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Abstract. Turbulent dynamical systems characterized by both a high-dimensional phase space and a large number of instabilities are ubiquitous among4
many complex systems in science and engineering including climate, material, and neural science. The existence of a strange attractor in the turbulent systems5
containing a large number of positive Lyapunov exponents results in a rapid growth of small uncertainties from imperfect modeling equations or perturbations6
in initial values, requiring naturally a probabilistic characterization for the evolution of the turbulent system. Uncertainty quantification (UQ) in turbulent7
dynamical systems is a grand challenge where the goal is to obtain statistical estimates such as the change in mean and variance for key physical quantities in8
their nonlinear responses to changes in external forcing parameters or uncertain initial data. In the development of a proper UQ scheme for systems of high9
or infinite dimensionality with instabilities, significant model errors compared with the true natural signal are always unavoidable due to both the imperfect10
understanding of the underlying physical processes and the limited computational resources available through direct Monte-Carlo integration. One central issue11
in contemporary research is the development of a systematic methodology that can recover the crucial features of the natural system in statistical equilibrium12
(model fidelity) and improve the imperfect model prediction skill in response to various external perturbations (model sensitivity).13

A general mathematical framework to construct statistically accurate reduced-order models that have skill in capturing the statistical variability in the14
principal directions with largest energy of a general class of damped and forced complex turbulent dynamical systems is discussed here. There are generally15
three stages in the modeling strategy, imperfect model selection; calibration of the imperfect model in a training phase; and prediction of the responses with16
UQ to a wide class of forcing and perturbation scenarios. The methods are developed under a universal class of turbulent dynamical systems with quadratic17
nonlinearity that is representative in many applications in applied mathematics and engineering. Several mathematical ideas will be introduced to improve the18
prediction skill of the imperfect reduced-order models. Most importantly, empirical information theory and statistical linear response theory are applied in the19
training phase for calibrating model errors to achieve optimal imperfect model parameters; and total statistical energy dynamics are introduced to improve the20
model sensitivity in the prediction phase especially when strong external perturbations are exerted. The validity of general framework of reduced-order models21
is demonstrated on instructive stochastic triad models. Recent applications to two-layer baroclinic turbulence in the atmosphere and ocean with combinations22
of turbulent jets and vortices are also surveyed. The uncertainty quantification and statistical response for these complex models are accurately captured by the23
reduced-order models with only 2×102 modes in a highly turbulent system with 1×105 degrees of freedom. Less than 0.15% of the total spectral modes are24
needed in the reduced-order models.25
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Turbulent dynamical systems characterized by both a high-dimensional phase space and a large number of instabilities are28
ubiquitous among many complex systems in science and engineering [51, 54, 92, 75]. The existence of a strange attractor [93]29
in turbulent systems containing a large number of positive Lyapunov exponents results in a rapid growth of small uncertainties30
from imperfect modeling equations or perturbations in initial values, requiring naturally a probabilistic characterization for31
the evolution of the turbulent system. Uncertainty quantification (UQ) in turbulent dynamical systems is a grand challenge32
where the goal is to obtain statistical estimates such as the change in mean and variance for key physical quantities in their33
nonlinear responses to changes in external forcing parameters or uncertain initial data. One problem of practical significance34
in contemporary science is using UQ to understand the complexity of anisotropic turbulent processes over a wide range of35
spatio-temporal scales in engineering shear turbulence [35, 91, 26] as well as climate atmosphere ocean science [84, 92, 51].36
This is especially important from a practical viewpoint because energy often flows intermittently from the smaller scales to37
affect the largest scales in such anisotropic turbulent flows.38

In the development of a proper UQ scheme for systems of high or infinite dimensionality with instabilities, the analysis39
and prediction of phenomena often occur through complex dynamical equations that have significant model errors compared40
with the true natural signal. The imperfect model errors are always unavoidable due to both the imperfect understanding of the41
underlying physical processes and the limited computational resources needed for repeated Monte-Carlo simulations in each42
different scenario of high dimensional systems. Clearly, it is important both to improve the imperfect model’s capabilities to43
recover crucial features of the natural system and also to accurately model the sensitivities in the natural system to changes44
in external or internal parameters. These efforts are hampered by the fact that the actual dynamics of the natural system45
are unknown. Important examples with major societal impact involve the Earth’s climate and climate change where climate46
sensitivities are studied through a suite of imperfect comprehensive computer models ([22, 80, 57], and references therein);47
other examples include imperfect mesoscopic models in materials science [13, 39] and neural science [81] when compared48
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2 ANDREW J. MAJDA, AND DI QI

with actual observed behavior in these complex nonlinear systems.49
Recently, information theory has been utilized in different ways to systematically improve model fidelity and sensitivity50

[58, 57], to quantify the role of coarse-grained initial states in long-range forecasting [28, 29], and to make an empirical51
link between model fidelity and forecasting skill [19, 20]. Imperfect models for complex systems are constrained by their52
capability to reproduce certain statistics in a training phase where the natural system has been observed; for example, this53
training phase in climate science is roughly the 60-year dataset of extensive observations of the Earth’s climate system. For54
long-range forecasting, it is natural to guarantee statistical equilibrium fidelity for an imperfect model, and a framework using55
information theory is a natural way to achieve this in an unbiased fashion [58, 57, 28, 29, 20]. First, equilibrium statistical56
fidelity for an imperfect model depends on the choice of coarse-grained variables utilized [58, 57]; second, equilibrium model57
fidelity is a necessary but not sufficient condition to guarantee long-range forecasting skill [59, 29]. For example, Section 2.6 of58
[48] extensively discusses three very different strongly mixing chaotic dynamical models with 40 variables and with the same59
Gaussian equilibrium measure, the TBH, K-Z, and IL-96 models.60

One significant application of UQ through empirical information theory is quantifying uncertainty in climate change sci-61
ence [57, 54]. The climate is an extremely complex coupled system involving multiple physical processes for the atmosphere,62
ocean, and land over a wide range of spatial scales from millimeters to thousands of kilometers and time scales from minutes63
to decades or centuries [22, 74]. Climate change science focuses on predicting the coarse-grained planetary scale long time64
changes in the climate system due to either changes in external forcing or internal variability such as the impact of increased65
carbon dioxide [31, 29]. For several decades the predictions of climate change science have been carried out with some skill66
through comprehensive computational atmospheric and oceanic simulation (AOS) models [22, 74, 80], which are designed to67
mimic the complex physical spatio-temporal patterns in nature. Such AOS models either through lack of resolution due to68
current computing power or through inadequate observation of nature necessarily parameterize the impact of many features of69
the climate system such as clouds, mesoscale and submesoscale ocean eddies, sea ice cover, etc. Thus, there are intrinsic model70
errors in the AOS models for the climate system and the effect of such model errors on predicting the coarse-grained large scale71
long time quantities is of interest. One central scientific issue in contemporary climate change science is the development of72
a systematic methodology that can recover the crucial features of the natural system in statistical equilibrium/climate (model73
fidelity) and improve the imperfect model prediction skill in response to various external perturbations like climate change and74
mitigation scenarios (model sensitivity) [2, 5, 20, 59, 54].75

Here we discuss a general mathematical framework to construct statistically accurate reduced-order models that have the76
skill in capturing the statistical variability in the principal directions with largest energy of a general class of damped and forced77
complex turbulent dynamical systems. Low-order truncation methods is especially important for UQ with practical impact since78
the curse of ensemble size [6, 54] forbids to run Monte-Carlo simulations for all possible uncertain forcing scenarios in order79
to do attribution studies. Thus reduced-order models (ROM) are needed on a low-dimensional subspace where key physical80
significant quantities are characterized by the degrees of freedom that carry the largest energy or variance. In general, there81
are three stages in the modeling procedure, imperfect model selection; calibration of the imperfect model in a training phase82
using only data in the low-order perfect statistics; and prediction of the responses to a wide class of forcing and perturbation83
scenarios. The methods are developed for a universal class of turbulent dynamical systems with quadratic nonlinearity that is84
representative in many applications in applied mathematics and engineering [56, 51, 54]. Several mathematical ideas will be85
introduced to help improve the prediction skill of the imperfect reduced-order models. Most importantly, empirical information86
theory [48] and statistical linear response theory [59] are applied in the training phase for calibrating model errors to achieve87
optimal imperfect model parameters; and total statistical energy dynamics [53] are introduced to improve the model sensitivity88
in the prediction phase especially when strong external perturbations are exerted. The validity of general framework of reduced-89
order models has been verified by testing the methods on a series of representative turbulent dynamical models ranging from90
the 40-dimensional Lorenz ’96 model [63], one-layer barotropic turbulence with topography [78], and finally the two-layer91
baroclinic turbulence with internal instability [79].92

In the following parts of the paper, we first display the general formulation of the turbulent system with quadratic nonlinear-93
ity, and its statistical moment dynamical equations in Section 1. The skill and limitation of many previous low-order modeling94
ideas are also discussed. Theoretical toolkits that are useful for the development of reduced-order models are introduced in95
Section 2, where a general strategy to improve imperfect model sensitivity is described using empirical information theory96
and a general total statistical energy dynamics. Section 3 discusses the construction of reduced-order models in detail under97
this general framework with these various theoretical tools. In Section 4, we illustrate all these procedures and algorithms for98
the reduced-order models for some simple but instructive systems of triad stochastic equations with several novel features. In99
Section 5, we give examples of the skill of the procedures and algorithms on two-layer baroclinic models for both atmosphere100
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and ocean regimes with turbulent jets and vortices with roughly 1× 105 degrees of freedom and direct and inverse turbulent101
cascades. In these very tough regimes, the reduced-order strategies show skill in capturing the response to changes in external102
forcing using only 200 modes, less than 0.15% of the modes in the original system.103

1. General Formulation of Turbulent Dynamical Systems with Nonlinearity. One representative feature in many tur-104
bulent dynamical systems from nature is the quadratic energy conserving nonlinear interaction that transfers energy from the105
unstable modes to stable ones where the energy is dissipated resulting in a statistical steady state in equilibrium. We consider106
the following abstract formulation of the turbulent dynamical systems about state variables u ∈RN in a high-dimensional phase107
space108

(1.1)
du
dt

= (L +D)u+B(u,u)+F(t)+σ (t)Ẇ(t;ω) .109

On the right hand side of the above equation (1.1), the first two components, (L +D)u, represent linear dispersion and110
dissipation effects so that111

(1.2a) L ∗ =−L , skew− symmetric; D∗ = D < 0, negative−definite,112

where the superscript star ‘∗’ represents conjugate transpose of the matrix. The nonlinear effect in the dynamical system is113
introduced through a quadratic form, B(u,u), about the state variables u that conserves energy when linear operators and all114
forcing in (1.1) are ignored, such that,115

(1.2b) u ·B(u,u) =
N

∑
j=1

u jB j (u,u)≡ 0, Energy Conservation,116

where the dot on the left hand side denotes the inner product under a proper metric according to the conserved quantity [53, 54].117
Besides, the system is forced by external forcing effects that are decomposed into a deterministic component, F(t), and a118
stochastic component usually represented by a Gaussian random process, σ (t)Ẇ(t;ω). It needs to be noticed that F(t) might119
be inhomogeneous and introduce anisotropic structure into the system, and σ (t)Ẇ(t;ω) might further alter the energy structure120
in the fluctuation modes.121

Many complex turbulent dynamical systems can be categorized into this abstract mathematical structure in (1.1) satisfying122
the properties (1.2a) and (1.2b), including the (truncated) Navier-Stokes equation [76] as well as basic geophysical models for123
the atmosphere, ocean, and the climate systems with rotation, stratification, and topography [84, 51, 54]. The main goal of the124
remainder of this paper is to provide a survey about the development of a consistent mathematical framework for systems like125
(1.1) and illustrate emerging applications of turbulent dynamical systems with model error and the curse of ensemble size.126

1.1. Exact statistical moment equations for the abstract formulation. We use a finite-dimensional representation of127
the stochastic field u consisting of a fixed-in-time, N-dimensional, orthonormal basis {ei}N

i=1128

(1.3) u(t) = ū(t)+
N

∑
i=1

Zi (t;ω)ei,129

where ū(t) = 〈u(t)〉 represents the ensemble average of the model state variable response (we use angled bracket to represent130
ensemble average), i.e. the mean field, and Zi (t;ω) are stochastic coefficients measuring the fluctuation processes along the131
direction ei.132

By taking the statistical (ensemble) average over the original equation (1.1) and using the mean-fluctuation decomposition133
(1.3), the evolution equation of the mean state ū = 〈u〉 is given by the following dynamical equation134

(1.4)
dū
dt

= (L+D) ū+B(ū, ū)+∑
i, j

Ri jB(ei,e j)+F,135

with R = 〈ZZ∗〉 the second-order covariance matrix of the stochastic coefficients Z = {Zi}N
i=1. The term B(ū, ū) represents the136

nonlinear interactions between the mean state, and Ri jB(ei,e j) is the higher-order feedbacks from the fluctuation modes to the137
mean state dynamics. Moreover the random fluctuation component of the solution, u′ = ∑i Zi (t;ω)ei satisfies138

du′

dt
= (L+D)u′+B

(
ū,u′

)
+B

(
u′, ū

)
+B

(
u′,u′

)
−
〈
B
(
u′,u′

)〉
+σ (t)Ẇ(t;ω) .139
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By projecting the above equation to each orthonormal basis element ei we obtain140

dZi

dt
= Z j [(L+D)e j +B(ū,e j)+B(e j, ū)] · ei +

[
B
(
u′,u′

)
−
〈
B
(
u′,u′

)〉]
· ei +σ (t)Ẇ(t;ω) · ei.141

From the last equation we directly obtain the exact evolution equation of the covariance matrix R = 〈ZZ∗〉 by multiplying142
Z∗j on both sides of the equation and taking ensemble statistical average143

(1.5)
dR
dt

= Lv (ū)R+RL∗v (ū)+QF +Qσ ,144

where we have:145
i) the linear dynamical operator Lv (ū) expresses energy transfers between the mean field and the stochastic modes (effect due146

to B), as well as energy dissipation (effect due to D) and non-normal dynamics (effect due to L )147

(1.6a) {Lv}i j = [(L +D)e j +B(ū,e j)+B(e j, ū)] · ei;148

ii) the positive definite operator Qσ expresses energy transfer due to the external stochastic forcing149

(1.6b) {Qσ}i j = ∑
k
(ei ·σk)(σk · e j) ;150

iii) as well as the energy flux QF expresses nonlinear energy transfer between different modes due to non-Gaussian statistics151
(or nonlinear terms) modeled through third-order moments152

(1.6c) {QF}i j = ∑
m,n

〈
ZmZnZ j

〉
B(em,en) · ei + 〈ZmZnZi〉B(em,en) · e j.153

One important property to notice is that the energy conservation property of the quadratic operator B is inherited in the154
statistical equations by the matrix QF since155

(1.6d) tr(QF) = 2∑
i

∑
m,n
〈ZmZnZi〉B(em,en) · ei = 2B

(
u′,u′

)
·u′ ≡ 0.156

The above exact statistical equations for the state of the mean (1.4) and covariance matrix (1.5) will be the starting point for the157
developments in the reduced-order models on UQ methods.158

Note that the statistical dynamics for the mean (1.4) and covariance (1.5) are still not closed due to the inclusion of third-159
order moments through the nonlinear interactions in QF in (1.6c). The basic idea in the general development of reduced-order160
schemes concerns about proper approximation about this energy flux term QF in a simple and efficient manner so that the161
energy mechanism can be modeled properly in the reduced-order schemes [44, 84, 89].162

1.1.1. Low-order truncation methods for UQ and their limitations. Next we briefly discuss some popular low-order163
truncation methods for closing the statistical equations (1.4) and (1.5) and their limitations. Low-order truncation models for UQ164
include projection of the dynamics on leading order empirical orthogonal functions (EOFs) [36], truncated polynomial chaos165
(PC) expansions [37, 41, 72], and dynamically orthogonal (DO) truncations [85, 86]. Then ideas about closing the low-order166
truncated system within the resolved modes need to be proposed. A pioneering statistical prediction strategy [23, 24] overcomes167
the curse of ensemble size for moderate size turbulent dynamical systems by simply neglecting the third-order moments by168
setting QF ≡ 0 in the covariance equations (1.5). This Gaussian closure method has been applied to short time statistical169
prediction for truncated geophysical models like the one-layer geophysical models in (1.9c) with some success [24, 90]. Based170
on the similar idea of neglecting third-order moments, the eddy-damped quasi-normal Markovian approximation (EDM) [84,171
44] is another approximation to the moment hierarchy (1.4) and (1.5) that closes the second moments with (inconsistent)172
Gaussian approximation in the higher order equations. With a much larger eddy-damped parameters, the EDM equations are173
realizable in a stochastic model.174

Moreover concise mathematical models and analysis reveal fundamental limitations in truncated EOF expansions [3, 18],175
PC expansions [9, 56], and DO truncations [87], due to different manifestations of the fact that in many turbulent dynamical176
systems, modes that carry small variance on average can have important, highly intermittent dynamical effects on the large177
variance modes. Furthermore, the large dimension of the active variables in turbulent dynamical systems makes direct UQ by178
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large ensemble Monte-Carlo simulations impossible in the foreseeable future while once again, concise mathematical models179
[56] point to the limitations of using moderately large yet statistically too small ensemble sizes. Other important methods for180
UQ involve the linear statistical response to change in external forcing or initial data through the fluctuation dissipation theorem181
(FDT) which only requires the measurement of suitable time correlations in the unperturbed system [1, 31, 32, 33, 61]. Despite182
some significant success with this approach for turbulent dynamical systems [1, 31, 32, 61], the method is hampered by the183
need to measure suitable approximations to the exact correlations for long time series as well as the fundamental limitation to184
parameter regimes with a linear statistical response. All the limitations above imply the need of a more careful treatment for185
the higher-order statistics in QF in the exact equations for mean and covariance (1.4) and (1.5).186

