = tn + ∆t.

– The length of the LSTM nets are set as m = 100 steps for a time internal T = 10,
that is, a sampling rate every ∆t = 0.1;

– The second half of the LSTM chain outputs, that is, s = 50, · · · , 100, are measured
in the loss function (24) with multistep model outputs;

– Each LSTM cell has s = 4 connected inner stages (17), with the hidden state
dimension h = 50 in the tests and a final linear map (15) to the output states.

• Solution for large-scale mean flow U is computed by combining the neural network
model outputs {v̂k} and integrating the explicit Formula (23) with the mid-point rule.

In the training stage, the parameters in the LSTM nets are optimized using the com-
bined cost function (24) weighted from the autocorrelation function. In the prediction stage,
the output states

{
U, v̂k, T̂k

}
are computed for future time steps using the trained neural

network by recursively feeding in the previous output data. The important hyperparam-
eters to determine in the neural network include (i) the dimension of the hidden state h;
(ii) the length of the input training sequence m; (iii) the inner stages of each LSTM cell s; and
(iv) the push-forward time step ∆t for the neural network prediction time. The standard
model setup for training is listed in Table A1.

Table A1. Standard model hyperparameters for training the neural network model.

total training epochs 100

training batch size 100

starting learning rate 0.005

learning rate reduction rate 0.5

learning rate reduction at iteration step 50, 80

time step size between two measurements ∆t 0.1

LSTM sequence length m 100

forward prediction steps in training n 10

hidden state size h 50

number of stages in LSTM cell s 4

Appendix B.3. Detailed Training and Prediction Results for Different Model Regimes

Here, we provide a more detailed characterization for the training and prediction
accuracy in the flow and tracer states under different loss functions. In Section 5.1 of
the main text, we have already shown the superiority of the mixed loss to have high
skill in capturing the extreme events. Figure A1 gives a more detailed illustration for the
development of errors separately in the flow and tracer states and in each wavenumber
separately. The upper row shows the training iterations with the loss function value for the
strong and weak topography cases H = 10 and H = 1. In both cases, the combined loss
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(18c) gives the fastest convergence rate to the final saturated state in the loss error. Notice
that the loss function takes different forms; thus, the absolute values are not comparable for
model performance. As a further comment, the mixed metric allows an even larger training
learning rate (such as lr = 0.01) to gain an even faster convergence rate while the other two
metrics will diverge by starting with the larger learning rate. The training accuracy in the
flow and tracer modes is compared in the middle and lower rows for the batch MSEs. The
mixed loss function as a combined metric from the L2 and relative entropy error provides
the best overall prediction accuracy for both the flow and tracer modes among all the scales.
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Figure A1. Training iterations of the full loss function value (upper) and training batch averaged
mean square errors (middle and lower). Errors in each of the flow and tracer modes are compared
under three different loss functions L for optimization: L2 loss (MSE), KL divergence (KLD), and
a mixed loss combining these two. Logarithmic scale is applied along the y coordinate. (a) Loss
function with strong (H = 10, left) and weak (H = 1, right) topography. (b) Batch MSE for flow
(left) and tracer (right) with strong topography H = 10. (c) Batch MSE for flow (left) and tracer
(right) with weak topography H = 1.

A detailed comparison of the prediction errors in the flow and tracer modes in the
prediction phase is shown in Figure A2. From the autocorrelation functions in Figure 2,
the weak topography case H = 1 has a faster mixing rate. This implies that it is easier
for the scheme to stay stable since the prediction is less dependent on the previous state
and thus less prone to the input errors from the previous steps. On the other hand, in
the strong topography case H = 10, the tracer modes have a much slower decay rates in
the ACFs, inferring a more challenging case for model instability from the errors. Again,
overall stability is gained from training by the mixed loss function. The other two MSE
and KLD loss functions can produce reasonable predictions for the starting period of time,
while the errors grow at a much faster rate without saturation, as we run the model for a
longer time prediction.
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Figure A2. Comparison of prediction errors for models optimized with different loss functions in
the two topography regimes H = 1 and H = 10. The normalized mean square errors are compared
for both the flow states and tracer modes measured at recurrent predictions of 500 time steps up to
T = 50.

Appendix B.4. Trajectory Prediction with Different Levels of Noises

In comparison with the long-time predictions in Figures 7 and 8 for the topographic
stresses H = 1 and H = 10 and with the white noise-forcing amplitude σU = 10σ0 in the main
text, here, we show the trajectory predictions in wider scenarios using the same trained neural
network model while under various different prediction regimes. Two other different smaller
or larger white noise-forcing amplitudes σU = σ0 and σU = 20σ0 are considered for the level
of noises in the large-scale mean flow for U. In learning the unresolved small-scale dynamics
from the data, the neural network is trained to learn the true dynamical structure. Thus, it
requires that the trained model maintains the skill to recover the distinct solution structures
among different statistical regimes.

Figures A3 and A4 show the prediction results with a much smaller white noise
σU = σ0 for the mean flow equation. In this case, the mean flow U has a much smaller
amplitude, and the solutions in the small-scale velocity and tracer states become closer to
Gaussian statistics with less frequent extreme events. From the comparison with the truth
trajectories, we observe less non-Gaussian statistics far away from the highly non-Gaussian
statistics shown in the main text. The neural network model maintains the high skill to
capture the different representative solution structures among these distinctive statistical
regimes. With both strong topography H = 10 and weak topography H = 1, the multiscale
time and spatial structures as well as the change in solutions in the flow states and tracer
modes are captured accurately with uniform performance among all the tested cases.

Figures A5 and A6 give the corresponding predictions with a much stronger white
noise forcing σU = 20σ0. In this case, instead, very strong non-Gaussian features and large
values of extreme events appear in both the flow and tracer solutions. We observe much
larger amplitudes and variance in the solutions. On the other hand, the training data do
not contain such extreme cases for training the neural network model. This makes it a
very challenging test case for the skill of the trained model to still capture the frequent
extreme events in large amplitudes. Still, the representative structures and the locations of
the extreme events in the solutions are recovered from the neural network model. Together
with the uniform performance among various statistical regimes, it confirms that the neural
network indeed learns the true model dynamical structures from the limited training
dataset and is able to provide robust forecast against the high model instability and noise.
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Figure A3. Long-time trajectory prediction of the flow and tracer solutions with weak white noise
forcing σU = σ0 in strong topographic regime H = 10. The same trained model in the main text is
used for this different forcing regime with distinct statistics.
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Figure A4. Long-time trajectory prediction of the flow and tracer solutions with weak white noise
forcing σU = σ0 in weak topographic regime H = 1. The same trained model in the main text is used
for this different forcing regime with distinct statistics.
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Figure A5. Long-time trajectory prediction of the flow and tracer solutions with strong white noise
forcing σU = 20σ0 in strong topographic regime H = 10. The same trained model in the main text is
used for this different forcing regime with distinct statistics.
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Figure A6. Long-time trajectory prediction of the flow and tracer solutions with strong white noise
forcing σU = 20σ0 in weak topographic regime H = 1. The same trained model in the main text is
used for this different forcing regime with distinct statistics.
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