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Abstract

We study the nonlinear coupling mechanism and turbulent transition in magnetically
confined plasma flows based on two representative limiting regime dynamics. The
two-field flux-balanced Hasegawa–Wakatani (BHW) model is taken as a simplified
approximation to the key physical processes in the energy-conserving nonlinear
plasma flows. The limiting regimes separate the effects of finite non-adiabatic resistivity
and extreme non-normal dynamics to enable a more detailed investigation on each
individual aspect with the help of various mathematical tools. We adopt the strategy
from the selective decay theory used for the simpler one-field system to develop new
crucial a priori estimations in the two-field model framework. The competing effects
from model dissipation, finite particle resistivity, as well as the nonlinear interaction
with a zonal mean state to induce dual direction energy transports are characterized
from the systematic analysis. Non-normal dynamics with aligned eigendirections is also
shown to go through a sharp transition from turbulence to regularized zonal flows. The
diverse phenomena implied from the limiting regime analysis are further confirmed
from direct numerical simulations of the BHWmodel.

1 Introduction
Nonlinear interactions between the turbulent non-zonal waves and the self-organized
zonal flow play a critical role in many observed phenomena from natural and experimen-
tal systems [9,10,13,17,19]. One example of particular interest comes from the generation
and development of turbulent transport in the edge regime of toroidal magnetically con-
fined plasmas [2,3,5,8,14]. The nonlinear exchange of energy among wide scales can be
developed from secondary instability and lead to the emergence of persistent large-scale
zonal structures from the turbulent transition [21,22]. This phenomenon is also related
with the Dimits shift [4,25,28] which refers to a nonlinear upshift in the amplitude of the
turbulent flow transport. To understand the fundamental physics in such complex non-
linear systems is crucial with significant practical importance such as the achievement of
controlled fusion; thus, it still attracts extensive researches in theoretical and numerical
exploration of the mechanisms in representative fusion plasma phenomena [1,11,12,26].
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The use of simplified model framework plays an important role in identifying the key
physical constituents for the analysis of plasma confinement and anomalous transport.
Among them, the one-field Hasegawa–Mima (HM) [2,6] and the two-field Hasegawa–
Wakatani (HW) [7,18,27]models provide simplified formulations for thedriftwave–zonal
flow interactionmechanism to qualitatively capture the energy-conserving nonlinear pro-
cesses in plasma flows. In a recent development, a flux-balanced Hasegawa–Wakatani
(BHW) model is proposed [14,24] to introduce an improved balanced treatment in the
parallel electron responses on magnetic flux surfaces, compared with the previous modi-
fied Hasegawa–Wakatani (MHW) formulation [2,7]. The BHWmodel with generic drift
instability and balanced particle response provides a more feasible formulation where
the most essential physical processes are identified [14,20]. Besides, it is shown that this
model is able to recover the representative nonlinear Dimits shift and the intermittent
avalanche-like bursts [23,25] that are of particular interest in more complicated model
simulations.
In this paper, we investigate the complex turbulent structures in magnetically confined

plasma edge flows by inspecting the typical limiting dynamical regimes. The complicated
plasma equations combining the interplay of various linear and nonlinear interactions
usually make it impossible to carry out direct theoretical analysis for the basic features.
The one-fieldHMmodel offers a clean setupwith analytical tractability for the application
of mathematical theories such as the selective decay principle and nonlinear secondary
instability [21,22]. On the other hand, theHMmodel is often insufficient by only including
the most basic adiabatic dynamics with zero particle resistivity and no instability. To
introduce the effects from the non-adiabatic electron response α and the unstable drift
waves from background ion density gradient κ , we need tomove to the next level two-field
BHW model containing richer phenomena from a larger group of coupled components.
Especially, important processes tobe investigated include the excitationof linear driftwave
instability; the coupling between the characterizing stable and unstable subdirections; and
the non-normal coupling dynamics in relation to the two major model parameters α, κ .
The typical features in the plasma system such as the statistical transition from strong

turbulent particle transport to pure zonal flow regime are usually a result from a com-
bination of several interacting effects from the model. In describing the complicated
mechanism including multiple coupled processes, a desirable strategy is to separate each
individual component to analyze them in a simpler setup and then to consider their
combined contributions. In the two-field BHW model case, the situation becomes more
challenging withmultiple factors acting in opposite directions to create the final turbulent
solutions. Selective decay principle [15,17] is one effective strategy for showing the accu-
mulation of energy in different scales. The theory framework is successfully applied to
predict the emergence of a purely zonal state in the one-field HMmodel subject to gener-
alized dissipations [21,22]. However, we can no longer find the similar clean convergence
result for the two-field BHW model as in the one-field HM case. Instead, we adopt the
general strategy to separate the effect from different processes and take a more heuristic
approach for the analysis of each individual contribution. A sketch of the mathematical
theory is first provided to quantify the effect from each model component. New crucial a
priori estimations are then developed based on the mathematical theory. To support the
theoretical discoveries, extensive numerical simulations are carried out to illustrate the
predicted features.
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In particular here, we aim to address the following major issues in this paper according
to the BHWmodel:

(i) Linear mode interactions from model parameters κ ,α: the linear stability analysis
decomposes the state space into the unstable and stable subspaces by the eigen-
value decomposition of the linearized operator L for each wavenumber. The model
parameters κ ,α determine the growth/damping rate along the unstable/stable sub-
directions and lead to a transition from normal subdirections to fully non-normal
dynamics.

(ii) Non-normal dynamics due to the parameter ratio r = κ
α
: It is found that strong

non-normal dynamics can be generated for the two eigendirections as r → ∞. The
two eigenvectors can be determined only dependent on the parameter ratio r = κ

α
.

Non-normal interactions introduce additional complexity into the coupling between
the two characterizing eigenmodes.

(iii) Nonlinear interaction between the two eigendirections based on the adiabaticity α:
By setting the background density gradient parameter κ = 0, we are able to study
the interaction between the two eigendirections due to varying α without linear
instability and non-normal dynamics. This limiting case considers the redistribution
(both downscale and upscale) of the excited energy purely due to the effect from
the resistivity parameter α. And the finite resistivity α is shown to have the reversed
selective decay driving the energy in the opposite direction to the selective decay
from the dissipation of fluctuation modes.

(iv) Extreme non-normal dynamics based on background density gradient κ : By setting
the parameter α = 0, we reach the other limiting regime where the two eigendirec-
tions are aligned with each other. The density field is comparable to a passive tracer
field with zonal mean gradient. In this case, we are able to investigate the effect
of strong non-normal coupling between eigenmodes, and the particle flux trans-
port with and without the contribution from a dominant zonal flow through direct
numerical simulations.

In the rest part of the paper, a general description of the model formulation and key
properties of linear instability and conserved quantities is first provided in Sect. 2. Then,
the two major limiting regimes of interest are discussed. Section 3 studies the nonlinear
energy transfer mechanisms due to different effects in the limiting regime κ = 0 using
the selective decay theory. And the other extreme limiting regime with α = 0 is studied
in Sect. 4 concentrating on the non-normal dynamics and the transition from turbulence
to regularized zonal flows. The concluding discussion is provided in Sect. 5.

2 Separating coupling effects in the two-fieldmodel for plasma edge
turbulence
The flux-balanced Hasegawa–Wakatani (BHW) equations model the coupling between
drift wave modes and zonal state with balanced particle responses on the embedded
magnetic surfaces [14,24]. The system includes both drift waves from background ion
density gradient and non-adiabatic electron responses. It is formulated based on the flux-
balanced potential vorticity q = ∇2ϕ − ñ and the density fluctuation n in the following
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two-dimensional equations

∂q
∂t

+ ∇⊥ϕ · ∇q − κ
∂ϕ

∂y
= μΔq, (1a)

∂n
∂t

+ ∇⊥ϕ · ∇n + κ
∂ϕ

∂y
= α (ϕ̃ − ñ) + μΔn, (1b)

where ϕ is the electrostatic potential, n is the density fluctuation from the prescribed
background density n0 (x), and uE ≡ ∇⊥ϕ = (−∂yϕ, ∂xϕ

)
is the E × B velocity field. The

solutions are usually defined on a doubly periodic geometry for the sake of simplicity,
while it can be easily generalized to other geometry such as a channel domain [23,25].
The model dynamical structure in (1) is determined by two major control parameters,

that is, κ and α. The constant background density gradient κ = −∇ ln n0 is defined by the
exponential background density profile near the boundary n0 (x) ∼ exp (−κx) . The non-
adiabatic resistivity parameter (adiabaticity) α for parallel electron motions is inversely
related to the particle resistivity. It determines the degree to which electrons can move
rapidly along the magnetic field lines [7,8]. On the right hand sides of the Eq. (1), another
effect of collisional ion viscosity is modeled as a homogeneous dissipation approximated
by the Laplace operator with strengthμ uniformly on both potential vorticity and particle
density field [16].
For convenience in analysis of the drift wave–zonal flow interactions, the physical quan-

tities for ϕ and n are usually decomposed into zonally averaged mean states ϕ̄, n̄ and their
fluctuations ϕ̃, ñ about the zonal mean, that is,

ϕ = ϕ̄ + ϕ̃, n = n̄ + ñ, f (x) = L−1
y

∫ Ly

0
f (x, y) dy. (2)

The importantmodification in the BHWmodel comes from the removed of the poloidally
averaged density n̄ along y-direction from the potential vorticity q = ∇2ϕ− ñ. In contrast,
the original and modified Hasegawa–Wakatani (MHW) models introduced in [2,27] use
the ‘unbalanced’ potential density q = ∇2ϕ − n without removing the mean state n in
the potential vorticity, leading to problems with the convergence at the adiabatic limit
α → ∞ [21,22,24].
The BHW model offers a more realistic formulation with many desirable properties

[20–23]. Especially, it is shown from rigorous proof and numerical confirmation [14,24]
that at the adiabatic limit, α → ∞, the BHWmodel converges to the following one-state
equation about the potential vorticity

∂q
∂t

+ ∇⊥ϕ · ∇q − κ
∂ϕ

∂y
= μΔq, q = ∇2ϕ − ϕ̃, (3)

which is called the modified Hasegawa–Mima (MHM) model [2,6]. Notice again the
modification by removing zonal state in ϕ̃ in the definition of potential vorticity q in
the above Eq. (3). On the other hand, the MHW model shows performance significantly
different from the converging BHMmodel as α → ∞ [23,24].
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2.1 Linear and nonlinear coupling effects in the two-field model

The fluctuation states (q̃, ñ) in the non-zonal modes ky �= 0 can be Galerkin projected to
the spectral domain with Fourier modes due to the doubly periodic boundary condition

q̃ =
∑

k
q̂kei(k·x−ωkt), ñ =

∑

k
n̂kei(k·x−ωkt); (4)

and the corresponding potential function ϕ̃ is recovered from the fluctuation state relation
q̃ = ∇2ϕ̃ − ñ

ϕ̃ =
∑

k
ϕ̂kei(k·x−ωkt) = −

∑

k
k−2 (q̂k + n̂k) ei(k·x−ωkt).

