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Abstract

We study the statistical properties of passive tracer transport in turbulent flows with a mean gradient, emphasizing
tracer intermittency and extreme events. An analytically tractable model is developed, coupling zonal and shear velocity
components with both linear and nonlinear stochastic dynamics. Formulating the model in Fourier space, a simple
explicit solution for the tracer invariant statistics is derived. Through this model we identify the resonance condition
responsible for non-Gaussian behavior and bursts in the tracer field. Resonant conditions, that lead to a peak in the tracer
variance, occur when the zonal flow and the shear flow phase speeds are equivalent. Numerical experiments across a
range of regimes, including different energy spectra and zonal flow models, are performed to validate these findings
and demonstrate how the velocity field and stochasticity determines tracer bursts. These results provide additional
insight into the mechanisms underlying turbulent tracer transport, with implications for uncertainty quantification and
data assimilation in geophysical and environmental applications.

1 Introduction

Turbulent transport of passive scalars represents a fundamental phenomenon in fluid dynamics. The physical law that
describes the transport of a passive scalar 𝑇𝑡 (𝒙) (subscript denotes time dependence) is given by the advection-diffusion
equation:

𝜕𝑇𝑡

𝜕𝑡
+ 𝒗𝑡 · ∇𝑇𝑡 = 𝜅Δ𝑇𝑡 + 𝑆𝑡 (𝒙), 𝑇𝑡=0 (𝒙) = 𝑇0 (𝒙) (1)

where 𝜅 > 0 is the molecular diffusivity constant, 𝒗𝑡 is an incompressible velocity field satisfying ∇ · 𝒗𝑡 = 0, and 𝑆𝑡 (𝒙)
is a source term.

Passive tracers include physical tracers such as temperature, and chemical tracers, including solute tracer burst. These
tracers play a crucial role as diagnostic tools in environmental and geophysical sciences. While the advection-diffusion
equation and turbulent mixing of passive scalars has been extensively studied since the works of Taylor [15], Richardson
[13], and Kolmogorov [4] among many others, understanding the statistical properties of tracer fields, particularly their
intermittent behavior, remains an active area of interest [14, 17].

In this article, we focus on the statistical aspects of the tracer field, with particular emphasis on tracer intermittency
and extreme events. These phenomena have significant consequences in practical applications including: the spread of
pollutants and hazardous chemicals in the air and atmosphere (such as sulfur dioxide), the dispersion of anthropogenic
contaminants in water bodies, and the behavior of Lagrangian tracers like measurement floats in the ocean that collect
environmental data [12]. Through analytical models and simulation, we study the effects of intermittency for different
velocity models and provide intuition on the physical features of corresponding tracer fields.

The model developed here extends and builds upon an existing line of literature from whereby elementary models for
turbulent diffusion are constructed starting from various simplified assumptions on the underlying velocity field. These
works starting from deterministic models of time-dependent fields [11] and periodic shear flows [1], to more recent works
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where more realistic stochastic representations have been assumed [7]. In between, various models have been studies,
from models with uncorrelated velocity fields, to white noise limits of the shear flow, to studies of eddy-diffusivity
approximations of these models [9]. A comprehensive review on the literature on passive scalar transport and various
approximations is provided in the work by Majda and Kramer [10].

The paper is organized as follows: After introducing our key contributions in section 1.1, in section 2 we present a
detailed formulation of turbulent diffusion models with a mean gradient. Section 3 examines the general properties
of these models, followed by section 4 which examines their statistical solutions. Section 4.2 provides the resonance
conditions and discusses their physical interpretation. In sections 5 and 6, we present numerical results demonstrating
various intermittency regimes, and we conclude with a discussion of implications and future directions in section 8.

1.1 Contributions

Contributions in this paper include an analytically tractable model to study tracer intermittency, explicit tracer statistical
solutions showing extreme events, and extensive numerical simulations displaying intermittency in different model
regimes. We show a range of tracer intermittency scenarios that can be used for various studies in uncertainty
quantification (UQ) and data assimilation (DA) applications.

2 Formulation of turbulent diffusion models with a mean gradient

In general, the transport of a passive tracer 𝑇𝑡 (𝒙) advected by an incompressible velocity field 𝒗𝑡 (𝒙) is given by

𝜕𝑇𝑡

𝜕𝑡
+ 𝒗𝑡 · ∇𝑇𝑡 = 𝜅Δ𝑇𝑡 + 𝑆𝑡 (𝒙), ∇ · 𝒗𝑡 = 0, (2)

where 𝜅 is molecular diffusivity and 𝑆𝑡 (𝒙) a tracer external source term. We study two-dimensional turbulent diffusion
models where the passive tracer field has a known background mean gradient 𝜶 = (𝛼𝑥 , 𝛼𝑦), so that the tracer field can
be written as

𝑇𝑡 (𝒙) = 𝜶 · 𝒙 + 𝑇 ′
𝑡 (𝒙), (3)

where the prime notation denotes fluctuations of the tracer field around the mean gradient term.
In the model we consider, the stochastic velocity field 𝒗𝑡 is periodic in space with the form

𝒗𝑡 (𝑥) = (𝑢𝑡 , 𝑣𝑡 (𝑥)), (4)

which automatically satisfies the incompressibility condition. The spatially uniform horizontal velocity 𝑢𝑡 represents
zonal cross sweeps, such as east-west zonal jets, and 𝑣𝑡 (𝑥) is a shear flow along the 𝑦-axis, representing transverse
waves, such as north-south Rossby waves. The equation for the tracer fluctuation term 𝑇 ′ using eq. (2) is then given by

𝜕𝑇 ′
𝑡

𝜕𝑡
+ 𝑢𝑡

𝜕𝑇 ′
𝑡

𝜕𝑥
+ 𝑣𝑡 (𝑥)

𝜕𝑇 ′
𝑡

𝜕𝑦
= 𝜅Δ𝑇 ′

𝑡 − 𝛼𝑥𝑢𝑡 − 𝛼𝑦𝑣𝑡 (𝑥) + 𝑆𝑡 (𝒙). (5)

For the simplified test model, we consider the existence of a background mean gradient in the vertical direction, thus
𝛼𝑥 ≡ 0. Further, motivated from physical considerations, we consider fluctuations that only depend on the 𝑥 variable
alone so that

𝑇𝑡 (𝑥, 𝑦) = 𝑇 ′
𝑡 (𝑥) + 𝛼𝑦, (6)

where we redefine 𝛼 ≡ 𝛼𝑦 . The fluctuations then satisfy the simplified model

𝜕𝑇𝑡

𝜕𝑡
+ 𝑢𝑡

𝜕𝑇𝑡

𝜕𝑥
= 𝜅

𝜕2𝑇𝑡

𝜕𝑥2 − 𝑑𝑇𝑇𝑡 − 𝛼𝑣𝑡 (𝑥), (7)

where we drop the prime notation from 𝑇 ′ and source terms 𝑆𝑡 (𝒙) ≡ 0. The term with 𝑑𝑇 > 0 is an explicit uniform
damping term added to damp the zero mode that arises from partial Fourier transform in the 𝑦 variable at non-zero
modes in the general model in eq. (5). This explicit damping term compensates for the lack of natural damping in the
zero mode due to the absence of spatial 𝑦 derivatives in the simplified model [10].

We see that in eq. (7) the random velocity 𝑣𝑡 (𝑥) drives fluctuations in the tracer field through the mean gradient 𝛼.
These judicious simplifications preserve key features of various inertial range statistics in turbulent diffusion, including
intermittency, while yielding analytically tractable tracer solutions that facilitate rigorous mathematical analysis [9].
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2.1 Velocity field and passive tracer model in Fourier space

Next we formulate the velocity field for the passively advected tracer. We chose a general stochastic representation in
order to capture the range of patterns that appear in general turbulent signals. There are two components to the velocity
field 𝒗𝑡 = (𝑢𝑡 , 𝑣𝑡 (𝑥)), a zonal component 𝑢𝑡 and a spatially dependent shear term 𝑣𝑡 (𝑥).

The spatially uniform zonal flow, i.e. the cross sweep, satisfies the nonlinear stochastic diffusion equation:

𝑑𝑢𝑡 = 𝑓 (𝑢𝑡 ) 𝑑𝑡 + 𝜎(𝑢𝑡 ) 𝑑𝑊𝑡 , (8)

where 𝑊𝑡 is a real Wiener process. The velocity 𝑢𝑡 can be decomposed into

𝑢𝑡 = 𝑢 + 𝑢′𝑡 , (9)

consisting of an ensemble mean 𝑢 and a fluctuating component 𝑢′𝑡 .
The shear velocity 𝑣𝑡 (𝑥) satisfies a stochastic partial differential equation of the form

𝜕𝑣𝑡

𝜕𝑡
+ 𝑃

(
𝜕

𝜕𝑥
, 𝑢𝑡

)
𝑣𝑡 = ¤𝑊𝑣 (𝑥, 𝑡), (10)

where 𝑃 is a linear operator that combines both dispersive and dissipative effects acting on 𝑣𝑡 , coupled with the zonal
flow 𝑢𝑡 . The spatially dependent shear flow 𝑣𝑡 (𝑥) is modeled by the following stochastically forced dissipative advection
PDE, where the cross sweep dependence 𝑢𝑡 enters linearly,

𝜕𝑣𝑡

𝜕𝑡
= 𝑢𝑡𝑅1

(
𝜕

𝜕𝑥

)
𝑣𝑡 + 𝑅2

(
𝜕

𝜕𝑥

)
𝑣𝑡 − 𝛾𝑣

(
𝜕

𝜕𝑥

)
𝑣𝑡 + ¤𝑊𝑣 (𝑥, 𝑡). (11)

Here the linear operators 𝑅1, 𝑅2, 𝛾𝑣 are defined through their image on Fourier modes:

𝑅1

(
𝜕

𝜕𝑥

)
= 𝑖𝑎𝑘𝑒

𝑖𝑘𝑥 , 𝑅2

(
𝜕

𝜕𝑥

)
= 𝑖𝑏𝑘𝑒

𝑖𝑘𝑥 , 𝛾𝑣

(
𝜕

𝜕𝑥

)
= 𝛾𝑣,𝑘𝑒

𝑖𝑘𝑥 , (12)

such that 𝛾𝑣 is a positive definite linear operator 𝛾𝑣,𝑘 > 0 representing dissipation, and 𝑅1, 𝑅2 are linear operators that
represent both internal effects of 𝑢𝑡 on 𝑣𝑡 and wavelike effects, respectively, so that the real-valued dispersion relation is
given by:

𝜔𝑣,𝑘 = 𝑎𝑘𝑢𝑡 + 𝑏𝑘 . (13)

