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Turbulent dynamical systems characterized by both a high dimen-

sional phase space and a large number of instabilities, are ubiqui-

tous among complex systems in science and engineering including

climate, material, and neural science. Control of these complex sys-

tems is a grand challenge, for example, in mitigating the effects of

climate change or safe design of technology with fully developed

shear turbulence. Control of flows in the transition to turbulence

where there is a small dimension of instabilities about a basic mean

state is an important and successful discipline. In complex turbulent

dynamical systems, it is impossible to track and control the large di-

mension of instabilities which strongly interact and exchange energy,

and new control strategies are needed. The goal of this paper is to

propose an effective statistical control strategy for complex turbulent

dynamical systems based on a recent statistical energy principle and

statistical linear response theory. We illustrate the potential practical

efficiency and verify this effective statistical control strategy on the

forty dimensional Lorenz ’96 model in forcing regimes with various

types of fully turbulent dynamics with nearly half the phase space

unstable.
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Turbulent dynamical systems characterized by both a high
dimensional phase space and a large number of instabil-

ities, are ubiquitous among complex systems in science and
engineering (1–4) including climate, material, and neural sci-
ence. Control of these complex systems is a grand challenge,
for example, in mitigating the effects of climate change (5, 6)
or safe design of technology with fully developed shear turbu-
lence. Control of flows in the transition to turbulence where
there is a small dimension of instabilities about a basic mean
state is an important and successful discipline (7, 8). In com-
plex turbulent dynamical systems, it is impossible to track
and control the large dimension of instabilities which strongly
interact and exchange energy (9), and new control strategies
are needed.

The goal here is to propose an effective statistical control
strategy for complex turbulent dynamical systems based on
a recent statistical energy principle (10, 11) and statistical
linear response theory (12–14). We illustrate the potential
practical efficiency and verify this effective statistical control
strategy on the forty dimensional Lorenz ’96 (L-96) model in
forcing regimes with various types of fully turbulent dynamics
with nearly half the phase space unstable.

I) The statistical control theory proposed here has the goal
and theoretical steps in its design:

A) Goal and statistical energy: The statistical energy, E, is
the sum of the energy of the statistical mean and the
trace of the statistical covariance (10, 11). A turbulent

dynamical system is subjected to poorly known external
forcing and the goal of the statistical control strategy
is to find an effective deterministic feedback control to
drive the statistical energy measured at some time back
to a small neighborhood of a prescribed statistical steady
state with energy, E∞, in a finite time with a given cost.

B) Statistical energy as a Lyapunov functional: According
to general recent theory (10, 11) the time rate of change
of the statistical energy has a tendency to decay subject
to forcing by the product of the current statistical mean,
ū (t), and the forcing control, F (t).

C) Statistical linear response theory to define the control:
With the perturbed forcing control, δF (t), perturbed
from the statistical steady state forcing F̄∞, given the
target statistical mean, ū∞, compute the linear statisti-
cal mean response (14),

δū (t) =

∫ t

0

Rū (t − s) δF (s) ds,

by the fluctuation-dissipation theorem, perhaps with sim-
ple Gaussian approximation (12, 13, 15, 16). This proce-
dure defines a memory dependent non-Markovian control
δF (t) for the statistical energy.

D) Explicit optimal local control: Transform the nonlocal
control in C) to a local one and exactly solve the resulting

..
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quadratic linear regulator problem by Bellman’s method
(17, 18) to find an effective local feedback control, C∗ (t).

E) Attribution of the local control C∗ (t) to an effective forc-
ing control, δF ∗ (t): Explicitly invert step C) to deter-
mine δF ∗ (t) from C∗ (t).

II) A successful implementation and verification of the
above strategy for control by statistical functionals has several
very attractive features:

A) Only detailed statistical information in the target statis-
tical steady state defined by ū∞ and E∞ is needed. This
can be determine by detailed observation or experiments.

B) Only an estimate of the statistical energy at the initial
time of control and not any details of the forcing history
are needed to set up the effective statistical control in I).

C) Control of statistical energy by I) automatically gives con-
trol bounds on the mean and variance of the random
state at spatial locations (10). For a climate mitigation
scenario, this could be the mean and variance of the tem-
perature at spatial locations; in general this is key infor-
mation and provides important bounds for uncertainty
quantification (19–21).

D) Various cost functions and specific forcing control strate-
gies for using I) can be determined offline, without the
need to run the actually complex turbulent system.