Aboveωk = ω (k) is the wave frequency for each corresponding wavenumber and k = |k|
is the absolute length of the two-dimensional wavenumber. In the analysis of typicalmodel
properties, we can summarize the Eq. (1) in a general form. The model can be expressed
by the Fourier coefficients uk = (q̂k , n̂k)T as 2 × 2 subsystems for each wavenumber k.
Substituting the above spectral expressions (4) into the original Eq. (1), we rewrite the
original equations in the following form:

duk
dt

+ Nk (u) = αLkuk − Dkuk . (5)

Above L and D are the linear operators for the skew symmetric dispersion and negative
definite dissipation effects. The linear matrix L is only dependent on the parameter ratio
r = κ/α so that

Lk = −
[

0 0
k−2 1 + k−2

]

+ irkyk−2
[
−1 −1
1 1

]

, r = κ

α
.

Homogeneous damping is represented by the diagonal operator Dk = −μk2I . The non-
linear operator N contains all the nonlinear coupling due to the flow advection term

Nk =
[(∇⊥ϕ · ∇q

)
k(∇⊥ϕ · ∇n
)
k

]

=
[∑

m+n=k
m⊥·n
m2 (q̂m + n̂m) q̂n

∑
m+n=k

m⊥·n
m2 (q̂m + n̂m) n̂n

]

,

where the effects from different scales are intertwined from the nonlinear interaction.
It can be seen next that the nonlinear operator N will not change the total energy and
enstropy of the system [14]. The advantage of considering the above 2× 2 subsystems (5)
is that we can diagonalize the linear operators. Then, by the eigenvalue decomposition
of the linear matrix, we can find the transform matrix P for the eigenvectors and the
diagonalized matrix Λ for the eigenvalues

PL = ΛP, v = Pu.
The original system (5) can be transformed into the diagonalized system about v =
(v1, v2)T

dv
dt

= −Λv − PN
(
P−1v) . (6)

Above, v1 becomes the unstable eigenmode and v2 is the stable eigenmode from the linear
stability analysis.Λ = diag (λ1, λ2) is the diagonal matrix for the two eigenvalues. The two
stable and unstable directions as well as different scales are coupled through the nonlinear
term N .
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2.1.1 Stable and unstable subdirections in the BHWmodel

Linear stability analysis of the BHWmodel (5) offers the driving mechanism for the gen-
eration of non-zonal fluctuations in the starting transient state. This linear instability
generated from the drift wave resistivity leads to the excitation of non-zonal drift wave
modes from the initial state with only small perturbations. The linear operator decom-
poses the system into the stable and unstable subspaces (6) with exponential growth and
damping along the corresponding eigendirections. The explicit formulas for the charac-
teristic stable and unstable subdirections of the BHW system can be then computed.
Drift wave instability is due to the non-adiabatic electron response with finite α �= 0.

Neglecting the nonlinear coupling terms N , the linearized Eq. (5) for a single non-zonal
wavenumber ky �= 0 yield

−iωq̂ − iκkyϕ̂ = −μk2q̂,

−iωn̂ + iκkyϕ̂ = α (ϕ̂ − n̂) − μk2n̂.
(7)

The above system can be decoupled into independent subsystems (6) for each single
wavenumber k since we do not include the nonlinear terms in the linearized system. It
can be viewed as the dominant dynamics in the starting transient state when the state
values are small and nonlinear interactions have not taken themajor effect. The linearized
coefficients (q̂, n̂) then form the 2 × 2 subsystem for each wavenumber. We organize
the linear coupling terms including the drift instability on the left hand side of (7) and
the stabilizing dissipations on the right hand side. In fact, in the homogeneous damping
case, the dissipation operator on the right hand side of (7) becomes diagonal. It can be
eliminated by introducing the additional damping effects into the single wavenumber
modes by

q̃ = q̂eik·xe−i
 t eσ t−μk2t , ñ = n̂eik·xe−i
 t eσ t−μk2t ,

where we decompose the frequencyω into the real and imaginary parts. The two branches
of the eigenvalues ω+ = 
 + iσ+ and ω− = −
 + iσ− can be computed explicitly [20]
as


k = sgn
(
ky
)
α

2
√
2

(
1 + k−2)

(√
1 + 16γ 2 − 1

) 1
2
,

σ+
k = α

2
(
1 + k−2)

[
1√
2

(√
1 + 16γ 2 + 1

) 1
2 − 1

]

,

σ−
k = −α

2
(
1 + k−2)

[
1√
2

(√
1 + 16γ 2 + 1

) 1
2 + 1

]

,

(8)

with the only parameter dependence on the ratio γ = κ
α

kyk2

(1+k2)2
. The detailed discussion

for the two branches of explicit solutions of the dispersion relation can be found in Section
III of [20].
The two sets of eigenvalues ω± = ±
 + iσ± also give the two branches of eigendi-

rections for the two state pair
(
q̂±, n̂±)

and the corresponding potential function ϕ̂± as

n̂± =
(
κ−1k−1

y k2ω± − 1
)
q̂±, ϕ̂± = −κ−1k−1

y ω±q̂±. (9)
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The unstable direction with σ+ > 0 implies exponential growth along this eigendirection
from the linear drift instability; the stable direction σ− < 0 implies exponential decay
along the eigendirection. The two eigenvectors

(
q̂±, n̂±)

of unstable and stable modes can
be found explicitly from the previous expression (9) together with the explicit formulas
(8) as

unstable direction:uk+ = (
q̂+
k , n̂

+
k
)

= C+

(

2
√
2γ

(
1 + k2

)
, −

(√
1 + 16γ 2 − 1

) 1
2

+i
[(√

1 + 16γ 2 + 1
) 1

2 − √
2
])T

;

stable direction:uk− = (
q̂−
k , n̂

−
k
)

= C−

(

2
√
2γ

(
1 + k2

)
,

(√
1 + 16γ 2 − 1

) 1
2

−i
[(√

1 + 16γ 2 + 1
) 1

2 + √
2
])T

, (10)

where C+, C− are factors to normalize the vectors to unit length.

2.1.2 Angles between the two eigendirections for the non-dissipative drift waves

The non-normal dynamics considers the alignment of the two above eigenvectors. Non-
normal structures become important when the background density is nonzero κ �= 0.
The eigendirections in (10) as a function of γ = r kyk2

(1+k2)2
also only depend on the two

parameter ratio r = κ
α
. Thus, they gain the self-similarity based on the value of κ

α
. As the

ratio approaches the zero limit r → 0, the two eigenvectors tend to become orthogonal
with each other, while at the infinity limit r → ∞, the modes (especially the pure drift
mode kx = 0) become aligned along the same direction.
To check the alignment between the two characteristic eigendirections in (10), we define

the angle θk (r) between the two vectors
(uk+,uk−)

by the complex inner product

cos θk (r) = Re
〈uk+,uk−〉

∥
∥uk+∥

∥
∥
∥uk−∥

∥ , (11)

where
〈
a, b

〉 = ∑
aib∗

i and uk+ = (
q̂+
k , n̂

+
k
)T , uk− = (

q̂−
k , n̂

−
k
)T . The angle θk (r) charac-

terizes the alignment of two eigenvectors for each wavenumber k and is only dependent
on the parameter ratio r = κ/α. Along the zonal direction ky = 0, obviously the two
eigenvectors become orthogonal to each other. As an illustration of the linear instability
and non-normal structure in the eigenmodes dependent on the parameters, Fig. 1 plots
the angles (11) between the two eigenvectors in the spectral domain among different
wavenumbers k = (

kx, ky
)
, and the changes in the most non-normal wavenumber as a

function of the parameter ratio r = κ
α
. The first row shows the angles in degree for each

wavenumber in the two-dimensional spectral domain. With small values of the ratio r,
the two modes are mostly orthogonal among all the wavenumbers. As the value of the
ratio r increases, the non-normality grows larger. The most non-normal modes are along
the line of pure drift wave modes kx = 0. The most linearly unstable modes with the
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Fig. 1 The angle between the stable and unstable eigenvectors from the linear stability analysis. The first
row shows the non-normal angles (in degrees) with different ratios r = κ

α
. The second row compares the

strongest non-normal angle (minimum θk) and the corresponding wavenumber ky as a function of r

maximum growth rate are also along the kx = 0 axis for pure drift waves, aligned with
the most non-normal modes (see Fig. 2 of [20] for the growth rate from linear instability).
The lower row compares the most non-normal angle as a function of r. The two modes
become aligned with each other as r grows to large values. Also the location of the most
non-normal modes approaches the largest scale along the kx = 0 axis. In conclusion, the
two eigendirections become orthogonal at the limit κ = 0, and the the eigendirections get
aligned in the same direction at the other limit α = 0. Next in Sects. 3 and 4, we will focus
on the limiting performances of the two extremes at the orthogonal limit r → 0 and the
non-normal limit r → ∞.

2.2 Conserved quantities from the total energy and enstrophy equations

The linear instability is dominant in the starting transient state to excite the non-zonal
fluctuation modes. As the amplitudes along the stable and unstable direction grow in
time, the nonlinear effect will gradually take over to give a larger contribution. Then, the
conserved quantities invariant under the nonlinear operators provide an important tool
for the analysis of the evolution of the solutions incorporating both linear and nonlinear
effects. Here, we first summarize the useful conservation law equations for the total energy
E and total potential enstrophyW .
We can define the total energy E and total potential enstrophy W for the BHW model

(1) as well as the energy and enstrophy inside the zonal state E and W in the following
forms:

E = 1
2

∫ (|∇ϕ|2 + n2
)
, E = 1

2

∫
v2 = 1

2

∫
|∂xϕ|2 ,

W = 1
2

∫
q2 = 1

2

∫ (∇2ϕ − ñ
)2 , W = 1

2

∫
q2 = 1

2

∫ ∣
∣∂2xϕ

∣
∣2 .

