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Abstract
Recent laboratory experiments of Bolles et al. (Phys Rev Fluids 4(1):011801, 2019)
demonstrate that an abrupt change in bottom topography can trigger anomalous statis-
tics in randomized surface waves. Motivated by these observations, Majda et al. (Proc
Natl Acad Sci 116(10):3982–3987, 2019) developed a theoretical framework, based
on deterministic and statistical analysis of the truncated Korteweg-de Vries (TKdV)
system that successfully captures key qualitative features of the experiments including
the robust emergence of anomalous statistics and heightened skewness in the outgoing
wavefield. Here, we extend these parallel experimental and modeling efforts with sev-
eral new findings that have resulted from a synergetic interaction between the two. By
precisely relating model parameters to physical ones, we calibrate the model inverse
temperature to the specific conditions present in the experiments, thereby permitting a
quantitative comparison. We find theoretically predicted distributions of surface dis-
placement to match the experimental measurements with surprising detail. Prompted
by the presence of surface slope in the TKdVHamiltonian, we present new experimen-
tal measurements on surface slope statistics and compare them to model predictions.
Analysis of somedeterministic trajectories ofTKdVelucidates the experimental length
and time scales required for the statistical transition to a skewed state. Finally, the the-
ory predicts a peculiar relationship between the outgoing displacement skewness and
the change in slope variance, specifically how their ratio depends on the wave ampli-
tude and depth ratio. New experimental measurements provide convincing evidence
for this prediction.
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1 Introduction

Rogue waves are abnormally large surface waves, defined by oceanographers as those
that exceed twice the significant wave height (Müller et al. 2005; Ying et al. 2011).
Though such waves were once dismissed as myth, they have now been recorded in
oceans across the globe and pose a recognized threat to seagoing vessels and naval
structures. Rogue waves, also variously known as freak or anomalous waves, have
been observed in shallow (Pelinovsky et al. 2000; Gramstad et al. 2013), intermediate
(Karmpadakis et al. 2019), and deep water (Dematteis et al. 2018, 2019), and certain
features of rogue waves have been recovered by exact solutions to various wave mod-
els (Peregrine 1983; Clarkson and Dowie 2017; Chen and Pelinovsky 2019). These
abnormal waves can be triggered by a variety of mechanisms, including anomalous
wind-forcing (Kharif et al. 2008; Toffoli et al. 2017), opposing currents (Garrett and
Gemmrich 2009; Onorato et al. 2011), focusing due to variable bathymetry (Heller
et al. 2008; White and Fornberg 1998), and the Benjamin-Feir deep-water modula-
tional instability (Benjamin and Feir 1967; Viotti et al. 2013; Cousins and Sapsis 2015;
Farazmand and Sapsis 2017). The common tie between thesemechanisms is their abil-
ity to generate non-normal statistics in the surface displacement: when governed by
Gaussian statistics, the likelihood of a rogue wave is extremely low, but these events
occur much more frequently when surface statistics deviate from Gaussian. In this
way, anomalous waves can be approached from the broader perspective of turbulent
dynamical systems (Sapsis andMajda 2013a, b, c; Chen andMajda 2016;Majda 2016;
Macêdo et al. 2017; Majda and Qi 2018; Blonigan et al. 2019; Guth and Sapsis 2019;
Holm 2019).

A recent series of laboratory (Bolles et al. 2019; Trulsen et al. 2020) and numerical
investigations (Viotti and Dias 2014; Herterich and Dias 2019) have demonstrated the
emergence of anomalous wave statistics from abrupt variations in bottom topogra-
phy. Since topographical variations are strictly one-dimensional, these studies can be
viewed as offering a bare minimum set of conditions capable of generating anomalous
waves. In particular, the more complex mechanism of focusing by 2D bottom topog-
raphy is absent. The studies thus offer a paradigm system, with emergent anomalous
features similar to those seen in more complex systems, but in a tractable context that
is amenable to analysis.

Our particular focus is the laboratory experiments of Bolles et al. (2019), who
demonstrated the emergence of anomalous statistics from a randomized wavefield
encountering an abrupt depth change (ADC). In these experiments, the incoming
wavefield is generated with nearly Gaussian statistics, and a plexiglass step placed
near the middle of the tank creates the depth change. Upon passing over the step, the
wave distribution skews strongly toward positive displacement, with deviation from
Gaussian beingmost pronounced a short distance downstream of theADC. Inspired by
these experimental observations, Majda et al. (2019)) developed a theoretical frame-
work that accurately captures several key aspects of the anomalous behavior. The
theory is based on deterministic and statistical analysis of the truncated Korteweg-de
Vries (TKdV) equations, and uses a combination of computational, statistical, and
analytical tools. In subsequent work, Majda and Qi (2019) analyzed more severely
truncated systems—as low as two interacting modes—that exhibit a statistical phase
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transition to anomalous statistics and the creation of extreme events while enjoying a
more tractable structure. More recently, Qi and Majda (2020) demonstrated the capa-
bility of machine learning strategies to accurately predict these extreme events. That
work employs a deep neural network coupled with a judicious choice of the entropy
loss function that emphasizes the dominant structures of the turbulent field Qi and
Majda (2020). It should be noted that in these studies, extreme events are represented
by strong skewness of the wavefield. They occur intermittently and on a relatively
frequent basis, which is in contrast to the simpler situation of isolated, rare events
(Guth and Sapsis 2019).

The purpose of the present manuscript is to provide a more comprehensive treat-
ment of the combined experimental and theoretical efforts of Bolles et al. (2019)
and Majda et al. (2019), Majda and Qi (2019). We present a variety of new findings
that have resulted from a synergetic interaction between theory and experiments—a
cooperative strategy with a proven record of success (Camassa et al. 2012; Ristroph
et al. 2012; Ganedi et al. 2018). The outline of the paper is as follows. In Sect. 2, we
detail the laboratory experiments of Bolles et al. (2019) and summarize previously
reported findings on anomalous statistics of the surface displacement. We also present
new experimental data on surface slope statistics—a line of inquiry motivated by the
theoretical advancements of Majda et al. (2019), specifically the central role played
by the slope in the Hamiltonian structure of TKdV. Section 3 discusses the TKdV
theoretical framework, including both the deterministic and the statistical mechanics
perspectives. In this section, we flesh out details of the nondimensionalization, which,
for brevity, were only briefly discussed in the previous work. This exercise provides
a more precise link between model and experimental parameters, ultimately facilitat-
ing a closer comparison between the two. We then discuss TKdV as a deterministic
dynamical system, approachable from the viewpoint of statistical mechanics. The later
perspective is based on the Hamiltonian structure and novel ensemble distributions
that incorporate canonical and micro-canonical aspects (Abramov et al. 2003).

Section 4 presents a systematic comparison between experiments and theory, focus-
ing on both surface displacement and surface slope.We find the statistical distributions
of these two quantities to agree well across experiments and theory. In particular, we
find remarkably quantitative agreement in the displacement statistics. We then exam-
ine numerical simulations of the TKdV deterministic dynamics, which elucidates the
length and timescales required for statistical transitions in the experiments. Finally,
this section discusses a peculiar power-law relationship between surface-displacement
skewness and surface-slope variance predicted by the statistical mechanics framework
(Majda et al. 2019). New experimental measurements conclusively confirm this pre-
diction, further demonstrating the predictive power of the TKdV framework developed
by Majda et al. (2019). We close with some final remarks in Sect. 5.