E) No explicit tracking or control of local instabilities is
needed.

In the remainder of this paper, we sketch some background
details of the statistical control strategy in I) and provide a
detailed illustration, implementation, and verification on the
L-96 model with various forcing and control scenarios, and
explicitly demonstrate the attractive features in II).

1. The Mathematical Structure of Turbulent Dynamical
Systems

Consider the statistical behavior and control of quadratic sys-
tems with conservative nonlinear dynamics and unstable direc-
tions. In particular, consider the general turbulent dynamical
system:

du
dt

= (L + D) u + B (u, u) + F (t) , [1]

acting on u ∈ R
N .

In the above equation we have:

• L, being a skew-symmetric linear operator representing
the β-effect of Earth’s curvature, topography, etc., and
satisfying,

L∗ = −L. [2a]

• D, being a negative definite symmetric operator,

D∗ = D, [2b]

representing dissipative processes such as surface drag,
radiative damping, viscosity, etc.

• The quadratic operator B (u, u) conserves the energy by
itself so that it satisfies

u · B (u, u) = 0. [2c]

Such turbulent dynamical systems have a general statistical
energy principle (10, 11) with many applications (19–21) and
form the basis of the statistical control strategy. For simplicity
in exposition here, assume that the damping above is constant
multiple of the identity, D = −dI . Here is the statistical
energy principle:

Under suitable general assumptions (10, 11), assume D =
−dI , with d > 0, then the turbulent dynamical system [1]
satisfies the closed statistical energy equation for E = 1

2 ū · ū+
1
2 trR,

dE
dt

= −2dE + ū · F, [3]

where ū (t) is the statistical mean and R is the covariance
matrix.

2. General control with linearized statistical energy
functional equation

In a statistical equilibrium state, we have the relation

2dE∞ = ū∞ · F̄∞. [4]

Thus the equilibrium statistical energy E∞ can be calculated
through the equilibrium mean.

Focus on the small amplitude fluctuations about the equi-
librium mean state u′ = u − ū∞, thus the statistical energy
fluctuation functional becomes

E′ = E − E∞ = ū∞ · δū +
1
2

δtrR +
1
2

|δū|2 , [5]

where we define δū = ū − ū∞ as the fluctuation about the
equilibrium mean, and δtrR = trR − trR∞ as the fluctuation
about the total variance (equivalently the single-point vari-
ance at each grid point). We want to control the statistical
energy fluctuation E′ back to zero (thus the system goes back
to unperturbed equilibrium) via control on the mean state
with only deterministic control forcing added. If we achieve
the goal in controlling the total statistical energy to zero, au-
tomatically we succeed in controlling the mean state fluctu-
ation, δū, and the single-point variance fluctuation, δtrR, at
the same time.

Linearized statistical energy identity about fluctuation. By
subtracting the mean equilibrium statistics [4] from the origi-
nal statistical energy equation [3], we have the Perturbed Sta-
tistical Energy Equation

dE′

dt
= −2dE′ + ū∞ · δF + F̄∞ · δū + O

(

δ2
)

, [6]

where O
(

δ2
)

= δF̄ · δū is for the higher order terms. Here
we assume the external forcing perturbation is kept in small
amplitude, thus the perturbed response in the mean is also
small. Then we only need to focus on the leading order re-
sponses in O (δ). The task here is to find proper control to
drive the perturbed energy E′ back to zero efficiently with
minimum cost.

Statistical response for the mean state from statistical linear
response theory. In the above linearized equation, we only
consider the linearized first-order terms on the right hand side
of the equation [6]. Use the fluctuation-dissipation theorem

2 | www.pnas.org/cgi/doi/10.1073/pnas.XXXXXXXXXX ..
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(FDT) (12, 13, 15, 22) to replace the response in the mean,
δū, using the mean response operator

δū =

∫ t

0

Rū (t − s) δF (s) ds + O
(

δ2
)

. [7]

Above Rū is called the linear response operator about the
statistical mean state, thus it only requires information from
the equilibrium distribution p∞ with the unperturbed system

Rū (t) = ⟨u (t) B [u (0)]⟩
∞

, B (u) = −
divu (wp∞)

p∞

, [8]

with the forcing perturbation in the form δF = w (u) δf (t).
In the present application with changes in external forcing,
w (u) is simply a constant vector. The linear response from
FDT forms a non-Markovian delayed control. Especially if
we make the quasi-Gaussian approximation for [8], that is,
set p∞ ∝ exp

(

− 1
2 u′T R−1

∞ u′
)

, the linear response operator
for the mean becomes

Rū,ij (t) =
〈

(ui (t + s) − ūi,∞) ej · R−1
∞ (u (s) − ū∞)T

〉

. [9]

Note that when we use linear Gaussian models (12, 16) to
approximate the system, this above formula in [9] becomes
exact for the linear response operator. There is high skill in
approximating the mean both theoretically (13, 14) and for
many complex turbulent dynamical systems (12, 19, 23, 24).