(12)
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Above, Ē, W̄ are the energy/enstrophy from the zonal mean state with q = ∂2xϕ. Note that
the enstrophyW in the BHWmodel is defined based on the balanced potential vorticity
q = ∇2ϕ − ñ. Through the construction of the BHWmodel (1), the nonlinear advection
terms conserve both the energy and the balanced enstrophy. The dynamical equations for
the total energy and potential enstrophy can be derived in the following equations:

dE
dt

=
∫

(κ + v) ũñ − α

∫
(ñ − ϕ̃)2 − DE,

dW
dt

= κ

∫
ũñ − DW ,

(13)

In the above equations, the last terms DE,DW represent the dissipation effect μ in the
total energy and enstrophy

DE = μ

∫ (|Δϕ|2 + |∇n|2) ,

DW = μ

∫
|∇q|2 .

The additional term due to the mean velocity v = ∂xϕ advection in the energy equation
represents the zonal flow transport of the particle flux, ũñ. One negative-definite term due
to the non-adiabatic resistivity α appears in the total energy E equation as an additional
energy sink, while the drift factor α has no effect on the change of total enstrophy W .
More generalized formulation with inhomogeneous dissipations can be found in Section
III of [14].
Besides, we can find the dynamical equations for the zonal energy and enstrophy. The

equations for the zonal mean states q (x) = ∂2xϕ (x) and n (x) in the BHW model can be
derived as

∂tq + ∂x
(
ũq̃

) = μ∂2x q,

∂tn + ∂x
(
ũñ

) = μ∂2x n.
(14)

The adiabaticity α is only applied on the fluctuation components with tildes, so it has
no contribution on the zonal mean equations. The right hand sides of (14) are due to
the homogeneous damping terms. The fluctuation feedback to the zonal mean state is
through the nonlinear coupling term as an eddy diffusivity effect

∂x
(
ũf̃

)
= 1

Ly

∫ (
ϕ̃xf̃y − ϕ̃yf̃x

)
dy,

with f̃ = q̃, ñ. The relation between the vorticity eddy flux ũq̃ and the particle density flux
ũñ can be computed using the definition of zonal and poloidal velocity ũ = −∂yϕ, ṽ = ∂xϕ̃

ũq̃ =
∫

ũ
(

∂2ϕ̃

∂x2
− ñ

)
dy = −ũñ + ∂x

(
ũṽ

)
, (15)

where in the secondary equality we use integration by parts

ũ∂xṽ = −∂yϕ̃∂2x ϕ̃ = ∂x
(
ũṽ

)
.

Especially, the second term on the right hand side will vanish when another integration
along x is applied. The total fluxes in vorticity and density are related to opposite signs as

∫ (
ũq̃

)
dx = −

∫ (
ũñ

)
dx.
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Using the above relations, the dynamical equation for the zonal mean energy and enstro-
phy can be found directly from the equations for the mean states

dE
dt

= −
∫

v
(
ũq̃

) − μ

∫
|∂xv̄|2 ,

dW
dt

=
∫

∂2x v
(
ũq̃

) − μ

∫
|∂xq̄|2 .

(16)

From the above Eq. (16), we observe that the interactions between the zonal velocity v̄
and the vorticity flux ũq̃ play the central role of energy and enstrophy transfers between
the zonal state and the non-zonal fluctuations.

3 Zero background density gradient regime with κ = 0
The BHW model (1) in general incorporates various model effects including dissipa-
tion, non-adiabatic resistivity, as well as the nonlinear drift wave–zonal flow interaction
[8,21,24]. These different factors lead to very complicated final model dynamics and rich
phenomena. A convenient way to understand the coupled effects is to consider the lim-
iting regimes of the model where the individual contribution from each component can
be separated. In this way, we are able to concentrate on the mechanisms from different
parameter regimes and gain a better understanding of the combined effects leading to
the distinctive phenomena observed in plasma edge turbulence. Especially, we are inter-
ested in the change in dynamics due to the non-adiabatic resistivity parameter α and the
background density gradient κ .
In this section, we first focus on interactions between the two eigendirections at the zero

background density limit κ = 0. At this limit, the original BHWmodel (1) is simplified to
the form without drift waves

∂q
∂t

+ ∇⊥ϕ · ∇q = μΔq,

∂n
∂t

+ ∇⊥ϕ · ∇n = α (ϕ̃ − ñ) + μΔn.
(17)

This limit, r = κ/α → 0, refers to a regime with dominant adiabaticity α where the linear
instability is eliminated. The integrable solutions in the stable and unstable subspaces
can be achieved. Thus, we are able to analyze explicitly on the linear and nonlinear cou-
pling between the two eigendirections. Still, the simplified dynamics (17) contains many
interesting processes to be investigated.

3.1 Explicit integrable dynamics at the limit κ = 0

At the zero background density κ = 0, no linear instability exists to generate positive
growth rate. Directly from the expressions in (8) for the eigenvalues, the unstable branch
becomes a metastable one with zero dispersion relation ω+ = 0, while the stable branch
becomes purely imaginary ω− = −iα

(
1 + k−2)with no dispersive drift waves. The linear

coupling from the resistivity factor α cannot change in energy in the metastable branch
ω+, while the nonlinear coupling effect transfers the energy to the stable branch ω− to
get damped. This simple structure enables us to focus on the explicit energy exchanges
between the two subdirections characterized by the two eigenvectors.
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By carrying out the same eigenvalue decomposition of the linear matrix for each
wavenumber k, the system (17) contains one metastable direction with zero eigenvalue
and one stable direction with negative eigenvalue. Thus, the following two subspaces can
be discovered:

– metastable direction with ω+ = 0: the density n̂+ = ϕ̂+, and the potential vorticity
becomes q̂+ = − (

k2 + 1
)
ϕ̂+;

– stable directionwithω− = −iα
(
1 + k−2): the density n̂− = −k2ϕ̂−, and the potential

vorticity vanishes q̂− = −k2ϕ̂− − n̂− = 0.

Thus, the full potential function in the non-zonal fluctuation state ϕ̃ can be represented
by a combination of the stable and metastable modes

ϕ̃ =
∑[

ϕ̂+
k + ϕ̂−

k e
−α(1+k−2)t

]
eik·x−μk2t . (18)

The linearly stable damping and homogeneous dissipation are added explicitly as an
exponential decay factor in time e−α(1+k−2)t aswell as the additional damping term e−μk2t .
The corresponding potential vorticity q̃ and particle density ñ state can be also expressed
in terms of the two branches

(
ϕ̂+
k , ϕ̂

−
k
)
accordingly

q̃ = −
∑(

k2 + 1
)
ϕ̂+
k e

ik·x−μk2t ,

ñ =
∑[

ϕ̂+
k − k2ϕ̂−

k e
−α(1+k−2)t

]
eik·x−μk2t .

(19)

Note that the potential vorticity q only contains the metastable mode ϕ+, while the
electrostatic potential function ϕ combines both the stable and metastable components.
In fact, the metastable state q̂ = − (

k2 + 1
)
ϕ̂+ represents the potential vorticity qHM =

∇2ϕ − ϕ̃ in the one-field Hasegawa–Mima (HM) model (3) at the adiabatic limit α → ∞.
Therefore, using the two eigendirections, we can directly decouple the HM state q̂ at

the adiabatic limit, while the additional effect ϕ̂− introduces the additional non-adiabatic
effect from the finite resistivity α < ∞. For direct computation of the modes for each
single wavenumber k , the stable branch can be recovered from the potential vorticity q
and electrostatic potential function ϕ mode

ϕ̂−
k e

−α(1+k−2)t = ϕ̂k − ϕ̂+
k = ϕ̂k + q̂k

k2 + 1
.

At the limit κ = 0, we are able to focus on the equation for potential vorticity (1a) with the
feedback from n only coming from the nonlinear coupling. This shows that the limiting
regime κ = 0 is a desirable case for the analysis of the additional contributions from the
finite resistivity factor α.

3.1.1 Spectral equations for themetastable and stablemodes

With the mode decomposition into the two branches (18) and (19), the two modes
(
ϕ̂+
k , ϕ̂

−
k
)
are further coupled from the nonlinear operator. More precisely, we can find the

explicit dynamical equations for the two modes by substituting the decomposition into
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the original dynamics (17)

dϕ̂+
k

dt
=

∑

m+n=k
A+
mnk

[
ϕ̂+
mϕ̂+

n + ϕ̂−
mϕ̂+

n e−α(1+n−2)t
]
,

dϕ̂−
k

dt
=

∑

m+n=k

[
A−,++
mnk ϕ̂+

mϕ̂+
n e

α(1+k−2)t + A−,−+
mnk ϕ̂−

mϕ̂+
n e

α(k−2−n−2)t

+A−,−−
mnk ϕ̂−

mϕ̂−
n eα(k

−2−n−2−m−2)t
]
.

(20)

Above {Amnk} are the coupling coefficients between thedifferentmodes satisfying the triad
relation m + n = k. The homogeneous dissipation on the right hand side of the original
equation can be eliminated by the explicit damping rate in (19). The coupling coefficient
for the metastable mode can be found as A+

mnk = −n2+1
k2+1m⊥ · n and similarly for the

coefficients A−
mnk for the stable mode. In general, direct computation of the nonlinear

term requires estimation among all the coupling modes throughout the spectra.
Directly from the above Eq. (20), we see the nonlinear coupling between different scales

and the stable and unstable modes together. The first equation equation of (20) describes
explicitly the evolution of themetastable state ϕ̂+ (that is, theHMstate q̂). At the adiabatic
limitα → ∞, the second coupling termon the right hand side, ϕ̂−

mϕ̂+
n e−α(1+n−2)t , between

the two subdirections vanishes due to the strong damping in time. The equation reduces
exactly to the one-layer HMmodel (3)

dq̂k
dt

=
∑

m+n=k
A+
mnkϕ̂

+
mq̂+

n = −
(
∇⊥ϕ+ · ∇q

)

k
,

which models the adiabatic dynamics with no resistivity α = ∞. On the other hand, with
finite non-adiabatic resistivity α < ∞, the stable mode ϕ̂− extracts additional energy in
the HMmode ϕ̂+ through the second coupling term to relocate the energy spectrum. The
single role of the one-field HM state q with the finite resistivity effect α introduced from
an unstable forcing is discussed in [20]. There the solution becomes gradually unstable as
the value ofα decreases (see Fig. 6 in [20]) due to the lack of energy transfer and dissipation
mechanism from the stable ϕ− branch.