2 The Experiments

As diagrammed in Fig. 1a, the experiments consist of a long, narrow wave tank (6-m
long× 20-cmwide× 30-cm high), with waves generated by a plexiglass paddle at one
end (Bolles et al. 2019). The waves propagate through the tank and, roughly midway

123



3238 Journal of Nonlinear Science (2020) 30:3235–3263

(x,t)

wave direction
paddle

motor

dampener

step

camera view

180 185 190 195 200 205 210 215 220
-1.0

-0.5

0

0.5

1.0
Upstream

time (s)

 (
cm

)

180 185 190 195 200 205 210 215 220
-1.0

-0.5

0

0.5

1.0
Downstream

time (s)

 (
cm

)

-1.0 -0.5 0 0.5 1.0
0.01

0.1

1

 (cm)

p(
)

-1.0 -0.5 0 0.5 1.0
0.01

0.1

1

 (cm)

p(
)

(a)

(b) (c)

(d) (e)

Fig. 1 a Experimental schematic: randomized waves are generated by a pivoting paddle and propagate
over a step in bottom topography. b, c Surface displacement measured at representative locations upstream
and downstream of the abrupt depth change (ADC). d, e Corresponding histograms showing symmetric
upstream statistics and highly skewed downstream statistics. Figure adapted from Bolles et al. (2019)

through, pass over an abrupt depth change (ADC) created by a plexiglass step. The
waves continue to propagate through the shallower depth until reaching the far end of
the tank, at which point their energy is dissipated by a horse-hair dampener. Since the
dampener minimizes backscatter, the waves in this experiment propagate primarily in
one direction, from left to right in Fig. 1a.

The pivoting motion of the paddle is driven by a 5-phase stepper motor. To generate
a randomized wavefield, the paddle angle φ is specified by a psuedo-random signal

φ(t) = φ0 + �φ

N∑

n=1

an cos(ωnt + δn) , (1)

an =
√

2�ω

π1/2σω

exp

(
− (ωn − ω0)

2

2σ 2
ω

)
(2)

The angular frequencies are evenly spaced ωn = n�ω with step size �ω = (ω0 +
4σω)/N , where ω0 and σω represent the mean and the bandwidth of ω, respectively.
As in prior work, all experiments reported here use the values ω0 = σω = 12.5 rad/s,
corresponding to a peak forcing frequency of 2 Hz and bandwidth of 2 Hz. The phases
δn are uniformly distributed random variables, which results in a randomized wave
train. The standard deviation of the paddle angle, �φ, controls the overall amplitude
of the waves. In a single experiment, �φ is fixed, and we will present a series of
experiments with �φ varied systematically.
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The free surface is illuminated by light-emitting diodes and is imaged from the side-
viewwith aNikonD3300 at 60 frames per second. The illumination technique, coupled
with high pixel count of the camera, allows surface displacements to be resolved with
accuracy better than 1/3 millimeter. Furthermore, these optical measurements permit
extraction of wave statistics continuously in space, rather than at a few discrete loca-
tions, which is crucial for identifying regions of anomalous wave activity. Further
details of the experimental setup can be found in Bolles et al. (2019).

Example measurements of free surface displacements η are shown in Fig. 1b, c.
These measurements are extracted from the images at two representative locations:
one is a short distance (9 cm) upstream of the ADC and the other a short distance (15
cm) downstream. Both signals exhibit a combination of periodic and random behavior,
with the dominant oscillations corresponding to the peak forcing frequency of 2 Hz.

The nature of the random fluctuations is revealed by the corresponding histograms
shown in Fig. 1d, e on a semi-log scale. The upstream measurements are symmetri-
cally distributed about the mean, η = 0. In fact, Bolles et al. (2019) found that these
measurements follow a Gaussian distribution closely (Bolles et al. 2019). The down-
stream measurements, however, skew strongly toward positive displacement, η > 0.
Bolles et al. (2019) found these measurements to be well described by a mean-zero
gamma distribution (Bolles et al. 2019). The slower decay of the gamma distribution
indicates an elevated level of extreme surface displacement, i.e., rogue waves. Bolles
et al. (2019) estimated that a rogue wave can be up to 65 times more likely in these
experiments than if displacements were Gaussian (Bolles et al. 2019).

The paddle amplitude in Fig. 1 is �φ = 1.38◦, and this value was varied systemat-
ically in the range �φ = 0.125◦–2◦ to probe the different regimes of wave behavior,
from linear to strongly nonlinear waves. Figure 2 shows long-time statistics of both
surface displacement η and the surface slope ηx as they vary in space for six different
driving amplitudes (see legend).

In this paper, we only examine statistic of mean-zero quantities, and so, for an
arbitrary mean-zero quantity q, we have the following definitions

std(q) = qstd =
√〈

q2
〉

standard deviation (3)

skew(q) =
〈
q3

〉
/q3std skewness (4)

kurt(q) =
〈
q4

〉
/q4std − 3 (excess) kurtosis (5)

where 〈〉 indicates amean—here a long-timemean at a fixed spatial location.Hereafter,
we will simply refer to the excess kurtosis as kurtosis.

Figure 2 shows how these statistics vary in the vicinity of the ADC, located at
x = 0, for both displacement and slope. First, the standard deviation of displacement,
ηstd, gives the coarsest possible estimate for the amplitude of waves. Figure 2a shows
that while ηstd increases with driving amplitude, it remains relatively uniform in space
for each individual experiment, indicating that the overall amplitude of the wave train
is not significantly altered by the presence of the ADC. The skewness and kurtosis,
however, respond strongly to the ADC as long as the amplitude is sufficiently high. As
seen in Fig. 2b, c, both the skewness and kurtosis are relatively small upstream of the
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Fig. 2 Wave statistics as they vary in space for several experiments of different driving amplitudes (see
legend). a–c Standard deviation, skewness, and kurtosis of the surface displacement η. d–f The same for
surface slope ηx . a ηstd, which sets a scale for wave amplitude, does not vary significantly crossing the
ADC. b, c Skewness and kurtosis of η, however, show a strong response to the ADC. d–f Themeasurements
of surface slope, ηx , are negatively skewed and also exhibit large kurtosis downstream of the ADC

ADC, indicating nearlyGaussian statistics, but then increase dramatically downstream
and reach a peak near x = 15 cm. Interestingly, the location of the peak is the same
for skewness and kurtosis and is insensitive to driving amplitude. The maximum
values of skewness and kurtosis (approximately 0.9 and 0.7, respectively) seen in the
figure indicate a significant departure from Gaussian statistics, as is constant with the
histogram in Fig. 1e. Bolles et al. (2019) found that, once a threshold driving amplitude
is exceeded (roughly�φ = 0.5◦), the displacement statistics in this anomalous region
are robustly described by the gamma distribution across all of the experiments. We
note that we have gathered data for 15 different driving amplitudes, but only display
6 of those in Fig. 2 to avoid clutter.

To complement the displacement statistics, we report here statistics for the surface
slope ηx in the right column of Fig. 2. Our attention to slope statistics was motivated
by new theoretical developments by Majda et al. (2019), as will be expanded upon
in later sections. We extract the surface slope by numerical differentiating images of
the free surface using Savitzky-Golay smoothing filters. This ability to extract surface
slope is another advantage of our optical measurements over the more commonly used
technique of placing a set of discrete wave probes in the tank. As seen in Fig. 2a, the
standard deviation of slope behaves similar to displacement: std(ηx ) increases with
driving amplitude, but remains nearly uniform in space for each individual experiment
and is not affected by the ADC. The higher-order moments, however, respond strongly
to theADC if the driving amplitude is sufficiently high. The skewness of slope becomes
highly negative and reaches a minimum near x = 8 cm, which is downstream of the
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Table 1 Table of parameters

Description Notation Experimental range ‘Representative’ values

Peak forcing frequency f p 2 Hz 2 Hz

Characteristic amplitude ηstd 0.03–0.3 cm 0.21 cm

Upstream depth d− 12.5 cm 12.5 cm

Downstream depth d+ 2.2–5.3 cm 3 cm

Upstream wavelength λ− = √
gd−/ f p 55 cm 55 cm

Downstream wavelength λ+ = √
gd+/ f p 23–36 cm 27 cm

Amplitude-to-depth ratio ε0 = ηstd/d− 0.0024–0.024 0.017

Depth-to-wavelength ratio δ0 = d−/λ− 0.23 0.23

Depth ratio D+ = d+/d− 0.18–0.42 0.24

ADC but upstream of the position where the displacement statistics peak. The kurtosis
of ηx reaches a peak at nearly the same location as skewness. We note that the large
negative skewness of ηx indicates a bias toward negative slope, which is consistent
with a right-moving wave of steep leading surface and shallower trailing surface, i.e.,
a wave that is near overturning.