The L-96 model as a turbulent dynamical system. The sim-
plest prototype example of a turbulent dynamical system to
illustrate and verify the statistical control strategy is due to
Lorenz and is called the L-96 model (25). It is widely used as
a test model for algorithms for prediction, filtering, and low
frequency climate response (13), as well as algorithms for UQ
(19, 26). The L-96 model is a discrete periodic model given
by the following system

duj

dt
= (uj+1 − uj−2) uj−1 − uj + F, j = 0, · · · , J − 1, [10]

with J = 40 and with F the forcing parameter. The model
is designed to mimic baroclinic turbulence in the midlatitude
atmosphere with the effects of energy conserving nonlinear ad-
vection and dissipation represented by the first two terms in
[10]. In order to quantify and compare the different types of
turbulent chaotic dynamics in the L-96 model as F is varied,
the transformation uj = ū + E1/2

p ũj , t = t̃E−1/2
p is utilized

where Ep is the energy fluctuations (13). After this normal-
ization, the dynamical equation in terms of the new variables,
ũj , becomes

dũj

dt̃
= (ũj+1 − ũj−2) ũj−1 + E−1/2

p ((ũj+1 − ũj−2) ū − ũj)

+ E−1
p (F − ū) . [11]

Table S1 in SI lists in the non-dimensional coordinates, the
stability analysis and statistical data in the L-96 model as F
is varied through F = 6, 8, 16. Snapshots of the time series
for [10], as depicted in Figure S1 in SI, qualitatively confirm
the quantitative intuition with weakly turbulent patterns for
F = 6, strongly chaotic wave turbulence for F = 8, and fully
developed wave turbulence for F = 16.

Deterministic control of the unstable modes. It is worthwhile to
briefly comment on a standard deterministic control strategy
(7, 8) for the L-96 model and its limitations. To control the
instabilities about the mean state, it is natural to use the
formulation in [11]. The linear operator in [11] has sixteen
unstable modes for F = 6 and eighteen for F = 8, 16 (13).
Thus nearly half of the modes of the forty dimensional system
need to be controlled.

3. Effective statistical control of the L-96 Model

The L-96 model is invariant to spatial translation and has
homogeneous statistics (19), so the statistical mean is a time
dependent scalar in response to homogeneous forcing, F (t) =
F +δF (t) in [10], which is assumed here. We follow the above
general strategy for statistical control of perturbed energy [5]
through statistical linear response in [7]-[9].

Thus, we consider the statistical energy fluctuation defined
as

E′ = E − E∞, E∞ = (2d)−1 ū∞F̄∞,

according to a scalar (deterministic) control κ (t) about the
mean state. Considering all these simplifications, the homo-
geneous linear statistical control equation for the L-96 model
can be rewritten as

dE
dt

= −2dE+ū∞κ (t)+F̄∞

∫ t

0

Rū (t − s) κ (s) ds, E (0) = E0.

[12]
Above the primes are dropped in the statistical energy fluc-
tuation E′, and Rū is the linear response operator for the
scalar mean state defined in [9]. According to the statistical
energy control equation, we can introduce a local control C (t)
for the statistical energy identity as a functional of the control
forcing κ (t)

C (t) = ū∞κ (t) + F̄∞

∫ t

0

Rū (t − s) κ (s) ds. [13]

Then the general control problem becomes: i) find the opti-
mal control strategy for C; and then ii) invert the (nonlocal)
functional C to get the explicit forcing control strategy for
κ. In this way, we can first only focus on the general control
functional C (t) for the statistical energy identity, and then
consider the inversion problem.