1.2. The overall prediction strategy for the development of reduced-order statistical models. Before preceding to the187
details about developing the reduced-order statistical model framework, we illustrate the basic ideas in the modeling process188
as a general overview. Overall, this can serve as a generic procedure where rigorous mathematical theories and various com-189
putational strategies are combined to get a crucial improvement for understanding turbulent dynamical systems. In general, we190
can decompose the reduced-order statistical modeling strategy into three stages: i) imperfect model selection according to the191
complexity of the problem; ii) model calibration in the training phase using equilibrium data; and iii) model prediction with the192
optimized model parameters for various responses to external perturbations. The overall prediction strategy is summarized in a193
diagram in Figure 1.1. The basic procedure for developing statistical models illustrates a representative example where various194
mathematical theories and numerical methods interact and are combined for achieving a better understanding about the natural195
system.196

1.2.1. Ergodicity and non-trivial invariant measure for the true turbulent dynamical systems. In the first place,197
the best reduced-order approximation strategy can only be achieved through a good understanding about the true turbulent198
dynamical system. Several important mathematical theories are especially useful for characterizing the statistical structure of199
the turbulent system. Under special damping and random noise forms without the deterministic forcing F ≡ 0, a Gaussian200
invariant measure can be generated in the statistical steady state, whereas this Gaussian distribution from equilibrium statistical201
mechanics can be only derived from special damping and noise terms [54, 78]. One more generalized situation with importance202
in many realistic applications is when no stochastic forcing in the damped and forced dynamical system (1.1), so that the203
deterministic system with σ ≡ 0 has non-trivial long-time dynamics. The uncertainty in such deterministic systems is measured204
by the unstable sub-phase space with a number of positive Lyapunov exponents, thus a nontrivial global attractor is generated205
through the strong interaction and exchange of energy [82]. This scenario is similar to the Sinai-Ruelle-Bowen (SRB) measure206
problem [93, 83]. In that case, a unique distinguished invariant measure peq, the SRB measure, is the one selected by the207
vanishing noise limit with appropriate assumptions on the system and noise. This distinguished invariant measure forms up a208
stationary statistical solution peq in equilibrium, so that209

(1.7) peq

((
Φ

t)−1
(Ω)
)
= peq (Ω) , for any t > 0 and Ω⊂ RN ,210

with Φt : RN →RN as the flow map. This invariant measure (1.7) provides a mechanism for explaining how local instability on211
attractors can produce coherent statistics for orbits starting from large sets in the basin. The statistical ensemble behaviour in212
equilibrium such as the mean state and covariance can be deduced by taking averages with respect to the invariant measure.213

Ergodicity is then one important property for the turbulent dynamical system with uncertainty, and means that there exists214
a unique invariant measure in statistical equilibrium which attracts all statistical initial data. Geometric ergodicity for finite215
dimensional Garlerkin truncation models (for example, the two or three dimensional Navier-Stokes equations) with minimal216
stochastic forcing is an important research topic [21, 54, 65]. With proper ergodicity assumption about the abstract system (1.1)217
and rigorously justified for the system with minimal stochastic forcing [54, 65], the statistical expectation of any functionals218
about the state variables can be calculated through averaging the time-series in steady state, that is,219

(1.8) 〈g(u)〉=
ˆ
RN

g(u) peq (u)du = lim
T→∞

1
T

ˆ t0+T

t0
g [u(t)]dt,220

where g is any functional about the state variables u, and peq is the invariant measure (1.7) in statistical equilibrium. Taking221
the ensemble averages from the first equality of (1.8) is usually an extremely challenging problem, while the average along a222
trajectory over a long time as the right hand side of (1.8) forms a more practical approach. Ergodicity is crucial in this prediction223
strategy for achieving accurate perfect model statistics, and will be assumed throughout the following discussions.224
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Modeling Stages Math. & Computational Tools

Model Seclection
Ergodic Theory

Statistical Measures in Equilibrium

Model Calibration
Empirical Information Theory

Linear Response Theory
Total Statistical Energy Equations

Model Prediction
Accurate and Efficient Schemes

Numerical Stability Analysis

Rigorous Math Theories

Computational Methods

FIG. 1.1. The general strategy for the development of reduced-order statistical models. Three sequential stages are required to carry out the reduced-
order statistical model, and rigorous mathematical theories are combined with numerical analysis to calibrate model errors and improve the imperfect model
prediction skill.

1.2.2. Model selection, model calibration, and prediction with optimized imperfect model. The ergodic theory and225
invariant measure enable us to get access to the model equilibrium statistical structures in steady state. Still the major goal226
in this investigation is to find the model sensitivity in response to various external perturbations. Especially for the turbulent227
dynamical systems with instability like (1.1), nonlinearity forms the key mechanism in the complex chaotic behaviour, and even228
small perturbations may drive the system away from its original equilibrium state. Furthermore, strong non-Gaussianity due229
to the strange attractor from the SRB measure is another characteristic feature in these turbulent systems with non-Gaussian230
measures even in equilibrium. The reduced-order statistical modeling procedure aims at capturing these nonlinear non-Gaussian231
statistical responses in the principal directions in the system in an accurate and efficient way.232

As illustrated in Figure 1.1 for the general strategy, the modeling procedure begins with the model selection stage where233
proper approximation method is adopted through a careful analysis about the statistical theories. Specifically in the reduced-234
order models to be developed here, usually additional damping and random noise corrections are introduced for the unresolved235
higher-order statistics. The equilibrium invariant measure and ergodic theory [65, 89] can help determine the optimal Galerkin236
truncation wavenumber for the reduced-order model and the proper basis that can cover the most important directions in the237
system. Especially, non-Gaussian statistics in the unperturbed equilibrium state would also become important and require238
careful consideration in the model calibration.239

The model calibration procedure is usually carried out in a training phase before the prediction, so that the optimal imperfect240
model parameters can be achieved through a careful calibration about the true higher-order statistics. The ideal way is to find241
a unified systematic strategy where various external perturbations can be predicted from the same set of optimal parameters242
through this training phase. To achieve this, various statistical theories and numerical strategies need to be blended together in a243
judicious fashion. Most importantly, we need to consider the linear statistical response theory to calibrate the model responses244
in mean and variances [48, 52, 33]; and use empirical information theory [58, 59, 51] to get a balanced measure for the error in245
the leading order moments. In the final model prediction stage, the optimized imperfect model parameters are applied for the246
forecast of various model responses to perturbations. In the construction about numerical models, numerical issues also need247
be taken into account to make sure numerical stability and accuracy. Especially, proper schemes with accuracy order consistent248
with the reduced model approximation error should be proposed to ensure optimal performance.249

1.3. Low-order models illustrating model selection, calibration, and prediction in UQ. Here we provide a brief dis-250
cussion of some instructive quantitative and qualitative low-order models where the above strategy for improved prediction251
and UQ is displayed. The test models as in nature often exhibit intermittency [26, 76] where some components of a turbulent252
dynamical system have low amplitude phases followed by irregular large amplitude bursts of extreme events. Intermittency is253
an important physical phenomena. Exactly solvable test models as a test bed for the prediction and UQ strategy [54, 48, 57]254
including information barriers are discussed extensively in models ranging from linear stochastic models to nonlinear mod-255
els with intermittency in the research expository article [56] as well as in [7, 8]. Some more sophisticated applications are256
mentioned next in Section 1.4.257
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Turbulent diffusion in exactly solvable models is a rich source of highly nontrivial spatiotemporal multi-scale models to test258
the strategies in empirical information theory and kicked statistical response theory in a more complex setting [27, 58, 59, 60].259
Even though these models have no positive Lyapunov exponents, they have been shown rigorously to exhibit intermittency and260
extreme events [66]. Calibration strategies for imperfect models using information theory have been developed recently to yield261
statistical accurate prediction of these extreme events by imperfect inexpensive linear stochastic models for the velocity field262
[77]. This topic merits much more attention by other modern applied mathematicians [70, 71].263

1.3.1. Nonlinear regression models for time series. A central issue in contemporary science is the development of264
data driven statistical dynamical models for the time series of a partial set of observed variables which arise from suitable265
observations from nature (see [17] and references therein); examples are multi-level linear autoregressive models as well as ad266
hoc quadratic nonlinear regression models. It has been established recently [67] that ad hoc quadratic multi-level regression267
models can have finite time blow up of statistical solutions and pathological behavior of their invariant measure even though268
they match the data with high precision. A new class of physics-constrained multi-level nonlinear regression models was269
developed which involve both memory effects in time as well as physics-constrained energy conserving nonlinear interactions270
[34, 62], which completely avoid the above pathological behavior with full mathematical rigor.271

A striking application of these ideas combined with information calibration to the predictability limits of tropical in-272
traseasonal variability such as the Madden-Julian oscillation (MJO) and the monsoon has been developed in a series of papers273
[16, 15, 14]. They yield an interesting class of low-order turbulent dynamical systems with extreme events and intermittency.274
The nonlinear low-order stochastic model (see Section 4.2 of [54]) has been shown to have significant skill for determining275
the predictability limits of the large-scale cloud patterns of the boreal winter MJO [16] and the summer monsoon [14]. It is an276
interesting open problem to rigorously describe the intermittency and other mathematical features in these low-order turbulent277
dynamical systems.278

1.4. Examples of complex turbulent dynamical systems. Here we list some typical prototype models of complex turbu-279
lent dynamical systems with the structure in (1.1). These qualitative and quantitative models with increasing complexity form280
a desirable set of testing models for prediction, UQ, and state estimation [54]. We will finally test the reduced-order modeling281
strategies on all these typical models as a thorough discussion about the effectiveness and limitations of the model reduction282
ideas including a complete new treatment for the triad example.283
(A) The triad system with quadratic energy transfer. The triad model [50, 54] is the elementary building block of complex tur-284

bulent systems with energy conserving nonlinear interactions. It is a 3-dimensional ODE system with inhomogeneous285
damping and both deterministic and stochastic forcing terms286

(1.9a)

du1

dt
=L2u3−L3u2−d1u1 +B1u2u3 +F1 +σ1Ẇ1,

du2

dt
=L3u1−L1u3−d2u2 +B2u3u1 +F2 +σ2Ẇ2,

du3

dt
=L1u2−L2u1−d3u3 +B3u1u2 +F3 +σ3Ẇ3.

287

The triad system is an instructive test model for the reduced-order strategies. A self-contained pedagogical discussion288
about the triad system is shown in Section 4.289

(B) 40-dimensional Lorenz ’96 model. The Lorenz ’96 model [46, 63, 54, 51] is a 40-dimensional turbulent dynamics defined290
with periodic boundary condition which mimics weather waves of the mid-latitude atmosphere. Various representative291
statistical features can be generated by changing the external forcing values in F292

(1.9b)
du j

dt
=
(
u j+1−u j−2

)
u j−1−d ju j +Fj, u0 = uJ , j = 0, · · · ,J−1, J = 40.293

See [63] for the detailed reduced-order modeling strategy.294
(C) One-layer barotropic model with topography. The one-layer barotropic system [51, 54, 78] is a basic and simple geo-295

physical model for the atmosphere or ocean with the essential geophysical effects of rotation, topography, and both296
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deterministic and random forcing.297

(1.9c)

∂q
∂ t

+∇
⊥

ψ ·∇q+U
∂q
∂x

=−D (∆)ψ +F (x, t)+Σ (x)Ẇ (t) ,

dU
dt

+

 
∂h
∂x

ψ (t) =−D0U +F0 (t)+Σ0Ẇ0 (t) ,

q = ∆ψ +h+βy.

298

See [78] for the detailed reduced-order modeling strategy.299
(D) Two-layer quasi-geostrophic model with baroclinic instability. The two-layer quasi-geostrophic model with baroclinic300

instability in a two-dimensional periodic domain [84, 92, 79] is one fully nonlinear fluid model, and is quite capable301
in capturing the essential physics of the relevant internal variability despite its relatively simple dynamical structure.302

(1.9d)

∂qψ

∂ t
+ J
(
ψ,qψ

)
+ J (τ,qτ)+β

∂ψ

∂x
+U

∂

∂x
∆τ =−κ

2
∆(ψ− τ)−ν∆

sqψ +Fψ (x, t) ,

∂qτ

∂ t
+ J (ψ,qτ)+ J

(
τ,qψ

)
+β

∂τ

∂x
+U

∂

∂x

(
∆ψ + k2

dψ
)
=

κ

2
∆(ψ− τ)−ν∆

sqτ +Fτ (x, t) .
303

See [79] and discussions in Section 5 for the reduced-order modeling strategy.304
305

2. Statistical Theory Toolkits for Improving Model Prediction Skill. In this section we introduce the general theoretical306
toolkits that are useful for capturing the key statistical features in turbulent systems like (1.1) and improving imperfect model307
prediction skill. Despite the complex model statistical responses in each component as the turbulent dynamical system gets308
perturbed, there exists a simple and exact statistical energy conservation principle for the total statistical energy of the system309
describing the overall (inhomogeneous) statistical structure in the system through a simple scalar dynamical equation [53, 54].310
The theory is briefly described in Section 2.1. Then the construction about the imperfect reduced-order models concerns about311
the consistency in equilibrium (climate fidelity) and the responses to perturbations (model sensitivity). Equilibrium statistical312
fidelity should be guaranteed in the first place so that the reduced-order model will converge to the true unperturbed equilibrium313
statistics. To further calibrate the detailed model sensitivity to perturbations in each statistical component, the linear response314
theory can offer useful quantities to measure for quantifying the crucial statistics in the model structure. Combining with the315
relative entropy under empirical information theory, a general information-theoretical framework can be proposed to tune the316
imperfect model parameters in a training phase, thus optimal model parameters can be used for model prediction in various317
dynamical regimes. We will describe the basic statistical theories in this section.318

2.1. A statistical energy conservation principle. Despite the fact that the exact equations for the statistical mean (1.4)319
and the covariance fluctuations (1.5) are not closed equations, there is suitable statistical symmetry so that the energy of the320
mean plus the trace of the covariance matrix satisfies an energy conservation principle even with general deterministic and321
random forcing. Here we briefly introduce the theory developed in [53, 54] about a total statistical energy dynamics for the322
abstract system (1.1). This total statistical energy offers a general description about the total responses in the perturbed system323
and will be shown useful for the construction of reduced-order models.324

Consider the statistical mean energy, Ē = 1
2 |ū|

2 = 1
2 ū · ū, and the statistical fluctuation energy, E ′ = 1

2 〈u
′ ·u′〉 = 1

2 trR.325
Assume the following symmetries involving the nonlinear interaction operator B under the orthonormal basis {ei}:326
A) The self interactions vanish in the quadratic interaction,327

(2.1a) B(ei,ei)≡ 0, 1≤ i≤ N;328

B) The dyad interaction coefficients vanish through the symmetry,329

(2.1b) ei · [B(e j,ei)+B(ei,e j)] = 0, forany i, j.330

Therefore the detailed triad symmetry guarantees that the nonlinear interaction B(u,u) will not alter the total statistical energy331
structure in the system (though the state of the mean and covariance may both changed due to the nonlinear term in (1.4) and332
(1.5)). So we have the following theorem [53, 54]:333
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THEOREM 2.1. (Statistical Energy Conservation Principle) Under the structural assumptions (2.1a), (2.1b) on the basis334
ei, for any turbulent dynamical systems in (1.1), the total statistical energy, E = Ē +E ′ = 1

2 ū · ū+ 1
2 trR, satisfies335

(2.2)
dE
dt

= ū ·Dū+ ū ·F+ tr(DR)+
1
2

trQσ ,336

where R satisfies the exact covariance equation in (1.5). Matrix Qσ expresses energy transfer due to external stochastic forcing,337
and is a diagonal matrix with entries, Qσ ,kk = |σk|2.338

For most practical dynamical systems, for example, the systems we have illustrated in (1.9a)-(1.9d), the symmetries in (2.1)339
are usually satisfied. Also a generalization allowing both dyads and triads in the statistical energy conservation principle is in340
[54]. Thus the statistical energy conservation principle can always be applied. Notice that especially under the homogeneous341
dissipation case, D = −dI, the right hand side of the statistical energy equation (2.2) will become a linear damping term for342
the total energy, −dE, plus the deterministic forcing applying on the mean state and the stochastic forcing contribution. This343
implies that the total energy structure (and thus the total variance in all the modes) can be determined from the statistical mean344
state by solving the scalar equation above.345

2.2. Statistical equilibrium fidelity in approximation models. Here we consider the statistical energy of the dynamical346
system in each individual (spectral) mode. Statistical equilibrium fidelity concerns the convergence to the true equilibrium347
statistics in statistical steady state in the reduced-order models. Recall the true second-order statistical equation (1.5) about the348
covariance matrix349

dR
dt

= LvR+RL∗v +QF +Qσ .350

The most difficult and expensive part in solving the above system comes from evaluating the nonlinear flux term QF where351
higher order statistics are involved, that is,352

{QF}i j = ∑
m,n

〈
ZmZnZ j

〉
B(em,en) · ei + 〈ZmZnZi〉B(em,en) · e j.353

Note that the third-order moments always include triad interactions of modes
{

Zm,Zn,Z j
}

between different scales, where354
nonlinear energy forward-cascade and backward-cascade along the energy spectrum can be induced. Thus the central issue in355
developing closure models becomes to find proper approximation about the nonlinear flux term QM