To have a simple baseline for comparison against theory, we refer to the data from
Fig. 1 as the reference experiments. In these experiments, the driving amplitude is
�φ = 1.38◦ (intermediate between the two largest amplitudes shown in Fig. 2), the
upstream depth is d− = 12.5 cm, and the downstream depth is d+ = 3 cm, giving a
depth ratio of D+ = d+/d− = 0.24. From the data represented in Fig. 2, we extract a
characteristic wave amplitude for the representative experiments of ηstd = 0.21 cm,
which will be important for setting dimensionless parameters that enter the theory.
Table 1 lists the range of experimental parameters and the representative values, as
well as values of dimensionless parameters that will be introduced later.

3 Theoretical Framework

We now introduce the theoretical framework that will be used to understand and
quantify the experimental observations. This framework is based on a Galerkin trun-
cation of the variable-depthKorteweg-deVries (KdV) equation. TheKdVequation is a
well-establishedmodel for describing the propagation of unidirectional, shallow-water
waves, accounting for weak nonlinearity and weak dispersion over long timescales
and large spatial scales. We will perform Galerkin truncation of KdV to obtain a
finite-dimensional dynamical system that exhibits weak turbulence. We outline the
Hamiltonian structure of both the traditional KdV and the truncated systems. This
structure is exploited to obtain invariant measures of the underlying dynamics and,
ultimately, to rationalize the experimental findings on anomalous wave statistics trig-
gered by an ADC.

123



3242 Journal of Nonlinear Science (2020) 30:3235–3263

3.1 The Korteweg-deVries Equation with Variable Depth

We consider the surface displacement η(x, t) of unidirectional, shallow-water waves
in a reference frame moving with the characteristic wave speed, ξ = x − ct . Here,
c = √

gd is the leading-order approximation to the wave speed (i.e., from linear
theory), where g is gravity and d is the local depth. The leading-order dynamics are
corrected to first order in small amplitude by the Korteweg-de Vries equation (KdV),
which in dimensional form is given by Whitham (2011)

ηt + 3c

2d
ηηξ + cd2

6
ηξξξ = 0. (6)

Motivated by the experiments, we consider waves that originate from a region of
constant depth, encounter an abrupt depth change, and continue into another region
of constant depth. Thus, depth will be piecewise constant

d =
{
d− if x < 0

d+ if x > 0
(7)

Most often, we consider waves moving into shallower depth, so that d− > d+.
Throughout this paper, we use the subscript ‘−’ and to represent upstream variables
and ‘+’ for downstream variables.

In the experiments, the randomized incoming wavefield is generated with a peak
forcing frequency of f p = 2 Hz, which gives rise to the characteristic wavelength
of λ = c/ f p = √

gd/ f p. Note that, both the characteristic wave speed c = c± and
wavelength λ = λ± take different values upstream and downstream of the ADC. We
remark that experimental measurements indicate that ηstd is nearly the same on both
sides of the ADC. Hence, we will not distinguish between upstream and downstream
values of ηstd.

3.2 Nondimensionalization and Relation to Experimental Scales

In this section, the variable-depth KdV equation (6) will be recast into a dimension-
less form that is chosen for convenience in working with the statistical-mechanics
framework of Majda et al. (2019). Since the choice of normalization is not unique, it is
instructive to first introduce a generic normalization to facilitate comparisonwith other
possible choices. To this end, we consider characteristic scales, A,L, T for the wave
amplitude, longitudinal length, and time, respectively, which can remain unspecified
for the moment. We introduce the dimensionless variables

u = η/A dimensionless surface displacement (8)

x̃ = (x − ct)/L dimensionless position (in moving frame) (9)

t̃ = t/T dimensionless time (10)
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Recasting (6) in terms of these variables gives the generic dimensionless KdV equa-
tion:

ut + 3

2

(
cT A
Ld

)
uux + 1

6

(
cT d2

L3

)
uxxx = 0 (11)

We have dropped the tilde notation above for simplicity and will henceforth use tildes
only in cases of possible ambiguity.

Now, it is possible to choose the scalesA,L, T for ease in workingwith a particular
framework. We make the following choices,

A = π1/2 ηstd , L± = Nλ±
2π

, T± = Nλ±
2π f pd±

(12)

where N is an integer to be chosen later. The explanation for these choices is as
follows. First, we have chosen the characteristic amplitude, A, to normalize the
energy of the state-variable u to unity, as will be demonstrated in Sect. 3.4. Sec-
ond, regarding L, recall that λ is the characteristic wavelength corresponding to the
peak forcing frequency f p in the experiments. If only integer multiples of f p were
imposed (e.g., lower frequencies were not present), then the forcing would produce
waves that are periodic over lengthscale λ. Since lower frequencies do exist, strict
periodicity is not satisfied, but rather waves may be nearly periodic over the physi-
cal domain ξ ∈ [−λ/2, λ/2]. The approximation of near-periodicity becomes more
accurate if integer multiples are considered, i.e., ξ ∈ [−Nλ/2, Nλ/2]. Thus, we
have chosen L above so that, over the dimensionless domain x̃ ∈ [−π, π ], peri-
odic boundary conditions can be imposed on u with an accuracy that increases with
N .

Lastly, regarding the characteristic timescale T , the most basic timescale in the
experiments is simply f −1

p , i.e., the period of waves passing a fixed reference point.
Of course, the leading-order behavior in shallowwater is simplywave propagationwith
uniform speed c, i.e., no dispersion. The KdV equation provides the first correction
to this behavior and describes dynamics that evolve over longer timescales. Hence,
we have rescaled f −1

p by the factor Nλ/(2πd) � 1, which provides a suitably long
timescale in line with other normalizations (Johnson 1997). The scales L = L± and
T = T± change value across the ADC, which is important to note when comparing
the theory against experimental measurements.

With the above choices, the dimensionless KdV equation takes the form

ut + C3D−3/2 uux + C2D1/2 uxxx = 0 for x ∈ [−π, π ] (13)

C3 = 3

2
π1/2ε0δ

−1
0 , C2 = 2π2δ0

3N 2 (14)

The constantsC3 andC2 do not change value crossing the ADC and are given in terms
of the dimensionless parameters
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ε0 = ηstd/d− upstream amplitude-to-depth ratio (15)

δ0 = d−/λ− upstream depth-to-wavelength ratio (16)

The reason for the subscripts 3 and 2 will become evident in the next section.
Meanwhile, the dimensionless depthD = d/d− does change value across the ADC

since the depth d changes. Recall that the reference frame of (13) moves with the local
wave speed via the variable ξ = x − ct from (6). Thus, the ADC is met at some
time TADC , and for simplicity, we set TADC = 0. Therefore, we can regard D as a
piecewise-constant function of dimensionless time

D =
{
1 for t < 0

D+ = d+/d− for t > 0
(17)

See Table 1 for a summary of these dimensionless parameters and their values in
experiments.

A few comments are in order. First, we note that the original formulation of this
theory utilized a slightly different normalizations (Majda et al. 2019), with identical
powers ofD in (13) but with different expressions for the other dimensionless param-
eters. These differences are purely cosmetic, and we have made the choices above
simply to facilitate comparison with experiments. Second, an alternate formulation
of the variable-depth KdV equation has been proposed in which the product d1/4η,
rather than η, is conjectured to vary continuously across the ADC (Johnson 1997).
Of course, that assumption implies a discontinuity in surface displacement, which,
though perhaps small, would be physically unrealistic. We have chosen to enforce
continuity of surface displacement on the basis of physical realism. Furthermore, our
direct experimental measurements of ηstd give no indication of a significant change
across the ADC, thus supporting the formulation used here. We note, however, that
the only modification resulting from the alternate formulation would be in the power
of D in the second term of (13): the power D−3/2 would become D−7/4. Thus, in this
alternate formulation, the second term in (13) would be scaled by a negative power
of D and the third term by exactly the same positive power of D. Hence, the two
formulations are qualitatively very similar with only slight quantitative differences
expected.