The linear statistical control problem can be solved directly
following dynamic programming (17, 18). Next we construct
the linear statistical control problem by proposing a cost func-
tion to optimize. The control system is defined as

dE
ds

= −2dE (s) + C (s) , E (t) = x, t ≤ s ≤ T, [14]

with C (t) a general control functional. To find the optimal
control C∗ (t) the cost function to minimize is proposed in the
following form

Fα [C (·)] ≡

∫ T

t

E2 (s) + αC2 (s) ds,

C∗ = arg min
C

Fα [C (·)] . [15]

The cost function is defined in the simplest form as a combi-
nation about the energy and control. The parameter α > 0
is introduced to add a balance between the two components
in energy E and control C. The larger value of α adds more
weight on the control parameter in the process.

Majda et al. ..
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Remark 1 The statistical control problem in [14] is quite uni-
versal representing a large group of systems with homogeneous
damping. The true turbulent system could be nonlinear and
complicated, as long as it has the energy conserving property
and the symmetries that guarantee the statistical energy iden-
tity as the abstract form in [1]. Later we can see that the con-
trol parameter C can even include the random forcing control
in the system. Furthermore by introducing the local control C,
no specific forcing and mean statistics are required in explicit
form. Thus in the first step, we only need to concentrate on
the general control equation [14] according to the cost [15].

Optimal control from scalar Riccati equation. Now we derive
the robust optimal control C∗ (t) for time interval [0, T ] with
varying cost depending on α. It is well known (17, 18) that
the scalar control problem in [14] and [15] is solved by a scalar
Riccati equation, that is,

dK
dt

= α−1K2 + 4dK − 1, 0 ≤ t < T,

K (T ) = kT .
[16]

Above it is a backward equation in time about K (t). There-
fore the optimal feedback control C∗ (t) together with the op-
timal control statistical equation for E∗ becomes

C∗ (t) = − α−1K (t) E∗ (t) , 0 ≤ t < T,

dE∗

dt
= − 2dE∗ (t) − α−1K (t) E∗ (t) ,

[17]

with the initial fluctuation energy condition E∗ (0) = E0.
Above −α−1K (t) E∗ (t) defines the feedback control due to
the minimum cost constraint.

Suppose we have the optimal control K (t) by solving [16],
then the exact solution of [17] can be calculated directly, that
is,

E∗ (t) = E0 exp

(

−2dt − α−1

∫ t

0

K (s) ds

)

. [18]

Note that E (t) is actually the energy fluctuation, thus it can
be either positive or negative depending on its initial value.
Further notice that the above optimal solution has one addi-
tional degree of freedom about the final endpoint value kT .
Therefore the statistical energy control auxiliary problem can
be formulated as

max
kT

(

2αdT +

∫ T

0

K (t; kT ) dt

)

⇔ max
kT

∫ T

0

K (t; kT ) dt.

[19]
We calculate the explicit solution for the scalar Riccati

equation in [16]
∣

∣

∣

∣

K (t) − K−

K (t) − K+

∣

∣

∣

∣

= C (kT ) exp
[

2
(

4d2 + α−1
)1/2

(T − t)
]

, [20]

where
K± = −2αd ±

(

4α2d2 + α
)1/2

are the two roots (fixed points) of the quadratic polynomial

on the right hand side of [16], and C (kT ) =
∣

∣

∣

kT −K
−

kT −K+

∣

∣

∣
is the

coefficient due to the endpoint condition. As a special fixed-
in-time solution, if we take K (t) ≡ K+, the optimal solution
in [18] becomes

E∗ (t) = exp
[

−
(

4d2 + α−1
)1/2

t
]

E0. [21]

See SI for the derivation and properties of the exact solution.

Attribution of the optimal local control to a forcing control.

In the final step of the statistical control strategy, given the
local optimal control C∗ (t), one needs to invert the nonlo-
cal operator in [13] to determine the forcing control strategy,
κ∗ (t). For the L-96 model, Rū (t) is a real scalar operator
and with the Gaussian approximation in [9], we build a linear
regression model to approximate the autocorrelation, Rū (t),
by RM

ū (t) = exp (−γMt) (12, 27). Therefore we get the dy-
namical equations for the autocorrelation RM

ū

dRM
ū

dt
= −γM RM

ū (t) , RM
k (0) = 1. [22]

and the corresponding linear response Lū =
∫ t

0
Rū (t − s) κ (s) ds is exact for the response in the

mean state

dLM
ū

dt
= − γM LM

ū (t) + κ (t) , Lū (0) = 0,

LM
ū (t) =

∫ t

0

RM
ū (t − s) κ (s) ds.