F ∼ QF which can offer a356
statistically consistent estimation. First of all, it is important to remember the conservation of the total nonlinear flux trQF ≡ 0357
from (1.6d). This equality implies that the nonlinear interactions will not introduce additional energy source or sink into the358
system. Thus the same constraint should be maintained in designing the approximation models, trQM

F = 0. Consideration about359
accuracy and computational efficiency should be balanced in determining the explicit form of QM

F in the implementation of360
reduced methods. Here we first display some theoretical principles about the equilibrium nonlinear flux QF,eq that can be used361
as guidelines for determining the values in QM

F .362

2.2.1. Calibration about higher-order statistics in full phase space. In the prediction of model responses it is most363
important to find the variability along each principal direction. In general, the nonlinear flux QF illustrates the nonlinear energy364
transfer between modes with different scales. In fact, we can decompose the matrix QF = Q+

F +Q−F by singular value decom-365
position into a positive-definite and negative-definite component. The positive definite part Q+

F illustrates the additional energy366
that is injected into this mode from other scales, while the negative definite part Q−F shows the extraction of energy through367
nonlinear transfer to other scales. Thus the accurate approximation about the nonlinear flux QF,i j in each (spectral) component368
becomes important. On the other hand, this approximation requires the calibration about the third-order moments

〈
ZmZnZ j

〉
369

and 〈ZmZnZi〉, and will always include the interactions between the (resolved) large-scale modes and (unresolved) smaller-scale370
fluctuations. Direct simulation would require ensemble averages for the third-order moments, where large numerical errors and371
high computational loads are almost unavoidable.372

Instead, from the statistical dynamics for the covariance equation (1.5) in statistical steady state, the temporal derivative on373
the left hand side vanishes, d

dt Req ≡ 0, thus the equilibrium solution
(
ūeq,Req

)
necessarily satisfies the steady state equation374

0 = Lv
(
ūeq
)

Req +ReqL∗v
(
ūeq
)
+QF,eq +Qσ ,375

where QF,eq includes the third-order moments evaluated at the statistical steady state. Therefore we can get the measurements376
about equilibrium third-order nonlinear flux through the lower order steady state solution of the mean, ūeq, and the covariance,377
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10 ANDREW J. MAJDA, AND DI QI

Req, so that378

(2.3) QF,eq =−Lv
(
ūeq
)

Req−ReqL∗v
(
ūeq
)
−Qσ .379

The quasi-linear operator Lv
(
ūeq
)

is defined through (1.6a) containing the interactions between mean state. Especially, the380
non-trivial third moments play a crucial dynamical role in the statistical closure models. As an example in the case without381
random forcing Qσ ≡ 0, the necessary and sufficient condition for a non-Gaussian statistical steady state [54] requires that382

Lv
(
ūeq
)

Req +ReqL∗v
(
ūeq
)
6= 0,383

so the above matrix has non-zero entries. This is an important constraint that needs to be considered first in the construction384
about reduced-order models in the next section.385

2.2.2. Calibration of higher-order statistics in the reduced subspace. Despite the above exact model calibration for386
higher-order statistics (2.3) using equilibrium mean and covariance, in many realistic problems, resolving the entire covariance387
matrix R∈CN×N of order O

(
N2
)

is still expensive and unnecessary especially for high dimensional systems N� 1 with strong388
interactions between small and large scales. Often the key physical significant quantities are characterized by the degrees of389
freedom which carry the largest energy (or variance). Thus, for most cases we are mostly interested in the model variability in390
a low-dimensional subspace along the principal directions spanned by the subspatial basis391

P = [v1, · · · ,vs] , s� N.392

One simplest proposal to get the low-order basis
{

v j
}

is through the leading order EOFs or energy based proper orthogonal393
decomposition [36, 3]. The reduced-order third-order nonlinear flux can be calculated through a more efficient way using only394
the mean state, ūeq, and covariance in the subspace of interest, C = P∗RP ∈ Cs×s. By projecting the original nonlinear flux395
formulation (2.3) onto the subspace, we have the reduced-order formulation396

(2.4) Qred
F,eq ≡ P∗QF,eqP =−Lred

v
(
ūeq
)

Ceq−CeqLred∗
v
(
ūeq
)
−Qred

σ ,397

where the reduced-order quasi-linear operator and reduced-order noise can also be calculated efficiently only using information398
in the subspace with resolved leading order statistics399

Lred
v,i j ≡ {P∗LvP}i j = [(L +D)v j +B(ū,v j)+B(v j, ū)] ·vi, Qred

σ = P∗Qσ P.400

Thus even though Qred
F may still include many third moments between the low-wavenumber resolved modes and high-wavenumber401

modes that are not calculated explicitly in the reduced-order equations only for C, we can still achieve the equilibrium nonlin-402
ear flux constrained in the resolved subspace of interest by using only the mean and covariances

(
ūeq,Ceq

)
along the resolved403

directions {v1, · · · ,vs}.404
In general, the first two moments in equilibrium can be achieved through the ergodicity (1.8) by averaging the variables405

of interest along one solution trajectory, thus we can get the calibration about the third-order moment feedbacks in the second-406
order dynamics by solving the equation (2.3) or (2.4). Besides, we also find one necessary condition for confirming equilibrium407
fidelity for the reduced-order models for the construction of nonlinear flux term, so that consistent nonlinear flux QF is guaran-408
teed in the final steady state409

(2.5) QM
F → QF,eq, as t→ ∞.410

Actually, the idea of estimating the higher-order statistics through low-order moments has been exploited for several specific411
models in [89, 88, 63]. The equilibrium statistics from (2.4) can efficiently calibrate the model nonlinear energy transfer412
mechanism along each resolved principal direction. However, as external perturbations are exerted, nonlinear responses will413
take place with large deviation from the original equilibrium statistical data calculated in QF,eq. Next we will discuss the strategy414
to calibrate the model sensitivity to perturbations in a unified way.415

2.3. Linear response theory and kicked responses. The linear response theory as well as fluctuation-dissipation theorem416
(FDT) offers a convenient way to get leading-order statistical linear approximation about model responses to perturbations417
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[12, 48, 68, 59]. Consider the general unperturbed system (1.1), δF = 0, with invariant measure peq (u), and an external forcing418
perturbation in separation with temporal and spatial variables,419

δF(u, t) = w(u)δ f (t) .420

Therefore the resulting perturbed probability density pδ can be asymptotically expanded as the equilibrium and the fluctuation421
correction [48]422

(2.6) pδ (t) = peq +δ p′ (t) ,
ˆ
RN

peq (u)du = 1,
ˆ
RN

δ p′ (u)du = 0.423

The equilibrium statistics and leading-order correction to the perturbation of some functional about the state variable A(u)424
can be formulated as an asymptotic expansion, 〈A(u)〉= 〈A(u)〉eq +δ 〈A(u)〉(t)+O

(
δ 2
)

according to the measure (2.6) with425

〈A(u)〉eq =
´

A(u) peq (u) the expectation of A according to equilibrium distribution peq, while δ 〈A(u)〉 =
´

A(u)δ p′ (u)426

according to δ p′. Therefore we get the leading order responses from427

(2.7) 〈A(u)〉eq =

ˆ
RN

A(u) peq (u)du, δ 〈A(u)〉(t) =
ˆ t

0
RA (t− s)δ f (s)ds.428

Above the pointed-bracket denotes the statistical average under the solution from Fokker-Planck equation. RA (t) is the linear429
response operator corresponding to the functional A, which is calculated through correlation functions in the unperturbed430
statistical equilibrium (climate) only431

(2.8) RA (t) = 〈A [u(t)]B [u(0)]〉eq , B(u) =−
divu

(
wpeq

)
peq

.432

The noise in the equations is not needed for FDT to be valid, but is required to generate the smooth equilibrium measure peq433
for the linear response operator RA. There is even a rigorous proof of the validity of FDT in this context [33]. Note that even434
though in general the linear response operator is difficult to calculate considering the complicated and unaccessible equilibrium435
distribution, a variety of Gaussian approximations for peq and improved algorithms have been developed for response via FDT436
[43, 48, 61, 52]. FDT can have high skill for the mean response and some skill for the variance response for a wide variety of437
turbulent dynamical systems [55, 1, 61, 2, 47, 32].438

2.3.1. Calculate linear response operators through initial kicked responses. The problem in calculating the leading439
order response using (2.8) is that the equilibrium distribution peq is expensive to calculate for general systems with non-440
Gaussian features in a high dimensional phase space. One strategy to approximate the linear response operator which avoids441
direct evaluation of peq through the FDT formula but still includes important non-Gaussian statistics is through the kicked442
response of an unperturbed system to a perturbation δu of the initial state from the equilibrium measure, that is, to set the initial443
distribution with the same variance but a perturbation in the mean state444

(2.9) p |t=0= peq (u−δu) = peq−δu ·∇peq +O
(
δ

2) .445

One important advantage of adopting this kicked response strategy is that higher-order statistics due to nonlinear dynamics446
will not be ignored (compared with the other linearized strategy using only Gaussian statistics [55]). Then the kicked response447
theory gives the following proposition [48, 58] for calculating the linear response operator:448

PROPOSITION 2.2. For δ small enough, the linear response operator RA (t) can be calculated by solving the unperturbed449
system (1.1) with a perturbed initial distribution in (2.9). Therefore, the linear response operator can be achieved through450

(2.10) δRA (t)≡ δu ·RA =

ˆ
A(u)δ p′+O

(
δ

2) .451

Here δ p′ is the resulting leading order expansion of the transient density function from unperturbed dynamics using initial452
value perturbation. From the formula in (2.10), the response operators for the mean and variance can be achieved from the453
perturbation part of the probability density δ p′. And this density function can also be used to measure the information distance454
between the truth and imperfect models in the training phase.455
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12 ANDREW J. MAJDA, AND DI QI

The proof of the above Proposition 2.2 is a direct application of Duhamel’s principle to the corresponding Fokker-Planck456
equation with forcing perturbations [48]. Thus the variability in the external forcing can be transferred to the perturbations in457
initial values. More importantly, the kicked response formulation (2.10) with initial mean state perturbation (2.9) is independent458
of the specific perturbation forms. Thus the operator RA describes the inherent dynamical mechanisms of the system. We459
summarize the practical strategies to calculate the kicked response operators for the mean and variance from (2.10) in Appendix460
A.461

2.4. Empirical information theory for measuring imperfect model errors.462

2.4.1. Empirical information theory for leading order statistics. The empirical information theory [38, 48] builds the463
least biased probability measure consistent with the leading order measurements of the true perfect system. Information theory464
is often used in statistical science for imperfect model selection [11]. A natural way to measure the lack of information in one465
probability density from the imperfect model, pM , compared with the true probability density, p, is through the relative entropy466
or information distance [42, 48], given by467

(2.11) P
(

p, pM)= ˆ
p log

p
pM .468

Despite the lack of symmetry in its arguments (that is, P (p1, p2) 6= P (p2, p1) in general), the relative entropy, P
(

p, pM
)

469
provides an attractive framework for assessing model error like a probabilistic metric. Importantly, the following two crucial470
features are satisfied in the relative entropy: (i) P

(
p, pM

)
≥ 0, and the equality holds if and only if p= pM; and (ii) it is invariant471

under any invertible change of variables. The most practical setup for utilizing the framework of empirical information theory472
arises when only the Gaussian statistics of the distributions are considered. By only comparing the first two moments of the473
density functions, we get the following fact [49]:474

PROPOSITION 2.3. If the probability density functions p, pM contain only the first two moments, that is, p∼N (ū,R) and475
pM ∼N (ūM,RM), the relative entropy in (2.11) has the explicit formula476

(2.12) P
(

p, pM)= 1
2
(ū− ūM)T R−1

M (ū− ūM)+
1
2
(
tr
(
RR−1

M
)
−N− logdet

(
RR−1

M
))

.477

The first term on the right hand side of (2.12) is called the signal, reflecting the model error in the mean but weighted by the478
inverse of the model variance RM; whereas the second term is the dispersion, involving only the model error covariance ratio479
RR−1

M , measuring the differences in the covariance matrices.480

Above usually we will use p to denote the probability distribution of the perfect model, which is actually unknown. Neverthe-481
less, we can construct the measure of the perfect model pL using L measurements of the true system. Consider the imperfect482
model prediction with its associated probability density pM

L , the definition of relative entropy (2.11) facilitates the practical483
calculation [40, 58, 59, 54, 56]484

P
(

p, pM)= P (p, pL)+P
(

pL, pM
L
)

485

= [S (pL)−S (p)]+P
(

pL, pM
L
)
.486

The entropy difference S (pL)−S (p) precisely measures an intrinsic error from L measurements of the perfect system, and487
this is a simple example of an information barrier for any imperfect model based on L measurements for calibration. With the488
measurements L representing the first two moments, the Gaussian approximation (2.12) can be used to estimate the information489
error P

(
pL, pM

L
)

considering only the first L statistical measurements (in practice, it is usually the measurements about the490
statistical mean and covariance).491

2.4.2. Climate information barrier in single point statistics in homogeneous systems. Here as one example, we briefly492
illustrate the inherent information barrier in special homogeneous systems like the L-96 model in (1.9b) (see [63]) with uniform493
damping and forcing using the above relative entropy metric. Of particular interest in both theory and applications, the statistical494
mean and variance at each individual grid point [51, 63, 64, 20] play an important role as key statistical quantities to predict.495
In climate science, these might be the mean and variance of the surface temperature at every grid point. The single point mean496
ū1pt and single point variance r1pt can be defined by averaging each grid component with presumed homogeneity, that is,497

(2.13) ū1pt =
1
N

N

∑
j=1

ū j, r1pt =
1
N

trR.498
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For simplicity in representation, we assume homogeneous damping, D = −dI, and forcing, F = f I, in the energy dynamics499
(2.2), thus the total statistical energy equations for the true model E and reduced-order model approximation EM become500

dE
dt

=−2dE + f ū1pt +
1
2

trQσ ,501

dEM

dt
=−2dEM + f ūM

1pt +
1
2

trQM
F +

1
2

trQσ .502

Above the statistical energy can be defined through the single point statistics as503

E =
N
2
(
ū2

1pt + r1pt
)
, EM =

N
2

((
ūM

1pt
)2

+ rM
1pt

)
,504

where we assume homogeneity in the first two moments. The last part on the right hand side of EM equation comes from the505
error in the approximation for nonlinear flux QM

F . Taking the difference of the above two equations for E and EM and using506
Gronwall’s inequality gives the error in the total statistical energy δE = E−EM507

‖δE‖ ≤ C̃0
∥∥δ ū1pt

∥∥+C1
∥∥trQM

F
∥∥ ,508

and the definition about the statistical energy offers the estimation509

‖δE‖ ≥
∥∥δ r1pt

∥∥−N
∥∥ū1pt

∥∥∥∥δ ū1pt
∥∥ .510

The error estimation for the single point variance through the error from the mean and nonlinear flux by combining the above511
two inequalities512

(2.14)
∥∥δ r1pt

∥∥≤C0
∥∥δ ū1pt

∥∥+C1
∥∥trQM

F
∥∥ ,513

with C0,C1 constants. The inequality in (2.14) illustrates that the error in the second-order statistics δ r1pt can be controlled514
by the error in the first-order mean with a good approximation for the nonlinear flux term QM

F . Similar special results for the515
40-dimensional L-96 model are described in [63].516

With the help of the relative entropy, we can first illustrate the inherent information barrier with the single-point statistics517
approximation (2.13). It will be shown even with consistent single-point statistics in

(
ū1pt,r1pt

)
, large errors may still appear518

due to the lack of consideration in the covariances between different modes. Through the definition in (2.11) (and referring to519
Proposition 4.1 of [49]), the relative entropy between the truth p and imperfect model single-point statistics pM

1pt has the form520

(2.15) P
(

p, pM
1pt
)
= [S (pG)−S (p)]+P

(
pG, pG

1pt
)
+P

(
pG

1pt, pM
1pt
)
.521

Above, pG is the Gaussian fit for the original probability distribution p with the same mean and covariance from the truth;522
pG

1pt = N
(
ū1pt,r1pt

)
is the single-point approximation for the true system, and pM

1pt = N (ūM,rM) is the reduced-order model523
prediction from the imperfect model with consistent single-point statistics. The first part on the right hand side of (2.15) is the524
intrinsic information barrier in Gaussian approximation. And the third part with homogeneous assumption of the system will525
vanish (or at least be minimized) due to the single-point statistics fidelity from (2.14). The error from single point approximation526

(and ignoring the cross-covariance) then comes only from the information barrier in marginal approximation P
(

pG, pG
1pt

)
as527

shown in the second part on the right hand side of (2.15). Simple calculation using the formula (2.12) and Jensen’s inequality528
[63] yields the estimation for the information barrier in single-point approximation529

(2.16) P
(

pG, pG
1pt
)
= N log


(

∑
N
j=1 r j

)
/N(

∏
N
j=1 r j

)1/N

∼ r−1
1pt (σmax−σmin)

2 ,530

where r j is the variance in the spectral modes, and σ2
max = max

{
r j
}
,σ2

min = min
{

r j
}

are the largest and smallest variance. In531
Figure 2.1, we demonstrate this information barrier for imperfect models with exact one-point statistics

(
ū1pt,r1pt

)
consistency532

for the L-96 model with F = 5,8. Large errors in the statistical steady state spectra (thus information barrier for these models)533
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FIG. 2.1. Information barriers for imperfect closure models with only consistent equilibrium single point statistics
(
ū1pt,r1pt

)
in the L-96 system. The

steady state variances under Fourier basis from the two imperfect model results are compared with the truth from Monte-Carlo simulations in two typical
dynamical regimes F = 5 and F = 8.