With the above description a summary of the simplified turbulent diffusion model in physical space is given by

𝑑𝑢𝑡 = 𝑓 (𝑢𝑡 ) 𝑑𝑡 + 𝜎(𝑢𝑡 ) 𝑑𝑊𝑡 , (14)
𝜕𝑣𝑡

𝜕𝑡
= 𝑢𝑡𝑅1

(
𝜕

𝜕𝑥

)
𝑣𝑡 + 𝑅2

(
𝜕

𝜕𝑥

)
𝑣𝑡 − 𝛾𝑣

(
𝜕

𝜕𝑥

)
𝑣𝑡 + ¤𝑊𝑣 (𝑥, 𝑡), (15)

𝜕𝑇𝑡

𝜕𝑡
= −𝑢𝑡

𝜕𝑇𝑡

𝜕𝑥
− 𝑑𝑇𝑇𝑡 + 𝜅

𝜕2𝑇𝑡

𝜕𝑥2 − 𝛼𝑣𝑡 . (16)

Note that since the equations for 𝑣𝑡 and 𝑇𝑡 are linear, we employ the following Fourier expansion (the conjugating
Fourier modes ensure 𝑇𝑡 (𝑥) ∈ R and 𝑣𝑡 (𝑥) ∈ R)

𝑇𝑡 (𝑥) =
∑︁
𝑘

𝑇𝑘,𝑡𝑒
𝑖𝑘𝑥 , 𝑇−𝑘,𝑡 = 𝑇∗

𝑘,𝑡 , and 𝑣𝑡 (𝑥) =
∑︁
𝑘

�̂�𝑘,𝑡𝑒
𝑖𝑘𝑥 , �̂�−𝑘,𝑡 = �̂�∗𝑘,𝑡 , (17)

to write the explicit equation for each wavenumber to write the model in Fourier space.

Definition 2.1. The turbulent shear model in Fourier space can be formulated as

𝑑𝑢𝑡 = 𝑓 (𝑢𝑡 ) 𝑑𝑡 + 𝜎(𝑢𝑡 ) 𝑑𝑊𝑡 , (18)
𝑑�̂�𝑘,𝑡 = (−𝛾𝑣,𝑘 + 𝑖𝜔𝑣,𝑘)�̂�𝑘,𝑡 𝑑𝑡 + 𝜎𝑣,𝑘 𝑑𝐵𝑘,𝑡 , (19)

𝑑𝑇𝑘,𝑡 = (−𝛾𝑇,𝑘 + 𝑖𝜔𝑇,𝑘)𝑇𝑘,𝑡 𝑑𝑡 − 𝛼�̂�𝑘,𝑡 𝑑𝑡, (20)

where
𝛾𝑇,𝑘 = 𝑑𝑇 + 𝜅𝑘2, 𝜔𝑣,𝑘 (𝑡) = 𝑎𝑘𝑢𝑡 + 𝑏𝑘 , 𝜔𝑇,𝑘 (𝑡) = −𝑢𝑡 𝑘. (21)
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The noise in eq. (19) is a complex Wiener process, 𝐵𝑘,𝑡 = (𝐵1
𝑘,𝑡

+ 𝑖𝐵2
𝑘,𝑡
)/
√

2, with 𝐵𝑖
𝑘,𝑡

being independent, real
Wiener processes, such that 𝑊𝑣 (𝑥, 𝑡) =

∑
𝑘 𝐵𝑘,𝑡𝑒

𝑖𝑘𝑥 . Also, in order for 𝑣𝑡 to be real valued, we require �̂�−𝑘,𝑡 = �̂�∗
𝑘,𝑡

,
which is enforced through the constraints on:

𝛾𝑣,𝑘 = 𝛾𝑣,−𝑘 , 𝑎𝑘 = −𝑎−𝑘 , 𝑏𝑘 = −𝑏−𝑘 , 𝐵𝑘,𝑡 = 𝐵∗
−𝑘,𝑡 , (22)

and the real valued constraint for 𝑇𝑡 is automatically satisfied.

2.2 Shear flow velocity field models

The stochastic zonal cross sweep dynamics in eq. (8) and the shear flow in eq. (11) can model a wide range of
interesting turbulent flows. For the shear flow, several relevant models include random flows, non-dispersive waves, and
quasi-geostrophic (QG) baroclinic 1.5 layer flows:

• Random flows:
𝛾𝑣,𝑘 = 𝑑𝑣 + 𝜈𝑘2, 𝑎𝑘 = 𝑏𝑘 = 0, (23)

where 𝜈 is the flow viscosity.

• Non-dispersive waves:
𝛾𝑣,𝑘 = 𝑑𝑣 + 𝜈𝑘2, 𝑎𝑘 = 0, 𝑏𝑘 = −𝑐𝑘, (24)

with wave speed 𝑐. In this model, zonal flow is uncoupled from the shear flow since 𝑎𝑘 = 0. This model is commonly
encountered in the engineering community.

• 𝛽-plane quasi-geostrophic (QG) baroclinic 1.5 layer flows: This model [6, 16] has parameters

𝛾𝑣,𝑘 = 𝑑𝑣 + 𝜈𝑘2, 𝑎𝑘 =
−𝑘3

𝑘2 + 𝐹
, 𝑏𝑘 =

𝛽𝑘

𝑘2 + 𝐹
, (25)

where 𝐹 = 𝐿−2
𝑅

and 𝐿𝑅 is the deformation radius of Rossby waves, 𝛽 represents rotation due to Coriolis forcing.
This dispersive wave model has implications for atmosphere-ocean science modeling.

The prescribed energy spectrum 𝐸𝑣,𝑘 for the shear flow sets the strength of the white noise forcing 𝜎𝑣,𝑘 for each
wavenumber for 𝑣𝑘 . In section 3, we show that the statistics of the shear flow is Gaussian, with energy spectra given by

𝐸𝑣,𝑘 =
𝜎2
𝑣,𝑘

2𝛾𝑘,𝑣
, (26)

so that the noise for the 𝑘th mode is set by 𝜎𝑘 =
√︁

2𝛾𝑣,𝑘𝐸𝑣,𝑘 . Example variance spectra for the shear flow include
equipartition (white noise), Kolmogorov spectrum, and a combined spectrum with equipartition for the large scale
modes and a Kolmogorov spectrum for the small scales:

• Equipartition spectrum (white noise)
𝐸𝑣,𝑘 = 𝐸0, for all 𝑘. (27)

• Kolmogorov spectrum
𝐸𝑣,𝑘 = 𝐸0 |𝑘 |−5/3. (28)

• Combined spectrum:

𝐸𝑣,𝑘 =

{
𝐸0, |𝑘 | ≤ 𝑘0,

𝐸0
�� 𝑘
𝑘0

��−5/3
, |𝑘 | > 𝑘0,

(29)

which mimics realistic energy spectrum for large scale waves.

To investigate tracer intermittency in representative models, we analyze various shear flow configurations and their
corresponding energy spectra.
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2.3 Zonal flow velocity models

The zonal cross sweep velocity is decomposed into a constant mean 𝑢 and a stochastic fluctuating term 𝑢′𝑡 around
the mean, 𝑢𝑡 = 𝑢 + 𝑢′𝑡 . Here we discuss various types of models for the zonal flow and their statistical properties.
In section A.1 further details are provided.

2.3.1 Linear zonal model

The simplest stochastic zonal flow model is a forced Ornstein–Uhlenbeck (OU) type process given by

𝑑𝑢𝑡 = (−𝛾𝑢𝑢 + 𝑓 ) 𝑑𝑡 + 𝜎𝑢 𝑑𝑊𝑡 , (30)

with constant forcing 𝑓 . The steady-state mean, variance and the invariant probability density function for such a linear
model are easily obtained from the associated Fokker-Planck equation and are given by, respectively,

𝑢 = E( |𝑢∞ |) =
𝑓

𝛾𝑢
, 𝐸𝑢 = E( |𝑢∞ |2) =

𝜎2
𝑢

2𝛾𝑢
, 𝑝𝑢 = N(𝑢, 𝐸𝑢), (31)

where N(𝜇, Γ) denotes a real valued Gaussian with mean 𝜇 and variance Γ. It is possible to consider time dependent
forcing leading to non-constant mean flows, however we refrain from this generalization. With constant forcing, the
zonal flow fluctuations are simply offset by 𝑢. A numerical simulation of a sample realization along with the equilibrium
probability density function (PDF) is shown in fig. 1.

0 10 20 30 40 50 60 70 80 90 100

t

-2

-1

0

1

2

u
(t

)

-10 0 10

u

10 -5

100

stationary PDF

Empirical
Analytical

Figure 1 Sample realization and equilibrium PDF for the linear zonal model (𝛾𝑢 = 1, 𝜎𝑢 = 1).

2.3.2 Non-linear zonal model

To capture the inherent non-Gaussianity and multiscale dynamics of geophysical flows, we extend our analysis to a
more general class of stochastic models for zonal jet dynamics, characterized by cubic nonlinearity and correlated
additive-multiplicative (CAM) noise structure:

𝑑𝑢𝑡 = (𝑎𝑢𝑡 + 𝑏𝑢2
𝑡 − 𝑐𝑢3

𝑡 + 𝑓 ) 𝑑𝑡 + (𝐴 − 𝐵𝑢𝑡 ) 𝑑𝑊2 + 𝜎𝑢 𝑑𝑊1, (32)

This system represents the simplest example of dynamics given by low-frequency reductions of large-scale climate
dynamics and is the normal form for scalar stochastic climate models obtained via the stochastic mode reduction
strategy [8]. We require 𝑐 > 0 to ensure mean stability and is thus a cubic damping term, and 𝑊1,𝑊2 are independent
Wiener processes, where the term (𝐴 − 𝐵𝑢𝑡 )𝑑𝑊2 is referred to as correlated additive and multiplicative (CAM) noise.