3.3 Hamiltonian Structure of KdV

The variable-depth KdV (13), though not Hamiltonian throughout the entire domain,
admits a Hamiltonian structure on each side of the ADC. Indeed, (13) can be expressed
as

∂t u = J δH±

δu
(18)
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where J = ∂x is the symplectic operator and H = H± is the Hamiltonian, which
takes different forms on either side of the ADC. It is convenient to decompose the
Hamiltonian into a so-called cubic and quadratic component, given, respectively, by

H3 = 1

6

∫ π

−π

u3dx , H2 = 1

2

∫ π

−π

u2xdx . (19)

Then, the Hamiltonian can be expressed as

H± = C2D1/2
± H2 − C3D−3/2

± H3 (20)

where D = D± changes value across the ADC. More explicitly, substituting (17)
gives the separate upstream and downstream Hamiltonians as

H− = C2 H2 − C3H3 for t < 0 (21)

H+ = C2D1/2
+ H2 − C3D−3/2

+ H3 for t > 0 (22)

As seen in (19), the cubic component, H3, represents the skewness of the wavefield,
while the quadratic component, H2, represents the energy of the surface slope. The
sign difference between the two in (20) thus represents a competition between wave
skewness and slope energy. In particular, the appearance of the slope energy in the the-
ory motivated the new experimental measurements on surface slope statistics reported
in this paper.

We remark that in defining the Hamiltonian, we have chosen the sign convention
of Lax (1975). More recent work of Bajars et al. (2013) and Majda et al. (2019) use
a different convention, in which both the signs of J and H are opposite. Clearly,
these sign differences cancel in (18) and thus the two conventions are completely
equivalent. Using the second convention, Majda et al. (2019) found that a negative
inverse temperature is required to accurately describe the experimental observations
(Majda et al. 2019). We have chosen the convention above so that a positive inverse
temperature may be used, allowing our theory to fit into the most conventional form
of statistical mechanics.

We introduce two important invariants of KdV, namely the momentum and the
energy

M[u] ≡
∫ π

−π

udx = 0, E[u] ≡ 1

2

∫ π

−π

u2dx = 1 (23)

As indicated above, the momentum of u vanishes since it is measured as displace-
ment from equilibrium. Second, due to the choice of A in (12), the energy has been
normalized to unity.
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3.4 Truncated KdV

We now introduce the truncated KdV (TKdV) system, which is the main focus of the
present study. Consider the state variable represented as a spatial Fourier series

u(x, t) =
∞∑

k=−∞
ûk(t) e

ikx , (24)

ûk(t) = 1

2π

∫ π

−π

u(x, t) e−ikxdx , (25)

where ûk(t) ∈ C. Since u(x, t) is real valued, û−k = û∗
k , and since momentum

vanishes û0 = 0. Next, consider the Galerkin truncation at wave number 

u(x, t) = Pu =
∑

|k|≤

ûk(t) e
ikx , (26)

whereP is a projection operator and (25) still holds. Inserting the projected variable,
u, into the KdV equation and applying the projection operator, P, again where
necessary produces the truncated KdV equation (TKdV)

∂u

∂t
+ 1

2
C3D−3/2 ∂

∂x
P(u)2 + C2D1/2 ∂3u

∂x3
= 0 for x ∈ [−π, π ] (27)

C3 = 3

2
π1/2ε0δ

−1
0 , C2 = 2π2δ0

3N 2 (28)

Note that the additional projection operator in front of the quadratic term u2, which
removes the aliasedmodes ofwavenumber larger than. Since allwavenumbers larger
than  have been removed, (27) represents a finite dimensional dynamical system, of
dimension  over C. The constants C3 and C2 are the same as before and have been
repeated here for convenience.

Briefly, consider the parameter N , the number of characteristic wavelengths in the
physical domain. We require 1 ≤ N ≤ , so that the mode ûN , corresponding to the
characteristic wavelength λ in the experiments, is resolved in the truncated dynamical
system. If N = , then λ corresponds to the smallest resolved wavelength. If instead
N is chosen as an intermediate value between 1 and , then the truncated system will
resolve scales that are both bigger and smaller than the characteristic value λ.

Remarkably, the TKdV system (27) retains the Hamiltonian structure described in
Sect. 3.3, with the only modification being the inclusion of the projection operator
(Bajars et al. 2013; Majda et al. 2019). The piecewise defined Hamiltonian for TKdV
is given by

H±
 = C2D1/2

± H2[u] − C3D−3/2
± H3[u] (29)
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where H3 and H2 are defined exactly as before (19), but now are simply applied to
the projected variable u = Pu. Then, TKdV (27) can be expressed as

∂t u = ∂xP

δH±


δu

(30)

where the truncated symplectic operator is J = ∂xP.
The momentum and energy defined in (23) remain invariants of TKdV, with the

same normalized values M[u] = 0 and E[u] = 1. Note that Parseval’s identity
implies

E[u] = 2π
∑

k=1

∣∣ûk
∣∣2 = 1 (31)

Thus, the dynamics of interest are confined to the unit hypersphere, E = 1 in C.
We comment on some important differences between theKdVandTKdVdynamical

systems. Besides momentum, energy, and Hamiltonian, KdV possesses in infinite
sequence of additional invariants (Lax 1975; Whitham 2011). Trajectories of KdV
are therefore constrained by infinitely many conserved quantities, associated with the
fact that it is a completely integrable system. The long-time dynamics of KdV are
dominated by coherent structures, namely solitons. With finite truncation, however,
the additional invariants cease to be conserved. The only known invariants of TKdV
are the three mentioned already: momentum, energy, and Hamiltonian. Thus, finite
truncation breaks integrability. Moreover, although soliton solutions are supported
by TKdV, the long-time dynamics are not dictated by these structures. Rather, the
finite truncation induces chaotic to weakly turbulent dynamics, as has been observed
numerically (Bajars et al. 2013; Majda and Qi 2019). Stronger mixing is induced with
energy cascades down and up scales.

In this way, the statistical theory developed herein differs from, and could likely
complement, recent advances in the field of integrable turbulence (Zakharov 2009;
Randoux et al. 2014; Costa et al. 2014; Randoux et al. 2016), where integrability
is exploited to uncover certain statistical features of the system at hand. We remind
the reader that KdV is asymptotically valid only for large spatial scales, and hence
truncating the small scales does not alter the order of approximation made. In this
sense, KdV and TKdV are on equal footing as far as physical realism—amore accurate
frameworkwould require eithermodel closure to capture the small scale physics or else
direct numerical simulation of the Euler equations. Where differences exist between
KdV and TKdV, therefore, it is unclear a priori which model, if either, more closely
resembles reality. This situation, of course, underscores the importance of controlled
laboratory experiments.

3.5 MixedMicrocanonical-Canonical Gibbs Ensemble

In examining statistical mechanics of this Hamiltonian system, we will appeal to the
idea of a mixed microcanonical-canonical Gibbs ensemble, as originally introduced
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by Abramov et al. (2003) for the Burgers-Hopf system. Specifically, this ensemble is
microcanonical in energy and canonical in the Hamiltonian. The reason this ensemble
is needed is the sign indefiniteness of the cubic term H3 in the Hamiltonian, which
would cause a simple canonical distribution to diverge at infinity. Themixed ensemble,
however, fixes the energy and hence confines dynamics to the compact set of the unit
hypersphere E = 1. Since the Hamiltonian is continuous, its value is bounded on the
unit hypersphere, and thus the mixed ensemble produces a normalizable distribution.
This construction applies equally well to the truncated or untruncated KdV system,
and hence, we will not distinguish between the two. We note that other possible
constructions may be applicable too (Kleeman and Turkington 2014).