exist for each individual mode for both dynamical regimes F = 5 (weakly chaotic) and F = 8 (strongly chaotic), consistent with534
what we have calculated from (2.16) for single point statistics.535

The barrier from (2.16) could become significant considering the gap between the largest and smallest variances due to536
common decaying energy spectra in turbulent systems. See [63] for a detailed example for the L-96 model. This information537
barrier can only be overcome by introducing more careful calibration about the dynamics in each eigen-direction of the system538
individually.539

2.4.3. Dynamical calibration for imperfect model improvement. The prediction skill of imperfect models can be im-540
proved by comparing the information distance through the linear response operator with the true model. The following fact541
offers a convenient way to measure the lack of information in the perturbed imperfect model requiring only knowledge of linear542
responses for the mean and variance δ ū≡ δRu,δR≡ δR

(u−ū)2 . For this result, it is important to tune the imperfect model to543

satisfy equilibrium model fidelity,544

P
(

pG (u) , pM
G (u)

)
= 0,545

in the first place. Statistical equilibrium fidelity is a natural necessary condition to tune the mean and variance of the imperfect546
model to match those of the perfect model; it is far from a sufficient condition [54, 58, 59]. Using simplified assumptions547
with block-diagonal covariance matrices R = diag(Rk) and equilibrium model fidelity P

(
pG, pM

G

)
= 0, the relative entropy in548

(2.11) between the true perturbed density pδ and the perturbed model density pM
δ

with small perturbation δ can be expanded549
componentwisely as the following proposition:550

PROPOSITION 2.4. Under assumptions with block-diagonal covariance matrices R = diag(Rk) and equilibrium model551
fidelity P

(
pG, pM

G

)
= 0, the relative entropy in (2.12) between perturbed model density pM

δ
and the true perturbed density pδ552

with small perturbation δ can be expanded componentwisely as553

P
(

pδ , pM
δ

)
= S

(
pG,δ

)
−S (pδ )554

+
1
2 ∑

k

(
δ ūk−δ ūM,k

)
R−1

k

(
δ ūk−δ ūM,k

)
555

+
1
4 ∑

k
R−2

k

(
δRk−δRM,k

)2
+O

(
δ

3) .(2.17)556

Here in the first line S
(

pG,δ

)
−S (pδ ) is the intrinsic error from Gaussian approximation of the system. Rk is the equilibrium557

variance in k-th component, and δ ūk and δRk are the linear response operators for the mean and variance in k-th component.558

Detailed derivation about this result is shown in [59]. The inherent information error from the first row of (2.17) is due to the559
measurement in only first two order of moments, and is independent of the specific imperfect model structures. As a result, this560
component, S

(
pG,δ

)
−S (pδ ), can be viewed as a constant and does not need to be calculated in the optimization procedure.561
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The second row of the information distance (2.17) illustrates the signal error from the estimation about the mean responses,562
while the third row is the dispersion error for the errors from the variance responses.563

564
The above Proposition 2.4 about empirical information theory and linear response theory together provides a convenient and565

unambiguous way of improving the performance of imperfect models in terms of increasing their model sensitivity regardless of566
the specific form of external perturbations δ f′. The formula (2.10) in Proposition 2.2 as well as (2.7) illustrates that the skill of567
an imperfect model in predicting forced changes to perturbations with general external forcing is directly linked to the model’s568
skill in estimating the linear response operators RA for the mean and variances (that is, use the functional A = u,(u− ū)2 in569
calculating the linear response operators) in a suitably weighted fashion as dictated by information theory (2.17). This offers us570
useful hints of training imperfect models for optimal responses for the mean and variance in a universal sense. From the linear571
response theory, it shows that the system’s responses to various external perturbations can be approximated by a convolution572
with the linear response operator RA (which is only related to the statistics in the unperturbed equilibrium steady state). It is573
reasonable to claim that an imperfect model with precise prediction of this linear response operator should possess uniformly574
good sensitivity to different kinds of perturbations. On the other hand, the response operator can be calculated easily by the575
transient state distribution density function using the kicked response formula as in (2.10). Considering all these good features576
of the linear response operator, the information barrier due to model sensitivity to perturbations can be overcome by minimizing577
the information error in the imperfect model kicked response distribution relative to the true response from observation data.578

To summarize, consider a class of imperfect models, M . The optimal model M∗ ∈M that ensures best information579
consistent responses to various kinds of perturbations is characterized with the smallest additional information in the linear580
response operator RA among all the imperfect models, such that581

(2.18)
∥∥∥P (

pδ , pM∗
δ

)∥∥∥
L1([0,T ])

= min
M∈M

∥∥P (
pδ , pM

δ

)∥∥
L1([0,T ]) ,582

where pM
δ

can be achieved through a kicked response procedure (2.10) in the training phase compared with the actual observed583

data pδ in nature, and the information distance between perturbed responses P
(

pδ , pM
δ

)
can be calculated with ease through584

the expansion formula (2.17). The information distance P
(

pδ (t) , pM
δ
(t)
)

is measured at each time instant, so the entire error585

is averaged under the L1-norm inside a proper time window [0,T ] before the linear response function decays back to zero.586

3. Reduced-Order Statistical Models for the Turbulent Systems. Previously in Section 2, the general idea about find-587
ing the optimal imperfect model is proposed according to the statistical theories and information distance metric. And we have588
shown the basic theoretical tools that can help construct the reduced-order statistical approximations and illustrate the infor-589
mation barriers due to these approximations. Then it is important to construct the explicit forms of the reduced-order models590
according to the exact dynamics for the mean and covariance in (1.4) and (1.5). Generally the statistical model for the leading591
two moments can be formulated in the full phase space as592

dūM

dt
= (L+D) ūM +B(ūM, ūM)+RM,i jB(ei,e j)+F,(3.1a)593

dRM

dt
= Lv (ūM)RM +RML∗v (ūM)+QM

F +Qσ ,(3.1b)594

where ūM ∈ RN is the model approximated mean, and RM is the N ×N full order covariance matrix about the fluctuation595
state variable u′ ∈ RN . Comparing with the original statistical dynamics (1.4) and (1.5), the most expensive but crucial part596
comes from the nonlinear flux term QF in (1.6c) where important third-order moments are included representing the nonlinear597
interactions between different modes. Therefore the key issue in this section is to construct a judicious estimation about this598
nonlinear interaction term QM

F in the statistical closure models. Here the basic idea is to start with the simplest possible599
imperfect model and compare the advantages and limitations of different levels of imperfect models due to different degrees of600
approximation and model calibration, and finally check how the theories from previous sections can help with improving the601
model prediction skill, especially the model sensitivity to various perturbations.602

3.1. A hierarchy of statistical reduced-order modeling ideas based on stochastic models. We may consider the statis-603
tical closure ideas by taking another look at the dynamics for stochastic coefficients604

dZi

dt
= Z j [(L+D)e j +B(ū,e j)+B(e j, ū)] · ei +B

(
u′,u′

)
· ei +σ (t)Ẇ(t;ω) · ei.605
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Major nonlinearity comes from the term above representing interactions between different fluctuation modes B(u′,u′) · ei. The606
first idea here is to model the effect of the nonlinear energy transfers on each mode by adding additional damping dM,i balancing607
the linearly unstable character of these modes, and adding additional (white) stochastic excitation with standard deviation σM,i608
which will model the energy received by the stable modes. We want to constrain ourselves to second order models concentrating609
on the mean and variance and maintaining the computational expense in a low level, hence the additional parts dM,i,σM,i only610
include statistics up to second order moments. Specifically we replace this high-order nonlinear term by611

B
(
u′,u′

)
· ei ≡∑

m,n
ZmZnB(em,en) · ei→−dM,i (trR)Zi +σM,i (trR)Ẇi,612

with trR = ∑ j

〈
Z jZ∗j

〉
for measuring the total energy (variance) structure in the system. Corresponding to the statistical equa-613

tions, the nonlinear flux QF representing the higher-order interactions is replaced by614

(3.2) QM
F = QM

F−+QM
F+ =−DM (R)RM−RMD∗M (R)+ΣM (R) .615

In (3.2), (DM,ΣM) are N×N matrices that replace the original nonlinear unstable and stable effects from the original dynamics.616
Here QM

F− = −DM (R)RM −RMD∗M (R) represents the additional damping effect to stabilize the unstable modes with positive617
Lyapunov coefficients, while QM

F+ = ΣM,k (R) is the positive-definite additional noise to compensate for the overdamped modes.618
Now the problem is converted to finding expressions for DM and ΣM . In the following by gradually adding more detailed619
characterization about the statistical dynamical model we display the general procedure of constructing a hierarchy of the620
closure methods step by step. Below is a review about several model closure ideas [54, 88, 63, 78] with increasing complexity:621

1. Quasilinear Gaussian closure model: The simplest approximation for the closure methods at the first stage should be622
simply neglecting the nonlinear part entirely [23, 25, 90]. That is, set623

(3.3) DM (R)≡ 0, ΣM (R)≡ 0, QQG
F ≡ 0.624

Thus the nonlinear energy transfer mechanism will be entirely neglected in this Gaussian closure model. This is625
the similar idea in the eddy-damped Markovian model where the moment hierarchy is closed at the level of second626
moments with Gaussian assumption and a much larger eddy-damped parameter is introduced to replace the molecular627
viscosity (see Chapter 5 of [84] and [44] for details). Obviously this crude Gaussian approximation will not work well628
in general due to the cutoff of the energy flow when strong nonlinear interactions between modes occur. Actually, the629
deficiency of this crude approximation have been shown under the L-96 framework, and in final equilibrium state there630
exists only one active mode with critical wavenumber [89, 63]. Such closures are only useful in the weakly nonlinear631
case where the quasi-linear effects are dominant.632

2. Models with consistent equilibrium statistics: Next the strategy is to construct the simplest closure model with con-633
sistent equilibrium statistics. So the direct way is to choose constant damping and noise term at most scaled with the634
total variance. We propose two possible choices as in [63] for the damping and noise in (3.2) below.635
Gaussian closure 1 (GC1): let636

(3.4) DM (R) = εMIN ≡ const., ΣM (R) = σ
2
MIN ≡ const., QGC1

F =−(εMR+RεM)+σ
2
MIN ;637

638
Gaussian closure 2 (GC2): let639
(3.5)

DM (R)= εM

(
trR

trReq

)1/2

IN , ΣM (R)=σ
2
M

(
trR

trReq

)3/2

IN , QGC2
F =−

(
trR

trReq

)1/2

(εMR+RεM)+σ
2
M

(
trR

trReq

)3/2

IN .640

Above only two scalar model parameters (εM,σM) are introduced, and IN represents the N×N identity matrix. GC1641
is the familiar strategy of adding constant damping and white noise forcing to represent nonlinear interaction; GC2642
scales with the total variance trR (or total statistical energy) so that the model sensitivity can be further improved as643
the system is perturbed. From both GC1 and GC2, we introduce uniform additional damping rate for each spectral644
mode controlled by a single scalar parameter εM; while the additional noise with variance σ2

M is added to make sure645
climate fidelity in equilibrium (we leave the detailed discussion for climate fidelity in Section 3.2.1).646
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The statistical model closure QM
F is used to approximate the third-order moments in the true dynamics, thus the647

exponents of the total energy trR in GC2 should be consistent in scaling dimension. In the positive-definite part648
QM

F+, it calibrates the rate of energy injected into the spectral mode due to nonlinear effect in the order |u′|3. The factor649
scales with the total energy with exponent 3/2 so that the corrections keep consistent with the third-order moment650
approximations; In the negative damping rate QM

F−, the scaling function is used to characterize the amount of energy651
that flows out the spectral mode due to nonlinear interactions. Scaling factor with a square-root of the total energy with652
exponent 1/2 is applied for this damping rate multiplying the variance in order |u′|2 to make it consistent in scaling653
dimension with third moments.654

3. Modified quasi-Gaussian closure with equilibrium statistics: In this modified quasi-Gaussian closure model originally655
proposed in [89, 88], we exploit more about the true nonlinear energy transfer mechanism from the equilibrium statis-656
tical information. Thus the additional damping and noise proposed like before are calibrated through the equilibrium657
nonlinear flux by letting658

(3.6) DM (R) =−NM,eq, ΣM (R) = Q+
F,eq, QMQG

F =−(NMR+RN∗M)+Q+
F ; .659

NM,eq is the effective damping from equilibrium, and Q+
F,eq is the effective noise from the positive-definite component.660

Unperturbed equilibrium statistics in the nonlinear flux QF,eq are used to calibrate the higher-order moments as addi-661
tional energy sink and source. The true equilibrium higher-order flux can be calculated without error from first and662
second order moments in

(
ūeq,Req

)
from the unperturbed true dynamics (1.5) in steady state following the steady state663

statistical solution relation (2.3) as discussed in Section 2.2664

(3.7) QF,eq = Q−F,eq +Q+
F,eq =−Lv

(
ūeq
)

Req−ReqL∗v
(
ūeq
)
−Qσ , NM,eq =

1
2

Q−F,eqR−1
eq .665

Q−F,eq,Q
+
F,eq are the negative and positive definite components in the unperturbed equilibrium nonlinear flux QF,eq.666

Since exact model statistics are used in the imperfect model approximations, the true mechanism in the nonlinear667
energy transfer can be modeled under this first correction form. This is the similar idea used for measuring higher-668
order interactions in [88], where more sophisticated and expensive calibrations are required to make that model work669
there.670

3.2. A reduced-order statistical energy model with optimal consistency and sensitivity. The above closure model671
ideas, especially (3.4), (3.5), and (3.6), have advantages of their own. Models in (3.4) and (3.5) are simple and efficient to672
construct with consistent equilibrium consistency, while (3.6) involves the true information about the higher-order statistics673
in equilibrium so that the energy mechanism can be characterized well. The validity of these approaches has been tested and674
compared from several papers [89, 88, 63] using the simplified triad model and L-96 model. Still when it comes to the more675
complicated and realistic flow systems like the quasi-geostrophic equations, more detailed calibration for model consistency676
and sensitivity is required to achieve the optimal performance. A preferred approach for the nonlinear flux QM

F combining both677
the detailed model energy mechanism and control over model sensitivity is proposed in the form678

(3.8) QM
F = QM,−

F +QM,+
F = f1 (R)

[
−
(
NM,eq +dMIN

)
RM
]
+ f2 (R)

[
Q+

F,eq +ΣM

]
.679

The closure form (3.8) consists of three indispensable components:680
i) Higher-order corrections from equilibrium statistics: In the first part of the correction using the damping and noise operator681

as
(

NM,eq,Q+
F,eq

)
, unperturbed equilibrium statistics in the nonlinear flux QF,eq are used to calibrate the higher-order682

moments as additional energy sink and source following the procedure in (3.6). Therefore the equilibrium statistics683
can be guaranteed to be consistent with the truth, and the true energy mechanism can be restored;684

ii) Additional damping and noise to model changes in nonlinear flux: The above corrections in step i) by using equilibrium685
information for nonlinear flux is found to be insufficient for accurate prediction in the reduced-order methods since686
the scheme is only marginally stable and the energy transferring mechanism may change with large deviation from the687
equilibrium case when external perturbations are applied. Thus we also introduce the additional damping and noise688
(dM,ΣM) as from (3.4). dM is just a constant scalar parameter to add uniform dissipation on each mode, and ΣM is the689
further correction as an additional energy source to maintain climate fidelity;690

iii) Statistical energy scaling to improve model sensitivity: Still note that these additional parameters are added regardless of691
the true nonlinear perturbed energy mechanism where only unperturbed equilibrium statistics are used. To capture692
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the responses to a specific perturbation forcing, it is better to make the imperfect model parameters change adaptively693
according to the total energy structure. Considering this, the additional damping and noise corrections are scaled with694
factors f1 (R) , f2 (R) related with the total statistical variance trR as695

(3.9) f1 (R) =
(

trR
trReq

)1/2

, f2 (R) =
(

trR
trReq

)3/2

.696

Note that in the full model formulation (3.1a) and (3.1b) with the entire covariance matrix R resolved, the total variance697
structure trR is easy to achieve. However in the low-order models with only the variances in the principal modes resolved698
explicitly as will be discussed in the following subsection, trR is generally not available directly. This is where the statistical699
energy dynamics (2.2) can play an important role and help the development of reduced order models. Besides, a further skew-700
symmetric correction for dispersion effects in addition to the scalar model damping dM in the reduced-order models might be701
useful in some situations as the following remark.702

Remark 3.1. In the additional damping correction in (3.8), only a scalar damping parameter dM is considered. A little more703
detailed calibration about the nonlinear exchange of energy is to also introduce an imaginary skew-symmetric operator iΩM704
applied on the covariance RM , that is,705

QM,−
F = (−dMIN + iΩM)RM706

This term will not alter the entire energy structure of the system due to skew symmetry but can offer correction for the dispersion707
relation in this imperfect model. However, we may have the additional difficulty in fitting the N by N parameter matrix in the708
general case. In practical applications, instead we can exploit the physical structure of the specific model and introduce only709
one additional dispersion parameter iωM; see [78] and [79] for two examples of adding the dispersion correction to effectively710
improve model prediction skill under the barotropic and baroclinic models.711

Next we discuss the detailed calibrations about the nonlinear flux approximations. Two steps of model calibration should712
be considered as from the general framework described in Section 1.2: i) the equilibrium consistency that the reduced model713
must converge to the true equilibrium statistical state as no perturbations are added; ii) model sensitivity by blending statistical714
response and information theory so that the imperfect model can capture the responses to various kinds of perturbations as the715
system is perturbed. The construction in (3.6) guarantees equilibrium consistency using the true equilibrium model nonlinear716
flux structure. On the other hand, to improve model sensitivity, the linear response operators with information distance metric717
are used to find optimal parameters from the correction part in (3.4) or (3.5).718