For the special case with zero CAM noise, i.e. 𝐴 = 𝐵 = 0, eq. (32) is a standard gradient stochastic differential
equation

𝑑𝑥𝑡 = −∇𝑉 (𝑥𝑡 ) 𝑑𝑡 + 𝜎 𝑑𝑊𝑡 , (33)
with potential 𝑉 (𝑥𝑡 ) and the stationary distribution 𝑝(𝑥) = 𝑁0𝑒

−2𝑉 (𝑥 )/𝜎2
, where 𝑁0 is a normalization constant. The

explicit form of the potential for eq. (32) is given by

𝑉𝑢 (𝑥) = − 𝑓 𝑥 − 𝑎

2
𝑥2 − 𝑏

3
𝑥3 + 𝑐

4
𝑥4. (34)

The stationary probability measure for the general form with CAM noise, can be shown to be given by

𝑝𝑢 (𝑢) =
𝑁0

((𝐵𝑥 − 𝐴)2 + 𝜎2
𝑢)𝑎1

exp
(
𝑑 arctan

(
𝐵𝑥 − 𝐴

𝜎𝑢

))
exp

(
−𝑐1𝑥

2 + 𝑏1𝑥

𝐵4

)
, (35)
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where 𝑁0 is a normalization constant. The coefficients 𝑎1, 𝑏1, 𝑐1, 𝑑 are provided in section A.2.
In remainder of the article we concentrate on models with 𝐴 = 0:

𝑑𝑢𝑡 = (𝑎𝑢𝑡 + 𝑏𝑢2
𝑡 − 𝑐𝑢3

𝑡 + 𝑓 ) 𝑑𝑡 + 𝐵𝑢𝑡 𝑑𝑊2 + 𝜎𝑢 𝑑𝑊1, (36)

as it retains the main features interesting features that occur from multiplicative noise. This model with 𝑏 = 𝑐 = 0 and
𝑎 = −𝛾𝑢 the model reduces to the OU process in section 2.3.1 when 𝐵 = 0.

Numerical experiments. We present several test cases to demonstrate the dynamics of nonlinear zonal fluctuations
across different parameter regimes. Throughout these experiments, the additive noise is maintained at a moderate value,
𝜎𝑢 = 1. We identify prototypical cases by fixing 𝑐 = 1 and 𝑏 = 0, as these parameters do not substantially alter the
conclusions. Based on the stability analysis of the nonlinear cubic model in (𝑎, 𝑓 ) parameter space (see section A.1), we
investigate two distinct test cases.

In the first scenario, we set the multiplicative noise to zero (𝐵 = 0) as shown in fig. 2. The regime with 𝑎 = 2
and 𝑓 = 0 exhibits two metastable fixed points with stochastic switching. The transition frequency depends on the
parameters and can be precisely controlled. In the second test case, we set the additive forcing to 𝑓 = −1.5, placing the
system outside the regime with two stable fixed points. Here, the system demonstrates non-Gaussian behavior with
positive skewness, where the locally quadratic potential dominates the PDF, which remains approximately Gaussian for
moderate values of 𝜎𝑢.

In fig. 3, we examine the same test cases in (𝑎, 𝑓 ) parameter space but set 𝐵 = 2.5 to demonstrate the distinctive
effects of multiplicative noise. The numerical experiments reveal that strong multiplicative noise induces significant
skewness and inhibits the switching behavior characteristic of the double-well potential observed in the absence of
multiplicative noise. This phenomenon occurs because the multiplicative noise accelerates fluctuations beyond the stable
equilibria, where the system subsequently experiences strong damping, returning the signal toward zero. The system
predominantly resides near zero, where the effect of multiplicative noise is minimal. This behavior produces stationary
probability distributions characterized by unimodality and pronounced skewness, as evidenced in simulations.

3 Tracer model general properties and trajectory solution

The tracer model in eq. (18) has two fundamental properties. First, correlation between different Fourier modes occurs
exclusively through the zonal flow 𝑢𝑡 . Second, the dynamics of �̂�𝑘,𝑡 and 𝑇𝑘,𝑡 are linear and conditionally Gaussian given
a fixed realization of 𝑢𝑡 . This conditional Gaussianity can be exploited for efficient filtering and prediction (see [5, 2]),
and is used here to analytically determine the solution of 𝑇𝑘,𝑡 , including its limiting stationary distribution.

A noteworthy characteristic of this system is that it possesses no positive Lyapunov exponents, yet exhibits intermittent
non-Gaussian solutions and extreme events—a signature of systems containing intermittent instabilities. This property
can be verified from eq. (18) by observing that the system is positively damped (𝜆𝑇,𝑘 , 𝜆𝑣,𝑘 > 0), so checking Lyapunov
stability is trivial. These properties will be demonstrated through numerical experiments presented in subsequent
sections.

For simplicity, we can assume �̂�𝑘,0 and 𝑇𝑘,0 are initialized from zero. By integration, we have the shear flow trajectory
solution

�̂�𝑘,𝑠 =

∫ 𝑠

0
exp(−𝛾𝑣,𝑘 (𝑠 − 𝑟) + 𝑖𝜔𝑣,𝑘 [𝑟, 𝑠])𝜎𝑣,𝑘 𝑑𝐵𝑘,𝑟 . (37)

The expression 𝑋 [𝑟, 𝑠] is used to denote the integral 𝑋 [𝑟, 𝑠] :=
∫ 𝑠

𝑟
𝑋𝑢𝑑𝑢, thus 𝜔𝑣,𝑘 [𝑟, 𝑠] represents the accumulated

phase. We see that �̂�𝑘,𝑠 is a complex Gaussian with mean and variance, respectively,

E(�̂�𝑘,𝑠) = 0, E( |�̂�𝑘,𝑠 |2) = 𝐸𝑣𝑘 (1 − 𝑒−2𝛾𝑣,𝑘𝑠), where 𝐸𝑣𝑘 =
𝜎2
𝑣,𝑘

2𝛾𝑘,𝑣
. (38)

In the long time limit 𝑠 → ∞, the shear flow converges to a Gaussian probability measure 𝜋�̂�𝑘 = CN(0, 𝐸𝑣𝑘 ), where
CN(𝜇, Γ) denotes a complex Gaussian with mean 𝜇 and variance Γ.

Similarly, we can integrate the equation for 𝑇𝑘,𝑡 using the result eq. (37).
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Figure 2 Sample realization, equilibrium PDF, and potential for the nonlinear zonal model without multiplicative noise, 𝐵 = 0.
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Figure 3 Sample realization, equilibrium PDF, and potential for the nonlinear zonal model with multiplicative noise, 𝐵 = 2.5.

Proposition 3.1. The exact trajectory solution of the tracer model is given by

𝑇𝑘,𝑡 =

∫ 𝑡

0
−𝛼 exp(−𝛾𝑇,𝑘 (𝑡 − 𝑠) + 𝑖𝜔𝑇,𝑘 [𝑠, 𝑡])�̂�𝑘,𝑠 𝑑𝑠 (39)

=

∫ 𝑡

0

∫ 𝑡

𝑟

−𝛼𝜎𝑣,𝑘 exp(−𝛾𝑇,𝑘 (𝑡 − 𝑠) − 𝛾𝑣,𝑘 (𝑠 − 𝑟) + +𝑖𝜔𝑇,𝑘 [𝑠, 𝑡] + 𝑖𝜔𝑣,𝑘 [𝑟, 𝑠]) 𝑑𝑠 𝑑𝐵𝑘,𝑟 . (40)

From the trajectory solution, conditioned on a zonal flow trajectory 𝑢𝑡 , we find that 𝑇𝑘,𝑡 is a complex Gaussian
random variable CN(0, Σ𝑘,𝑡 |𝑢), with zero mean and variance given by the following result.

Proposition 3.2. The conditional variance of a trajectory solution is given by

Σ𝑘,𝑡 |𝑢 = 𝛼2𝜎2
𝑣,𝑘

∫ 𝑡

0

����∫ 𝑡

𝑟

exp(−𝛾𝑇,𝑘 (𝑡 − 𝑠) − 𝛾𝑣,𝑘 (𝑠 − 𝑟) + +𝑖𝜔𝑇,𝑘 [𝑠, 𝑡] + 𝑖𝜔𝑣,𝑘 [𝑟, 𝑠]) 𝑑𝑠
����2 𝑑𝑟 (41)

= 𝛼2𝜎2
𝑣,𝑘

∫ 𝑡

0
exp(−2𝛾𝑣,𝑘 (𝑡 − 𝑟))

����∫ 𝑡

𝑟

exp(−𝛾𝑅,𝑘 (𝑡 − 𝑠) + 𝑖𝜔𝑅,𝑘 [𝑠, 𝑡]) 𝑑𝑠
����2 𝑑𝑟, (42)
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where 𝛾𝑅,𝑘 := 𝛾𝑇,𝑘 − 𝛾𝑣,𝑘 and
𝜔𝑅,𝑘 := 𝜔𝑇,𝑘 − 𝜔𝑣,𝑘 = −(𝑎𝑘 + 𝑘)𝑢𝑡 − 𝑏𝑘 .

x Alternatively, we can express the variance as:

Σ𝑘,𝑡 |𝑢 = 𝛼2𝜎2
𝑣,𝑘

∫ 𝑡

0
exp(−2𝛾𝑣,𝑘 (𝑡 − 𝑟))

����∫ 𝑡

𝑟

exp(−𝛾𝑅,𝑘 (𝑡 − 𝑠) + 𝑖𝜔𝑅,𝑘 [𝑠, 𝑡]) 𝑑𝑠
����2 𝑑𝑟. (43)

Corollary 3.3. An upper bound on the conditional variance is given by

Σ𝑘,𝑡 |𝑢 ≤
𝛼2𝜎2

𝑣,𝑘

𝛾2
𝑅,𝑘

(
1

2𝛾𝑣,𝑘
+ 1

2𝛾𝑇,𝑘

)
(44)

4 Tracer model statistical solutions

In this section, we focus on the case where the velocity field (𝑢𝑡 , 𝑣𝑡 (𝑥)) evolves slowly compared to the advection
and diffusion processes. This assumption is a natural condition for the dynamics of atmosphere-ocean systems, where
large-scale flows typically vary on slower timescales compared to the small-scale turbulent motions they influence. To
incorporate this separation of scales, we scale the governing equations in Fourier space for the zonal and shear flow
dynamics by a small parameter 𝜖 .

Under this formulation, the Fourier space model for the cross sweeps and shear flow are scaled by 𝜖 , so that eq. (18)
takes the form

𝑑𝑢𝑡 = 𝜖 𝑓 (𝑢𝑡 ) 𝑑𝑡 +
√
𝜖𝜎(𝑢𝑡 ) 𝑑𝑊𝑡 , (45)

𝑑�̂�𝑘,𝑡 = (−𝜖𝛾𝑣,𝑘 + 𝑖𝜔𝑣,𝑘)�̂�𝑘,𝑡 𝑑𝑡 +
√
𝜖𝜎𝑣,𝑘 𝑑𝐵𝑘,𝑡 , (46)

𝑑𝑇𝑘,𝑡 = (−𝛾𝑇,𝑘 + 𝑖𝜔𝑇,𝑘)𝑇𝑘,𝑡 𝑑𝑡 − 𝛼�̂�𝑘,𝑡 𝑑𝑡. (47)

The frequency 𝜔𝑣,𝑘 is not scaled by 𝜖 , since it represents the internal wavelike effects of the cross sweeps on 𝑣𝑡 (which
should be on the same scale), and the equation for 𝑇𝑘,𝑡 is exactly as before, but here the advection term due to the shear
flow is slowly varying.