3.1.2 The enstrophy and energy equations

The total energy and enstrophy equations in (12) provide a convenient way to quantify the
total amount of variability among the spectral modes. Especially, the complicated nonlin-
ear coupling effects will not change the total energy and enstrophy structure of the system
as shown in the dynamics (13). In the limiting regime with κ = 0, the expressions for
total energy and enstrophy can be further simplified through the decomposition between
the two states (19). Using the explicit formulas for the decoupled states

(
ϕ̂+, ϕ̂−)

, we can
rewrite the conserved total enstrophy and energy as

W = 1
2

∫
q2 = 1

2
∑(

k2 + 1
)2 ∣∣ϕ̂+

k
∣∣2 ,

E = 1
2

∫
|∇ϕ|2 + n2 = 1

2
∑(

k2 + 1
) ∣∣ϕ̂+

k
∣
∣2 + k2

(
k2 + 1

) ∣∣ϕ̂−
k
∣
∣2 e−2α(1+k−2)t .

(21)
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Again the enstrophy W related to the potential vorticity q is only determined by the
metastable HM state with ω+ = 0, while the total energy E also includes the contribution
from the other branch of stablemodewith a damping factorσ− = −α

(
1 + k−2). The total

kinetic energy and energy in the density need to be decomposed into the two branches

k2 |ϕ̂|2 = k2
∣∣ϕ̂+∣∣2 + 2k2Re

(
ϕ̂+ϕ̂−∗) e−α(1+k−2)t + k2

∣∣ϕ̂−∣∣2 e−2α(1+k−2)t ,

|n̂|2 = ∣
∣ϕ̂+∣

∣2 − 2k2Re
(
ϕ̂+ϕ̂−∗) e−α(1+k−2)t + k4

∣
∣ϕ̂−∣

∣2 e−2α(1+k−2)t .
Therefore, the cross-term gets cancelled in the total energy as a combination of the stable
and metastable states

k2 |ϕ̂|2 + |n̂|2 = (
k2 + 1

) ∣∣ϕ̂+∣∣2 + k2
(
k2 + 1

) ∣∣ϕ̂−∣∣2 e−2α(1+k−2)t .

Together with the enstrophy in each mode,Wk = |q̂k|2 = (
k2 + 1

)2 ∣∣ϕ̂+
k
∣
∣2, the energy in

the stable subspace can be recovered by

E−
k = k2

∣
∣ϕ̂−

k
∣
∣2 = e2α(1+k−2)t

k2 + 1

(
Ek − Wk

k2 + 1

)
, (22)

with Ek = k2 |ϕ̂k |2+|n̂k |2 andWk = |q̂k |2 the energy and enstrophy at each scale k . Using
the above relation, we can explicitly compute the energy inside the stable and metastable
subspaces and check their interactions for the energy exchange along scales.
From the enstrophy Eq. (13) at the limit κ = 0, it is notable that the total enstrophyW

becomes a conserved quantity only subject to the dissipation effect

dW
dt

= −DW = −μ
∑

k2
(
k2 + 1

)2 ∣∣ϕ̂+
k
∣∣2 . (23)

Without the dissipation μ = 0, the total enstrophyW = 1
2
∑ |q̂k|2 is conserved in time.

The detailed equation for the enstrophy at each wavenumber Wk can be also computed
based on the spectral Eq. (20)

d
dt

|q̂k|2 = − (
k2 + 1

)2 ∑

m+n=k
A+
mnk

[
ϕ̂+
mϕ̂+

n ϕ̂+∗
k + ϕ̂−

mϕ̂+
n ϕ̂+∗

k e−α(1+m−2)t
]
.

The right hand side of the above equation redistributes the energy in each mode along
the scales through the triad coupling between modes m + n = k. The total energy E
combining both the metastable and stable modes is not conserved in time due to the
parameter α introducing one additional damping

dE
dt

= −α

∫
(ñ − ϕ̃)2 − DE

= −α
∑(

k2 + 1
)2 ∣∣ϕ̂−∣

∣2 e−2α(1+k−2)t − DE.
(24)

Importantly, the negative definite resistivity effect only comes from the nonzero stable
modeϕ− representing the systemdeviation from the adiabaticHMstate. This is consistent
with the intuition due to the finite particle resistivity α < ∞ from the two-state HW
model. The last term DE on the right hand side gives the combined dissipation effect

DE = μ
∑

k2
(
k2 + 1

) [∣∣ϕ̂+∣∣2 + k2
∣∣ϕ̂−∣∣2 e−2α(1+k−2)t

]
.

The resistive term due to α in the energy equation vanishes as α → ∞. Therefore, the
total energy returns to its conserved form at the adiabatic limit (see Section 2 of [21] for
the conserved energy in the one-field HM system).
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On top of the fluctuation states, we also need to consider the contributions from zonal
states q̄ = ∂2x ϕ̄ = ∂xv̄ for the zonal modes ky = 0 as in (16). The energy and enstrophy
distribution will be altered in time further through the interactions between the zonal
and non-zonal states as well as the nonlinear coupling between the two subdirections.
It is shown based on the one-field HM model that selective decay [21] and secondary
instability [22] play an important role in transferring the fluctuation energy to zonal states
and forming a dominant large-scale zonal jets. Next, we consider these different effects
individually on the two-field BHWmodel with finite resistivity fromα. First the total dissi-
pation as a selective decay effect is analyzed; then, we consider the interactions among the
fluctuation modes along the two characteristic directions; and at last to further introduce
the coupling between the zonal and non-zonal state for the generation of dominant zonal
jets.

3.2 Direction of energy cascade from particle resistivity and dissipation

From the previous discussion of the explicit Eq. (20) for the metastable and stable modes,
we see that different scales are coupled together through the nonlinear interactions. One
direct question to ask is how the resistivity and diffusion effects modify the energy spec-
trum with induced the forward and backward energy cascade along the scales. Here, we
use the strategy of selective decay [15,21] to find a priori estimates for the energy transfer
due to the different effects from the model.
To characterize energy transfer among different scales, theDirichlet quotient is defined

as the ratio between the enstrophy and energy

Λ (t) = W (t)
E (t)

=
∫ (∇2ϕ − ñ

)2
∫ |∇ϕ|2 + n2

. (25)

This ratio Λ (t) quantifies the rates of change in energy among the wavenumbers. We can
track the nonlinear exchange of energy through scales by observing the evolution of the
Dirichlet quotientΛ (t) in time. The decrease in value ofΛ (t) implies the accumulation of
energy among the large scale in small wavenumber k (noting that the enstrophyW adds
stronger weight on smaller scales), while the increase of Λ (t) means the forward cascade
of energy to smaller scales with a large wavenumber k . By tracking the change in the value
of Λ, we can determine the energy transfer direction from the competition between the
resistivity effect due to α and the above selective decay effect due to μ.
Here, we first summarize the major conclusion according to the effect on the Dirichlet

quotient Λ in the following proposition:

Proposition The energy exchanges between scales in the two-field BHW model (17) with
zero background density gradient κ = 0 are subject to the three factors of dissipation,
particle resistivity in fluctuations, and the mean flow interaction with a zonal state. More
precisely, we can show that:

– Thehomogeneous dissipationsμΔq andμΔnon the vorticity anddensity field enhance
the selective decay process to drive backward energy cascade from small fluctuation
modes to the leading large-scale state;

– The non-adiabatic resistively in fluctuation modes, α (ϕ̃ − ñ), acts inversely as the
reversed select decay process to induce forward energy cascade from large-scale states
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to the smallest resolved mode. This process excites the small-scale fluctuations and
strong particle transport;

– The formation of a zonal velocity state v̄ can effectively block the above forward energy
cascade to small scales through the nonlinear interaction with fluctuation modes. A
strong zonal mean flow will reduce the rate of energy transfer to the smallest scale and
stabilize the flow solution.

In the two-field BHWmodel case,multiple factorswith opposite effectswill act together to
create the complicated turbulent solutions. We can no longer find the clean convergence
result as in the one-field HM case [21]. We will first discuss the above conclusions based
on the dynamical equation for Λ and heuristic implications from the BHW model. The
energy exchangemechanisms from the three factors are further confirmed through direct
numerical simulations.

3.2.1 Selective decay due to the dissipative effect

Selective decay principle [15] is developed based on a faster decay rate of the enstrophy
from the dissipation with a relatively conserved energy during a suitable time scale. It
shows the emergence of a single-mode large-scale zonal state in time through a stronger
dissipation among the all the other smaller-scale modes. This infers the inverse cascade of
energy from small scales to a dominant large-scale mode. The selective decay in the one-
field HMmodels (3) purely due to the dissipation effect is discussed in [21] (see Theorem
2 there with rigorous proof of the convergence). Still the HM model only includes the
adiabatic mode ϕ+ at the limit α → ∞. Here, as a further step, we carry out a more
detailed investigation for the additional effect from finite resistivity α < ∞ of the two-
field model including the coupling between the two states q and n.
Following the selective decay analysis in [21], we first consider the role of dissipation

effect on the two-field BHW model (17) at the κ = 0 limit. The selective decay state due
to dissipation refers to the critical point solution of minimized enstrophyW on the lowest
energy shell E. This can be achieved from the variational principle with the Lagrangian
multiplier. It predicts that the critical solution as the selective state contains one single
wavenumber for the large-scale zonal state. The similar candidate critical state for the
BHWmodel is computed in “Appendix A.”
To be more precise, we need to show that the long time solution approaches toward

this single-mode large-scale state due to the dissipation effect. This requires tracking the
dynamics of the Dirichlet quotient Λ (t). Clearly, we first have a positive lower bound
for Λ (t) > 0. So we just need to show that Λ (t) becomes monotonically decreasing
from the dissipation effect to converge to a single-mode critical state solution (rigorous
proof for the convergence to a single-mode zonal solution is shown in Section 5 of [21]).
The dynamical equation for the Dirichlet quotient can be computed directly from the
equations forW and E

dΛ

dt
= 1

E2
(
EẆ − WĖ

) = 1
E

(
Ẇ − ΛĖ

)
. (26)

Here, we purely consider the contributions from the dissipation factorμ. Using the equa-
tions for the enstrophy (23) and energy (24), the right hand side of (26) can be found
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as

Ẇ − ΛĖ = −DW + ΛDE

= μ
∑

Λk2
(
k2 + 1

) [∣∣ϕ̂+
k
∣∣2 + k2E−

k

]

− μ
∑

k2
(
k2 + 1

)2 ∣∣ϕ̂+
k
∣∣2 ,

using the explicit expressions in (19) and denoting the energy in the stable subdirection
E−
k = k2

∣
∣ϕ̂−

k
∣
∣2 e−2α(1+k−2)t for simplicity. Further, the Dirichlet quotient can be written

explicitly as

Λ (t) =
∑(

k2 + 1
)2 ∣∣ϕ̂+

k
∣∣2

∑(
k2 + 1

) (∣∣ϕ̂+
k
∣
∣2 + E−

k

) .