On either side of the ADC, the mixed ensemble, orGibbs measure, follows directly
from the corresponding Hamiltonian via

G± = Z−1
β± exp(−β±H±)δ(E − 1) (32)

Here, β = β± is the inverse temperature, which will take a different values on either
side of the ADC, and Zβ a constant that depends on β. Each measure G± induces a
corresponding ensemble average, denoted 〈·〉±.

We note that, in the current formulation, a positive inverse temperature β > 0
produces physically realistic statisticswith a decaying energy spectrum, as is consistent
with experiments (Majda et al. 2019; Bajars et al. 2013). Negative inverse temperature
produces a physically unrealistic spectrum that has more energy at smaller scales.
Hence, we will hereafter focus on the physically realistic case of β > 0. We also
point out that a sufficient amount of nonlinear mixing is required for relaxation to the
above Gibbs measure. In the linearized system, for example, modes propagate without
interacting, and hence, the initialmeasure induced by thewave generatorwould remain
unchanged.

3.6 Matching at the ADC

Recall that the abrupt depth change is met by traveling waves at dimensionless time
TADC = 0, set to zero for convenience. The KdV equations describe wave dynamics
over long timescales, physically t � T , capturing weakly nonlinear and weakly
dispersive effects. Meanwhile, evolution over shorter timescales is simply described
by linear theory. The event of a wave crossing the ADC is precisely such a short-time
event, and so we will employ the same matching conditions at the ADC that would
result from linear theory.

More specifically, we assume continuity of the surface displacement, η, across the
ADC (Whitham 2011; Rey et al. 1992). Since the propagation speed c changes with
depth, waves crossing the ADC must rapidly adjust in wavelength in order to match
the oscillation frequency just upstream of the ADC (Whitham 2011; Rey et al. 1992).
The normalized domain x ∈ [−π, π ] is scaled on the characteristic wavelength and
so there is no change in the dimensionless wavefield u(x, t), giving the condition

u(x, t)|t=0− = u(x, t)|t=0+ , Deterministic matching condition (33)
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We call (33) the deterministic matching condition to contrast with its statistical coun-
terpart introduced below. This matching condition is employed in the deterministic
simulations of TKdV (27).We note that in the alternate formulation mentioned earlier,
it is the product d1/4η that would match at the ADC (Johnson 1997).

Now, from the perspective of statistical mechanics, consider the communication
between the statistical ensembles, G±, upstream and downstream of the ADC. These
two systems are in contact at the ADC, and so the upstream state with distribution
G− can be regarded as a thermal reservoir that influences the downstream distribution
G+. In fact, the above deterministic condition directly leads to a simple description
for the link. The quantity of interest is the outgoing Hamiltonian H+, since its value
just upstream of the ADC, t = 0−, is set by the incoming dynamics, and then this
particular value is conserved thereafter in the outgoing dynamics. Since u matches at
the ADC, so mustH+, and, in fact, this matching holds for every individual trajectory.
Recall that H+(t) is not conserved in the upstream dynamics and so its value varies
for t < 0. However, appealing to weak ergodicity, the ensemble mean

〈
H+(t)

〉
−

is expected to be independent of time. In particular, the value
〈
H+|t=0−

〉
− is the

same as the bare ensemble mean
〈
H+〉

−. Afterwards, the particular value H+|t=0−
is conserved in the downstream dynamics, on a trajectory-by-trajectory basis and for
all t > 0. Thus, the downstream measure G+ must recover the same ensemble mean〈
H+|t=0−

〉
− = 〈

H+〉
−, producing the simple condition

〈
H+〉

− = 〈
H+〉

+ Statistical matching condition (34)

This statistical matching condition, originally derived by Majda et al. (2019),
imposes a relationship between the two inverse temperatures β− and β+. In par-
ticular, we view β− as given by the random state of the incoming wavefield. Thus,
while we will treat β− as a parameter that can be varied to study various possible
system states, the downstream β+ is determined directly by the matching condition
(34), giving the functional dependence

β+ = F
(
β−)

Transfer function (35)

The transfer function F will be a key link needed to relate the theory to experiments.

3.7 Numerical Computation of the Transfer Function

Tocompute the transfer function,weuse aweighted random-sampling strategy. That is,
we first sample the Fourier coefficientsu = {

ûk
}

k=0 from a uniformdistribution on the
unit hypersphere E = 1. The uniform sampling is achieved by first sampling from an
isotropic Gaussian distribution and then normalizing to project onto the hypersphere
(Abramov et al. 2003). These samples are then weighted by the appropriate Gibbs
measure (32) to compute the expectations needed in the statistical matching condition
(34). That is, for an arbitrary quantity Q, the ensemble expectation corresponding to
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Hamiltonian H and inverse temperature β is numerically approximated as

〈Q〉β =
∑Ns

i=1 Qi exp(−βHi )
∑Ns

i=1 exp(−βHi )
(36)

where Ns is the number of samples. Then, enforcing the statistical matching condition
(34) becomes a root-finding problem for the function

W (β+) = 〈
H+〉

β+ − 〈
H+〉

β− = 0 (37)

Recall that we consider β− as given, so that
〈
H+〉

β− is a constant that can be computed
straightaway from (36). We then use the secant method with respect to the variable
β+ to find a root of W (β+) to the desired tolerance.

For simply computing the transfer function, thisweighted-sampling approach offers
significant advantages over more sophisticatedmethods, such asMarkov ChainMonte
Carlo (MCMC), in its ability to reuse the same samples of u for several different
values of β+. That is, we sample u from the uniform distribution and compute the
list of Hamiltonian values only once, then simply vary β+ in (37) with the secant
method until the root is found. An MCMC method, on the other hand, would require
the sampling to restart from scratch for each value of β+, since the random steps in
MCMC depend directly on the target distribution (32). We will, however, use MCMC
to initialize direct numerical simulations of TKdV due to the superior efficiency for a
single, given value of β.

3.8 Deterministic Simulations of TKdV

We now detail the method for direct numerical simulation of the TKdV dynamical
system (27). In particular, since the conservation of energy and Hamiltonian plays a
central role in the emergent statistical features of the system, it is important for the
numerical scheme to conserve these quantities over long time horizons. We therefore
employ a symplectic integrator, which, by preserving oriented areas in phase space,
conserves the energy and Hamiltonian exactly.

Rearranging the TKdV system (27) gives

∂u

∂t
= −1

2
C3D−3/2 ∂

∂x
P(u)2 − C2D1/2 ∂3u

∂x3
= F[u] (38)

where we have represented the right-hand side by the operator F[u]. We employ a
pseudo-spectral discretization of (38), with de-aliasing applied to the quadratic non-
linear term P(u)2 according to the standard 2/3-rule. That is, we first pad ûk with
zeros for  < |k| ≤ 3/2, transform to physical space and square to obtain u2 on
a fine grid, then transform back to spectral space and truncate to obtain the Fourier
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coefficients of P(u)2. For simplicity, we denote these Fourier coefficients v̂k ,

P(u)2 =
∑

|k|≤

v̂ke
ikx (39)

With this discretization, (38) can be recast in spectral space as a nonlinear ODE system

d

dt
ûk = −1

2
C3D−3/2 ikv̂k + C2D1/2 ik3ûk = F̂k (40)

The quadratic nonlinearity represented by v̂k mixes the modes during evolution. We
note the third-order linear term may become stiff for large .

For time integration of (40), we employ a 4th-order midpoint symplectic scheme

(McLachlan 1993).We introduce the spectral vectors u = {
ûk

}

k=0 andF =
{
F̂k

}

k=0
,

and let un denote the solution at time tn . The midpoint method has two intermediate
stages and the auxiliary vectors y1, y2:

y1 − un = w1�t F
[
1

2

(
y1 + un

)]
, (41)

y2 − y1 = w2�t F
[
1

2
(y2 + y1)

]
, (42)

un+1 − y2 = w3�t F
[
1

2

(
un+1 + y2

)]
, (43)

with the time increments w1 = (
2 + 21/3 + 2−1/3

)
/3, w2 = 1− 2w1, and w3 = w1.