[23]

The optimal parameter for γM is chosen by a spectral informa-
tion criterion (27). The fit of the true autocorrelation by their
approximation is shown in Figure S2 in SI for F = 6, 8, 16
with good results.

With the above regression model, the problem is to find
the optimal forcing control κ∗ (t) through the inversion about
[13]

C (t) = ū∞κ (t) + F̄∞L (t) , L (t) =

∫ t

0

RM
ū (t − s) κ (s) ds.

From the optimal solution by statistical control of the energy
equation

C∗ (t) = − α−1K (t) E∗ (t) ,

E∗ (t) = exp

(

−2dt − α−1

∫ t

0

K (s) ds

)

E0,

we calculate using again the scalar Riccati equation [16]

dC∗

dt
= − α−1K̇E∗ + C∗

(

−2d − α−1K (t)
)

=2dC∗ + α−1E∗.

Above we explicitly use the scalar Riccati equation and the
explicit form of the optimal solution E∗. On the other hand,
the derivative about the right hand side of [13] gives

dC∗

dt
=ū∞

dκ
dt

+ F̄∞

dL
dt

=ū∞

dκ
dt

+ F̄∞ (−γL) + F̄∞κ

=ū∞κ̇ − γ (C∗ − ū∞κ) + F̄∞κ.

Above the second equality uses [23] and the third equality uses
[13] to replace L again. Combining the above two equations,
we find the dynamical equation to solve for κ, that is,

dκ
dt

+
(

γM + F̄∞/ū∞

)

κ (t) +
(γM + 2d) K (t) − 1

αū∞

E∗ (t) = 0,

κ (0) = C∗ (0) /ū∞ = −α−1K (0) E0/ū∞. [24]

with initial value κ (0) from C∗ (0). Actually once we get the
smooth solutions for C∗ (t) , E∗ (t), the above equation [24] is

4 | www.pnas.org/cgi/doi/10.1073/pnas.XXXXXXXXXX ..
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just a first-order ODE with constant coefficients. Thus it can
be solved efficiently.

As a special example, if we use the approximated solution
of E∗ in [21]

E∗ (t) = exp (−λ1t) E0, λ1 =
(

4d2 + α−1
)1/2

,

the explicit solution can be written as

κ∗ (t) = E0e−λ2t

[

−
K+

αū∞

+ G
1 − e(λ2−λ1)t

λ2 − λ1

]

, [25]

where

λ2 = γM + F̄∞/ū∞, G =
(γM + 2d) K+ − 1

αū∞

.

Notice that if we assume E0 as a random variable in the initial
time, the proceeding optimal control forcing κ∗ (t) can also be
random dependent on the randomness in E0. The randomness
from the initial value will be linearly related with the later
state of the control forcing κ (t).

4. Numerical verification for the optimal statistical con-
trol

Setup of the statistical control problem for L96 system. We
consider the statistical control for the homogeneous 40-
dimensional L-96 system [10] with state variables such that

duj

dt
= (uj+1 − uj−2) uj−1 − uj + F̄∞ + δF (t) + dH (t) .

The equilibrium forcing varies as F̄∞ = 6, 8, 16 where the
system is changing from strongly non-Gaussian statistics to a
near Gaussian regime with full turbulence. The deterministic
forcing perturbation is taken as a ramp-type forcing

δF (t) = f0
tanh a (t − tc) + tanh atc

1 + tanh atc
,

with upward forcing for F̄∞ = 8, 16, and downward forcing for
F = 6 with a 10% ramp amplitude compared with F̄∞. In the
test we add random perturbation to f0 by a small amplitude
(homogeneous) random forcing as white noise

dH = σ0dWt.

As a result the final energy spectrum will be changed even
with small perturbation σ0. We use this additional random
forcing here to test the method’s robustness due to small ran-
dom perturbations.

In this homogeneous setup, the mean state is uniform in
each grid point and the covariance matrix is diagonal in the
spectral domain. The statistical energy functional can be de-
fined as

E (t) =
1
2

ū2 (t) +
1

2J

J
∑

j=1

rj (t) , [26]

The model parameters in two test cases with and without
random forcing and unperturbed model statistics are listed in
Table S2 in SI. Furthermore, we show the equilibrium energy
spectra in these test cases in Figure S3 in SI. As illustrated,
adding even small random forcing in the system can greatly in-
crease the variability in the zero mode, and thus vastly change
the entire energy spectrum to a more active state.