Combining the above relations together and reorganizing between the summations, we
find

μ−1 (Ẇ − ΛĖ
) =

∑
k2

(
k2 + 1

) (∣∣ϕ̂+
k
∣
∣2 + k2E−

k

)∑(
k2 + 1

)2 ∣∣ϕ̂+
k
∣
∣2

∑(
k2 + 1

) (∣∣ϕ̂+
k
∣∣2 + E−

k

)

−
∑

k
k2

(
k2 + 1

)2 ∣∣ϕ̂+
k
∣∣2

=
∑

k

(
k2 + 1

)2 ∣∣ϕ̂+
k
∣∣2

⎡

⎣

∑
m m2 (m2 + 1

) (∣∣ϕ̂+
m
∣∣2 + E−

m

)

∑
m
(
m2 + 1

) (∣∣ϕ̂+
m
∣
∣2 + E−

m
) − k2

⎤

⎦

=
∑

k

(
k2 + 1

)2 ∣∣ϕ̂+
k
∣
∣2

⎡

⎣

∑
m
(
m2 − k2

) (
m2 + 1

) (∣∣ϕ̂+
m
∣∣2 + E−

m

)

∑
m
(
m2 + 1

) (∣∣ϕ̂+
m
∣∣2 + E−

m
)

⎤

⎦

= C−1
∑

k,m

(
m2 − k2

) (
k2 + 1

)2 (m2 + 1
) ∣∣ϕ̂+

k
∣
∣2

×
(∣∣ϕ̂+

m
∣∣2 + m2 ∣∣ϕ̂−

m
∣∣2 e−2α(1+m−2)t

)

≤ −C−1
∑

k>m

(
m2 − k2

)2 (k2 + 1
) (
m2 + 1

) ∣∣ϕ̂+
k
∣
∣2

∣
∣ϕ̂+

m
∣
∣2 + C1e−2αt .

Above we bring outside the constant C = ∑
m
(
m2 + 1

) (∣∣ϕ̂+
m
∣∣2 + E−

m

)
> 0. The double

summation is rearranged, and we exchange the order of summations for m and k . The
first component on the right hand side only involves interactions between the metastable
HM mode ϕ+, which leads to a negative definite damping effect using the symmetry in
coefficients. The second component involving cross-interactions between ϕ+ and ϕ− can
be limited as small as possible for large enough time t > T due to the strong exponential
decay e−2αt from the stable mode. The above result is consistent with the selective decay
in the one-field model at the adiabatic limit α → ∞ [21] where the second term from
finite resistivity vanishes.
Therefore, after long enough time t > T , the positive part due to ϕ− on the right hand

side above will be reduced to small enough value, so that we have from the dissipation
effect μ > 0

dΛ

dt
< 0. (27)
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Then, the Dirichlet quotient becomes strictly monotonically decreasing afterward. This
characterizes the energy transfer from the small-scale modes to the large scale purely
from the dissipation μ. Further, it can be shown that the solution will always converge to
a selective decay state with a purely zonal state with a single wavenumber. In fact, a single
wavenumber zonal state solution v̄ = v̄keikxx gives the Dirichlet quotient

Λ
∗ =

∫ |∂xv̄|2∫
v̄2 + n̄2

≤ k2x |v̄k |2
|v̄k |2

=
(
2π
Lx

)2
n2x < 1, (28)

where nx is an integer for the wavenumber kx = 2π
Lx nx, and the zonal flow is always in

a large-scale mode. Adding a small-scale fluctuation ϕ̂∗
k on top of the above single-mode

solution will always increase the quotient, that is,

k2x |v̄k |2 + (
k2 + 1

)2 |ϕ̂k |2
|v̄k |2 + (

k2 + 1
) |ϕ̂k |2

− Λ
∗ =

(
k2 + 1 − k2x

) (
k2 + 1

) |ϕ̂k |2 |v̄k |2[|v̄k |2 + (
k2 + 1

) |ϕ̂k |2
] |v̄k |2

> 0.

This infers that the Dirichlet quotient Λ will keep decay to a smaller value level due to
(27) with purely zonal state if there exist nonzero fluctuation modes ϕ̂k . This conclusion
is in general true if the quotient Λ becomes monotonically decreasing in time.
With the dissipation effect to be dominant, the selective decay guarantees the conver-

gence to a single-mode zonal state (as illustrated in Fig. 3 of [21]). In addition, from the
above derivation we also see the different roles of the two eigenmodes, ϕ+,ϕ− during the
decaying process. The metastable HM mode interaction ϕ̂+

mϕ̂+
n in (20) gives the negative

damping to decrease the Dirichlet quotientΛ, while the coupling effect due to ϕ̂+
mϕ̂−

n may
act to increase the quotient Λ to reduce the rate of inverse cascade in the transient state.
This further confirms the role of the stable mode ϕ− in the two-field model to generate
stronger nonlinear particle transport that is not modeled in the one-field HM system [20].

3.2.2 Reversed selective decay due to finite resistivity

Next we consider the resistive particle interactions due to the parameter α separately
among thefluctuationmodes andassumenozonal state in themodelfirst, v = n = 0. From
the energy Eqs. (23) and (24) without dissipation, the total energy E is decaying in time
while the total enstrophyW stays conserved. This acts reversely in contract to the previous
selective decay effect from the dissipation, implying that the energy cascades to smaller
scales to create more vortical fluctuations. This critical solution with minimized energy E
at a constant enstrophyW can be directly computed from the variational principle shown
in “Appendix A.”
In this case, we focus on the contribution from the finite value of 0 < α < ∞. The

dynamical equation for the ratio Λ can be derived in a similar fashion using the two
Eqs. (23) and (24)

dΛ

dt
= −Λ

E
Ė = αΛ

E

∫
(ñ − ϕ̃)2

= αΛ

E
∑(

k2 + 1
) ∣∣ϕ̂−

k
∣∣2 e−2α(1+k−2)t > 0.

(29)

In the above equation, only the contribution from the resistive parameter α is considered
without any damping terms to exclude the effect of the dissipative selective decay. In
contrast to the selective decay case from the dissipationμ, the parameterα acts to increase
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a

b

Fig. 2 Flow simulation result with small α = 0.1 in the limiting regime κ = 0. The flow starts from the
steady-state solution using κ = 1,α = 0.1 (upper left), and the final solution at t = 1000 is dominated by
small-scale vortical modes (upper right). The lower panel compares the normalized enstrophy spectrum,
Wk/W , and energy spectrum, Ek/E , measured at different time instants during the system evolution to show
the direction of energy transport. The initial spectra are plotted in dashed line in comparison with the final
time spectra in solid black line

the value of the Dirichlet quotient. This increase in value of Λ refers to the ‘reversed
selected decay,’ where the energy is transferring from the large-scale modes to the small
fluctuation scales. The increasing value of the Dirichlet quotient Λ (t) is also linked to the
induction of strong particle transport as α goes to small values.
For the final converged state, it can be found that the increasing Dirichlet quotient Λ

has an upper bound in the Galerkin truncated model

Λ (t) =
∑(

k2 + 1
)2 ∣∣ϕ̂+

k
∣∣2

∑(
k2 + 1

) ∣∣ϕ̂+
k
∣∣2 + k2

(
k2 + 1

) ∣∣ϕ̂−
k
∣∣2 e−2α(1+k−2)t

≤
∑(

k2 + 1
)2 ∣∣ϕ̂+

k
∣∣2

∑(
k2 + 1

) ∣∣ϕ̂+
k
∣∣2

= W+

E+ ≤ K 2 + 1,

with K the maximum truncated wavenumber in the spectral model. In fact, for large
wavenumbers k , the dissipation effect μk2 will finally take over to overwhelm the effect
from α in the smallest scales. Combined with (29), this shows that the Directly quotient
Λ (t) is the monotonically increasing with an upper bound. This guarantees the reserve
selective decay effect for the energy to keep going downscale to the smaller scale with
the largest wavenumber k = K driven by the nonzero stable mode ϕ−. This reversed
selective decay process is confirmed from direct numerical simulation shown in Fig. 2 in
next section.
In addition, the rate of growth of Λ is determined purely by the stable state ϕ−, while

the value of the HM state ϕ+ is independent in this process. Therefore, we can illustrate
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the roles of the two coupling states ϕ+ and ϕ− during the time evolution by the combined
contributions from resistivity and dissipation. First, the stable state ϕ− induces forward
energy cascade and strong particle flux from large to small scales due to the reversed
selective decay with α; at the same time the metastable state ϕ+ transfers the energy in
small scales to form a large-scale zonal state due to the selective decay from dissipation
μ. In the extreme case when the energy inside the metastable subspace becomes zero,
ϕ− ≡ 0, the energy E only contains the metastable branch and is also conserved. The
system goes to the exact HM state as shown in [21].

3.2.3 The effect of a nonzero zonal state v̄ �= 0

Previously, we only consider the interactions between the non-zonal fluctuation modes
ky �= 0. It shows the competition between the selective decay and the reversed feedback
from the stable subspace. Still, one additional important factor that has not been consid-
ered in the BHW model is the interaction due to the zonal velocity v̄ and zonal particle
flux ũñ. The zonal state v will not change the total enstrophy W , while it introduces an
important additional flux term in the energy Eq. (13)

dE
dt

= −α

∫
(ñ − ϕ̃)2 +

∫
v
(
ũñ

)
. (30)

Notice that the second term on the right hand side
∫
v
(
ũñ

)
does not appear in the

MHWmodel without the balanced flux modification [2,24]. This leads to one important
difference between theMHWandBHWmodels. Unlike the resistive effect due to α purely
due to the stable mode ϕ− as shown in the previous section, the zonal coupling term ũñ
introduces the interaction between the metastable and stable modes ϕ+,ϕ−. Using the
decompositions in (18) and (19), the zonal particle flux can be computed explicitly as

ũñ = −i
∑

kx=mx+nx

my
(
1 − n2

)
ϕ̂+
mϕ̂−

n e
−α(1+n−2)t eikxx

=
∫ (

∂yϕ
+)

(1 + Δ)ϕ−dy,

with ϕ+ = ∑
ϕ̂+
k e

ik·x and ϕ− = ∑
ϕ̂−
k e

ik·x−α(1+k−2)t andwithout the self-coupling inside
the modes of ϕ+ and ϕ−. This represents the feedback from the interactions between the
two states ϕ+,ϕ−.
With the inclusion of the zonal state, the energy can be decomposed into the energy in

the mean and the fluctuations as in (12), that is,

E = Ē + Ẽ, Ẽ = 1
2

∫
|∇ϕ̃|2 + ñ2.