The semi-implicit nature of (41)–(43) combined with the nonlinearity in F requires
iteration. We split F into linear and nonlinear components, with the linear component
being easily inverted since it is diagonal in spectral space. At each step of (41)–(43),
we perform Picard iteration on the nonlinear component until convergence is achieved
with a tolerance of δ = 1 × 10−10. The starting guess for the iterations is determined
by quadratic extrapolation from the previous three stages.

For the initial conditions, u0, of the direct numerical simulation, we sample from
the upstream Gibbs ensemble G− (32) with a prescribed inverse temperature β−. We
achieve this sampling via a Metropolis-Hasting Monte Carlo algorithm as detailed in
Majda et al. (2019).

3.9 Scaling Analysis to Link Inverse Temperature to Experiments

Since the inverse temperature, β, is a key modeling parameter, it would be highly
desirable to normalize the system such that the value of β does not depend sensitively
on the truncation index as  grows large. That way, β can be interpreted as a real
physical parameter that can be linked to the experiments and whose value does not
depend sensitively on where one chooses to truncate the system. The one modeling
parameter that is left to be set is N , which represents the number of characteristic
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wavelengths in the periodic domain. In what follows, we will determine reasonable
constraints on N that allow β to be asymptotically independent of .

The invariant measure exhibits the proportionality G ∝ exp(−βH), where we
have made explicit the dependence of all quantities on . In particular, ifH were to
depend sensitively on in expectation, then β would need to compensate in order to
produce the same invariant measure. Hence, it would be desirable to scale the system
in such a way that H does not depend sensitively on , at least in expectation. To
achieve this insensitivity, we will appeal to the uniform measure G0 and the idea of
equipartition of energy (Abramov et al. 2003), since these two concepts afford simple
scaling estimates.

Recall that H is composed of the cubic and quadratic components H3 and H2.
Due to the odd symmetry of H3, it is easy to see that 〈H3〉0 = 0 with respect to the
uniform measure G0. The quadratic component, however, requires closer inspection.
Due to Parseval’s identity, H2 can be written as

H2 = 1

2

∫ π

−π

u2xdx = 2π
∑

k=1

k2
∣∣ûk

∣∣2 (44)

Due to the constraint E[u] = 1, the equipartioned microstate is given by

∣∣ûk
∣∣2 ≈ 1

2π
for equipartition of energy (45)

Then, the expected value ofH2 under the uniform measure is

〈H2〉0 = 2π
∑

k=1

k2
〈∣∣ûk

∣∣2
〉

0
∼ 1

3
2 (46)

where we have used the identity for the Gauss-like sum

n∑

k=1

k2 = 1

6
n(n + 1)(2n + 1) ≈ 1

3
n3 (47)

Importantly, (46) shows that the expected value ofH2 grows like2, which appears
problematic for obtaining independence as → ∞. However,H2 entersH in product
with the coefficientC2, which itself scales asC2 ∼ N−2. Hence, obtaining the desired
asymptotic independencewith respect to simply requires that N growproportionally
to , as was already argued on physical grounds in Sect. 3.4. Thus, any of the choices
N = ,/2, or/4, discussed in that sectionwould be valid. In particular, if N = ,
then the characteristic wavelength in experiments corresponds to the smallest resolved
wavelength in the dynamical system. It is perhaps more sensible to choose N to be
an intermediate value between 1 and , so that some scales both larger than and
smaller than the characteristic wavelength λ are resolved. As default, we will choose
N = /2, so that on a log-scale, the characteristic wavelength lies directly in the
middle of the resolved wavelengths.
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Fig. 3 Analysis of the transfer function, β+ = F (
β−)

, and calibration of the inverse temperature. a, b The
transfer function for three values of  with either a N = 8 fixed or b N = /2 scaled. Scaling N with 

mitigates the sensitivity to . c The incoming and outgoing skewness versus β− implied by the matching
condition. In line with experiments, the skewness is enhanced significantly in the outgoing wavefield

Wenote that the experiments discussed here preceded the development of the theory,
and hence had no intent of mimicking a Gibbs measure in the wave forcing. We
expect that if the experimental forcing were designed to mimic the Gibbs measure, in
particular the precise spectral decay, then it would be more straightforward to assign a
value to the model parameter N . We, however, leave that task for future research due
to the significant cost of performing an entirely new set of experiments compared to
the relative ease and great value in re-analyzing existing experimental data in light of
the new theoretical developments.

4 Comparison Between Theory and Experiments

With the experimental setup described and the theory outlined, we now present results
comparing the two. Unless stated otherwise, all parameters used in the theory are taken
directly from their experimental values listed in Table 1.

4.1 Calibration of the Inverse Temperature

At this point, all parameters appearing in the theoretical model have been linked
directly to experimental parameterswith the exception of the inverse temperature of the
incoming flow, β−. Our strategy is to use the outgoing skewness as themain diagnostic
to determine a realistic range for β−. That is, for an input β−, the downstream inverse
temperature β+ is determined by (34), which ultimately sets the skewness of the
outgoing wavefield.

Figures 3a, b show the transfer functionβ+ = F(β−) that results from the statistical
matching condition (34), for an incoming inverse temperature in the range 0 ≤ β− ≤
25. Figure 3a shows the cases  = 12, 16, and 20 with N = 8 fixed in each. In this
figure, the transfer function changes significantly with . Figure 3b shows the same
butwith the scaling N = /2 that was argued in the previous section. In this figure, the
three curves come much closer to one another. Thus, scaling N appropriately greatly
mitigates the sensitivity of the transfer function to , though it does not completely
remove the dependence.
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Fig. 4 Comparison of displacement histograms from experiment and theory. Upon calibrating the inverse
temperature β−, the TKdV simulations recover the experimentally measured distributions in remarkable
detail. In particular, they exhibit the transition from a nearly symmetric distribution upstream to a highly
skewed distribution downstream

Next, Fig. 3c shows the skewness of the incoming (green) and outgoing (blue)
wavefields, as they depend on the incoming inverse temperature β− for the case
(, N ) = (16, 8). In line with experimental observations, the incoming skewness
is small, while the outgoing wave skewness is much higher. Specifically, to capture
the experimentally observed peak skewness range of 0.6–0.9 seen for the larger ampli-
tudes in Fig. 2b, requires selecting β− in the range 10–25.

4.2 Statistical Comparison Between Theory and Experiments

We now aim to compare the wave statistics measured in experiments against those that
emerge from the TKdV theory. Throughout, we will focus on the representative set of
experiments detailed inTable 1, inwhich the peak downstreamskewnesswasmeasured
to be 0.83. With (, N ) = (16, 8) fixed, Fig. 3c indicates β− = 20 as a reasonable
value to attain the desired skewness. We thus run the deterministic TKdV simulations
with these model parameters and with ε0, δ0, andD+ set to the representative values in
Table 1. We run the simulations to a sufficiently long dimensionless time of t f = 10,
with dt = 5 × 10−4, and with 103 trajectories sampled from the upstream Gibbs
measure G−.

In Fig. 4, we show the distributions of surface displacement that were measured
in the experiments (top row) versus those that emerge from the TKdV simulations
(bottom row). The experimental histograms represent exactly the same data depicted
in Fig. 1, only converted to dimensionless displacement, u, for comparison against
theory. Meanwhile, the TKdV distributions are extracted from the long-time history of
several trajectories sampled from the Gibbs ensemble, i.e., mixed long-time/ensemble
histograms. All histograms are shown on a semi-log scale to facilitate comparison of
the tails, where extreme events lie.
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Fig. 5 Comparison of surface slope histograms. The experiments and TKdV simulations show very similar
slope distributions upstream. Downstream, the theory accounts for the spread of the distribution and the
long exponential tails, while differences in the detailed shape of the distributions are also visible. Note the
elevated uncertainty in the experimental data due to numerical differentiation of free surface measurements

The comparison between experiments and theory in Fig. 4 is striking. As seen in
the figure, both the experiments and theory show a transition from a nearly symmetric
upstream distribution to a highly skewed distribution downstream. The TKdV theory
not only captures this transition, but also recovers the shapeof the resultingdownstream
distribution in remarkable detail. Nearly every feature that can be compared—the
decay rate of the tail, the position and value of the peak, the rapid cutoff for negative
u—matches surprisingly well. This comparison offers compelling visual evidence for:
(a) the predictive power of the TKdV framework, and (b) the successful calibration of
the incoming inverse temperature.