3.2.1. Equilibrium statistical fidelity through the additional damping and noise. In designing the reduced-order mod-719
els, equilibrium fidelity for consistent statistics should be guaranteed in the first place in the unperturbed climate. That is, the720
same final unperturbed statistical equilibrium Req should be recovered from the closure models RM in each component. Com-721
paring the true statistical equation (1.5) with the reduced-order model (3.1b), time derivatives about the statistics on the left722
hand sides vanish in statistical steady state, thus climate consistency can be achieved if we have exact recovery of the estimation723
in the nonlinear flux term. Specifically, it requires that the model nonlinear flux correction term (3.8) converges to the truth,724
QM→QF,eq, when no external perturbation is added. Under this condition in steady state the closure model covariance equation725
(3.1b) goes to the true unperturbed statistics, the equilibrium statistical relation (2.3) implies the relation726

0 = Lv
(
ūeq
)

RM,eq +RM,eqL∗v
(
ūeq
)
+QM

F,eq +Qσ → RM,eq = Req.727

In construction the first component
(

NM,eq,Q+
F,eq

)
comes from the true equilibrium statistics, and in equilibrium state it will728

guarantee the consistency with the truth that729

−
(
NM,eqReq +ReqN∗M,eq

)
+Q+

F,eq = QF,eq.730

This part will be automatically equal to the true nonlinear flux in equilibrium. On the other hand climate consistency re-731
quires that the second component correction due to the parameters (dMIN ,ΣM) adds no additional energy source or sink in the732
unperturbed system, and no further correction in the scaling functionals. That is, we need ΣM to satisfy733

(3.10) ΣM =
1
2

dMReq, f1
(
trReq

)
= 1, f2

(
trReq

)
= 1.734
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Note again f1 and f2 in (3.10) calibrate the model sensitivity to perturbations according to the total energy structure trR. Thus735
it is natural to assume no additional correction in the unperturbed case.736

By choosing parameters according to (3.10), the climate consistency for the imperfect reduced-order models in (3.1b) in737
the unperturbed equilibrium is guaranteed. In addition, we still leave one controlling parameter dM for the freedom to tune the738
imperfect model performance, considering that climate consistency is only the necessary but not sufficient condition for good739
model prediction [59].740

3.2.2. Model calibration blending statistical response and information theory. The above methods (3.4), (3.5), (3.6),741
as well as (3.8) construct statistical approximation models with consistent equilibrium statistics. Still equilibrium fidelity742
of imperfect models is a necessary but not sufficient condition for model prediction skill with many examples [54, 59, 63].743
In order to get precise forecasts for various forced responses, it is also crucial to seek models that can correctly reflect the744
system’s ‘memory’ to its previous states. From Section 2.2, it shows that the linear response operator RA represents the lagged-745
covariance of certain functions (and thus can describe the ‘memory’ of the system to previous states). We try to find a unified746
way to achieve the optimal model parameters dM such that the imperfect models can maintain high performance for various747
kinds of external perturbations. Adopting the general strategy suggested in Section 2.3, we can improve model sensitivity748
through tuning imperfect models in a training phase before the prediction step. Thus the optimal model parameter can be749
selected through minimizing the information distance in the linear response operators in (2.18) between the imperfect closure750
model and the truth.751

Information-theoretical framework to measure the linear responses in the training phase. In this training phase, we try752
to find the optimal model parameters dM by comparing the linear response operators from the true system and imperfect753
approximation model. The true model linear response operator and the reduced-order model response operator can be calculated754
from (2.8), following the procedure from the kicked response strategy with detailed procedure shown in Appendix A. The755
distance between these two operators can be calculated through the information metric (2.17) which offers an unbiased and756
invariant measure for model distributions757

P
(

pδ , pM
δ

)
=

1
2 ∑

k

(
δ ūk−δ ūM,k

)
R−1

k

(
δ ūk−δ ūM,k

)
758

+
1
4 ∑

k
R−2

k

(
δRk−δRM,k

)2
+O

(
δ

3) .759

The first row above is the signal error due to the estimation about the mean; and the second row is the dispersion error760
for calibrating the linear responses in the first two order of moments, δRk. The intrinsic error due to second-order closure761
S
(

pG,δ

)
−S (pδ ) is independent of the specific forms of the reduced-order models and is not included in this metric. The762

optimization principle in (2.18) is then performed over the parameter dM .763

3.2.3. Comparisons with stochastic modeling about the mean and fluctuations and realizability. To achieve a better764
understanding about the statistical models, it is useful to compare the reduced-order statistical energy model (3.1a) and (3.1b)765
with its stochastic correspondences. In the stochastic formulation, we consider the separation with a deterministic mean state766
and the stochastic fluctuations767

uM = ūM (t)+∑
j

Z j (t)e j,768

where ūM = 〈uM〉 is the statistical mean state following the same dynamical mean equation as before together with the stochastic769
dynamics for the fluctuation modes770

dūM

dt
= (L+D) ūM +B(ūM, ūM)+

〈
ZiZ∗j

〉
B(ei,e j)+F,(3.11a)771

dZi

dt
= Z j [(L+D)e j +B(ūM,e j)+B(e j, ūM)] · ei −dM,i (〈ZZ∗〉)Zi +ΣM,i j (〈ZZ∗〉)Ẇi j.(3.11b)772

Above the effective damping and noise (dMIN ,ΣM) are added in the same way as constructed in (3.8). The mean dynamics773

(3.11a) get the small scale feedbacks from the nonlinear statistical interaction
〈

ZiZ∗j
〉

B(ei,e j), while the fluctuation stochastic774

dynamics are linked with the mean state through the quasilinear interactions. By direct comparison with the statistical equations775
(3.1a) and (3.1b), we see that the mean equation is identical while the equation for the stochastic fluctuations differs in the776
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nonlinear term. The constructed set of closed stochastic equations is a representative of a new class of stochastic systems where777
the evolution of each stochastic realization depends on the global statistics, i.e. on the collective or statistical behavior of all the778
realizations due to 〈ZZ∗〉. In particular, the associated formal Fokker-Planck equation becomes nonlinear and nonlocal. This779
guarantees realizability of the reduced-order models. These novel stochastic equations deserve further mathematical study as a780
complex version of McKean-Vlasov systems [69].781

3.3. Reduced-order statistical model for principal modes. Here for genuinely high-dimensional systems, the computa-782
tional cost for the full covariance matrix RM is still unaffordable even with the first two moment closure [6, 56]; for example,783
climate systems usually have the dimensionality at least of order 103 . On the other hand, in many situations, we are mostly784
interested in the variability in the statistics of the first most energetic principal directions. Therefore one alternative practical785
strategy is to develop reduced-order methods that only calculate variances in a low-dimensional subspace spanned by primary786
EOFs {v1, · · · ,vs} with s� N (N the dimensionality of the full system). The corresponding reduced-order representation of787
the state variables under these resolved basis becomes u = ū+∑

s
k=1 Ykvk. To see the possibility of achieving this, first note788

that the dynamical equations for variances (3.1b) in each mode rk =
〈
YkY ∗k

〉
are rather independent with each other according789

to the previous closure strategies with higher-order interactions replaced by additional damping and noise terms. Thus it is790
realizable to restrict the variance equations inside the chosen subspace. Actually following the same strategy by replacing the791
high-order interaction terms by proper damping and noise, the equivalent counterpart of the closure models can be formulated792
as a low-order stochastic system793

dūM

dt
= (L+D) ūM +B(ūM, ūM)+ ∑

i, j≤s
CM,i jB(vi,v j)+F+G,(3.12a)794

dCM

dt
= Lred

v CM +CMLred∗
v +Qred

F,M +Qred
σ , CM ∈ Cs×s.(3.12b)795

The mean dynamics (3.12a) is the same as the previous closure model (3.1a) with an additional correction term G to compensate796
the unresolved modes. CM is the reduced-order s× s covariance matrix where only the leading primary modes are resolved, that797
is,798

CM = P∗RMP,799

where P = [v1,v2, · · · ,vs] ∈ CN×s projects the modes to the subspace.800
Through proper choice of the parameters according to GC1 (3.4), GC2 (3.5), MQG (3.6), or the blended method (3.8) as801

before but concentrating on the resolved subspace, these reduced system should converge to the same first two order statistics802
with the moment closure model. Still several new problems need to be taken care of for the above model reduction process: i)803
How to ensure correct modeling about the true statistics in the mean dynamics (3.12a) due to the many unresolved directions in804
the covariance CM; ii) How to include the nonlocal scale factor (which always includes the total energy trR = ∑

N
k=1 rk) in (3.9)805

in the nonlinear flux approximation Qred
F,M if only subspace variances are resolved. Here in the general strategy to do this, we806

follow the ideas in [63, 78, 79].807

3.3.1. Correction for the mean dynamics. Still the simplest way of estimating the unresolved parts in the mean dynamics808
is through the statistical equilibrium information Geq. The value of the additional forcing Geq is determined using statistical809
steady state information for the covariance Ceq and the mean ūeq. In particular we have the equilibrium equation through the810

steady state mean dynamics where d
dt ūeq ≡ 0811

(3.13) Geq =−(L+D) ūeq +B
(
ūeq, ūeq

)
− ∑

i, j≤s
Ceq,i jB(vi,v j)−Feq.812

Similar as in the estimation about the nonlinear flux, the mean dynamics correction term can also be scaled with the total813
variance in the system, so that,814

(3.14) G =
trR

trReq
Geq.815

In this way, the mean dynamics (3.12a) become consistent in the statistical equilibrium state, and the corrections G can change816
sensitively according to the total energy structure through trR.817
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Remark 3.2. One further optional correction for the unresolved modes in the reduced-order mean equations is to make818
further use of the linear response theory predictions. To estimate the values for unresolved modes, we can improve it from the819
equilibrium statistics by introducing finer approximation making use of the linear response operator (2.7)820

(3.15) rk,un ∼ rk,eq +δ r′k = rk,eq +

ˆ t

0
Rrk (t− s)δF ′ (s)ds, k > s.821

Therefore these first-order predictions for the unresolved variances rk,un can also be used in (3.12a) for estimating the unresolved822
modes. This idea is applied to the L-96 system with improvements shown in [63].823

3.3.2. Correction through total statistical energy. In the reduced-order covariance dynamics (3.12b) using the closure824
form (3.8), two additional scaling factors, f1, f2, are introduced to further quantify the nonlinear energy flux in and out the825
spectral modes due to the nonlinear interactions. We propose the dynamical corrections with the total statistical energy trR826
as in the forms (3.9). This total energy correction introduces global information into each spectral mode so the nonlinear827
energy transfer can be better characterized in the imperfect model, while solving only one additional scalar equation is the only828
additional cost in computation. The scaling factor from trR introduces nonlinear global effect into the additional damping and829
noise corrections in each mode. This can be solved efficiently by introducing one additional scalar equation as described in830
(2.2)831

dE
dt

= ū ·Dū+ ū ·F+ tr(DR)+
1
2

trQσ .832

Then trR can be achieved by solving E = 1
2 ū2 + 1

2 trR.833
Especially in uniform damping case, D =−dI, the above statistical energy equation can be simplified as834

(3.16)
dE
dt

=−dE + ū ·F+
1
2

trQσ .835

Note that on the right hand side of (3.16), only mean state information (which can be fully resolved in the reduced mean836
dynamics in (3.12a)) needs to be calculated to get the total statistical energy E. In this way, the total second order moments trR837
can be entirely determined only through the first order mean ū and the scalar statistical energy equation (3.16).838

The final issue in the reduced-order model construction is about the tuning process in the training phase. Still the same839
kicked-response strategy (2.10) can be applied to the reduced-order formulation (3.12). Importantly, the relative entropy ex-840
pansion for the responses in (2.17) is decomposed into each component. Thus it can be directly applied to the reduced-order841
case by calculating only the signal and dispersion error in the resolved subspace. Therefore through the same procedure as the842
previous case, we can find the optimal model parameter in the training phase for the reduced-order model, and then apply the843
optimal model for prediction with various forcing perturbations.844

3.4. Summary of the Reduced-Order Statistical Energy Closure algorithm. We summarize the low-dimensional reduced-845
order statistical closure algorithm with calibrations from total statistical energy and linear response theory. The general reduced-846
order model algorithm is split into the separated steps of a training phase and a prediction phase after a proper imperfect model847
selection step according to the problem. The training phase is used to improve model sensitivity by tuning the imperfect model848
parameter using only unperturbed equilibrium statistics for the linear response operator. Then the optimal parameter can be849
applied for predicting model responses to different kinds of external perturbations. Note that in the calibration step in the850
algorithm, only the unperturbed statistics in equilibrium are required. Thus this offers the optimal model parameters that are851
ideally valid for all kinds of specific forcing perturbation forms. With the help of the linear response operator we are able to852
find a unified way to tune the imperfect model parameters and avoid the exhausting and impractical process to tune the models853
each time with different kinds of perturbations.854

4. Reduced-Order Statistical Models Applied to a Suite of Stochastic Triad Models. In this section, we illustrate855
the performance of the reduced-order formulations by considering a simple but nevertheless instructive model, namely the856
triad system with stochastic forcing [30, 50, 54, 89]. The triad systems where three modes interact through quadratic energy-857
conserving nonlinear interactions form the building block for more general complex turbulent flow, thus provide a nice simple858
test case for the mode elimination strategy in the first stage. The nonlinear interaction in triad systems is generic of nonlinear859
coupling between any three modes in larger systems with quadratic nonlinearity. For a three-dimensional system about state860
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Algorithm 1 Reduced-order statistical closure model for general turbulent systems
• Model selection stage:

– Decide the low-dimensional subspace spanned by orthonormal basis {vk}s
k=−s covering the directions with

largest variances (energy) among the spectrum.
– Set up statistical dynamical equations (3.12) by Galerkin projecting the original equations to the resolved sub-

space for modes with wavenumbers 1 ≤ |k| ≤ s, as well as the statistical energy equation (3.16) to get the total
statistical energy EM in the system.

• Model calibration stage:
– Construct low-order approximation of the nonlinear flux QM

F in the statistical equations using the statistical energy
closure proposed in (3.8) consistent with the equilibrium first two moments;

– Compute the true linear response operator from the unperturbed equilibrium statistics, and calculate the imperfect
model predicted linear response operator from the kicked response strategy;

– Determine the imperfect model parameter value through minimizing the information distance in (2.17) and (2.18)
between linear response operators from true equilibrium statistics and imperfect model approximation.

• Model prediction stage:
– Use the optimally tuned parameter achieved from the previous step in the reduced-order model to get statistical

responses of the state variables of interest in principal directions with all kinds of specific external perturbations.

variables u = (u1,u2,u3)
T ∈ R3 with a quadratic part that is energy preserving, the triad system possesses the general form861

du1

dt
= L2u3−L3u2−d1u1 +B1u2u3 +F1 +σ1Ẇ1,(4.1a)862

du2

dt
= L3u1−L1u3−d2u2 +B2u3u1 +F2 +σ2Ẇ2,(4.1b)863

du3

dt
= L1u2−L2u1−d3u3 +B3u1u2 +F3 +σ3Ẇ3.(4.1c)864

The triad system (4.1) is easy to summarize in the original abstract formulation (1.1), where865

L =

 0 −L3 L2
L3 0 −L1
−L2 L1 0

 , D =

−d1
−d2

−d3

 ,866

are the skew-symmetric and dissipation operator in (1.2a) representing respectively the Coriolis forcing and dissipation; and867
B(u,u) satisfies868

B(u,u) = (B1u2u3,B2u3u1,B3u1u2)
T , B1 +B2 +B3 = 0,869

which forms the nonlinear triad coupling that satisfies the energy conservation in (1.2b). The triad system can form the building870
block of complex turbulent dynamical systems since it can be viewed as a three-dimensional Galerkin truncation of many871
general dynamics. One celebrated example is the famous Lorenz model [45] that can be viewed as a special case of this872
procedure. An interpretation of these low-order models with atmospheric problems and geoscience is illustrated in [30]. Though873
simple in appearance of this triad system, complex and interesting statistical features can be generated through changing the874
model parameters.875

4.1. Statistical properties for the triad system. First we can check the general statistical properties described in Section876
1.2 with the triad system. Typically we would like to investigate the evolution of a smooth probability density function p(u, t)877
due to the internal and external stochasticity. Associated with the triad equations (4.1), the statistical solution satisfies the878
Fokker-Planck equation879

(4.2)
∂ p
∂ t

=−(B(u,u)+(L+D)u+F) ·∇u p+
3

∑
i=1

(
di p+

1
2

σ
2
i ∂

2
ui

p
)
,

p(u, t) |t=0 = p0 (u) .
880
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Above we assume the forcing terms are only dependent on time, F≡ F(t) ,σi ≡ σi (t). While the original triad system (4.1) is881
nonlinear, the statistical dynamics in (4.2) are linear equation for smooth functions p. The Fokker-Planck equation will reduce882
to the Liouville equation in the case of zero stochastic noise σ ≡ 0. However the explicit solution of the Fokker-Planck equation883
(4.2) is still difficult to get directly even with the triad model.884

4.1.1. Equilibrium invariant measure with equipartition of energy. In general the explicit solutions for the Fokker-885
Planck equation above (4.2) is difficult to achieve due to the nonlinear interactions in the triad system. Still under special886
arrangement about the damping and noise coefficients, one special solution of a Gaussian invariant measure, peq, can be reached887
in the equilibrium. In the absence of the deterministic forcing, F = 0, assume the damping operator di and random noise forcing888
σi satisfy the following relation in each component889