To study the dynamics on a long timescale, we consider the rescaled time 𝑡′ = 𝜖𝑡. Substituting this into the governing
equations (and dropping primes for clarity) gives the following

Definition 4.1. On long timescales the turbulent shear model under slowly varying velocity fields is given by

𝑑𝑢𝑡 = 𝑓 (𝑢𝑡 ) 𝑑𝑡 + 𝜎(𝑢𝑡 ) 𝑑𝑊𝑡 , (48)

𝑑�̂�𝑘,𝑡 = (−𝛾𝑣,𝑘 + 𝑖𝜖−1𝜔𝑣,𝑘)�̂�𝑘,𝑡 𝑑𝑡 + 𝜎𝑣,𝑘 𝑑𝐵𝑘,𝑡 , (49)

𝑑𝑇𝑘,𝑡 = 𝜖−1 (−𝛾𝑇,𝑘 + 𝑖𝜔𝑇,𝑘)𝑇𝑘,𝑡 𝑑𝑡 − 𝜖−1𝛼�̂�𝑘,𝑡 𝑑𝑡, (50)

where the time dependent frequencies are given by

𝜔𝑣,𝑘 = 𝑎𝑘𝑢𝑡 + 𝑏𝑘 , 𝜔𝑇,𝑘 = −𝑢𝑡 𝑘. (51)

This rescaled system reveals a separation of timescales. As 𝜖 approaches zero, the velocity field (𝑢𝑡 , 𝑣𝑡 ) evolves much
more slowly than the tracer field. This separation allows us to treat the velocity field as approximately constant when
analyzing the rapid fluctuations in the tracer dynamics, while capturing the long-term evolution of the flow structure.

4.1 Limiting distribution for tracer statistics

An approximate analytical result for the stationary distribution for the tracer statistics can be derived by analyzing the
steady-state conditional variance Σ𝑘,𝑡 |𝑢. Since the tracer trajectory is a conditional Gaussian integral, given 𝑢𝑡 , its full
distribution can be expressed using the law of total probability. The stationary distribution of the real part of the tracer
mode Re(𝑇𝑘) is then

𝑝(𝑥) =
∫

1√︃
𝜋Σ̃𝑘 (𝑢)

exp
(
− 𝑥2

Σ̃𝑘 (𝑢)

)
𝑝𝑢 (𝑢) 𝑑𝑢. (52)

Where, Σ̃𝑘 (𝑢) is the stationary value of the conditional variance Σ𝑘,𝑡 |𝑢.
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Proposition 4.2. Under slowly varying velocity fields, the conditional tracer variance converges to the stationary value

Σ̃𝑘 (𝑢) =
𝛼2𝐸𝑣,𝑘

𝛾2
𝑇,𝑘

+ 𝜔𝑅,𝑘 (𝑢)2
. (53)

In the stationary limit, 𝑢 is treated as a static parameter sampled from its steady state distribution.

The steady-state distribution of the passive scalar is obtained by the same approach, additionally summing over all
wavenumbers.

Theorem 4.3. The stationary distribution of the tracer field 𝑇 (𝑥) for the model in eq. (48) is given by:

𝑝(𝜆) =
∫

1√︃
2𝜋Σ̃(𝑢)

exp
(
− 𝜆2

2Σ̃(𝑢)

)
𝑝𝑢 (𝑢) 𝑑𝑢, (54)

where

Σ̃(𝑢) =
∑︁
𝑘∈N

𝛼2𝐸𝑣,𝑘

𝛾2
𝑇,𝑘

+ 𝜔𝑅,𝑘 (𝑢)2
(55)

4.2 Intermittency and extreme events through resonance

Extreme events in the turbulent tracer field are linked to peaks in the conditional variance. Inspecting eq. (55) we see
that the conditional variance reaches its maximum when 𝜔𝑅,𝑘 := 𝜔𝑇,𝑘 − 𝜔𝑣,𝑘 = 0, which corresponds to a resonant
condition when the phase speeds of the zonal flow, shear flow, and tracer field align, i.e. 𝜔𝑇,𝑘 = 𝜔𝑣,𝑘 This resonance
leads to bursts in the tracer field variance, occurring when 𝜔𝑅,𝑘 = 0 or

𝑢′𝑡 + 𝑢 = 𝑢res,𝑘 := − 𝑏𝑘

𝑎𝑘 + 𝑘
(56)

𝑢′𝑡 = 𝑢′res,𝑘 := − 𝑏𝑘

𝑎𝑘 + 𝑘
− 𝑢 (57)

which define the resonant phase speeds. When the zonal flow fluctuations 𝑢′𝑡 crosses the phase speed threshold 𝑢′res,𝑘
the wavenumbers ±𝑘 are excited, producing an intermittent burst. Unlike intermittency in unstable systems—where
finite-time instabilities yield heavy-tailed statistics and bursts—this mechanism is resonance-driven: fluctuations in the
zonal flow trigger resonance, amplifying the conditional variance and causing non-Gaussian tracer statistics.

For deterministic periodic shears this ’resonance’ driven intermittency was first noted in [1] and was linked to a
physical interpretation of ’blocked’ and ’un-blocked’ streamlines. In this interpretation when the zonal flow is 𝑢 ≈ 0 the
shear flow is unblocked leading to strong convective transport of the tracer along the direction parallel to the mean
scalar gradient and strong mixing by diffusion. Conversely, when 𝑢 ≠ 0, the transverse sweeps are blocked and transport
along the gradient is minimal. The resonance condition eq. (56) can be interpreted as a generalization of this result to
stochastic zonal and shear flows.

Understanding how the zonal and shear flows affect tracer statistics is crucial, especially the role of nonlinearity in
the zonal flow. While zonal fluctuations do not change the resonant phase speeds—these are set by the wave dynamics
of the shear flow and zonal mean—they do influence how often the system crosses resonance, thus modulating tracer
statistics (see eq. (54)). This means that the statistics of the nonlinear zonal flow can act to either enhance turbulent
tracer transport through increased intermittency or reduce intermittency relative to a linear (Gaussian) flow model. This
underscores the importance of the zonal flow’s stochasticity in the tracer field intermittency, and has implications for
linearization approaches.

Although the shear flow does not directly affect the frequency that resonance is reached—the zonal flow statistics
determine this—wavelike effects in the shear modify the resonant phase speed values. This influences how often the
zonal flow crosses these thresholds. In a purely random shear flow with no wavelike effects, where 𝑎𝑘 = 𝑏𝑘 = 0
(see eq. (23)), the resonant speeds collapse to a single value:

𝑢′res = −𝑢; (58)
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A similar synchronization appears in non-dispersive advection, where 𝑎𝑘 = 0 and 𝑏𝑘 = −𝑐𝑘:

𝑢′res = 𝑐 − 𝑢. (59)

In both cases, crossing the resonance threshold excites all modes simultaneously, leading to stronger intermittency, as
every excited mode contributes to the tracer field. This also produces finer-scale structures during extreme events due to
the excitation of higher-wavenumber modes.

In contrast, dispersive shear flows yield multiple resonant phase speed thresholds (one for each wavenumber k),
whereas purely random shear flows and non-dispersive advection synchronize these thresholds, exciting all scales at
once. This distinction strongly influences the nature of intermittency and the structure of extreme tracer events.

5 Numerical experiments and regimes for a single mode

We now perform numerical experiments to examine the effect of zonal and shear flows on tracer intermittency and
extreme events across various regimes.

We first consider a single tracer mode, i.e. 𝑘 = 1, and assume the shear flow is described by the 𝛽-plane QG model
in eq. (25). Unless stated otherwise, we consider a system with the following parameters

𝜖 = 0.010, 𝑑𝑇 = 0.1, 𝜅 = 0.001, 𝑑𝑣 = 0.6, 𝜈 = 0.1, 𝛼 = 1, 𝛽 = 8.91, 𝐹 = 16. (60)

5.1 Numerical integration

Integration of the multiscale tracer model in eq. (48) requires some special care. The zonal flow 𝑢𝑡 is integrated using an
explicit Euler-Mayurama scheme, while �̂�𝑘,𝑡 and 𝑇𝑘,𝑡 are updated using an exact exponential-integrator scheme. The
updates for step Δ are given as follows:

𝑢𝑡+Δ = 𝑢𝑡 + 𝑓𝑈 (𝑢𝑡 )Δ + 𝜎𝑈 (𝑈)Δ𝑤𝑡 (61)

�̂�𝑘,𝑡+Δ = exp
(
(−𝛾𝑣,𝑘 + 𝑖𝜖−1𝜔𝑣,𝑘 (𝑡))Δ

)
�̂�𝑘,𝑡 + 𝜎𝑣,𝑘

√︃
Δ exp

(
(−𝛾𝑣,𝑘 + 𝑖𝜖−1𝜔𝑣,𝑘 (𝑡))Δ

) 𝑏1
𝑡 + 𝑖𝑏2

𝑡√
2

(62)

𝑇𝑘,𝑡+Δ = exp
(
𝜖−1 (−𝛾𝑇,𝑘 + 𝑖𝜔𝑇,𝑘)Δ

)
𝑇𝑘,𝑡 − 𝜖−1𝛼Δ exp

(
𝜖−1 (−𝛾𝑇,𝑘 + 𝑖𝜔𝑇,𝑘)Δ

)
�̂�𝑘,𝑡 (63)

where
𝛾𝑇,𝑘 = 𝑑𝑇 + 𝜅𝑘2, 𝜔𝑣,𝑘 = 𝑎𝑘𝑢𝑡 + 𝑏𝑘 , 𝜔𝑇,𝑘 = −𝑘𝑢𝑡 , (64)

and 𝑤𝑡 , 𝑏1
𝑡 ,𝑏2

𝑡 are independent uniform Gaussian random variables.

5.2 Stochastic zonal mean flow with linear dynamics

Consider a zonal flow described by the OU process in eq. (30). with statistics in eq. (31). We consider a case where the
eastward zonal jet has the following parameters: 𝐸𝑢 = 0.5 (with 𝛾𝑢 = 1 and 𝜎𝑢 = 1). The forcing is set to 𝑓 = 0.4431,
such that 𝑢′res = −1, and so fluctuations crossing this threshold occur with probability 𝑝(𝑢 < 𝑢′res) = 0.0228. At
resonance (when 𝑢 = 𝑢′res), the conditional Gaussian variance increases dramatically, with Σ̃(𝑢′res) > 87Σ̃(𝑢), indicating
an 87-fold amplification compared to the mean flow condition.