The dynamical equation for the statistical energy in [26]
in this homogeneous case can be derived as

dE
dt

= −2dE + ūF + σ2.

Above σ2 = 1
J

∑N
j=1

σ2
j = σ2

0 is the total effect from random
forcing in the system. In statistical equilibrium state we have
the relation

2dE∞ = ū∞F̄∞ + σ2. [27]

Verification of the optimal statistical control. In this final sec-
tion, we verify the optimal control achieved from the previous
optimal statistical control strategy and test it on the L-96
model to check the control performance. We run the true L-
96 system using Monte-Carlo simulations with an ensemble
size N = 10000 to get accurate statistics. To check the con-
trol skill with different perturbed initial data, we first apply
the ramp-type perturbation in the system, and then replace
the forcing with the control at a later time. The ramp am-
plitude is taken as f0 = −0.4, 1, 1.5 for F = 6, 8, 16 cases
respectively. Note that in the weakly chaotic case F = 6, we
choose the downward ramp so that the statistics of the system
will change drastically. Besides, we use the parameter value
α = 0.1 for all the tests.

Still we need to decide the time instant to add the control
and the initial value (with perturbation) for the control to
begin with. In general the verification can be carried out
according to the following steps:

1) Choose the time Tctrl as the start time to apply control.
Then run the original model with original forcing pertur-
bations δF up to the control time Tctrl;

2) Use the statistics at time Tctrl as the initial value of the
control, and switch the original forcing perturbation δF
to the optimal control forcing κ from this time on as the
forcing perturbation;

3) Run the model up to the final time T , and check the model
responses in the statistics going back to the unperturbed
state as the control κ is applied.

In the case with small random forcing perturbation, we can
also consider additional Gaussian perturbations in the model
with small amplitude. This setup is used to test the robust-
ness of the control strategy. In the randomly perturbed case,
we still use the same set of optimal control parameters as
the case without random perturbation and check whether the
control parameter can maintain the performance with the ran-
dom noise.

Control verification on full Monte-Carlo simulation. We consider
four different control cases by adding the control at Tctrl =
10, 20, 30, 40, while the total run time is T = 60. Through
the ramp-type forcing the system is gradually shifted to an-
other state, and the control added at different time Tctrl can
be used to test the skill of control with various out of equi-
librium perturbed states. In Figure 1, time-series of the re-
sponses in the mean δū = ū − ū∞, in the one-point variance
δtrR/J = r1pt − r1pt,∞, and in the total statistical energy
δE = E − E∞ are compared in the three test regimes F = 6
(weakly chaotic), F = 8 (strongly chaotic), and F = 16 (fully
turbulent) without random perturbation.
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(a) Weakly chaotic regime F = 6
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(b) Strongly chaotic regime F = 8
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(c) Fully turbulent regime F = 16

Fig. 1. Statistical control of L-96 system applied at four different states Tctrl = 10, 20, 30, 40 without random forcing perturbation. Controlled responses (subtracting the

equilibrium states) in mean state, one-point variance, and total statistical energy through true MC model using the optimal control forcing κ (t) are shown.

First in the cases without random forcing, the optimal con-
trol κ efficiently drives the system back to the unperturbed
state. Notice the initial mean overshoot error for F̄∞ = 6,
but the error in the mean is much smaller than the response
error in the variance, while the variance can always converge
in a fast rate with no further oscillation under the control.
The case with random forcing σ0Ẇ is shown in Figure S4 in
SI. The control κ (t) may no longer be optimal. Still we can
use the achieved control to test the robustness of this method
due to small random perturbations. As a result, larger fluc-
tuations appear, nevertheless the optimal control displays sig-
nificant skill in driving the system back to equilibrium with
the original optimal control.

5. Concluding discussion

An efficient general statistical control strategy for complex
turbulent dynamical systems as outlined in I) with all the
attractive features in II) has been introduced here. The
method has been illustrated and developed in detail for the L-
96 model. The proposed statistical control strategy has been
verified with significant robust skill through extensive numer-
ical experiments. The statistical control strategies here are
potentially very useful for extremely complex turbulent sys-
tems (20, 21), but this requires further detailed investigation.
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1 Illustration about the statistics in L-96 system
We illustrate the stability and statistical properties of the 40-dimensional L-96 model used as the test model for
control strategies in the main text

duj

dt
= (uj+1

� uj�2

)uj�1

� uj + F, j = 0, · · · , J � 1, (S1)

in various dynamical regimes with numerical simulations. The model is designed to mimic baroclinic turbulence in
the midlatitude atmosphere with the effects of energy conserving nonlinear advection and dissipation represented
by the first two terms in (S1). For sufficiently strong forcing values such as F = 6, 8, 16, the L-96 is a prototype
turbulent dynamical system which exhibits features of weakly chaotic turbulence (F = 6), strong chaotic turbulence
(F = 8), and strong turbulence (F = 16) [1] as the strength of forcing, F , is increased. Table S1 lists in the non-
dimensional coordinates, the leading Lyapunov exponent, �

1

, the dimension of the unstable manifold, N+, the sum
of the positive Lyapunov exponents (the KS entropy), and the correlation time, T

corr

, of any ũj variable with itself
as F is varied through F = 6, 8, 16. Note that �

1

, N+ and KS increase significantly as F increases while T
corr

decreases in these non-dimensional units; furthermore, the weakly turbulent case with F = 6 already has a twelve
dimensional unstable manifold in the forty dimensional phase space. Snapshots of the time series for (S1) with
F = 6, 8, 16, as depicted in Figure S1, qualitatively confirm the above quantitative intuition with weakly turbulent
patterns for F = 6, strongly chaotic wave turbulence for F = 8, and fully developed wave turbulence for F = 16. It
is worth remarking here that smaller values of F around F = 4 exhibit the more familiar low-dimensional weakly
chaotic behavior associated with the transition to turbulence.

In the attribution of the optimal local control for the L-96 model, we use the Gaussian approximation for
the autocorrelation Rū (t) which is a real scalar operator. A linear regression model is built to approximate the
autocorrelation, Rū (t), by RM

ū (t) = exp (��M t) . The optimal parameter for �M is chosen by a spectral information
criterion [2]. The fit of the true autocorrelation by their approximation is shown in Figure S2 for F = 6, 8, 16 with
excellent results.

F �
1

N+

KS T
corr

weakly chaotic 6 1.02 12 5.547 8.23

strongly chaotic 8 1.74 13 10.94 6.704

fully turbulent 16 3.945 16 27.94 5.594

Table S1: Dynamical properties of L-96 model for regimes with F = 6, 8, 16. �
1

denotes the largest Lyapunov
exponent, N+ denotes the dimension of the expanding subspace of the attractor, KS denotes the Kolmogorov-Sinai
entropy, and T

corr

denotes the decorrelation time of energy-rescaled time correlation function.
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Figure S1: Space-time of numerical solutions of L-96 model for weakly chaotic (F = 6), strongly chaotic (F = 8),
and fully turbulent (F = 16) regime.
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Figure S2: Autocorrelation (AC) functions for three regimes F = 6, 8, 16 in L-96 model. The truth from MC
simulation is compared with approximation RM

ū (t) = exp (��M t). The fits for ACs in the zero mode hû
0

(t) û
0

(0)i
are shown for predicting responses in the mean state.
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2 Explicit solution of scalar Riccati equation
We display the calculation of the explicit solution for the scalar Riccati equation as in the main text

dK

dt
= ↵�1K2

+ 4dK � 1 = P
2

(K) , K (T ) = kT , 0  t < T.

There exist two roots (fixed points) of the quadratic polynomial P
2

, that is,

K± = �2↵d±
�
4↵2d2 + ↵

�1/2
. (S2)

Note that K
+

> 0 and K� < 0. And the stability of the two steady state can be implied by

• P 0
2

(K
+

) < 0, the equation is backward stable at K
+

;

• P 0
2

(K�) > 0, the equation is backward unstable at K�.

Thus we can solve the equation by integrating the above Riccati equation directly

1

K
+

�K�
d (ln |K �K

+

|� ln |K �K�|) = ↵�1dt,

from t to the final time T and using the final end-point value. Therefore we have the explicit solution
�����1 +

2

�
4↵2d2 + ↵

�1/2

K (t)�K
+

����� =
����
K (t)�K�
K (t)�K

+

���� = C (kT ) exp
h
2

�
4d2 + ↵�1

�1/2
(T � t)

i
, (S3)

where C (kT ) =
���kT�K�
kT�K+

��� is the coefficient due to the endpoint condition. We have the non-negative constraint for
K (t) � 0 always guaranteed through the explicit solution in (S3).