(4.3) σ
2
eq =

σ2
1

2d1
=

σ2
2

2d2
=

σ2
3

2d3
.890

Therefore, a Gaussian invariant measure as defined in (1.7) can be found with equipartition of energy in each component, that891
is,892

(4.4) peq =C−1 exp
(
−1

2
σ
−1
eq u ·u

)
.893

Above σ2
eq is the equilibrium variance in the Gaussian invariant distribution peq that controls the variability in each mode. To894

see this, we can substitute the invariant measure (4.4) back into the Fokker-Planck equation (4.2). It is a special case from the895
Theorem in [54], and detailed energy mechanism and stability for the triad system can be found in [50].896

In the general case with deterministic external forcing and inhomogeneous structure, energy is injected into the modes and897
transferred to each other due to the nonlinear quadratic interaction through more complicated mechanism, thus strong nonlinear898
non-Gaussian statistics with energy cascade and internal instabilities can be generated.899

4.1.2. A link with quasi-geostrophic turbulence. The triad model (4.1) is the building block of complex turbulent dy-900
namical systems since a three-dimensional Galerkin truncation of many complex turbulent dynamics possesses the energy-901
conserving nonlinearity as in (1.1). The random forcing together with the damping term represents the inhomogeneous effect902
of the interaction with other modes in a turbulent dynamical system that are not resolved in the three dimensional subspace.903
Stochastic triad models are qualitative models for a wide variety of turbulent phenomena regarding energy exchange and cas-904
cades and supply important intuition for many effects. They also provide elementary test models with subtle features for905
prediction, UQ, and state estimation [50, 64, 87].906

As a simple illustration about the link to more complex turbulent systems, we can consider the quasi-geostrophic (QG)907
potential vorticity equation with no external forcing and dissipation908

∂q
∂ t

+∇
⊥

ψ ·∇q = 0, q = ∇
2
ψ.909

We have the barotropic triads of three barotropic components, ψk,ψm,ψn, obeying the selecting rule k+m+n = 0. Consider910
an initial condition in which only these three components of a particular triad are excited, then these three modes will only911
interact with each other while no other modes will get excited due to the particular triad relations as the system evolves in time.912
By projecting the above equation to the active triad modes, we get the dynamical equations for the selected modes913

(4.5)
dψk

dt
+Akmnψmψn = 0, k+m+n = 0,914

where Akmn = |n|2

|k|2
m⊥ ·n is the triad interaction coefficient with the detailed symmetry Akmn +Amnk +Ankm = 0, showing the915

conservation of kinetic energy,916
d
dt

(
|k|2 |ψk|2 + |m|2 |ψm|2 + |n|2 |ψn|2

)
= 0.917

The typical forward and backward cascades of energy and enstrophy in turbulent flow are characterized by the triad interactions918
between the three models. Hence from the above discussion, in the two-dimensional QG turbulence, the nonlinear energy919
transfer is exactly governed by the barotropic triads the same as (4.1) in the nonlinear interaction part.920
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4.2. Typical dynamical regimes in the triad system. Though simple in appearance, the triad system (4.1) has represen-921
tative statistical features including energy cascade between modes and internal instabilities that can be created in this simple922
set-up. A fundamental factor in the triad system is the internal instabilities that make the mean unstable over various directions923
in phase space as is typical for anisotropic fully turbulent systems. Elementary intuition about energy transfer in such models924
can be gained by looking at the special situation with L = D = F = σ ≡ 0 so that there are only the nonlinear interactions in925
(4.1). We examine the linear stability of the fixed point, ū = (ū1,0,0)

T . Elementary calculations show that the perturbation δu1926

satisfies dδu1
dt = 0 while the perturbations δu2,δu3 satisfy the second-order equations927

d2

dt2 δu2 = B2B3ū2
1δu2,

d2

dt2 δu3 = B2B3ū2
1δu3,928

so that929

there is instability with B2B3 > 0 and930

the energy of δu2,δu3 grows provided B1 has(4.6)931

the opposite sign of B2 and B3 with B1 +B2 +B3 = 0.932

The elementary analysis in (4.6) suggests that we can expect a flow or cascade of energy from u1 to u2 and u3 where it is933
dissipated provided the interaction coefficient B1 has the opposite sign from B2 and B3.934

Then energy cascades can be induced from the strongly forced unstable energetic mode to the stable less energetic modes935
with stronger damping effects. Particularly, we can generate distinct statistical features from Gaussian to highly skewed non-936
Gaussian PDFs in the following dynamical regimes:937

• Regime I: Equipartition of energy. Set the equipartition of energy in stationary steady state. That is, σ2
1

2d1
=

σ2
2

2d2
=

σ2
3

2d3
=938

σ2
eq. Gaussian distributions as in (4.4), peq ∼ exp

(
− 1

2 σ−2
eq u ·u

)
, will be reached under this set-up in the equilibrium939

state. The parameters are chosen as d1 = 0.2,d2 = 0.1,d3 = 0.1, and B1 = 1,B2 =−0.6,B3 =−0.4. Skew-symmetric940
interactions are added as L1 = 3,L2 = 2,L3 =−1, and there is no deterministic forcing F1 = F2 = F3 = 0 added for the941
unperturbed equilibrium;942

• Regime II: Nonlinear regime with forward energy cascade. Consider the system with one weakly damped strongly943
forced mode and two other strongly damped weakly forced modes, that is, d1 = 1,d2 = 2,d3 = 2, and σ2

1 = 10,σ2
2 =944

0.01,σ2
3 = 0.01. The nonlinear coupling is taken as B1 = 2,B2 = B3 = −1. The skew-symmetric interaction is set to945

be zero, L1 = L2 = L3 = 0, and there is no deterministic forcing F1 = F2 = F3 = 0 added in unperturbed equilibrium.946
In this case, the first mode is strongly forced by the random forcing while the other two modes are much less energetic.947
The values in the nonlinear coupling coefficients make sure that the additional energy injected in u1 cascades to the948
other two less energetic modes u2,u3, and then gets dissipated by the strong damping;949
• Regime III: Nonlinear regime with dual energy cascade. Use the same damping and noise forcing parameters as in950

the energy cascade case, that is, d1 = 1,d2 = 2,d3 = 2, and σ2
1 = 10,σ2

2 = 0.01,σ2
3 = 0.01. The nonlinear coupling951

coefficients are also taken the same values as before, B1 = 2,B2 = B3 =−1. Skew-symmetric interactions are added in952
this regime as L1 = 0.09,L2 = 0.06,L3 =−0.03 to enhance the interactions between modes. Deterministic forcings are953
applied in modes u2,u3 as F1 = 0,F2 =−1,F3 = 1. In addition to the forward energy cascade from u1 to u2,u3 as in the954
previous case, the additional forcing introduces energy sources in modes u2,u3 and leads to backward energy cascade955
from modes u2,u3 back to u1. The linear skew-symmetric operator further alters the equilibrium energy structure in the956
system, resulting in skewed probability distribution functions in the steady state. This regime is especially interesting957
because strong internal instability can be generated here.958

The first test case is the simplest but nevertheless representative with equipartition of energy. The higher-order moment effects959
are relatively small in this equipartition energy case, while the dynamics are dominantly Gaussian with zero cross-covariances960
as the system evolves in time. The second test case above is also relatively simple without the skew-symmetric interaction961
between modes and most energy will accumulate in the first dominant mode. Nevertheless important third-order interactions962
will take place in this case, and large errors will be introduced if the cross-covariances are ignored without care. In the third963
test case the non-zero forcing in the unperturbed system creates skewed equilibrium distributions with important third-order964
moments. Also the non-zero linear skew-symmetric interaction terms add extra emphasis on the cross-covariances. These965
induce stronger interactions and energy cascades between the triad modes.966
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4.2.1. Numerical results about the the unperturbed triad system in equilibrium. The true statistical features of the967
triad system in the above dynamical regimes are resolved through direct Monte-Carlo simulations. We run an ensemble of968
N = 10000 particles, which shall be enough for capturing the statistics in a three-dimensional phase space. Forward Euler969
scheme with small time step is used to integrate the system in time due to its simplicity. The stochastic forcing is simulated970
through the standard Euler-Maruyama scheme. The initial ensemble is chosen from a standard Gaussian random sampling.971

For more details about the model statistics in these regimes, Figure 4.1 displays the probability distributions in these three972
test regimes. In mode u1, Gaussian (or quasi-Gaussian) distributions can always be observed in all the three regimes. Also973
the equipartition of energy structure can be observed in the first regime as predicted from analysis in the previous sections.974
Marginal PDFs are consistent with the Gaussian fits from theory and the joint 2-dimensional distributions are also in Gaussian975
structure. On the other hand, in the forward energy cascade case, fat tails can be observed in the marginal PDFs in both u2,u3976
as well as the star-shaped joint-distribution, showing the strong nonlinear effects in the modes. Note that the non-Gaussianity in977
u2,u3 can affect the final structure in the dominant mode u1 despite its near-Gaussian marginal distribution. Furthermore, in the978
third test regime with dual energy cascades, besides the fat tails, skewed PDFs appear in both modes u2,u3 due to the non-zero979
deterministic forcing applied on them. The non-Gaussianity can be further confirmed by the joint distributions where strong980
skewness is shown. Also note that the mean states are not centered in zero in this case. These illustrate important third-order981
moments in this case for accurate predictions. Below we concentrate on this toughest regime.982

4.3. Reduced-order statistical models for the triad system. In the development about reduced-order models, we focus983
on the accurate estimation about the first two moments, that is, the statistical mean state and covariance matrix. The major984
interest is to check the models’ skill in capturing sensitivity in response to external perturbations besides equilibrium consistency985
in the models. Considering the relatively simple structure in the triad dynamics, we focus on the GC1 and GC2 formulation in986
(3.4) and (3.5) respectively in the following test cases and the parameter calibration strategy proposed in (3.8). In the model987
reduction procedure, we first consider the fully resolved model, where the 3-dimensional mean and 3×3 covariance matrix are988
resolved entirely; and then the diagonal model, where only the mean and diagonal variances are calculated explicitly. In the989
final step, a severely reduced-order model is introduced where only the variance in the principal mode is resolved.990

4.3.1. Reduced model formulation for the triad system (Model selection). Applying exactly the modeling procedure in991
Section 3 to the triad system, the two-moment closure schemes replace the higher order moments with additional damping and992
excitement containing only first two order of moments. The first approach is to run the full system with mean and covariance993
matrix where both diagonal variances and off-diagonal components are resolved for ū ∈ R3 and R ∈ R3×3994

dū
dt

= Lū+B(ū, ū)+∑
i, j

Ri jB(ei,e j)+F,(4.7a)995

dR
dt

= Lv (ū)R+RL∗v (ū)+QGC +Qσ .(4.7b)996

As a test for reduced order methods, we also check the models’ skill by ignoring the cross-covariances. Especially for the triad997
system, the off-diagonal cross-covariances play a crucial role in the computation of mean and variance responses, while on998
the other hand, are difficult and expensive to estimate with accuracy. Then the unresolved covariances are approximated from999
steady state information.1000

• Fully Resolved Model: In this fully resolved model, the entire mean and covariance matrix are calculated through the1001
dynamical equations (4.7). The nonlinear flux term is approximated by additional damping and additional noise as in1002
(3.4) and (3.5)1003

QGC =−(DMR+RD∗M)+QM.1004

• Diagonal Model ignoring cross-covariances: In this diagonal model, the cross-covariances between modes are ig-1005
nored to improve model efficiency. So the covariance matrix is replaced by diagonal matrix R = diag(rk). The1006
correction in QGC for higher-order moments calibration is kept the same as the full model for GC1 or GC2 respec-1007
tively. To correct the error due to the neglect of cross-covariances, we add the cross-covariance correction using only1008
steady state information1009

ri j =
trR

trReq

〈
u′iu
′
j
〉

eq .1010

The diagonal model can be much more efficient compared with the fully resolved model with a model reduction from1011
O
(
N2
)

to O(N).1012
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(b) energy equipartition regime
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FIG. 4.1. Marginal PDFs in three modes u1,u2,u3 and the joint distributions in scatter plots in three regimes with distinct statistics. Gaussian density
functions with the same variance are shown in dashed black lines.

Through construction using the unperturbed equilibrium information, climate consistency is guaranteed in both GC1 and GC21013
model. In GC1, only constant damping and noise are added to approximate the unresolved higher order moments, while1014
these terms are further corrected with the total variance in GC2. The exponents in the scaling factors are designed to make1015
them consistent in dimension with the estimated third-order statistics. Actually, these scaling factor becomes quite crucial in1016
capturing model responses to perturbations and model performances in transient state.1017

As a further reduction in the model we consider the two-moment closure methods in reduced order subspace. In this case,1018
we only resolve the variance in the first mode u1, and calculate the mean dynamics for all three modes. Then the reduced order1019
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model can be expressed as1020

dū
dt

= Lū+B(ū, ū)+ ∑
i, j∈Λ

Cred
i j B(ei,e j)+F+G,(4.8a)1021

dCred

dt
= Lred

v (ū)Cred +CredLred∗
v (ū)+Qred

GC +Qred
σ .(4.8b)1022

Λ = {1} is the index set that includes the resolved modes. Especially with only the leading variance resolved, Cred = r1 =
〈
u2

1
〉

1023
is only the variance in mode u1. The construction about the reduced-order parameters can follow the general strategy in (3.12a)1024
and (3.12b) exactly.1025

• Reduced Model with only the principal variance resolved: In the variance equation (4.8b), the formulation is similar1026
as before and we only need to constrain the covariance matrix Cred in the resolved subspace with the first mode1027
u1 resolved. The additional damping and noise can be applied in the same way as the reduced-model correction1028
as discussed in (3.12). In the mean dynamics, the unresolved second-order moments in Ri jB(ei,e j) are corrected1029
following (3.13)1030

G =
trR

trReq
∑

i, j∈Λc
Ri jB(ei,e j) .1031

The total variance for model sensitivity correction can also be achieved through the approximated statistical energy1032
dynamics as in (3.16)1033

dEest

dt
=−deffEest +

3

∑
i=1

(
Fiūi +

1
2

σ
2
i

)
.1034

Note that we have calculated the mean in each mode, then the total variance can be calculated through the total1035
statistical energy trR = 2E−∑

3
i=1 ū2

i . One additional difficulty in the inhomogeneous case is that different damping1036
rates d j are applied to different modes. So we introduce the effective damping rate deff through the statistical steady1037
state information as1038

deff =
∑

3
i=1
(
Fiūi,eq +

1
2 σ2

i
)

Eeq
.1039

We also list the explicit statistical mean and variance dynamical equations in Appendix B, as well as the explicit statistical1040
energy dynamics to achieve the total variance of the system when only the leading mode is resolved.1041

4.3.2. Model consistency and tuning parameters in the training phase (Model calibration). In the model calibration1042
step, we check the imperfect models’ consistency with climatology when no perturbation is applied. As noticed before, the1043
imperfect models’ skill in capturing the right statistics in transient state is crucial for the convergence to the right fixed point in1044
the energy equation. As an example, Figure 4.2 compares the model performances in regimes with dual energy cascade. It can1045
be observed that the statistical steady state mean and variances are recovered with accuracy due to the climate consistent choice1046
of parameters through (3.4) and (3.5), while GC1 lacks the ability to accurately capture the transient state in the beginning due1047
to its lack of sensitivity.1048

We illustrate the tuning process for optimal model parameters in the training phase in Figure 4.3. Again we use the dual1049
energy cascade regime as an example. Since both the deterministic and stochastic forcing might be perturbed in the external1050
forcing, we consider a kicked response in the initial value according to the perturbation form described in (4.9) and (4.10). In1051
the first row, the information errors with changing model parameter values are shown in total relative entropy from (2.17) as1052
well as the errors in signal and dispersion component. Note that the errors in GC2 model results stay uniformly small in the1053
entire parameter regime, showing the robustness of the method; on the other hand, GC1 model displays larger information error1054
no matter how well we tune the model parameter. This illustrates the inherent information barrier in the closure schemes if1055
we do not consider proper statistical energy scaling in the model damping and noise terms. In the second row, we show the1056
approximation about the linear response operators in the mean and variance using optimal parameters. The transient structures1057
can be captured with accuracy in GC2 model, while GC1 lacks the skill due to the insufficient calibration in the higher-order1058
nonlinear flux approximation.1059
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FIG. 4.2. Imperfect model performances in convergence to statistical equilibrium state in dual energy cascade regime. Both GC1 (with constant damping
and noise) and GC2 (with correction from total variance) can recover the steady state mean and variance but GC1 lacks the ability to accurately capture the
transient state in the beginning due to its lack of sensitivity.