In fig. 4 we plot the limiting equilibrium PDF along with the histogram of the time series and the corresponding
realizations of the tracer mode for various 𝜖 . At any fixed time, the tracer distribution is Gaussian, however the variance
is time dependent and shoots at zero crossings of the frequency 𝜔𝑅 or equivalently when the zonal flow fluctuations 𝑢′𝑡
crosses 𝑢′res. Furthermore, as 𝜖 → 0 intermittency is enhanced since the slowly varying zonal flow 𝑢𝑡 spends a longer
period of time in the resonance regime leading to larger extreme events. We note the close agreement between the
analytical result and the histogram of the time series as 𝜖 tends to zero.

5.3 Stochastic zonal mean flow with nonlinear dynamics

We now consider the nonlinear model in eq. (32). Motivated by the discussion and the regimes presented in section 2.3.2
we consider several representative cases with interesting statistics for the zonal flow, including cases with zero
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multiplicative noise 𝐵 = 0 in fig. 5 and strong multiplicative noise 𝐵 = 2.5 in fig. 6, with zonal flows that correspond to
those in figs. 2 and 3. As in section 2.3.2, we set 𝜎𝑢 = 1 and set 𝑐 = 1 and 𝑏 = 0 throughout the analysis.

Some important points that these cases demonstrate in the single Fourier mode case is that strong nonlinearity and
non-trivial Gaussian statistics in the zonal flow, such as bimodal distributions or heavily skewed fat-tailed statistics,
do not necessarily lead to enhanced tracer intermittency. In fact, it is possible to observe a zonal flow with strongly
non-Gaussian features compared to a linear case with Gaussian statistics, yet the tracer field PDF is nearly identical. This
can be understood by the fact that the zero crossing frequency of the resonance threshold 𝜔𝑅 = 0 is of vital importance
and this frequency is not uniquely determined by the form of the zonal flow dynamics. Thus different zonal flows can lead
to similar tracer statistics if their resonance crossing frequency are equivalent. This is a feature of the single mode case.
Other interesting observations include the ‘on-off’ type intermittency regime in the double well zonal flow test case
(case b, 𝐵 = 0), and intermittency from ‘below’ in case c. As an aside, note that the analytical limiting tracer formula for
the experiments with strong multiplicative noise do not agree as well to the cases with 𝐵 = 0. This is expected since
large multiplicative noise leads to a diffusion process that has a shorter time scale and thus the time scale separation
between the zonal flow and tracer modes is decreased.
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Figure 4 Sample realizations and the corresponding equilibrium pdfs and their analytical limit. Model: single mode, 𝑘 = 1, 𝛽-plane
QG flow. Linear zonal fluctuations with 𝐸𝑢 = 0.5 (𝛾𝑢 = 1, 𝜎𝑢 = 1). Dashed line in 𝑈𝑡 plot is the resonance threshold 𝜔∗

1 = −1.0.
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Figure 5 Sample realizations and the corresponding equilibrium pdfs and their analytical limit. Model: single mode, 𝑘 = 1, 𝛽-plane
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6 Numerical experiments and regimes for finitely many Fourier mode

We now consider finitely many tracer modes and their effect on the distribution of the tracer field. Recall 𝑇𝑡 (𝑥) =∑
𝑘 𝑇𝑘,𝑡𝑒

𝑖𝑘𝑥 , with 𝑇𝑘,𝑡 = 𝑇∗
−𝑘,𝑡 , which means that a finite number of modes have a combined effect on the tracer field

statistics and intermittency. This is more clearly understood by looking at the formula for the conditional variance of the
tracer field, which is simply the sum of the conditional variance for each mode (55):

Σ̃(𝑢) =
∑︁
𝑘∈𝑁

Σ̃𝑘 (𝑢) =
∑︁
𝑘∈𝑁

𝛼2𝐸𝑣,𝑘

𝛾2
𝑇,𝑘

+ (𝑐𝑘𝑢 + 𝑑𝑘)2
. (65)

In the finitely many Fourier mode scenario we have more rich dynamics compared to the single Fourier mode situation,
since the total variance is a sum of the conditional variance for each mode, which can have their variance peak at
different zonal phase speeds. The fact that different modes may have different resonance levels, has an impact on the
overall nature of extreme events in the tracer field. These points will be demonstrated in numerical experiments.

The energy spectrum of the shear flow 𝑣𝑡 (𝑥) is set to either equipartition (27) or a Kolmogorov spectrum (28)1:

𝐸𝑘,𝑣 = 1 (equipartition) 𝐸𝑘,𝑣 = 𝐸0 |𝑘 |−5/3 (Kolmogorov). (66)

We consider these two cases to demonstrate the effects of the energy level of the shear flow on extreme events. Under
equipartition, each mode �̂�𝑘 has the same energy and thus during resonance crossings 𝜔∗

𝑘
all excited modes will

force the tracer mode with the same intensity 𝑇𝑘 and induce a burst of roughly the same magnitude in all the excited
modes (roughly, since the smaller scale modes are selectively damped, which means these modes contribute less to
the magnitude of the extreme events). Contrast this to the Kolmogorov spectrum, where smaller scales in the shear
flow have less energy and thus their excitation adds a smaller contribution to the total tracer field statistics. The tracer
extreme event statistics will thus be essentially determined by the largest most energetic scales.

6.1 Numerical experiments

As in the single Fourier case, we consider the 𝛽-plane QG flow model eq. (25) as a representative wavelike, dispersive
shear flow, with the following parameters

𝑢 = 0.4171, 𝑑𝑇 = 0.1, 𝜅 = 0.001, 𝑑𝑣 = 0.6, 𝜈 = 0.1, 𝛼 = 1, 𝛽 = 8.91, 𝐹 = 16. (67)

We include results for 𝜖 = 0.01 and for the set of wavenumbers 𝑘 ∈ {−5, . . . , 5}, unless otherwise stated.

6.1.1 Stochastic zonal mean flow with linear dynamics

In fig. 7 we compare the results under linear zonal fluctuations with an equipartition spectrum and Kolmogorov spectrum.
Observe the multiple resonance thresholds 𝜔∗

𝑘
, which are plotted in dashed lines in the figure showing the zonal flow

trajectory 𝑈𝑡 . All the bursts in the time sequence of the tracer modes and the tracer field can be predicted from the
resonance crossings of 𝑈𝑡 . The high frequency modes, i.e. large 𝑘 , have thresholds that are far from the mean of 𝑈𝑡

and are increasingly rare to cross and, consequently, the contribution to the overall tracer statistics is smaller. Under
equipartition, we have more extreme and intermittent tracer statistics and prominent smaller scale spatial features in
the tracer field compared to a Kolmogorov spectrum. This can easily be understood by the fact that when we have
multiple resonance threshold crossings, all the excited modes have the same energy level and consequently all the
modes contribute significantly to the tracer field statistics. This can also be observed in the conditional variance Σ̃ for
equipartition, where we see multiple peaks corresponding to the resonance thresholds and that the peaks corresponding
to the high frequency modes have large magnitude, comparable to the lowest frequency modes. This is in contrast to the
Kolmogorov spectrum, where the high frequency modes have less energy and contribute minimally to the overall tracer
field statistics. Looking at the conditional covariance of the tracer field, we see that the contribution to the conditional
variance of the resonance values 𝜔∗

𝑘
of the higher frequency modes is overwhelmed by the variance of the first mode.

This leads us to the following important point: The largest energetic scales determine the statistics of the tracer field.
Model reduction retaining the effects of these modes is an effective strategy.

1We normalize the energy of the first mode 𝑘 = 1 such that 𝐸1,𝑣 = 1 for the Kolmogorov spectrum.
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6.1.2 Stochastic zonal mean flow with nonlinear dynamics

We now investigate cases with the nonlinear zonal fluctuation formulation in section 2.3.2. As in the single Fourier
mode case, we consider zonal flows corresponding to the regimes presented in section 2.3.2, including cases with zero
multiplicative noise 𝐵 = 0, fig. 8, and strong multiplicative noise 𝐵 = 2.5, fig. 9, and as before we fix 𝜎𝑢 = 1 and
consider cases with 𝑐 = 1 and 𝑏 = 0.

In section 5.3 we observed that nonlinearity and non-Gaussian zonal flow statistics in the single Fourier mode case
can significantly effect tracer intermittency and extreme events. This is also true with multiple Fourier modes, but with
additional features due to the non-synchronized resonance thresholds in dispersive flows. In particular, compared to
linear zonal flows, we can have either enhanced or suppressed intermittency depending on the skewness and kurtosis of
the zonal fluctuations, see fig. 9 which demonstrate cases with prominent skewness and kurtosis under multiplicative
noise. Large kurtosis values imply an increase in the frequency of visiting the resonance thresholds of the smaller scale
modes and thus lead to enhanced intermittency. Skewness of the zonal flow statistics, due to non-zero forcing, also
greatly impact tracer intermittency, which can again be understood in terms of the frequency of visiting the resonance
thresholds. When the forcing induces skewness towards the resonance values (‘resonant’ forcing), tracer intermittency is
enhanced. Conversely, for a zonal flow with small Kurtosis values and skewness away from the the resonance thresholds
(‘non-resonant‘ forcing) we observe suppressed tracer intermittency and extreme events. The impact of these effects are
of course enhanced in the equipartition range.

In fig. 8 we demonstrate time histories and tracer statistics for cases with zero multiplicative noise. Similar to the
single Fourier mode case, we note in certain regimes, modes can actually be excited from ‘below’, in the sense that the
zonal flow first excites the smallest tracer modes before the largest scales; See case b, with a double well potential, and
case c, for examples of this phenomenon. This is in contrast to the usual case, where the largest scales are excited before
smaller scales. Also note the distinct ‘on-off’ switching behavior of intermittency in these regimes, which coincides
with the zonal flow transitioning between the two potential wells. The transition to the well with a fixed point below 𝜔∗

1,
induces this interesting ‘on-off’ intermittency regime.

In the single Fourier mode case we also noted that it was possible to observe very similar tracer field statistics
under nonlinear conditions if the resonance crossing frequency of the zonal flow is equivalent to a case with linear
stochastic dynamics. With finitely many Fourier modes in dispersive shear flows, where the resonance phase speeds are
not all synchronized this is not necessarily possible since nonlinearity in the zonal fluctuations will impact the excitation
frequency of all the modes, and since they are not synchronized, this will consequently lead to differences compared to
linear conditions. This effect is of course more important under equipartition. In non-dispersive or random flows, it is
possible to observe similar statistics if the resonance frequency is equivalent to linear conditions.

In summary, with finitely many Fourier modes, we have markedly different tracer statistics and new regimes
compared to linear stochastic zonal flow regimes.