Next, we aim to make the same comparison for free surface slopes. We note that
the derivative, ∂η/∂x , is already a dimensionless quantity with a simple physical
interpretation, namely the slope of the free surface, whereas the interpretation of
∂u/∂ x̃ is tied to the characteristic valuesA andL. We therefore convert the theoretical
calculated slopes values back to physical slopes via

∂η

∂x
= 2π3/2 ηstd

λ±
∂u±
∂ x̃

(48)

So that the peak experimental wavelength λ (corresponding to f p = 2 Hz) would be
mapped to the dominating TKdV spectral mode, k = 1, this conversion formula has
not been corrected with the extra factor of N present in (12).

Figure 5 shows the distributions of surface slope that result from experiments (top)
and theory (bottom). These histograms show intriguing similarities and differences.
First, the upstream slope distribution is captured well by the TKdV simulations, both
in its nearly symmetric shape and its scale. We note that while the standard deviation
of displacement was input into the TKdV theory, the slope standard deviation was
not. Downstream, both the experimental and theoretical slope distributions spread
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significantly. Interestingly, in the experiments, it is not the standard deviation that
increases significantly upon crossing the depth change (std(ηx ) increases from 0.15
to 0.17), but instead the excess kurtosis, which jumps from a value of 0.46 upstream
to 3.4 downstream. Likewise, in the TKdV theory, std(ηx ) grows from 0.13 upstream
to 0.33 downstream, and kurt(ηx ) grows from −0.04 to 0.50. Thus, the theoretically
predicted jump in kurtosis, though not as extreme as that measured in experiments,
is quite significant. These elevated levels of kurtosis are associated with the distinct
appearance of the downstreamdistributions,most notably the long, flat tails that appear
in both experiments and theory.

Differences in the detailed shapes of these downstreamdistributions are also visible.
First, we point out that the experimental measurements involve numerical differentia-
tion of surface displacement extracted from optical images, a process that unavoidably
amplifies any noise that is present. Wemust therefore proceed with caution in compar-
ing the experiment and theory, recognizing the possibility that observed discrepancies
may be due to these measurement errors. Nonetheless, we notice that the theoretically
predicted distributions remain symmetric downstream and the experimental ones skew
toward negative slope. As mentioned in Sect. 2, negative skewness is consistent with
a right-moving wave of steep leading surface (i.e., negative slope). Additionally, the
peak of the experimental distribution appears sharper than in the theory.

4.3 Wave Dynamics and Analysis of Timescales

As a complement to the above statistical comparison, we now examine the wave
dynamics of a few individual trajectories from the TKdV simulations. Figure 6 shows
example upstream and downstream solution trajectories from the same TKdV sim-
ulations that were used to produce the histograms in Figs. 4, 5. The dimensionless
displacement, u, is represented by color in the domain (x, t) ∈ [−π, π ] × [−10, 10],
where the ADC is encountered at t = 0.

Visual differences between the upstream and downstream dynamics are apparent
in Fig. 6. The upstream trajectory shows several waves of moderate amplitude all
propagating leftward. Here, the magnitude of the positive and negative displacements
are comparable. This is in stark contrast to the downstream dynamics, which feature
fewer waves of larger amplitude propagating in either direction. In particular, one large
wave is seen to propagate from the lower-left corner of the figure to the upper right. A
bias toward positive surface displacement is apparent in these downstream dynamics,
without even viewing the histograms.

These observations can be rationalized with some simple observations regarding
the structure of the TKdV system. Upstream of the ADC, since D = 1, the nonlinear
effects are relatively weak and the dynamics are dominated by dispersion. Linearizing
(27) and introducing the ansatz uk = ei(kx−ωk t) produce the dispersion relation for
angular frequency ωk = −C2k3, or for phase velocity ck = ωk/k = −C2k2 (Majda
and Qi 2019). In particular, the phase velocity is strictly negative, implying that waves
only propagate leftward, as is consistent with Fig. 6a.

Downstream of the ADC, however, the depth ratio changes to D = 0.24. This
change significantly amplifies nonlinearity while suppressing dispersion, and thereby
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Fig. 6 Sample upstream and downstream solution trajectories from the same ensemble TKdV simulations
featured in Figs. 4 and 5. The upstream solutions exhibit only leftward propagating waves and a high degree
of regularity, while the downstream solutions exhibit both left and rightward moving waves along with
more intermittency

allows waves to propagate in either direction. In particular, the dispersionless limit of
KdV is the Burgers-Hopf equation, for which the nonlinear advection is proportional
in both amplitude and direction to the value of u. Hence, positive displacements would
be expected to move rightward, as is seen in Fig. 6b.

We remind the reader that the KdV framework tracks the long-time evolution of
waves in a reference frame moving with the characteristic speed c = √

gd from linear
theory. Hence, the above discussion of left-or-right going waves cannot be interpreted
in the context of the experimentswithout an appropriateGalilean transformation. Thus,
in the laboratory frame, all waves indeed propagate unidirectionally, from left to right,
with a speed near c. The directions and speeds calculated by the TKdV framework
simply quantify the deviation of the true wave speed from c.

Finally, Fig. 6 sheds light on the timescales required forwave evolution in the TKdV
framework. It appears that the normalized time of t = 10 is approximately the correct
timescale to observe substantial wave dynamics. More precisely, both the left-going
waves in Fig. 6a and the right-going waves in Fig. 6b require a dimensionless time of
about t = 7 to traverse the entire periodic domain. For the representative experiments,
the characteristic timescale, T , is 2.8 s upstream and 5.7 s downstream. Hence, a
dimensionless time of t = 7 corresponds to 20 s and 40 s upstream and downstream,
respectively.Given thewave speeds (c = 110 cm/s upstreamand 54 cm/s downstream),
these timescales can be converted to distances traveled by the waves. In fact, a simple
calculation using the definitions in Sect. 3 gives the distance traveled as 7Ng/(2π f 2p ),
which, due to a serendipitous cancellation, is independent of depth. Hence, the distance
traveled by the waves over a dimensionless time of t = 7 is the same value upstream
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Fig. 7 Dynamic evolution of surface-displacement skewness and kurtosis from the TKdV simulations.
Faint gray curves show skewness and kurtosis of 100 individual trajectories, and the bold black curves show
the corresponding ensemble mean. Skewness and kurtosis evolve over much shorter timescales than that
required for waves to cross the domain

and downstream, 22m. Note that, this distance is significantly greater than the 6-meter
length of the experimental wave tank.

These estimates raise an important question: if a distance of 22 m is required
for significant wave evolution under the KdV framework, how do the experiments
exhibit substantial changes in wave statistics a much shorter distance downstream of
the ADC? The results shown in Fig. 7 help resolve this question. This figure shows
the evolution of surface-displacement skewness (left) and kurtosis (right) computed
by the same deterministic TKdV simulations as pictured in Fig. 6. The bold black
curve shows the ensemble mean (ensemble size of 1000), while the faint gray curves
show the skewness and kurtosis of 100 individual trajectories to give a sense for the
variation involved. Importantly, the skewness and kurtosis evolve on a much shorter
timescale than the aforementioned t = 7. More precisely, skewness and kurtosis have
already saturated to their asymptotic value by t = 1, and reach half of that value by
t = 0.18. These dimensionless times correspond to travel distances of 310 cm and
56 cm, respectively—much shorter than the previously mentioned 22 m, and on the
same order as the relevant distances in the experiments. Thus, after crossing the ADC,
the wavefield rapidly reconfigures itself enough to fundamentally alter its statistical
distributions, and the timescale for this reconfiguration is much shorter than the time
required for waves to cross the entire periodic domain.