4.3.3. Model prediction skill to perturbations (Model prediction). Periodic perturbations added in both deterministic1060
and random forcing are representative in checking the imperfect models’ prediction skill in response to perturbations. The1061
perturbations are introduced in the following forms:1062

• periodic forcing perturbations in the deterministic forcing: The deterministic forcing perturbation is introduced by a1063
periodic addition to the mean forcing F = F̄ +δF . As one typical test case, we add periodic forcing perturbations δF1064
to each mode, that is,1065

(4.9) δFi = Ai sin(ωt) ,1066

with ω taking the value π/4, and Ai measures the perturbation amplitude in each mode.1067
• periodic perturbation in the stochastic random forcing: Also to add stronger time-dependent effect to the variances,1068

we add periodic random forcing to the system by setting1069

(4.10) σ j = σ̄ j +δ f 2 (t)
(
σTj − σ̄ j

)
,1070

with δ f (t) = sin(ωt) also set to be periodic. Here σ̄ j is the mean stochastic forcing amplitude in the unperturbed case1071
with σTj > σ̄ j to add perturbations to this unperturbed mean.1072

We check the model performances in predicting response to the periodic perturbations in both deterministic and stochastic1073
components. Here we display the imperfect model prediction skill in the toughest regime with dual energy cascade. Thus1074
strong nonlinear coupling is present between the modes. In Figure 4.4, the fully resolved model with mean and 3×3 covariance1075
matrix is applied to the typical regime in GC1 and GC2 closure methods. In this regime with skewed distributions, higher order1076
moments become crucial and need more detailed calibration. As we can see from the results, the deficiency of GC1 method1077
appears in this regime due to the inaccurate approximation about the third-order moments. Large deviation takes place in the1078
skewed modes u2,u3 due to the errors from third-order energy transfer. In contrast, GC2 model maintains the high skill in1079
predicting the mean and variances with the more careful calibration about the nonlinear flux through the scaling factor using1080
total statistical energy.1081

In Figure 4.5, we check the diagonal models with only mean and variances in each mode resolved and ignoring the off-1082
diagonal cross-covariances. Like the previous case of full model, GC1 loses the skill in predicting the responses in u2,u3 due to1083
the lack of information in the third-order interactions. The errors in the beginning transient regime drive the statistical equation1084
to the wrong state or even blowing up. GC2 keeps the skill in capturing the response structures of both the mean and variances.1085
And again most of the error takes place in the variance estimations.1086
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FIG. 4.3. Illustration about the training phase for tuning optimal imperfect model parameters for GC1 and GC2. The first row is the information errors
with changing values of the tuning parameter σM . The second row displays the approximation for the linear response operators in GC1 and GC2 using optimal
parameters from the tuning process above.
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FIG. 4.4. Full GC1 and GC2 model with optimal parameter in approximating responses to periodic external forcing in regimes with dual cascade. The
first three rows show the GC1 and GC2 predictions for the statistical mean and variances in each mode together with the truth from MC simulations in thick
black lines. The total energy E from the energy equation and the fluctuation energy E ′ = E− 1

2 ū2 are compared in the following row. The last line shows the
total information error in the imperfect models together with the signal and dispersion components.
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FIG. 4.5. Diagonal GC1 and GC2 model with optimal parameter in approximating responses to periodic external forcing in regimes with dual cascade.
The first three rows show the GC1 and GC2 predictions for the statistical mean and variances in each mode together with the truth from MC simulations in
thick black lines. The last line shows the total information error in the imperfect models together with the signal and dispersion components.

Testing the feasibility of the reduced-order strategies described previous is important for further applications to general1087
high dimensional turbulent systems because the triad interactions always represent the nonlinear interactions in different scales1088
which usually are ignored in realistic modeling. The same dynamical regime is tested here for the reduced-order models. In this1089
case, only the variance in the first mode u1 is resolved explicitly. Especially for this regime with strong dual energy cascade,1090
as we have seen in the true statistical dynamics, strong coupling exists between the high energy mode u1 and the less energetic1091
modes, u2,u3, in both third-order moments and second-order cross-covariances. Thus this becomes a challenging situation for1092
the reduced-order models for capturing the responses with accuracy. The model prediction results are shown in Figure 4.6.1093
With forward and backward energy cascade, strong nonlinear high-order interactions become crucial here. GC1 loses its skill1094
in this case and ends with large errors especially in the mean state u1. This is no surprise considering the strong perturbed1095
deviation from the equilibrium state in this regime due to the nonlinear energy transfer while GC1 model only uses unperturbed1096
equilibrium information. On the other hand, GC2 keeps its skill and can capture the responses in both mean and variance with1097
only a single low-order mode resolved.1098

4.3.4. Additional results for the triad model with equipartition of energy. In the final part of this section, we illustrate1099
the imperfect model prediction skills in the equipartition of energy regime with Gaussian statistics. In this case, the three1100
modes (u1,u2,u3) in the triad model possess same amount of energy in statistical equilibrium state as in (4.3) and (4.4). In1101
Figure 4.7 and 4.8, we show the prediction results to the periodic perturbations from the diagonal model with off-diagonal1102
cross-covariances neglected, and from the reduced model with only the variance in the first mode u1 resolved. Both GC1 and1103
GC2 can capture the mean states in all three modes quite accurately, and GC1 and GC2 results have little difference. This is due1104
to the relatively simple energy mechanism in this regime with same amount of energy in each mode. On the other hand, in the1105
prediction of variances in the diagonal model larger errors appear especially in the modes u2 and u3. This shows the important1106
effects of the off-diagonal covariances in predicting second order moments in this equipartition energy regime. The reduced1107
model gets good predictions for the variance in the first resolved mode u1. With the more expensive full model, the prediction1108
for the variances in all three modes will become accurate with larger computational cost.1109

5. Reduced-Order Statistical Models Applied to Two-Layer Baroclinic Turbulence. In this section, we validate the1110
performance of the reduced-order models by the more complicated two-layer quasi-geostrophic system with baroclinic instabil-1111
ity. It is shown that the baroclinic model is capable in capturing the essential physics of the relevant internal variability despite1112
its relatively simple dynamical structure. Two dynamical regimes with typical statistical features are representative in many1113
applications [90, 4, 79]. The first one is the fully turbulent flow with homogeneous statistics as a result of internal baroclinic1114
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FIG. 4.6. Reduced-order GC1 and GC2 model with the variance in first mode resolved in approximating responses to periodic external forcing in dual
energy cascade regime. The first three rows show the GC1 and GC2 predictions for the statistical mean and variances in each mode together with the truth from
MC simulations in thick black lines. The last line shows the total information error in the imperfect models together with the signal and dispersion components.

0 5 10 15 20 25 30

-2

0

2

<
u

1
>

truth GC1 GC2

0 5 10 15 20 25 30

-2

0

2

<
u

2
>

0 5 10 15 20 25 30

time

-1

0

1

<
u

3
>

0 5 10 15 20 25 30
0

2

4

v
a

r(
u

1
)

truth GC1 GC2

0 5 10 15 20 25 30
0

5

v
a

r(
u

2
)

0 5 10 15 20 25 30

time

0

5

v
a

r(
u

3
)

0 5 10 15 20 25 30

time

0

2

4

6

to
ta

l 
E

n
e
rg

y

truth GC1 GC2

0 5 10 15 20 25 30

time

0

2

4

6

E
n
e
rg

y
 i
n
 f
lu

c
.

truth GC1 GC2

0 10 20 30

time

0

0.1

0.2
total information error

GC1

GC2

0 5 10 15 20 25 30

time

0

0.005

0.01
signal error

GC1

GC2

0 10 20 30

time

0

0.1

0.2
dispersion error

GC1

GC2

FIG. 4.7. Diagonal GC1 and GC2 model with optimal parameter in approximating responses to periodic external forcing in regimes with equipartition of
energy. The first three rows show the GC1 and GC2 predictions for the statistical mean and variances in each mode together with the truth from MC simulations
in thick black lines. The total energy E from the energy equation and the fluctuation energy E ′ = E− 1

2 ū2 are compared in the following row. The last line
shows the total information error in the imperfect models together with the signal and dispersion components.
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FIG. 4.8. Reduced-order GC1 and GC2 model with the variance in first mode resolved in approximating responses to periodic external forcing in
equipartition energy regime.

instability corresponding to the high-latitude ocean and atmosphere; the second one is the anisotropic flow field with strong1115
meandering zonal jets as in the low/mid-latitude regime. Detailed discussions and comparisons of the construction and test1116
about the reduced-order models in various regimes with representative zonal jets and vortices can be found in [79].1117

The governing two-layer quasi-geostrophic (QG) equations in a barotropic-baroclinic mode formulation for potential vor-1118
ticity anomalies

(
qψ ,qτ

)
with periodic boundary condition in both x,y directions are [84, 92]1119

(5.1)

∂qψ

∂ t
+ J
(
ψ,qψ

)
+ J (τ,qτ)+β

∂ψ

∂x
+U

∂

∂x
∆τ =−κ

2
∆(ψ− τ)−ν∆

sqψ +Fψ (x, t) ,

∂qτ

∂ t
+ J (ψ,qτ)+ J

(
τ,qψ

)
+β

∂τ

∂x
+U

∂

∂x

(
∆ψ + k2

dψ
)
=

κ

2
∆(ψ− τ)−ν∆

sqτ +Fτ (x, t) .
1120

Above qψ = ∆ψ , qτ = ∆τ− k2
dτ are the disturbance potential vorticities in barotropic and baroclinic mode respectively, while1121

ψ,τ are the corresponding disturbance barotropic and baroclinic stream functions. The barotropic mode ψ can be viewed as the1122
vertically averaged effect from the flow, and the baroclinic mode τ is usually related with the thermal effect in heat transport.1123
Besides, J (A,B) = AxBy−AyBx represents the Jacobian operator. kd =

√
8/Ld = (2 f0/NH)2 is the baroclinic deformation1124

wavenumber corresponding to the Rossby radius of deformation Ld . A large-scale vertical shear (U,−U) with the same strength1125
and opposite directions is assumed in the background to induce baroclinic instability. In the dissipation operators on the right1126
hand sides of the equations (5.1), besides the hyperviscosity, ν∆sqi, we only use Ekman friction, κ∆ψ2, with strength κ on the1127
lower layer of the flow.1128

5.1. Representative dynamical regimes for the two-layer baroclinic turbulence. The two-layer quasi-geostrophic sys-1129
tem can display various dynamical regimes with distinct statistical features as the parameters are changed. Parameters for high1130
and low/mid latitude dynamical regimes are shown in Table 1. In numerical simulations, the true statistics are calculated by a1131
pseudo-spectra code by resolving the two-layer equations (5.1) with 128 spectral modes zonally and meridionally, correspond-1132
ing to 256×256×2 grid points in total. In the reduced-order methods, only the large-scale modes |k| ≤ 10 are resolved, which1133
is about 0.15% of the full model resolution.1134

In the simulations for the unperturbed system in ocean and atmosphere regimes, Figure 5.1 displays the two-layer flow1135
structure in high-latitude ocean regime. The first row is the snapshots of the barotropic and baroclinic vorticity. Homogeneous1136
structure can be observed in both cases while larger scale structures appear in the baroclinic mode. It is important to notice the1137
strong correlation in the coherent structures in the barotropic and baroclinic field, illustrating the strong energy transfer between1138
the two modes. The following part shows time-series of energy in barotropic and baroclinic mode,−

ffl
ψqψ ,−

ffl
τqτ , as well as1139

This manuscript is for review purposes only.



STRATEGIES FOR REDUCED-ORDER MODELS IN COMPLEX TURBULENT DYNAMICAL SYSTEMS 33

TABLE 1
Model parameters for ocean and atmosphere dynamical regimes in high and low/mid latitude. N is the model resolution, β ,kd are the rotation parameter

and the deformation frequency, U is the background mean shear flow, κ is the Ekman drag in the bottom layer. The last three columns display the unstable
waveband from linear analysis. (kmin,kmax) shows the range of unstable wavenumbers; σmax is the largest linear growth rate; and (kx,ky)max is the position of
the mode with maximum growth rate.

regime N β kd U κ (kmin,kmax) σmax (kx,ky)max

ocean regime, high lat. 256 10 10 1 9 (2.25,14.61) 0.411 (4, 0)

atmosphere regime, high lat. 256 1 4 0.2 0.2 (1.58,6.78) 0.099 (2, 0)

(a) high-latitude regime

regime N β kd U κ (kmin,kmax) σmax (kx,ky)max

ocean regime, low/mid lat. 256 100 10 1 1 (7.14,15.63) 0.104 (2, 8)

atmosphere regime, low/mid lat. 256 2.5 4 0.2 0.05 (2.51,7.06) 0.053 (3, 0)

(b) low/mid-latitude regime4 Reduced-order models with homogeneous mean flow 12
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Fig. 4.1: Snapshots of the unperturbed system in high-latitude ocean regime with no external forcing terms. The
barotropic and baroclinic vorticity in steady state are plotted. Time-series of energy in barotropic and baro-
clinic modes, as well as potential energy, are compared with the heat flux.

(a) snapshots of stream function
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Fig. 4.2: Snapshots of the unperturbed system in high-latitude atmosphere regime with no external forcing terms.
The barotropic stream functions in blocked and unblocked state are plotted. The time-series for barotropic,
baroclinic, and potential energy are compared with the heat flux in the following part.

FIG. 5.1. Snapshots of high-latitude ocean regime barotropic and baroclinic vorticity in unperturbed system with no external forcing terms. Time-series
of energy in barotropic and baroclinic modes, as well as potential energy, are also compared with the heat flux.

the potential energy,
ffl

k2
dτ2, compared with the meridional heat flux, k2

dU
ffl

ψxτ . In Figure 5.2 the results for the two-layer flow1140
in high-latitude atmosphere regime are compared. One important feature here is the flow field alternating between blocked and1141
unblocked regimes. In the stream functions, it can be observed that in the blocked regime, zonal flow is blocked and the field is1142
restricted at separated regimes, while in the unblocked regime strong zonal flow can be observed. Strong meridional heat flux1143
can be observed in the blocked regime while the flow is in state with lower energy and low heat transfer in the zonal unblocked1144
regime.1145

In mid/low latitude regimes, both the ocean and atmosphere are distinctly inhomogeneous on large scales. The existence of1146
large-amplitude meandering zonal jets in these regimes suggests the regional metastable equilibria, while the large-scale forced1147
perturbations may lead to regular or irregular fluctuations in some extent. The jet structures are illustrated in more detail in1148
Figure 5.3 for the time-series of the zonally average mean flow, u = −∂yψ . In this low/mid latitude case, especially for the1149
ocean regime, due to the strong zonal jets in wavenumber ky = 6, zonal modes with kx = 5,6 become active due to the nonlinear1150
interactions.1151

The general steady state statistical structures in the spectral field are shown in Figure 5.4. As implied from the homogeneous1152
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4 Reduced-order models with homogeneous mean flow 12
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Fig. 4.1: Snapshots of the unperturbed system in high-latitude ocean regime with no external forcing terms. The
barotropic and baroclinic vorticity in steady state are plotted. Time-series of energy in barotropic and baro-
clinic modes, as well as potential energy, are compared with the heat flux.

(a) snapshots of stream function
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Fig. 4.2: Snapshots of the unperturbed system in high-latitude atmosphere regime with no external forcing terms.
The barotropic stream functions in blocked and unblocked state are plotted. The time-series for barotropic,
baroclinic, and potential energy are compared with the heat flux in the following part.

FIG. 5.2. Snapshots of high-latitude atmosphere regime barotropic and baroclinic stream function in unperturbed system with no external forcing terms.
Time-series of energy in barotropic and baroclinic modes, as well as potential energy, are also compared with the heat flux.

FIG. 5.3. Time-series of zonal averaged mean flow with jets in low/mid-latitude atmosphere and ocean regimes.

statistics in high-latitude, the mean states stay in small values within fluctuation errors in both ocean and atmosphere regimes.1153
From the energy spectra, one observation is that the potential energy is dominant in large scales in the baroclinic modes, and1154
the kinetic baroclinic energy becomes more important in small scales. For both regimes, we observe wide and energetic spectra1155
that exchange energy between different scales, which indicates strong forward and backward energy cascades along the entire1156
spectral modes.1157

5.2. Predicting quasi-geostrophic statistical responses in reduced-order models. The quasi-geostrophic response to1158
both stochastic and deterministic perturbations is an important subject in understanding the earth’s atmospheric and oceanic1159
interactions [2, 47]. The same strategy developed in Section 3.3 and applied in the triad system for the first mode in Section 4.31160
can be directly generalized to the statistical modeling of the two-layer QG system here.1161

5.2.1. Statistical formulation about the two-layer baroclinic equations. We formulate the two-layer QG system with1162
Galerkin truncation to finite number of spectral modes. In model simulations, consider a set of rescaled normalized quantities1163
with a high wavenumber truncation N under standard Fourier basis ek = exp(ik ·x) due to the periodic boundary condition, so1164
that1165

(5.2)
pψ,k =qψ,k/ |k|=−|k|ψk,

pτ,k =qτ,k/

√
|k|2 + k2

d =−
√
|k|2 + k2

dτk.
1166

The introduction of this new set of quantities (5.2) offers convenience that the energy inner-product becomes the standard1167
Euclidean form. Under the above settings, the rescaled set of equations of (5.1) can be summarized in the abstract form in the1168
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FIG. 5.4. Radial-averaged spectra in mean and second-order moments in both atmosphere and ocean high-latitude regimes. The first row compares the
statistical mean states (in logarithmic coordinate). The following two rows show the variances, and statistical energy, in barotropic and baroclinic modes, as
well as the potential energy.

truncated subspace |k| ≤ N as in (1.1)1169

(5.3)
dpk

dt
= Bk (pk,pk)+(Lk−Dk)pk +Fk, pk =

(
pψ,k, pτ,k

)T
,1170

where the linear operators are decomposed into the non-symmetric part Lk involving β -effect and vertical shear flow U and1171
dissipation part Dk, together with the forcing Fk combining deterministic component and stochastic component compared with1172
(5.1). Most importantly, B(p,p) is the nonlinear interactions that conserve both energy and enstrophy.1173

The same reduced-order modeling strategy then can be applied to the two-layer model following the algorithm in Section1174
3.4. Therefore the true dynamical equations for the statistical moment Rk = 〈pk

∗pk〉 in the form of a 2× 2 matrix containing1175
barotropic and baroclinic mode in same wavenumber k become1176