7 Comparative analysis of tracer intermittency and spatial structures in random and advective, wavelike shear
flows

We now include a detailed comparison of tracer intermittency and tracer spatial features between different shear flow
models and zonal flow conditions. Consider again the nonlinear zonal flow model in eq. (32):

𝑑𝑈𝑡 = (𝑎𝑈𝑡 + 𝑏𝑈2
𝑡 − 𝑐𝑈3

𝑡 + 𝑓 ) 𝑑𝑡 + 𝐵𝑈𝑡𝑑𝑊2 + 𝜎𝑢𝑑𝑊1. (68)

Motivated by the discussion and the regimes presented in section 2.3.2 we consider several representative zonal flow
regimes with interesting statistics, including linear dynamics (i.e. OU process, see fig. 1), nonlinear dynamics with
strong multiplicative noise (fig. 3), and double well potential flow (fig. 2). In addition, we include cases, for the
nonlinear flow where there is resonant forcing (in the sense that the non-zero forcing induces skewness in the flow that is
favorable towards exciting resonance in the tracer modes) and non-resonant forcing. In table 1 the parameters for the test
cases are provided. The remaining fixed system parameters are

𝑢 = 1, 𝑑𝑇 = 0.1, 𝜅 = 0.001, 𝑑𝑣 = 0.6, 𝜈 = 0.1, 𝛼 = 1, 𝜖 = 0.01. (69)
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Figure 7 Multiple mode, 𝛽-plane QG flow. Linear zonal fluctuations with 𝐸𝑢 = 0.5 (𝛾𝑢 = 1, 𝜎𝑢 = 1).

Table 1 Zonal flow parameters for the test cases.

𝑓 𝑎 𝑏 𝑐 𝜎𝑈 𝐵

case l1 (linear) 0 -1 0 0 1 0
case n1 (nonlinear, double well) 0 2 0 1 1 0
case n2 (nonlinear, multiplicative noise) 0 2 0 1 1 2.5
case n3 (nonlinear, multiplicative noise, neg. skewness) -1.5 2 0 1 1 2.5
case n4 (nonlinear, multiplicative noise, pos. skewness) 1.5 2 0 1 1 2.5
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Figure 8 Multiple mode, 𝛽-plane QG flow. Nonlinear zonal fluctuations with zero multiplicative noise and equipartition shear
spectrum.
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Figure 9 Multiple mode, 𝛽-plane QG flow. Nonlinear zonal fluctuations with multiplicative noise and equipartition shear spectrum.
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For the shear flow we focus on a equipartition energy spectrum. We compare random shear flows,

𝜕𝑣𝑡

𝜕𝑡
= −𝛾𝑣

(
𝜕

𝜕𝑥

)
𝑣𝑡 + ¤𝑊𝑣 (𝑥, 𝑡), (70)

and wavelike, advective flows with

𝜕𝑣𝑡

𝜕𝑡
= 𝑈𝑡𝑅1

(
𝜕

𝜕𝑥

)
𝑣𝑡 + 𝑅2

(
𝜕

𝜕𝑥

)
𝑣𝑡 − 𝛾𝑣

(
𝜕

𝜕𝑥

)
𝑣𝑡 + ¤𝑊𝑣 (𝑥, 𝑡), (71)

where the wavelike operators 𝑅1, 𝑅2 are non zero:

𝑅1

(
𝜕

𝜕𝑥

)
= 𝑖𝑎𝑘𝑒

𝑖𝑘𝑥 , 𝑅2

(
𝜕

𝜕𝑥

)
= 𝑖𝑏𝑘𝑒

𝑖𝑘𝑥 , (72)

which encompasses dispersive and non-dispersive waves. As examples, for non-dispersive waves we have 𝑎𝑘 = 0 and
𝑏𝑘 = −𝑐𝑘 and dispersive waves include the QG baroclinic flow model. We summarize the shear models we consider and
their resonance conditions below,

• Random shear flows (with zonal mean 𝑢𝑟 ):

𝑎𝑘 = 𝑏𝑘 = 0, 𝜔∗ = −𝑢𝑟 . (73)

• Non-dispersive waves (with zonal mean 𝑢):

𝑎𝑘 = 0, 𝑏𝑘 = −𝑐𝑘, 𝜔∗ = 𝑐 − 𝑢. (74)

• Dispersive waves, 𝛽-plane Quasi-Geostrophic (QG) baroclinic 1.5 layer flows (with zonal mean 𝑢):

𝑎𝑘 =
−𝑘3

𝑘2 + 𝐹
, 𝑏𝑘 =

𝛽𝑘

𝑘2 + 𝐹
, 𝜔∗

𝑘 = −𝑏𝑘 + 𝑘𝑢

𝑎𝑘 + 𝑘
. (75)

For comparison purposes, we match the main resonance levels, between the three cases models above. For the QG
model the parameters are

𝛽 = 8.91, 𝐹 = 16, (76)

so when 𝑢 = 1, we require 𝑐 = −0.6194 for the non-dispersive model to match the resonance level of the first mode 𝜔∗
1

in the QG model. In the purely random flow where 𝑎𝑘 = 𝑏𝑘 = 0, we need to shift the zonal mean by the same amount,
which gives 𝑢𝑟 = 1.6194. All the cases are on equal footing with respect to the resonance threshold, which allows us to
fairly compare the various shear models. A comparison between the nonlinear zonal flow and the linear zonal flow, is
not in full equivalent since the crossing rates and overall energy are not equal, as there is no evident way to enforce
equality. We consider the following zonal mean cases

• Zonal flow set 1: 𝑢𝑟 = 1.0, 𝑢 = 0.4171, 𝑐 = −0.5829

• Zonal flow set 2: 𝑢𝑟 = 1.6194, 𝑢 = 1.0, 𝑐 = −0.6194

In section B.1 we directly compare the random and non-dispersive advection shear model for all the aforementioned
cases and in section B.2 we include a comparison for between dispersive and non-dispersive wavelike shear flows.

• Dispersive flows compared to their non-dispersive counterpart have fewer small scale spatial features, a direct
consequence of the fact that higher modes are more rare to intermittently excite; this is also reflected in lower
probabilities for extreme events in the tracer pdf.

• Nonlinear zonal flows in ‘on-off’ regimes have the ability to drastically impact advective flows and may lead to
super extreme events that persist in time. A consequence of the interplay between the separated resonance phases
of the tracer modes and the statistical characteristics of the nonlinear zonal fluctuation dynamics.
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• Advective flows compared to their random counterpart, result in more coherent spatio-temporal extreme events in
the tracer field with prominent oscillatory behavior. This is a direct consequence of the non-zero wave-speed due to
the advection term.

• Advective flows compared to their random counterpart, the limiting analytical tracer pdf predictions, derived under
the 𝜖 → 0 limit are identical, but the advection flow pdf has more prominent probability for intermediate magnitude
fluctuations corresponding to the oscillatory behavior, the effects are order 𝜖 . In very intermittent regimes, the tails
of the tracer pdf in advective flows clearly follows an exponential-like form for the intermediate to extreme tails
range.

8 Conclusion

This study reveals the critical mechanisms through which stochastic zonal and shear flows produce tracer intermittency
in turbulent diffusion with a mean gradient. By making assumptions that preserve key physical mechanisms of tracer
transport, following previous literature, we derived analytically tractable pathwise solutions and explicit expressions for
the tracer PDF. Following this, a simplified analytical approximation was derived for the conditional variance of the
tracer field, under a slowly varying velocity field, which provides a closed form equation for the tracer PDF that was
validated through numerical experiments. From these analytical results and numerical experiments, we demonstrated
several key velocity field features that determine how non-Gaussianity and extreme events arise in tracer fields.

The primary result reveals that resonance, through phase speed alignment between the zonal and shear flow, rather
than transient instabilities, are responsible for the observed tracer intermittency. When the phase speeds of zonal flow
fluctuations cross specific thresholds, determined by the underlying wave dynamics of the velocity field, dramatic
amplification of tracer variance occurs. This resonance-driven mechanism represents a pathway to turbulent intermittency
that differs from finite-time Lyapunov instabilities. The analytical framework demonstrates that the conditional variance
of the tracer field peaks when 𝜔𝑅,𝑘 = 0, corresponding to resonance conditions between the zonal flow, shear flow, and
tracer field. This provides a quantitative explanation of extreme events and allows for prediction of intermittency if the
flow characteristics are known.

Importantly, we identified significant differences in tracer behavior across flow regimes. Dispersive flows with
wavelike features exhibit separated resonance thresholds across wavenumbers, leading to sequential excitation of modes
and smoother extreme events. In contrast, random shear flows and non-dispersive waves synchronize these thresholds,
exciting all scales simultaneously, producing sharper, more intermittent, structures with enhanced small-scale features.
Our comparison of equipartition and Kolmogorov energy spectra show that the spatial structure of extreme events is
strongly influenced by the distribution of energy in the shear flow. Under equipartition, multiple peaks in the conditional
variance lead to stronger intermittency with pronounced small-scale features, whereas the Kolmogorov spectrum
produces more large-scale dominated extreme events.

The nonlinear dynamics of zonal flow is crucial in modulating intermittency. Despite being statistically non-Gaussian,
nonlinear zonal flows do not necessarily enhance tracer intermittency; rather, their effect depends on how frequently
they cross resonance thresholds. This challenges linearization approaches and highlights the importance of accurately
capturing zonal flow statistics in turbulent transport models.