The flux interaction term can be estimated by an upper bound by directly using Cauchy’s
inequality, that is,

∫
v
(
ũñ

) ≤
∫

|v̄| ∣∣ũṽ∣∣ ≤ v̄m
2

∫
|ũ|2 + |ṽ|2 ≤ v̄mẼ, (31)

with v̄m = maxx |v̄| as themaximumamplitude for the zonal velocity state.With the above
estimation (31), an additional correction term due to the zonal state interaction should
be added to the previous dynamics (29) for the Dirichlet quotient in non-dissipative case

dΛ

dt
= −Λ

E
Ė ≥ −Λv̄m

Ẽ
E

+ αΛ

E

∫
(ñ − ϕ̃)2 . (32)
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The second term on the right hand side of (32) plays the role of reserved selective decay
from (29). The first term only involving the ratio of energy in fluctuation Ẽ/E is the new
feature in the BHWmodel, which shows that the generation of a zonal state v̄ can prevent
the persistent energy cascade all the way to the smallest scale. This further illustrates the
role of a self-generated zonal jet to block the strong fluctuation particle transport [8,14,
23]. The zonal flow interaction plays the role to suppress the excitation of many small-
scale structures. The formation of a strong zonal state v̄ together with strong metastable
fluctuations ϕ+ may drive the Dirichlet quotient Λ decreasing in time. Combined with
the selective decay from the dissipation μ, a purely zonal state as in (28) will emerge in
the final converged solution (see the case with large α in Fig. 3).
On the other hand, the reversed selective decay to small scales in (26) is still valid if

the right hand side of (32) stays positive. This requires a small enough zonal state v̄m to
allow for the forward energy cascade.We can find one sufficient condition for the forward
energy cascade to be maintained as

∑(
α

v̄m
− k2

) (
k2 + 1

) ∣∣ϕ̂−
k
∣∣2 ≥

∑(
k2 + 1

) ∣∣ϕ̂+
k
∣∣2 . (33)

This is possible when there is at least one strong stable fluctuation mode ϕ̂−
k with

wavenumber k <
√

α
v̄m . This requires a weak enough zonal state for maxx |v̄| = v̄m < α

K 2 .

3.3 Numerical confirmation of the energy transfers between different scales

In the last part, we confirm the conclusions for enstrophy and energy transfer from the
above analysis using direct numerical simulations. We consider the model Eq. (17) with
zero background density gradient κ = 0 and track the flow evolutions with various values
of the adiabaticity α ∈ [0.1, 5]. The effect of the dissipation is set in a much smaller
value μ = 1 × 10−4. In this way, we are able to focus on the competing effects from the
particle resistivity (29) due to fluctuation state to induce reversed selective decay, and the
interactions with the mean flow (32) to balance the forward energy cascade process.
For the numerical setup, the computational domain size is set equal in the x and y

directions Lx = Ly = 40. In this zero density gradient regime κ = 0, no linear instability
is modeled to excite the drift waves; thus, the flow solutions decay from the prescribed
initial states. The test initial state is generated using the steady-state turbulent solution
with κ = 1 and the same value of α. Besides, hyperviscosities −νΔsq and −νΔsn are
added to the smallest scales of the potential vorticity and density fieldswith tiny coefficient
ν = 7×10−21 and high order s = 8 to dissipate the additional energy in the underresolved
smallest scales. The direct numerical simulation is based on a standard pseudo-spectral
scheme withN = 256 discretization points along each direction. A fourth-order explicit–
implicit Runge–Kutta scheme is used for time integration with implicit part only for the
stiff hyperviscosity term. This is the same numerical setup used previously for the BHW
model simulations in [23,24].

3.3.1 Two typical regimes with different values of α

In the numerical tests, we first compare the energy exchange along different scales under
different values of α. In order to track the energy cascade direction between scales, we
compare the normalized enstrophy and energy spectra at different time instants during
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a

b

Fig. 3 Flow simulation result with large α = 5 in the limiting regime κ = 0. The flow starts from the
steady-state solution using κ = 1,α = 5 (upper left), and the final solution at t = 1000 is dominated by a
large-scale zonal flow (upper right). The lower panel compares the normalized enstrophy spectrum,Wk/W ,
and energy spectrum, Ek/E , measured at different time instants to show the direction of energy transport.
The initial spectra are plotted in dashed line in comparison with the final time spectra in solid black line

the evolution of the solution by computing the ratios

Wk
W

= |q̂k |2∑
k |q̂k |2

,
Ek
E

= k2 |ϕ̂k |2 + |n̂k |2∑
k k2 |ϕ̂k |2 + |n̂k |2

.

The enstrophy W according to (23) is only damped by the weak dissipation term
μ = 1 × 10−4, while the resistivity parameter α has no effect on changing the value
of total enstrophy. On the other hand, the total energy is not conserved even without the
dissipation effect. The total energy E is subject to the additional effect due to the resis-
tivity parameter α in (29). Strong damping will be applied on the total energy if there is a
nonzero stable branch ϕ− in the solution, especially for large wavenumbers.
The typical evolutions of the flow solutions with strong resistivity α = 0.1 and weak

resistivity α = 5 are compared in Figs. 2 and 3. First snapshot of the flow vorticity
field ζ = ∇2ϕ at the final computation time t = 1000 is compared with the initial
configuration. The small value α = 0.1 case drives the solution to a regime with only
small-scale fluctuation vortices. The large-scale zonal structure from the initial state is
not maintained and gets damped entirely at the final time. Then, the strong zonal particle
transport is maintained. On the other hand with a large value α = 5, the flow reaches
closer to the one-field Hasegawa–Mima solution with a very rapidly decaying stable mode
ϕ̂−
k e

−α(1+k−2)t . The solution goes through the selective decay process and reaches a purely
zonal flow structure with blocked turbulent flux transport. This clear transition from a
non-zonal drift wave state (α = 0.1) to the zonal flowdominant state (α = 5) characterizes
the typical Dimits shift [4,23] even in this limiting case of the BHWmodel.
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To check in more details about the process of energy/enstrophy relocation in time, we
also compute the ratio of enstrophy Wk/W and energy Ek/E at each scale measured at
several different time instants during the evolution of the solution for the two test cases.
Notice that the adiabaticity parameter α only adds isotropic effect to the system, so we
focus on the energy in the nonzero fluctuation modes ky �= 0. By showing the normalized
spectra,Wk/W and Ek/E, the different damping rates and energy transfer between scales
can be characterized. With the small value α = 0.1, clearly the fluctuation in enstrophy
transports downscale to create more and more smaller-scale vortices until the hypervis-
cosity effect νΔs at the smallest scale takes over. This leads to more turbulent dynamics
with stronger induced particle transport. In contrast with α = 5, a weak downscale cas-
cade only appears in the very beginning transient state (see t = 100 in Fig. 3b), and the
fluctuation in enstrophy moves upscale finally in the other direction. In the normalized
ratios, this shows the largest scales with small wavenumbers are dissipated at the slowest
rate. This acts together with the formation of a strong zonal velocity state v̄. Consistent
with our previous analysis in (32), the zonal flow interactionwith the particle flux will sup-
press the effect for forward energy cascade to smaller scales. Also, in the energy spectrum,
the energy among Ek in large-scale modes is barely modified in time, while the strong
dissipation is mostly applied on the small-scale modes. The strong dissipation at the small
scales will finally drain the energy in small fluctuating vortices. This also illustrates the
selective decay process from the dissipation operators.

3.3.2 Transition from drift wave turbulence to zonal flows

Next, we can also discover the transition from the drift wave dominant regime to the zonal
flow dominant regime based on the limiting model (17). The abrupt transition from fully
turbulent flow to a quiescent zonal flow state is usually known as Dimits shift and can be
studies in the BHWmodel [23,25]. Here, we find that this limitingmodel κ = 0 is also able
to recover the representative nonlinear transition by changing the values of α. In Fig. 4,
we compare the typical converged flow states with three different values of α = 0.1, 0.5, 1.
Clearly we can observe the sharp transition in flow states with a homogeneous turbulent
state with a small value of α = 0.1, to regular zonal flow structure as α increases. This
can be also seen from the opposite performance in the Dirichlet quotient Λ = W /E. An
increase in Λ implies the forward energy cascade to create more small-scale turbulence,
while a sharp drop in Λ below 1 infers the convergence to a purely zonal state.
We compare the time series of the total energy E = ∫ |∇ϕ|2+n2 and the total enstrophy

W = ∫
q2 as well as the Dirichlet quotient Λ. The second row of Fig. 4 displays the

results for the three typical parameter cases α = 0.1, 0.5, 1. In this test with κ = 0, the
total enstrophyW follows the dynamics (23) and is only subject to the dissipation effect.
Therefore, we always observe the monotonic decreasing total enstrophy W in time for
all three test cases. On the other hand, the total energy E follows the dynamical Eq. (30)
with the particle resistivity due to α as well as the zonal flow interaction with v̄ acting as
a forcing effect. The solutions act differently for regime with a zonal state α = 1, 0.5 and
fully turbulent regime with a smaller α = 0.1. In the turbulent regime with small α values,
no zonal flow structure is formed; thus, the right hand side of (30) is still negative definite
to induce decaying total energy E as in the α = 0.1 case. However, zonal structures are
developed as the value of α increases. Then, the zonal mean flow interaction term

∫
v
(
ũñ

)
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a

b

Fig. 4 Flow simulations with combined effects from different resistivity α and dissipation μ = 1× 10−4. The
upper row shows the snapshots of the flow vorticity ζ = ∇2ϕ at the final computation time; the lower row
plots time series of the total energy E and enstrophyW as well as the ratioW/E with three different values of
α = 0.1, 0.5, 1

in the energy equation actually gives an important contribution to the full dynamics and
drives the final energy to a higher level as in the α = 0.5, 1 cases.
Further, we can track the evolution of the Dirichlet quotient Λ = W /E, especially for

the convergence process. In the transient state, the energy first cascades downscale to
generate more excited fluctuation modes (with an increase in the value of the ratioW /E)
in the first stage with small values of α. This corresponds to the mechanism to create
strong particle transport in the turbulence regime. After the transition to the zonal flow
dominated regime, the flow solution directly decays to the stable zonal jet structure as
the selective decay case with α = 0.5, 1. Especially at the low resistivity limit α → ∞,
the feedback from the stable branch ϕ̂− vanishes and the model acts the same as the HM
model selective decay process. These phenomena can be compared with the Dimits shift
found in the general model case as in Fig. 3 and Fig. 7 in [25].