(5.4)
dRk

dt
= (Lk−Dk)Rk +QF,k +Qσ ,k + c.c., |k| ≤ N,1177

where c.c. represent the complex completion for the conjugate parts. On the right hand side of the equation, Lk,Dk represent1178
the linear interactions between modes, including β -effect through the rotation of the earth, the effects from the mean shear1179
flow U , as well as the dissipations from Ekman drag and hyperviscosity. Qσ ,k is the external forcing perturbations represented1180
by hypothetical stirring and heating forces. Importantly, the nonlinear flux QF,k represents the nonlinear interactions between1181
different wavenumbers due to the advection term. Third-order moments with triad modes m+n = k enter the first two order1182
moments dynamics representing the nonlinear energy transfer between small and large scales. The nonlinear energy exchange1183
mechanism is crucial in the energy budget, and the conservation property is satisfied due to the triad symmetry as ∑k trQF,k = 0.1184

5.2.2. Reduced-order model predictions for responses in various dynamical regimes. In constructing the reduced-1185
order models, the same strategy is applied to the crucial but expensive nonlinear flux term QF as in (3.8)1186

QM,k = Q−M,k +Q+
M,k = f1 (E)

[
−
(
NM,k,eq +dM

)
RM,k

]
+ f2 (E)

[
Q+

F,k,eq +σ
2
M,k

]
.1187

Both equilibrium higher-order statistics and additional corrections are combined, and statistical energy equation is important to1188
provide the scaling factor for optimal consistency and sensitivity. See [79] for more details.1189

In checking the model sensitivity in the homogeneous high-latitude regimes, we introduce the forcing perturbation by1190
changing the background jet strength U . Note that the deterministic perturbation about zonal mean flow advection forms a1191
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FIG. 5.5. Reduced-order model predictions to mean shear flow perturbation δU = ±0.05 in high-latitude ocean regime. The reduced-order model
predictions for the spectra are compared with the truth. Black lines with circles show the perturbed model responses in the barotropic energy, baroclinic
energy, and heat flux. The dashed black lines are the unperturbed statistics, and the reduced order model predictions are in red lines.
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FIG. 5.6. Reduced-order model predictions to mean shear flow perturbation in high-latitude atmosphere regime. The reduced-order model predictions
for the spectra are compared with the truth. Black lines with circles show the perturbed model responses in barotropic energy, baroclinic energy, and heat flux.
The dashed black lines are the unperturbed statistics. And the reduced order model predictions are in red lines.

difficult test case because the forcing is applied along all wavenumbers with stronger mean-fluctuation interactions involved.1192
On the other hand, for the reduced order methods, only the perturbations at the limited resolved modes are quantified. This1193
gives the inherent difficulty for applying the reduced order models to this kind of perturbations since we have no knowledge1194
of the unresolved modes where large amount of energy is contained. The results with mean flow perturbations δU = ±0.051195
in the ocean regime and perturbations δU = 0.02,−0.01 in the atmosphere regime are shown in Figure 5.5 and 5.6 separately.1196
The perturbation accounts for about 5%-10% of the original shear strength U , and the corresponding responses in both energy1197
and heat flux spectra are large due to this global perturbation at every wavenumber and nonlinear energy cascade. In the ocean1198
regime, a wide waveband of modes |k| = 3,4,5,6 becomes sensitive to the perturbations; while in the atmosphere regime, the1199
first dominant mode |k|= 1 is especially sensitive to even small perturbations. This illustrates the strong nonlinear interactions1200
between the high and low wavenumber modes. The reduced-order method displays uniform skill in capturing the sensitive1201
responses in the large-scale modes for both positive and negative perturbation cases with only first 10× 10 spectral modes1202
resolved compared with the 256×256 full resolution model.1203

In Figure 5.7 and 5.8, we compare the model responses in both low/mid-latitude ocean and atmosphere regimes. In1204
this inhomogeneous regime with anisotropic jets, the statistical variables combine the responses in the mean and variance,1205
p∗1,k p2,k = p̄∗1,k p̄2,k + p′∗1,k p′2,k, to display the total effect from the perturbation. In the ocean regime, the dominant mode with1206

largest sensitivity is at wavenumber |k| = 6 due to the zonal jet structure. The sensitivity is captured with accuracy in the1207
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FIG. 5.7. Model responses in low/mid-latitude ocean regime with random forcing perturbation. The left panel shows the spectra for the barotropic and
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FIG. 5.8. Model responses in low/mid-latitude atmosphere regime with random forcing perturbation. The left panel shows the spectra for the barotropic
and baroclinic energy as well as the heat flux with first 10 modes resolved in the reduced-order method. The right panel is the time-series of the total energy
and heat flux. The truth is shown in dashed black lines while reduced-order model predictions are in red lines.

reduced-order method. Also we compare the time evolvement of the total resolved energy and heat flux. The prediction is1208
also good with small error. In the atmosphere regime, |k| = 1 mode gets the largest statistical energy and is most sensitive to1209
perturbations. One important feature is the large change in the heat flux in the first two modes, representing the exchange of1210
energy in the dominant barotropic and baroclinic mode. Still the responses can be captured with accuracy in each mode in the1211
spectra as well as the total energy and heat flux profile with only 102 modes resolved. Note that in both cases, the heat flux is1212
weak due to the blocking effect from strong zonal jets.1213

6. Summary and Some Future Research Directions. Understanding and improving the predictive skill of imperfect1214
models for high-dimensional complex turbulent systems is a formidable and challenging problem and has been investigated1215
through multiple approaches with various mathematical theories through the years [84, 29, 44, 63, 88, 47]. Low-order truncation1216
methods for statistical prediction can overcome the curse of dimensionality [23, 62] by concentrating on the subspace containing1217
largest variability. On the other hand, anisotropic turbulent processes are representative in many engineering and environmental1218
fluid flows [35, 26] where energy transports intermittently from the smaller scales to impact the largest scales in these flows.1219
Therefore significant model errors always occur due to the high wavenumber truncation in the imperfect model approximations.1220
A systematic information-theoretic framework has been shown useful to improve model fidelity and sensitivity [58, 59, 10] for1221
complex systems including perturbation formulas and multimodel ensembles that can be utilized to improve model error. In1222
many applications to complex systems with model error such as the climate change science [22, 74], it is crucially important to1223
provide guidelines to improve the predictive skill of imperfect models for their responses to changes in various external forcing1224
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perturbations.1225
We discuss the general framework of efficient low-dimensional reduced-order models in this paper for turbulent dynamical1226

systems with nonlinearity to capture statistical responses to external perturbations. The validity of the reduced-order modeling1227
procedure is displayed via the simplest 3-dimensional triad model which is the building block of general turbulent systems, and1228
further on the more complicated two-layer barotropic model with huge model reduction. The computational cost is reduced1229
through a systematic approximation about the expensive nonlinear higher-order interactions. Additional damping and noise1230
corrections are proposed to replace the third-order moments. Model consistency in unperturbed equilibrium and sensitivity to1231
external perturbations are maintained through careful calibration about imperfect model error in a training phase before the pre-1232
diction. The model errors are calibrated and reduced effectively through a combination of linear response theory involving only1233
unperturbed equilibrium statistics and an information-theoretic framework using information theory. The general framework1234
has been tested in detail for a series of dynamical systems with increasing complexity [63, 78, 79, 54].1235

For future development about the methods, there exist several interesting and promising directions that are worth further1236
investigation in the next stage:1237
A) Tracking the model fluctuation statistics about the perfect statistical mean state. In many problems for turbulent systems,1238

we can assume the statistical mean state is known with reasonable accuracy by averaging along the data trajectory,1239
while the statistical fluctuations about the mean state are the quantities of interest [51, 64]. It is useful to consider1240
accurate and efficient ways to quantify the model fluctuations involving both uncertainties in the perfect system and1241
errors due to imperfect model approximation;1242

B) Design of a mitigation control strategy by using novel low-order statistical models. There is need to combine control theory1243
with the statistical model reduction strategies for the principal large-scale modes in the turbulent dynamical systems.1244
For example, it is interesting to consider the effects of climate change using control and statistical modeling strategies;1245

C) Predicting passive scalar turbulence with complex flow field. Besides the turbulent flow field, the dynamics of the passive1246
tracer advected by the turbulent flow has many interesting features with practical implications and is worth investigat-1247
ing. One important feature in the turbulent tracer field is the appearance of intermittency despite the near-Gaussian1248
statistics in the background advection flow. The intermittency in time-series and fat-tails in the passive tracer dis-1249
tributions have been observed in nature [73], and have been investigated under a simpler modeling framework both1250
theoretically and numerically [60, 66, 77]. It is thus interesting to consider low-order stochastic and statistical model-1251
ing about the tracer field advected by complex turbulent flows;1252

D) More detailed consideration about the model nonlinearity. In the reduced-order approximation here, the overall strategy1253
does not require explicit calculation of the inefficient quadratic forms directly, but instead mimic the statistical sym-1254
metry in the nonlinearity in simple and efficient forms. Still it is interesting to check the improvement in the low-order1255
models with more detailed approximation.1256
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Appendix A. Numerical strategies to calculate the kicked response operators. In the calibration step of the reduced-1260
order models, we use the statistical kicked response theory to tune the imperfect model parameters in the training phase. Here1261
we describe the details about calculating the kicked response operators for the mean and variance numerically. From the formula1262
in (2.10), the response operators for the mean and variance can be achieved from the perturbation part of the probability density1263
δ p′. And this density function is also used to measure the information distance between the truth and imperfect model result in1264
the training phase. Below we describe the numerical procedure to get this distribution function δ p′ for the true system and the1265
imperfect closure model separately.1266

• Kicked response for the true model: For the true system, we want to achieve the most accurate possible estimation1267
for the response operators both for comparison with the imperfect model results and for calculating the FDT linear1268
prediction in (2.7). Therefore we use a Monte-Carlo simulation with an large enough ensemble size to capture the1269
response in density. The initial equilibrium ensemble is picked by sampling from a normal distribution with consistent1270
equilibrium mean and variance of the true system. For the kicked response to the mean, a constant perturbation with1271
ten percent of the equilibrium state mean δu = 0.1ūeq is added to each initial ensemble member (in fact, as observed1272
in numerical experiments, this perturbation amplitude has little effect on the results in the response distribution as long1273
as it’s not too large); and the initial variance of the ensemble is kept unchanged. The response distribution δ p′ then1274
is achieved by monitoring the decay of the ensemble particles back to equilibrium under unperturbed dynamics and1275
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uniformly perturbed initial value (and the length of the time window that we need to monitor depends on the mixing1276
property of the turbulent system). See [5, 48] for similar version of this algorithm.1277

• Kicked response for the imperfect model: For the imperfect model, we just need to run the closure equations to get the1278
responses for the mean and variance. In the same way as the true model, the initial mean is taken from the equilibrium1279
distribution and a perturbation with amplitude δu = 0.1ūeq is added to the initial mean state. The initial value for1280
the variance is taken the same as the equilibrium state value and kept unperturbed. Then using this initial mean and1281
variance, the imperfect model with specific closure strategies is applied to monitor the decay of the mean and variance1282
back to equilibrium.1283

One additional important point that requires attention is that even if the unperturbed equilibrium initial conditions are applied,1284
the system will still deviate from the equilibrium state first and reapproach equilibrium again after some relaxation time. This1285
is due to the insufficient characterization of the entire distribution of the true system with a Gaussian approximation (note that1286
nonlinearities are also included in the imperfect closure methods). To eliminate this effect in computing the kicked response in1287
both the true and imperfect models, we subtract the statistics computed using the unperturbed initial value from the statistics1288
computed using the perturbed Gaussian initial condition to achieve more accurate characterization of the responses.1289

Appendix B. Explicit statistical dynamical formulations for the triad system. We can derive for the triad system (4.1)1290
the dynamical equations for the mean state1291

dū1

dt
= L2ū3−L3ū2−d1ū1 +B1

(
ū2ū3 +u′2u′3

)
+F1,(B.1a)1292

dū2

dt
= L3ū1−L1ū3−d2ū2 +B2

(
ū3ū1 +u′3u′1

)
+F2,(B.1b)1293

dū3

dt
= L1ū2−L2ū1−d3ū3 +B3

(
ū1ū2 +u′1u′2

)
+F3.(B.1c)1294

On the right hand sides of the above equations (B.1a)-(B.1c), the first parts include the skew-symmetric interactions between1295
modes as well as the linear damping for the mean. The nonlinear interaction parts enter the mean dynamics both from the1296
interactions between the mean states, and more importantly from the second-order moments of the fluctuations. Thus the mean1297
dynamical equations are not closed by themselves due to the inclusion of unresolved higher-order statistics. Also note that in1298
the second-order moments in the mean equations, diagonal variances won’t appear while the cross-diagonal covariances take1299
place as the role of transferring energy in the mean. Next we consider the dynamics for the fluctuation parts of the state variables1300

du′1
dt

= L2u′3−L3u′2−d1u′1 +B1

(
ū2u′3 +u′2ū3 +u′2u′3−u′2u′3

)
+σ1Ẇ1,(B.2a)1301

du′2
dt

= L3u′1−L1u′3−d2u′2 +B2

(
ū3u′1 +u′3ū1 +u′3u′1−u′3u′1

)
+σ2Ẇ2,(B.2b)1302

du′3
dt

= L1u′2−L2u′1−d3u′3 +B3

(
ū1u′2 +u′1ū2 +u′1u′2−u′1u′2

)
+σ3Ẇ3.(B.2c)1303

The above equations can be achieved by subtracting the mean equations from the original triad system. Then the dynamics for1304
higher order moments can be achieved through the fluctuations equations. Importantly, we can get the dynamical equations1305
for the variances in each mode1306

1
2

du′21
dt

= L2u′1u′3−L3u′1u′2−d1u′21 +B1

(
ū2u′1u′3 +u′1u′2ū3

)
+B1u′1u′2u′3 +

1
2

σ
2
1 ,(B.3a)1307

1
2

du′22
dt

= L3u′1u′2−L1u′2u′3−d2u′22 +B2

(
ū1u′2u′3 +u′1u′2ū3

)
+B2u′1u′2u′3 +

1
2

σ
2
2 ,(B.3b)1308

1
2

du′23
dt

= L1u′2u′3−L2u′1u′3−d3u′23 +B3

(
ū1u′2u′3 +u′1u′3ū2

)
+B3u′1u′2u′3 +

1
2

σ
2
3 .(B.3c)1309
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And the dynamical equations for the cross-covariances between modes become1310

du′1u′2
dt

= L2u′2u′3−L3u′22 −d1u′1u′2 +B1

(
ū2u′2u′3 +u′22 ū3

)
+B1u′2u′2u′31311

+ L3u′21 −L1u′1u′3−d2u′1u′2 +B2

(
ū1u′1u′3 +u′21 ū3

)
+B2u′1u′1u′3,(B.4a)1312

du′1u′3
dt

= L2u′23 −L3u′2u′3−d1u′1u′3 +B1

(
ū2u′23 +u′2u′3ū3

)
+B1u′2u′3u′31313

+ L1u′1u′2−L2u′21 −d3u′1u′3 +B3

(
ū1u′1u′2 +u′21 ū2

)
+B3u′1u′1u′2,(B.4b)1314

du′2u′3
dt

= L3u′1u′3−L1u′23 −d2u′2u′3 +B2

(
ū1u′23 +u′1u′3ū3

)
+B2u′1u′3u′31315

+ L1u′22 −L2u′1u′2−d3u′2u′3 +B3

(
ū1u′22 +u′1u′2ū2

)
+B3u′1u′2u′2.(B.4c)1316

For most situations, it is the diagonal variances in (B.3a)-(B.3c) that we are more interested in, while the off-diagonal covari-1317
ances (B.4a)-(B.4c) are less important and expensive to resolve. On the other hand, it is noticed that only the cross-covariance1318
terms take place in the central variance dynamics in (B.3a)-(B.3c) for the linear and quasi-linear interaction. In this typical1319
case, if we only consider the diagonal model and ignore the off-diagonal terms in the statistical closure dynamics, huge errors1320
could be introduced in the variance dynamical equations. Thus in the development of reduced order statistical models, careful1321
calibration about the unresolved components becomes crucial in the accuracy of the prediction results.1322

With the dynamical equations for the mean (B.1) and for the variances in each mode (B.3) and (B.4), we can derive the1323
statistical energy dynamics following the general framework proposed in (2.2) of Theorem 2.1 and also [53]. The statistical1324
energy can be defined as the combination of the mean energy and the fluctuation energy as1325

E =
1
2

3

∑
i=1

(
ū2

i +u′2i
)
.1326

In the dynamics for the mean and covariance, the major difficulty in resolving the equations explicitly comes from the complex1327
third-order moments in QF as well as the covariance interactions through Ri jB(ei,e j). However due to the conservation of1328
energy and the detailed triad symmetry in the triad system, nonlinear interactions cancel in the mean and variance equations1329
and the statistical energy equation becomes1330

(B.5)
dE
dt

=
d
dt

(
1
2

3

∑
i=1

(
ū2

i +u′2i
))

=−
3

∑
i=1

di

(
ū2

i +u′2i
)
+

3

∑
i=1

(
Fiūi +

1
2

σ
2
i

)
.1331

Therefore the total statistical structure can be calculated from (B.5) without knowing the higher-order moments as well as1332
cross-covariances which are in general difficult to resolve exactly without error. Furthermore, considering the special case with1333
homogeneous damping in each mode, d j ≡ d, the dissipation term on the right hand side of (B.5) becomes −dE. Thus we can1334
get the total second-order statistics from only the information in the first-order moments with the help of the statistical energy1335
dynamics.1336
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