The results in this paper have implications for modeling and prediction of tracer transport in geophysical and
environmental applications. The identified resonance mechanism provides a simple basis for understanding tracer bursts
in systems ranging from atmospheric pollutant transport to oceanic mixing. Furthermore, the demonstrated sensitivity
to flow characteristics shows that accurate representation of zonal and shear flow statistics is essential for reliable
prediction of extreme tracer burst events. Future work could extend this approach to three-dimensional flows involving a
vertical shear and use the model in various data assimilation (DA) and uncertainty quantification (UQ) applications. The
analytical tractability of our approach makes it particularly valuable for developing and testing various DA and UQ
schemes that can capture non-Gaussian statistics of tracer intermittency while remaining computationally efficient.
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A Supporting information

A.1 Dynamical regimes of the nonlinear zonal flow

To study the dynamical regimes of the nonlinear cross sweep model in eq. (32) we consider the deterministic system
with no noise and study its fixed points:

𝑑𝑥

𝑑𝑡
= 𝑓 + 𝑎𝑥 + 𝑏𝑥2 − 𝑐𝑥3. (A.1)

The three roots of the cubic equation 𝑓 + 𝑎𝑥 + 𝑏𝑥2 − 𝑐𝑥3 = 0 determine the equilibrium points. With 𝑐 > 0 it is
straightforward to see we have three possible regimes corresponding to the nature of the three roots of the cubic: two
stable and one unstable fixed points, one stable and one unstable fixed points, or one stable fixed point and two non-real
complex conjugate roots. The parameters 𝑎, 𝑏, 𝑐, 𝑓 determine the nature of the roots of the cubic polynomial through
the discriminant. For the cubic polynomial in standard form,

𝑓 (𝑥) = 𝑥3 + 𝑐2𝑥
2 + 𝑐1𝑥 + 𝑐0, (A.2)

the discriminant is given by [3]

Δ = 𝑐2
2𝑐

2
1 − 4𝑐3

1 − 4𝑐3
2𝑐0 + 18𝑐2𝑐1𝑐0 − 27𝑐2

0 (A.3)

= −4𝑝3 − 27𝑞2, where 𝑝 = 𝑐1 − 1
3𝑐

2
2, 𝑞 = 𝑐0 − 1

3𝑐2𝑐1 + 2
27𝑐

3
2. (A.4)

The boundary between the three possible cases is given by the condition Δ = 0. The form for the discriminant in eq. (A.4)
allows us to explicitly determine the boundaries separating the different cases by setting the discriminant to zero Δ = 0
and solving for 𝑐0. In terms of the original system parameters, this gives the following equation for the boundary as a
function of the other parameters

𝑓 ±𝑏 = −𝑎𝑏

3𝑐
− 2𝑏3

27𝑐2 ± 2𝑐
(
𝑎

3𝑐
+ 𝑏2

9𝑐2

)3/2
, (A.5)

where we require 𝑎 > 𝑎𝑐 ≡ −𝑏2/3𝑐, for 𝑐 > 0. Given fixed 𝑐 and 𝑏, this boundary divides the dynamics in the parameter
space (𝑎, 𝑓 ) into two regimes: a region with three equilibrium points (two stable and one unstable) when 𝑓 −

𝑏
< 𝑓 < 𝑓 +

𝑏

and 𝑎 > 𝑎𝑐 and the region outside this area with only one stable equilibrium point, see fig. A.1.
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b = 0

1 stable equilibrium
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Figure A.1 Regimes of the deterministic nonlinear cubic model in (𝑎, 𝑓 ) parameter space for 𝑏 = 0 values (left panel). The dark
shaded area is bounded by the dividing curve 𝑓 ±

𝑏
in eq. (A.5) with points on the boundary having one unstable and one stable fixed

points. Boundary for the discriminant Δ = 0 is shown in the right panel.
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A.2 Equilibrium density of the nonlinear zonal flow

The stationary probability measure for the general form of the nonlinear zonal flow in eq. (32) satisfies the following
Fokker-Planck equation

− 𝜕

𝜕𝑥
[
(
𝑎𝑥 + 𝑏𝑥2 − 𝑐𝑥3 + 𝑓

)
𝑝𝑈 (𝑥)] + 1

2
𝜕2

𝜕𝑥2 [
(
(𝐵𝑥 − 𝐴)2 + 𝜎2

𝑢

)
𝑝𝑈 (𝑥)] = 0 (A.6)

The equilibrium pdf that solves this can be shown to given by (see [18] for details)

𝑝𝑢 (𝑢) =
𝑁0

((𝐵𝑥 − 𝐴)2 + 𝜎2
𝑢)𝑎1

exp
(
𝑑 arctan

(
𝐵𝑥 − 𝐴

𝜎𝑢

))
exp

(
−𝑐1𝑥

2 + 𝑏1𝑥

𝐵4

)
, (A.7)

where 𝑁0 is a normalization constant. The coefficients 𝑎1, 𝑏1, 𝑐1, 𝑑 are provided in .

𝑎1 = 1 − −3𝐴2𝑐 + 𝑎𝐵2 + 2𝐴𝑏𝐵 + 𝑐𝜎2
𝑢

𝐵4 , (A.8)

𝑏1 = 2𝑏𝐵2 − 4𝑐𝐴𝐵, (A.9)

𝑐1 = 𝑐𝐵2, (A.10)

𝑑 =
𝑑1

𝜎𝑢

+ 𝑑2𝜎𝑢, (A.11)

𝑑1 = 2
𝐴2𝑏𝐵 − 𝐴3𝑐 + 𝐴𝑎𝐵2 + 𝐵3 𝑓

𝐵4 , (A.12)

𝑑2 = 2
3𝑐𝐴 − 𝑏𝐵

𝐵4 . (A.13)

A.3 Proofs of major results

Proposition 3.1. Integrating the equation for 𝑇𝑘,𝑡 by using eq. (37) we find

𝑇𝑘,𝑡 = −𝛼
∫ 𝑡

0
exp(−𝛾𝑇,𝑘 (𝑡 − 𝑠) + 𝑖𝜔𝑇,𝑘 [𝑠, 𝑡])�̂�𝑘,𝑠 𝑑𝑠 (A.14)

= −𝛼𝜎𝑣,𝑘

∫ 𝑡

0

∫ 𝑠

0
exp(−𝛾𝑇,𝑘 (𝑡 − 𝑠) − 𝛾𝑣,𝑘 (𝑠 − 𝑟) + +𝑖𝜔𝑇,𝑘 [𝑠, 𝑡] + 𝑖𝜔𝑣,𝑘 [𝑟, 𝑠]) 𝑑𝐵𝑘,𝑟 𝑑𝑠 (A.15)

= −𝛼𝜎𝑣,𝑘

∫ 𝑡

0

∫ 𝑡

𝑟

exp(−𝛾𝑇,𝑘 (𝑡 − 𝑠) − 𝛾𝑣,𝑘 (𝑠 − 𝑟) + +𝑖𝜔𝑇,𝑘 [𝑠, 𝑡] + 𝑖𝜔𝑣,𝑘 [𝑟, 𝑠]) 𝑑𝑠 𝑑𝐵𝑘,𝑟 . (A.16)

Fubini’s theorem is used in the last equality to exchange the order of integration.

Proposition 3.2. The derivation of the variance of trajectory solutions conditioned on a zonal flow trajectory is given by

Σ𝑘,𝑡 |𝑢 = 𝛼2𝜎2
𝑣,𝑘

∫ 𝑡

0

����∫ 𝑡

𝑟

exp(−𝛾𝑇,𝑘 (𝑡 − 𝑠) − 𝛾𝑣,𝑘 (𝑠 − 𝑟) + +𝑖𝜔𝑇,𝑘 [𝑠, 𝑡] + 𝑖𝜔𝑣,𝑘 [𝑟, 𝑠]) 𝑑𝑠
����2 𝑑𝑟 (A.17)

= 𝛼2𝜎2
𝑣,𝑘

∫ 𝑡

0

����∫ 𝑡

𝑟

exp(−𝛾𝑇,𝑘 𝑡 + 𝛾𝑣,𝑘𝑟 + 𝛾𝑅,𝑘𝑠 + 𝑖𝜔𝑇,𝑘 [𝑠, 𝑡] + 𝑖𝜔𝑣,𝑘 [𝑟, 𝑡] − 𝑖𝜔𝑣,𝑘 [𝑠, 𝑡])) 𝑑𝑠
����2 𝑑𝑟 (A.18)

= 𝛼2𝜎2
𝑣,𝑘

∫ 𝑡

0

����∫ 𝑡

𝑟

exp(−𝛾𝑇,𝑘 𝑡 + 𝛾𝑣,𝑘𝑟 + 𝑖𝜔𝑣,𝑘 [𝑟, 𝑡] + 𝛾𝑅,𝑘𝑠 + 𝑖𝜔𝑅,𝑘 [𝑠, 𝑡] 𝑑𝑠
����2 𝑑𝑟 (A.19)

= 𝛼2𝜎2
𝑣,𝑘

∫ 𝑡

0

����exp(−𝛾𝑇,𝑘 𝑡 + 𝛾𝑣,𝑘𝑟 + 𝑖𝜔𝑣,𝑘 [𝑟, 𝑡])
∫ 𝑡

𝑟

exp(𝛾𝑅,𝑘𝑠 + 𝑖𝜔𝑅,𝑘 [𝑠, 𝑡]) 𝑑𝑠
����2 𝑑𝑟 (A.20)

= 𝛼2𝜎2
𝑣,𝑘

∫ 𝑡

0
exp(−2𝛾𝑇,𝑘 𝑡 + 2𝛾𝑣,𝑘𝑟)

����∫ 𝑡

𝑟

exp(𝛾𝑅,𝑘𝑠 + 𝑖𝜔𝑅,𝑘 [𝑠, 𝑡]) 𝑑𝑠
����2 𝑑𝑟, (A.21)
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where 𝜔𝑅,𝑘 := 𝜔𝑇,𝑘 − 𝜔𝑣,𝑘 = −(𝑎𝑘 + 𝑘)𝑢𝑡 − 𝑏𝑘 and 𝛾𝑅,𝑘 := 𝛾𝑇,𝑘 − 𝛾𝑣,𝑘 . Alternatively, we can express the variance as:

Σ𝑘,𝑡 |𝑢 = 𝛼2𝜎2
𝑣,𝑘

∫ 𝑡

0
exp(−2𝛾𝑣,𝑘 (𝑡 − 𝑟))

����∫ 𝑡

𝑟

exp(−𝛾𝑅,𝑘 (𝑡 − 𝑠) + 𝑖𝜔𝑅,𝑘 [𝑠, 𝑡]) 𝑑𝑠
����2 𝑑𝑟. (A.22)

Corollary 3.3. We can find an upper bound for the conditional variance as follows. Start from eq. (42) and first use
|
∫
𝑧 | ≤

∫
|𝑧 | =

∫
𝑟, where 𝑧 = 𝑟𝑒𝑖 𝜃 , for the inner integral to obtain:����∫ 𝑡

𝑟

exp(𝛾𝑅,𝑘𝑠 + 𝑖𝜔𝑅,𝑘 [𝑠, 𝑡]) 𝑑𝑠
����2 ≤

(∫ 𝑡

𝑟

𝑒𝛾𝑅𝑠 𝑑𝑠

)2
=

1
𝛾2
𝑅

(𝑒𝛾𝑅𝑡 − 𝑒𝛾𝑅𝑟 )2 ≤ 1
𝛾2
𝑅

(𝑒2𝛾𝑅𝑡 + 𝑒2𝛾𝑅𝑟 ), (A.23)

Σ𝑘,𝑡 |𝑢 = 𝛼2𝜎2
𝑣,𝑘

∫ 𝑡

0
exp(−2𝛾𝑇,𝑘 𝑡 + 2𝛾𝑣,𝑘𝑟)