4.4 Explicit Formula for Outgoing Skewness and Experimental Confirmation

We now discuss arguably the most novel single result of the manuscript. In the recent
theoretical study, Majda et al. (2019) derived an explicit formula for the outgoing
wavefield skewness in terms of the system parameters (Majda et al. 2019). More
specifically, this formula relates the downstream skewness of surface displacement,
skew(η), to the change in slope variance, var(ηx ). Here, we recap the derivation of this
formula and then test the prediction against new, direct experimental measurements.

The explicit formula for outgoing skewness arises directly from the statistical
matching condition (34), which states that the downstream Hamiltonian must match
in expected value at the ADC, i.e., with respect to the incoming and outgoing Gibbs
measures. This condition can be written more explicitly as

C2D1/2
+ 〈H2〉− − C3D−3/2

+ 〈H3〉− = C2D1/2
+ 〈H2〉+ − C3D−3/2

+ 〈H3〉+ (49)
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Both the experiments and simulations show the upstream skewness to be negligible
compared to its downstream counterpart, allowing the term with 〈H3〉− to be dropped
in (49). With this approximation, (49) yields the relationship

〈H3〉+
〈H2〉+ − 〈H2〉− = C2

C3
D2+ (50)

Our next task is to convert this formula to physical variables so that it can be
tested against experimental data. First, following the definition of H3 in (19) and the
definition, u = η/(π1/2ηstd), a straightforward calculation gives

〈H3〉+ = π

3

〈
u3

〉

+ = 1

3π1/2

〈
η3

〉
+

η3std
= 1

3π1/2 skew+(η) (51)

This equation expresses a direct relationship between the expected value ofH3 and the
outgoing skewness of surface displacement. Next, we must convert theH2-quantities,
which involve surface slope. Using the definition ofH2 in (19) and L+ in (12) gives

〈H2〉± = π
〈
u2x

〉

± =
(

Nλ+
2πηstd

)2

var±(ηx ) (52)

We note that the downstream scale L+ is used in this conversion, since it is the
downstream Hamiltonian that is matched in (34). This formula links the expected
value ofH2 to the variance of surface slope.

Inserting (51) and (52) into (50), and using the definitions of C2 and C3 from (14),
gives the explicit formula

skew+(η)

var+(ηx ) − var−(ηx )
= 1

3
ε−3
0 D3+ (53)

This formula links the skewness of the outgoing wavefield to the change in the vari-
ance of surface slope. In particular, it predicts their ratio to scale as the inverse cube
of wave amplitude, ε−3

0 , and the cube of the depth ratio, D3+. It is a rather unexpected
relationship, as it would have been difficult to anticipate that the displacement skew-
ness and slope variance, among all possible variable combinations, are so intimately
related.

Fortunately, it is a relationship that can be tested directly against the experimen-
tal measurements, specifically the type of data that was presented in Fig. 2. Formula
(53) draws focus to the spatial variation of displacement skewness, which we replot
for convenience in Fig. 8a, and the variance of surface slope, shown in Fig. 8b. To
test (53), we must select a representative downstream position to evaluate skew+(η)

and var+(ηx ), and a representative upstream position for var−(ηx ). In short, we
select the same representative locations used to evaluate the histograms in Figs. 1, 4,
and 5, namely x = 15 cm downstream and x = −9 cm upstream. These posi-
tions are indicated by the blue and green vertical dashed lines in Fig. 8a, b. Recall
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Fig. 8 Experimental confirmation of the explicit formula for outgoing skewness (53). a, b Spatial variation
of skew(η) and var(ηx ) for several different amplitudes. The maximum of skew(η) and the minimum of
var(ηx ) each occur at a location that is insensitive to amplitude, x =15 cm (blue) and−9 cm (green), respec-
tively. c Measurements of the ratio skew(η)/�var(ηx ) from 15 different experiments plotted against the
dimensionless wave amplitude ε0. For sufficiently large amplitude, the measurements follow the predicted
ε−3
0 power law closely

that x = 15 cm corresponds to the peak of the downstream skewness and kurto-
sis. Meanwhile, we see in Fig. 8b that x = −9 cm corresponds to a slight dip in
var(ηx ).

With these locations selected, we evaluate the ratio skew(η)/�var(ηx ) for each
experiment and plot the result against dimensionless wave amplitude, ε0 = ηstd/d− on
a log-log scale in Fig. 8c.While the data show significant variation at small amplitudes,
it shows a well-defined decreasing trend at larger amplitudes. In particular, the decay
rate of the ratio, skew(η)/�var(ηx ) ∼ ε−3

0 , is well predicted by the explicit formula
(53), shown by the red dashed line in Fig. 8c. The apparently less predictable behavior
at small amplitudes can be attributed to the fact that, in order for the system to relax
to the Gibbs measure, modes must interact through nonlinearity. For the smallest
amplitude experiments, the amount of nonlinearity is apparently too small for modes
to mix sufficiently.

We remark that Eq. (53) bears similarity to a formula derived by Onorato and Suret
(2016), in the context of constant-depth KdV, that relates variations in skewness to
variations in spectral bandwidth. Indeed, since ηt ≈ cηx to leading order, the term
var(ηx ) in Eq. (53) could be interpreted as approximately the spectral bandwidth. We
note that an analogous formula has been derived for the nonlinear Schrödinger equation
relating kurtosis to bandwidth variations (Onorato et al. 2016). The present study
differs in that it predicts a moment-bandwidth relation for waves propagating over
variable depth, where it is the depth change that creates systemdisequilibrium.A small
transition region connects two near-equilibrium systems, i.e., one far upstream and one
far downstream. The link between these two equilibrium states ismademathematically
precise by the statistical matching condition (34), which is the key ingredient needed
to derive Eq. (53). This is in contrast to the simpler situation of waves propagating over
constant depth, where spectral variations and the associated moment variations arise
from out-of-equilibrium initial conditions (Onorato and Suret 2016; Onorato et al.
2016).
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5 Concluding Remarks

This manuscript extends the parallel experimental and modeling efforts of Bolles et al.
(2019) and Majda et al. (2019) concerning the emergence of anomalous wave statis-
tics from abrupt changes in bottom topography. The theoretical framework is based
on deterministic and statistical analysis of the TKdV system, with exploitation of
the Hamiltonian structure and the associated invariant Gibbs measures. The theory
depends crucially on matching the incoming and outgoing invariant measures at the
abrupt depth change, so as to link the incoming and outgoing states. Throughout, we
have emphasized the synergy between the experiments and theory, with experimen-
tal data informing theoretical advancements and model predictions motivating new
experimental measurements.

Careful calibration of the inverse temperature against the experimental data allowed
for a detailed comparison between experimental and theoretically predicted wave
statistics. The outgoing distributions of surface displacement predicted by the TKdV
framework capture in remarkable detail the experimental measurements. We have
extended this statistical analysis to surface slope, a line of inquiry motivated by the
importance ofH2, the slope standard deviation, in the theory. The comparison of slope
statistics shows intriguing similarities, while also some quantitative differences in the
shape and skewness of the outgoing distributions.

Finally, Majda et al. (2019) derived an explicit formula for the skewness of the
outgoing wavefield, which we have tested against direct experimental measurements.
Specifically, the formula predicts how the ratio of displacement skewness to slope
variance, skew(η)/�var(ηx ), depends on wave amplitude. The experimental mea-
surements conclusively confirm the inverse-cube dependence on wave amplitude, thus
highlighting the predictive power of the TKdV statistical mechanics framework.

We note that since the ratio, skew(η)/�var(ηx ), exhibits such a clear dependence on
input parameters, it could prove a useful diagnostic for anomalous wave observations
in the ocean. In particular, this quantity seems to provide a signature for anomalous
waves that are triggered by abrupt depth changes. Examination of this ratio in field
data is an exciting avenue for future research.
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