4 Extreme non-normal regime with zero adiabaticity α = 0
In this section, we turn to the non-normal dynamics between the two aligned eigendi-
rections. Here, from another perspective we focus on the other limiting regime at the
hydrodynamical limit with α = 0 while varying strength in background density gradient
κ �= 0. Unlike the previous limiting case in Sect. 3 with almost orthonormal eigenmodes,
non-normal structures between the two eigendirections become important with κ �= 0
as the parameter ratio r = κ/α increases. This becomes the typical regime to display
extreme non-normal dynamics where the eigenvectors get aligned in the same direction
(see Fig. 1 for the transition in non-normal structure between modes).
In this fully non-normal regime, there is again no linear instability injecting energy into

the system. Therefore, it offers another clean setup for analyzing the reorganization of
energy and enstrophy from different initial configurations in the transient state, especially
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due to the particle flux and the effect from mean flow interaction. In the following part,
we first discuss the model statistical solutions under the model non-normality; then, the
extreme non-normal performance with α = 0 is discussed in detail by comparing direct
numerical simulation results.

4.1 Dynamical equations with two aligned eigendirections at the limit α = 0

The BHWmodel (1) with zero adiabaticity α = 0 for potential vorticity q = ∇2ϕ − ñ and
particle density n at the limit α = 0 becomes

∂q
∂t

+ ∇⊥ϕ · ∇q − κ
∂ϕ

∂y
= μΔq,

∂n
∂t

+ ∇⊥ϕ · ∇n + κ
∂ϕ

∂y
= μΔn,

(34)

In the limiting model above, the equation for density field n acts exactly as a tracer
field with equivalent ‘mean gradient’ κ along x direction (see [19] for the corresponding
tracer field formulation with a mean gradient) advected by the flow field generated by
the electrostatic potential v = ∇⊥ϕ. In the MHWmodel [2], the density field n becomes
exactly passive without feedback to the flow equation for ζ = ∇2ϕ. However, under the
BHWmodel formulation, the density field inversely affects the flow structure through the
zonal mean density profile n. The auxiliary equation for the relative ion vorticity ζ = ∇2ϕ

can be found as

∂ζ

∂t
+ ∇⊥ϕ · ∇ζ +

[
ũ

∂n
∂x

− ∂

∂x
(
ũñ

)] = μΔζ . (35)

The zonal density n and the zonal particle flux ũñ can inversely give implicit feedback
to the dynamics of the ion vorticity ζ . The above mean flow feedback also requires a
nonzero velocity ũ. This provides an important difference in the BHW model that pro-
duces enhanced zonal jets and fluctuation modes interaction [23,24]. The limit at α = 0
forms an effective extreme test case for the interacting mechanism of the zonal mean
fields and fluctuating particle flux.

4.1.1 Non-normal eigenstates and the energetics

From the linear stability analysis (10), the two eigenvectors become aligned toward the
same direction with the angle approaching zero θk → 0 as the adiabaticity parameter
α → 0. The growth rate for linear instability vanishes in the two same eigenvaluesω± ≡ 0
at the limit α = 0. Correspondingly, the two eigenvectors get aligned together so that the
two fluctuation modes have the same relation as follows:

q̂k = −n̂k , ϕ̂k ≡ 0, (36)

with the corresponding decomposition for the potential vorticity and density state

q̃ =
∑

q̂ke−μk2t eik·x , ñ = −
∑

q̂ke−μk2t eik·x . (37)

If we only consider the non-zonal fluctuation modes ky �= 0, the non-normal state (36)
gives the exact solution for the system (34) atα = 0.On theother hand, small fluctuation in
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the potential function ϕ together with the nonlinear interaction will lead to the formation
of zonal jets. Then, the zonal density profile n will add an important feedback to the ion
vorticity ζ = ∇2ϕ through the dynamics (35). Thus, the flow state is driven away from
the aligned eigenvectors (37), and turbulence flow can be created.
The total enstrophy and energy Eq. (13) in the α = 0 case are controlled by the total

particle flux with the parameter κ . The dynamical equations for the total enstrophy W
and total energy E then can be found as

W =
∫

q2,
dW
dt

= κ

∫
ũñ − μ

∫
|∇q|2 ,

E =
∫

|∇ϕ|2 + n2,
dE
dt

=
∫

(κ + v̄) ũñ − μ

∫ (|Δϕ|2 + |∇n|2) .
(38)

For the effect of the parameter κ , it acts on the nonzero total particle flux
∫
ũñ from

the initial state as a strong forcing on both energy and enstrophy dynamics. In fact, with
modes only along the eigendirection with q̂ = −n̂, the total enstrophy and energy become
the same with zero contribution from the electrostatic potential ϕ ≡ 0

W = E =
∑

|n̂k|2 .
The difference between the total energy and enstrophy is then determined only from the
zonal state feedbacks due to the advected flux term,

∫
v
(
ũñ

)
. Again this is the additional

effect appearing only in the BHWmodel (see Section III in [14] for theMHWmodel case)
that emphasizes the interactions with the zonal mean velocity. By taking the difference
between the energy and enstrophy Eq. (38), we can find that the energy/enstrophy differ-
ence E−W is only changed by the zonally advected particle flux through interaction with
the zonal mean state v̄ besides the dissipation effect

d
dt

(E − W ) =
∫

v
(
ũñ

) − μ

∫ (|Δϕ|2 + |∇n|2 − |∇q|2) . (39)

With a nonzero zonal mean flow v, the advected flux will add another strong forcing on
the total energy. We will illustrate these effect next from direct numerical simulations.
To check the energy exchange mechanism, we can first track the time evolution of total
enstrophy W for the effect from the total particle flux, κ

∫
ũñ and then track the time

series of the difference E − W for the effect from the advected flux,
∫
v
(
ũñ

)
.

4.1.2 Statistical steady-state solution starting from the aligned eigendirections

For the non-normal dynamics, we can find a set of exact solutions for the Eq. (34) with
purely zonal electrostatic potential and the density field determined from its initial value

ϕ = ϕ (x) =
∑

k
ϕke−μk2t eikx, u = −∂yϕ ≡ 0, n =

∑

ky �=0
n̂k (0) e−μk2t eik·x . (40)

This can be confirmed by directly putting the solutions (40) back into the original system
(34). The solution is independent of the parameter κ . Since the system contains no linear
instability, any perturbations ϕ̃ in the non-zonal flow field are effective through the non-
linear term with secondary instability [22]. In general from the previous analysis using
secondary instability and selective decay [21,22], the non-zonal fluctuations will finally
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get transferred back to the zonal modes and enforce the zonal state solution ϕ. Thus, the
above exact solution (40) is stable with the perturbations in the non-zonal fluctuations.
Next, we consider the balance between the statistical particle flux and the damping

effects in the statistical steady state. From the enstrophy Eq. (38), a constant final statistical
enstrophy requires the balance between the statistical particle flux and the damping effect

〈∫
ũñ

〉

eq
= μ

κ

〈|∇q|2〉eq = μ

κ

∑
k2

〈|q̂k|2
〉
eq . (41)

Above 〈·〉eq refers to the statistical average in the statistical steady state (it can be viewed
as the ensemble average among the simulation of a group of particles). Similarly, the
statistical steady state of the energy requires the balance with the advected flux transport

〈∫
v
(
ũñ

)〉

eq
= μ

∫ (〈|Δϕ|2〉eq + 〈|∇n|2〉eq − 〈|∇q|2〉eq
)
. (42)

For thenon-dissipative caseμ = 0, the afinal steady statistical state requires the constraint
in the flow advected fluxes,

〈∫
v
(
ũñ

)〉
eq = 0 and

〈∫
ũñ

〉
eq = 0.

4.2 Statistical transition in flow solutions from direct numerical simulations

In this final section, we use direct numerical simulations to investigate the non-normal
dynamics. We will mostly consider the non-normal interactions for the redistribution of
energy and enstrophy in different scales (wavenumbers) in the starting transient process.

4.2.1 Transient statistics without dissipation effects

First, we focus on the contributions from the twononlinear flux terms, κ
∫
ũñ and

∫
v
(
ũñ

)
,

without the inclusion of dissipation effect μ = 0. In this way, the nonlinear exchanges of
energy and enstrophy along scales in the dynamics (38) and (39) purely due to fluctuation
interaction with and without a zonal mean flow v from the starting transient state can be
compared. To compare the performance with different zonal mean profiles v, we pick the
same two typical initial states used in the previous test cases in Figs. 2 and 3, which are
also plotted in Fig. 5. The first case (left) generates more homogeneous turbulence with
only a weak zonal flow, while the second case (left) gives a strong zonal state v from the
initial setup. The numerical setup of the model is the same as described in Sect. 3.3. We
then track their evolutions in the transient stage departing from the two different initial
configurations.
In Fig. 6, we first plot the time series of the total enstrophyW subject to the total particle

flux κ
∫
ũñ, and the difference E −W subject to the advected flux

∫
v
(
ũñ

)
. Two different

initial states in Fig. 5 with and without a dominant zonal jets v are compared. And no
dissipation μ = 0 is introduced in this test to identify the particular nonlinear flux effect.
Thus, we can focus on the nonlinear coupling from the two flux terms during the transient
evolution of the system. First in the time series of the total enstrophy, the solution is subject
to the total particle flux according to (38). The nonzero zonal flow excites strong particle
flux and raises the enstrophy to a much higher level from the starting initial state. In
contrast, the enstrophy from the case without a dominant zonal flow just decays in time
even though it starts with a larger value of the particle flux. The effect of the zonal mean



D. Qi, A. J. Majda Res Math Sci (2020) 7:22 Page 27 of 32 22

snapshot of the vorticity  at t = 0 without zonal flow
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snapshot of the vorticity  at t = 0  with zonal flow
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Fig. 5 Two initial states of the ion vorticity without (left) and with (right) a dominant zonal mean flow v for
the simulations with α = 0

flow can be observedmore clearly in the time series of the energy and enstrophy difference
E − W . With a nonzero mean flow, a strong advected flux