����∫ 𝑡

𝑟

exp(𝛾𝑅,𝑘𝑠 + 𝑖𝜔𝑅,𝑘 [𝑠, 𝑡]) 𝑑𝑠
����2 𝑑𝑟 (A.24)

≤ 𝛼2𝜎2
𝑣,𝑘

∫ 𝑡

0
exp(−2𝛾𝑇,𝑘 𝑡 + 2𝛾𝑣,𝑘𝑟)

1
𝛾2
𝑅,𝑘

(𝑒2𝛾𝑅,𝑘 𝑡 + 𝑒2𝛾𝑅,𝑘𝑟 ) 𝑑𝑟 (A.25)

= 𝛼2𝜎2
𝑣,𝑘

∫ 𝑡

0

1
𝛾2
𝑅, 𝑗

(𝑒−2𝛾𝑣,𝑘 (𝑡−𝑟 ) + 𝑒−2𝛾𝑇,𝑘 (𝑡−𝑟 ) ) 𝑑𝑟 (A.26)

=
𝛼2𝜎2

𝑣,𝑘

𝛾2
𝑅,𝑘

(
1 − 𝑒−2𝛾𝑣,𝑘 𝑡

2𝛾𝑣,𝑘
+ 1 − 𝑒−2𝛾𝑇,𝑘 𝑡

2𝛾𝑇,𝑘

)
(A.27)

We also find the bound in the long time limit

lim
𝑡→∞

Σ𝑘,𝑡 |𝑢 ≤
𝛼2𝜎2

𝑣,𝑘

𝛾2
𝑅,𝑘

(
1

2𝛾𝑣,𝑘
+ 1

2𝛾𝑇,𝑘

)
(A.28)

Proposition 4.2. Starting from eq. (A.22) for the rescaled system in definition 4.1,

Σ𝑘,𝑡 |𝑢 = 𝜖−2𝛼2𝜎2
𝑣,𝑘

∫ 𝑡

0
exp(−2𝛾𝑣,𝑘 (𝑡 − 𝑟))

����∫ 𝑡

𝑟

exp(−𝛾𝑅,𝑘 (𝑡 − 𝑠) + 𝑖𝜖−1𝜔𝑅,𝑘 [𝑠, 𝑡]) 𝑑𝑠
����2 𝑑𝑟, (A.29)

where 𝛾𝑅,𝑘 = 𝜖−1𝛾𝑇,𝑘 − 𝛾𝑣,𝑘 . Define the inner integral

𝐼 (𝑟) ≔
∫ 𝑡

𝑟

exp
(
−
(
𝜖−1𝛾𝑇,𝑘 − 𝛾𝑣,𝑘

)
(𝑡 − 𝑠) + 𝑖𝜖−1𝜔𝑅,𝑘 [𝑠, 𝑡]

)
𝑑𝑠, (A.30)

where 𝜔𝑅,𝑘 [𝑠, 𝑡] =
∫ 𝑡

𝑠
𝜔𝑅,𝑘 (𝑢) 𝑑𝑢. Consider the change of variables 𝑢 = 𝑡 − 𝑠,

𝐼 (𝑟) =
∫ 𝑡−𝑟

0
exp

(
−𝜖−1𝛾𝑇,𝑘𝑢

)
exp

(
𝛾𝑣,𝑘𝑢 + 𝑖𝜖−1𝜔𝑅,𝑘 [𝑡 − 𝑢, 𝑡]

)
𝑑𝑢, (A.31)

In the small 𝜖 limit, most of the contribution to this integral comes from when 𝑢 is small. As a result 𝜔𝑅,𝑘 [𝑡 − 𝑢, 𝑡] ≈
𝜔𝑅,𝑘 (𝑡)𝑢:

𝐼 (𝑟) ≈
∫ 𝑡−𝑟

0
exp

(
𝜖−1 (−𝛾𝑇,𝑘 + 𝑖𝜔𝑅,𝑘 (𝑡))𝑢

)
𝑑𝑢, (A.32)

This integral is of the form∫ 𝑡−𝑟

0
exp(−𝜆𝑢)𝑑𝑢 =

1
𝜆
(1 − exp(−𝜆(𝑡 − 𝑟))), where 𝜆 = 𝜖−1 (𝛾𝑇,𝑘 − 𝑖𝜔𝑅,𝑘 (𝑡) (A.33)

Taking the modulus square and keeping only leading order terms we find

|𝐼 (𝑟) |2 ≈ 𝜖2

𝛾2
𝑇,𝑘

+ 𝜔𝑅,𝑘 (𝑡)2
. (A.34)
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Using this result in eq. (A.29) we obtain

Σ𝑘,𝑡 |𝑢 = 𝜖−2𝛼2𝜎2
𝑣,𝑘

∫ 𝑡

0
exp(−2𝛾𝑣,𝑘 (𝑡 − 𝑟)) 𝜖2

𝛾2
𝑇,𝑘

+ 𝜔𝑅,𝑘 (𝑡)2
𝑑𝑟 (A.35)

=
𝛼2𝜎2

𝑣,𝑘

2𝛾𝑣,𝑘
(
𝛾2
𝑇,𝑘

+ 𝜔𝑅,𝑘 (𝑡)2) (1 − exp(−2𝛾𝑣,𝑘 𝑡)
)
. (A.36)

As 𝑡 → ∞, the conditional variance Σ𝑘,𝑡 |𝑢 converges to the stationary value

Σ̃𝑘 (𝑢) =
𝛼2𝐸𝑣,𝑘

𝛾2
𝑇,𝑘

+ 𝜔𝑅,𝑘 (𝑢)2
, where 𝐸𝑣𝑘 =

𝜎2
𝑣,𝑘

2𝛾𝑘,𝑣
. (A.37)
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B Experiments

B.1 Side-by-side comparison of random and advective flow (non-dispersive)

Set 1: Figures B.2 to B.4
Set 2: Figures B.8 to B.10

B.2 Side-by-side comparison of non-dispersive and dispersive advective flows

Set 1: Figures B.5 and B.7
Set 2: Figures B.11 to B.13
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zonal flow set 1: 𝑢𝑟 = 1.0, 𝑢 = 0.4171, 𝑐 = −0.5829

(a) Random, no advection

ca
se
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(b) Non-dispersive advection

Figure B.2 Comparison of spatio-temporal evolution of the tracer field, under different shear flow models, for equipartition.

27



zonal flow set 1: 𝑢𝑟 = 1.0, 𝑢 = 0.4171, 𝑐 = −0.5829

(a) Random, no advection
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(b) Non-dispersive advection
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Figure B.3 Comparison of evolution of the tracer field at 𝑇𝑡 (0) and the stationary PDF, among different shear flow models.
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zonal flow set 1: 𝑢𝑟 = 1.0, 𝑢 = 0.4171, 𝑐 = −0.5829
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(b) Non-dispersive advection
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Figure B.4 Comparison of evolution of the tracer modes and zonal fluctuation.
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zonal flow set 1: 𝑢𝑟 = 1.0, 𝑢 = 0.4171, 𝑐 = −0.5829

(a) Non-dispersive advection
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(b) Dispersive advection (QG model)

Figure B.5 Comparison of spatio-temporal evolution of the tracer field, under different shear flow models, for equipartition.
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zonal flow set 1: 𝑢𝑟 = 1.0, 𝑢 = 0.4171, 𝑐 = −0.5829

(a) Non-dispersive advection
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(b) Dispersive advection (QG model)
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Figure B.6 Comparison of evolution of the tracer field at 𝑇𝑡 (0) and the stationary PDF, among different shear flow models.
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zonal flow set 1: 𝑢𝑟 = 1.0, 𝑢 = 0.4171, 𝑐 = −0.5829

(a) Non-dispersive advection
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(b) Dispersive advection (QG model)
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Figure B.7 Comparison of evolution of the tracer modes and zonal fluctuation.
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zonal flow set 2: 𝑢𝑟 = 1.6194, 𝑢 = 1.0, 𝑐 = −0.6194

(a) Random, no advection
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(b) Non-dispersive advection

Figure B.8 Comparison of spatio-temporal evolution of the tracer field, under different shear flow models, for equipartition.
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zonal flow set 2: 𝑢𝑟 = 1.6194, 𝑢 = 1.0, 𝑐 = −0.6194

(a) Random, no advection
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(b) Non-dispersive advection
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Figure B.9 Comparison of evolution of the tracer field at 𝑇𝑡 (0) and the stationary PDF, among different shear flow models.
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zonal flow set 2: 𝑢𝑟 = 1.6194, 𝑢 = 1.0, 𝑐 = −0.6194

(a) Random, no advection
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Figure B.10 Comparison of evolution of the tracer modes and zonal fluctuation.
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zonal flow set 2: 𝑢𝑟 = 1.6194, 𝑢 = 1.0, 𝑐 = −0.6194

(a) Non-dispersive advection
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(b) Dispersive advection (QG model)

Figure B.11 Comparison of spatio-temporal evolution of the tracer field, under different shear flow models, for equipartition.
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zonal flow set 2: 𝑢𝑟 = 1.6194, 𝑢 = 1.0, 𝑐 = −0.6194

(a) Non-dispersive advection
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(b) Dispersive advection (QG model)
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Figure B.12 Comparison of evolution of the tracer field at 𝑇𝑡 (0) and the stationary PDF, among different shear flow models.

37



zonal flow set 2: 𝑢𝑟 = 1.6194, 𝑢 = 1.0, 𝑐 = −0.6194

(a) Non-dispersive advection
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(b) Dispersive advection (QG model)
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Figure B.13 Comparison of evolution of the tracer modes and zonal fluctuation.

38


	Introduction
	Contributions

	Formulation of turbulent diffusion models with a mean gradient
	Velocity field and passive tracer model in Fourier space
	Shear flow velocity field models
	Zonal flow velocity models
	Linear zonal model
	Non-linear zonal model


	Tracer model general properties and trajectory solution
	Tracer model statistical solutions
	Limiting distribution for tracer statistics
	Intermittency and extreme events through resonance

	Numerical experiments and regimes for a single mode
	Numerical integration
	Stochastic zonal mean flow with linear dynamics
	Stochastic zonal mean flow with nonlinear dynamics

	Numerical experiments and regimes for finitely many Fourier mode
	Numerical experiments
	Stochastic zonal mean flow with linear dynamics
	Stochastic zonal mean flow with nonlinear dynamics


	Comparative analysis of tracer intermittency and spatial structures in random and advective, wavelike shear flows
	Conclusion
	Supporting information
	Dynamical regimes of the nonlinear zonal flow
	Equilibrium density of the nonlinear zonal flow
	Proofs of major results

	Experiments
	Side-by-side comparison of random and advective flow (non-dispersive)
	Side-by-side comparison of non-dispersive and dispersive advective flows