Special fixed-in-time solution

The simplest strategy is to use the fixed point K
+

as the steady state solution of K (t). Thus the optimal solution
E⇤

(t) for the statistical energy

E⇤
(t) = E

0

exp

✓
�2dt� ↵�1

ˆ t

0

K (s) ds

◆
.

becomes the simpler form
E⇤

(t) = exp

h
�
�
4d2 + ↵�1

�1/2
t
i
E

0

. (S4)

We can observe the solutions in the asymptotic limit

• low cost limit: ↵ ! 0, E ⇠ exp

�
�↵�1/2t

�
E

0

, energy decays in rate 1/
p
↵ to achieve fast statistical energy

decay;

• high cost regime: ↵�1 ! 0, E ⇠ exp

⇣
�2dt� (4d↵)

�1

t
⌘
E

0

, no control is needed in the leading order.

From the asymptotic behavior in (S4), large values of ↵ � 1 is equivalent to the case with no control added at all;
while small values of ↵ ⌧ 1 means stronger forcing from the control C but increasing the cost in control

´ T
0

C2

(s) ds
at the same time.
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�
0

ū1 r
1pt,1 ru0,1 E1

F = 6

without random forcing 0 2.0123 8.0244 2.5959 6.0370

with Gaussian random forcing 1.5 1.9366 8.9941 20.6986 6.3723

F = 8

without random forcing 0 2.3416 13.2503 5.4544 9.3668

with Gaussian random forcing 2 2.2400 14.9025 32.1200 9.9601

F = 16

without random forcing 0 3.0863 39.8572 23.2976 24.6913

with Gaussian random forcing 4 2.8923 45.9138 94.8999 27.1396

Table S2: Model parameters for the test cases with and without random forcing. The unperturbed model statistics
in equilibrium, �F = 0, are listed in the following columns. ru0 is the variance in the base mode k = 0. The random
forcing can effective increase the energy in the zero mode.
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Figure S3: Equilibrium energy spectra in the three test regimes F = 6, 8, 16 in L-96 model. The differences between
the case with no random forcing and small white noise perturbation are compared.

3 Optimal statistical control for L-96 system with random noise pertur-
bation

We show the statistical control for the homogeneous 40-dimensional L-96 system

duj

dt
= (uj+1

� uj�2

)uj�1

� uj +
¯F1 + �F (t) + dH (t) , j = 1, · · · , J = 40,

perturbed by random forcing as white noise
dH = �

0

dWt.

The equilibrium forcing varies as ¯F1 = 6, 8, 16 where the system is changing from strongly non-Gaussian statistics
to a near Gaussian regime with full turbulence, and the deterministic forcing perturbation is taken as a ramp-type
forcing

�F (t) = f
0

tanh a (t� tc) + tanh atc
1 + tanh atc

,

the same as in the main text. This additional random forcing case is tested here to check the method’s robustness

due to small random perturbations.
The model parameters in two test cases with and without random forcing and unperturbed model statistics

are listed in Table S2. Furthermore, we show the equilibrium energy spectra in these test cases in Figure S3. As
illustrated, adding even small random forcing in the system can greatly increase the variability in the zero mode
û
0

, and thus vastly change the entire energy spectrum to a more active state through the nonlinear interactions.

Control verification with random forcing perturbation

In Figure S4, time-series of the responses in the mean �ū = ū�ū1, in the one-point variance �trR/J = r
1pt

�r
1pt,1,

and in the total statistical energy �E = E � E1 are compared in the three test regimes F = 6 (weakly chaotic),
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(a) Weakly chaotic regime F = 6
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(b) Strongly chaotic regime F = 8
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(c) Fully turbulent regime F = 16

Figure S4: Statistical control of L-96 system applied at four different states T
ctrl

= 10, 20, 30, 40 with random
perturbation �

0

˙W . Controlled responses (subtracting the equilibrium states) in mean state, one-point variance,
and total statistical energy through true MC model using the optimal control forcing  (t) are shown.

F = 8 (strongly chaotic), and F = 16 (fully turbulent) with random forcing perturbation. We use the parameter
value ↵ = 0.1 for all the tests. The other set-ups stay the same as the unperturbed case shown in the main text.
In the case with random forcing �

0

˙W , the control  (t) may not be optimal. Still we can use the achieved control
to test the robustness of this method due to small random perturbations. As a result, larger fluctuations appear,
nevertheless the optimal control displays significant skill in driving the system back to equilibrium with the original
optimal control.
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