∫
v
(
ũñ

)
in the dynamics (39)

is induced in the starting time, greatly raising the level of total energy. In particular, this
effect from the zonal mean state v is only modeled in the BHW model [14,24]. This will
lead to the more turbulent zonal jets with larger variability as observed in the previous
BHW simulations (see Fig. 3 and Fig. 4 in [24] for a comparison with the MHW model
results).
To check in more details about the energy and enstrophy exchanges in different scales,

the secondand third rowsof Fig. 6 compare the enstrophyandenergy spectra influctuation
modes ky �= 0with the two different initial statesmeasured at several typical time instants.
With a nonzero initial zonal mean state v (second row of Fig. 6), energy among several
larger/intermediate scales first gets excited due to the strong nonlinear flux impulse in
κ
∫
ũñ and

∫
v
(
ũñ

)
. The enstrophy then quickly cascades downscales and gets dissipated

by the hyperviscosity at the smallest scale mode. In comparison, the energy goes inversely
upscale to create a dominantmost energetic large-scalemode. In the case with a dominant
zonal mean state (second row of Fig. 6), again only decaying energy and enstrophy spectra
are shown from the initial configuration. Without the contribution from a strong zonal
flow v̄, the nonlinear flux is not strong enough to excite the fluctuationmodes. The energy
and enstrophy effectively move all the way downscale to smallest resolved scale to get
fast dissipated by the hyperviscosity. This leads to the entire quench of zonal particle
transport.
The typical flow vorticity snapshots in the starting transient states with nonzero zonal

jet v are plotted in Fig. 7 to illustrate the detailed flow transition in time. It can be seen that
the initial multiple jet structure gets distorted in time and finally reach the steady zonal
structure in the largest scale zonal state. More energy gets moved to the larger scales, and
the turbulent transport finally gets reduced to the minimum. Finally, the flow approaches
the purely zonal structure with all the non-zonal fluctuationmodes dissipated to zero.We
see the relocation of energy in different scales due to the drift wave effect from the model
parameter κ .

4.2.2 Flow transition in statistics with different values of the density gradient κ

Next, we consider the effect from different values of the background density gradient κ .
In this test case, we compare the transition in flow structures in the final statistical steady
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a

b

c

Fig. 6 Evolution of energy and enstrophy in the limiting regime α = 0, κ = 0.5 without dissipation effect
μ = 0. Upper row: time series of the total enstrophyW and the difference between energy and enstrophy
E − W , as well as the particle flux and advected flux,

∫
ũñ and

∫
v
(
ũñ

)
as forcing effects. Lower rows:

enstrophy and energy spectra in fluctuation modes measured at several different time instants. The initial
spectra are plotted with dashed black lines, and the spectra at final time are shown in solid black. Two
different initial states with and without an zonal velocity v are compared
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Fig. 7 Flow vorticity ζ = ∇2ϕ snapshots at the transient time instants starting from the initial state with a
nonzero zonal velocity v without dissipation effect μ = 0

states. The same small homogeneous dissipation μ = 1× 10−4 as in Sect. 3 is added with
three typical values of the parameter κ = 0.05, 0.5, 5. As κ → 0 goes to small values, there
is a smaller weight added on the total particle flux, κ

∫
ũñ, in both the total energy and

enstrophy Eq. (38). With large values of κ , on the other hand, much stronger flux forcing
is exerted to increase the amplitudes of total energy and enstrophy.
Figure 8 shows the final steady states of the ion vorticity snapshots and statistics in

energy and enstrophy spectra. With small values of κ , the solution converges closer to
the case as the one-layer barotropic system [17]. The flow goes through the selective
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b

a

Fig. 8 Comparison of the final state flow ion vorticity ζ = ∇2ϕ snapshots (upper row) and time series and
steady-state statistical spectra in energy and enstrophy (lower row) with three different values of
κ = 0.05, 0.5, 5. The initial state is taken the same with a nonzero zonal flow, and small dissipation
μ = 1 × 10−4 with α = 0 is used

decay process to the homogeneous largest scale [21]. As the value of κ increases, the flow
becomes more energetic due to the impulsive forcing from the particle flux, κ

∫
ũñ in the

transient state.Within thisα = 0 regime, since there is no linear instability, the energy gets
redistributed between scales in the transient state and will finally go to the zonal modes
through the selective decay and secondary instability energy transfer. Then, through the
nonlinear secondary transfer of energy [21], the energy finally all gets converted to the
zonal state as in the large value κ case.
Finally, the second row of Fig. 8 compares the time series of total energy and enstrophy

in time with different values of κ and α = 0. Larger value of κ induces a higher saturated
level of total energy and enstrophy in the final statistical steady state. This is purely from
the non-normal dynamics without linear instability at the extreme limiting case with
α = 0. By comparing the final statistical energy and enstrophy spectra, larger values of κ

generate more energetic energy/enstrophy among all scale modes. With a small value of
κ , the nonzero particle flux has little effect on the total energy and enstrophy. The system
goes through the selective decay to leave only the largest scales.

5 Summary
To summarize, we studied two limiting dynamical regimes of the magnetically confined
plasma system for the analysis of nonlinear interactions in turbulent drift waves and zonal
flow in plasma edge turbulence. The flux-balanced Hasegawa–Wakatani (BHW) model
[14] is taken as the base model to characterize the representative structures in a simplified
two-field formulation. Especially, the limiting regimes separate the contributions from
the non-adiabatic resistivity α and the background density gradient κ in the BHWmodel
to be studied individually. The two-field model can be decomposed into a group of 2 × 2
subsystems by projecting the corresponding linearized equation onto two characteristic
eigendirections. The system displays a continuous transition from completely decou-
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pled subsystems with orthonormal eigendirections to the extreme non-normal dynamics
according to the ratio κ/α of the twomodel parameters. The extreme dynamics according
to the eigenvalue decomposition then can be categorized into two representative limit-
ing regimes. New a priori estimates are developed for the two limiting regimes as basic
guidelines for characterizing the effects from various physical processes modeled in the
two-field BHW framework. The conclusions are derived from heuristic mathematical
argument and are confirmed by direct numerical simulations.
The first limiting regime assumes zero background density gradient κ = 0 and varies

the adiabaticity parameterα. The total energy and enstrophy equation predict a conserved
enstrophy with decaying energy in time. The special energetics structure implies that we
can apply the strategies in selective decay theory used in the one-field model previously
[21] to this more complicated two-field limiting case. To predict the dual direction of
nonlinear energy transfer between scales, we track the time evolution of the Dirichlet
quotient Λ as an index to measure the rate of energy exchange among different scales.
The competing effects from the model dissipation, non-adiabatic particle resistivity, and
the nonlinear interaction with a zonal flow can be identified based on the framework. The
theoretical implications are further confirmed with direct numerical simulations of the
BHW model. From the other limiting regime with zero adiabaticity α = 0, we are able
to check the effect from extreme non-normal dynamics with two aligned eigendirections.
This case gives a density field advected by turbulent magnetic flow similar to the passive
tracer advection model with a mean gradient investigated in [19]. A typical statistical
transition from homogenous turbulence to the generation of regularized zonal jets is also
recovered in this extreme limiting regime and is again illustrated by extensive numerical
simulations. The promising results in the two limiting regimes in this paper support the
potential of the BHW model to better characterize the various representative features
in particular plasma edge regimes such as the Dimits shift and avalanche-like structures
[23,25] under a simplified model framework.
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A Themost likely state of the two-field BHWmodel from the variational
principle
The physicists’ selective decay principle [15] states that the long time behavior of the
system reaches the states with minimized energy in a given constant energy. However,
from the enstrophy and energy Eqs. (23) and (24) for the limitingmodel κ = 0 implies that
the energywill decay in amuch faster rate comparedwith a relatively constant enstrophy in
the case with a dominant adiabaticity factor α. For both cases, the selective decay state can
be discovered by computing the critical solution under the variational principle. Here, we
propose to compute the selective decay states directly through the Lagrangian multiplier
method. This may offer us some intuition about the structures in the group of admissible
solutions. The strategy is generalized from the basic variational method approach detailed
in Section 4 of [21] for the one-field HMmodel.
Directly from the definition (12), the total energy and enstrophy for the BHW model

can be found as
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E (ϕ, n) =1
2

∫ (|∇ϕ|2 + n2
)
,

W (ϕ, ñ) =1
2

∫
(Δϕ − ñ)2 .

In the two-field BHW model, energy and enstrophy should be determined by both elec-
trostatic potential ϕ and density fluctuation n. The variational principle here is to find
the extrema of the energy E given a constant enstrophyW . According to the Lagrangian
multiplier method, we need to solve the following variational relations with Γ as the
Lagrangian multiplier

δE
δϕ

= Γ
δW
δϕ

,

δE
δñ

= Γ
δW
δñ

.
(A.1)

The variational derivatives for the quadratic functionals W and E can be first computed
directly as

δW
δϕ

= (
Δ2ϕ − Δñ

)
,

δW
δñ

= − (Δϕ − ñ) ,

δE
δϕ

= −Δϕ,
δE
δñ

= ñ.

Substituting the above derivatives back to the Euler–Lagrangian equations (A.1), we find
the critical state solution (ϕ̄∗, ϕ̃∗, ñ∗) in the following relations:

∂2x ϕ̄∗ = −Γ ∂4x ϕ̄∗ = 0,

Δϕ̃∗ = −Γ Δ
(
Δϕ̃∗ − ñ∗) ,

ñ∗ = −Γ
(
Δϕ̃∗ − ñ∗) .

For convenience, we separate the zonal and fluctuation components in the state variables.
The first equation above for the zonal state implies a constant zonal velocity v̄ = V0 =
const.Notice that the additional constant zonal profile will not alter the solution structure
since the BHWmodel is Galilean invariant [24]. Then, the critical solution goes to a purely
fluctuation state satisfying

Δϕ̃∗ = Δñ∗,
Δ2ϕ̃∗ = (

1 − Γ −1)Δϕ̃∗.
(A.2)

This gives the HM state (18) with the density fluctuation converging to the electrostatic
potential in a single constant wavenumber k = |k|

ϕ̃∗ = ñ∗ =
∑

k2=Γ −1−1

ϕ̂+
k e

ik·x , (A.3)

and the permitted Lagrangian multiplier Γ < 1. The critical exact solution also implies
the corresponding Dirichlet quotient (25)

Λ = W
E

= Γ −1.

Combined with the monotonically decreasing Λ due to the resistivity effect (29), we see
the solution is driven to the critical point (A.3) with the minimum permitted value of
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Γ . The final permitted selective decay state is the single-mode solution with the largest
resolved wavenumber. The variational principle predicts the same smallest scale state
from the reversed selective decay due to the particle resistivity.
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