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Understanding and predicting extreme events and their anomalous
statistics in complex nonlinear systems is a grand challenge in cli-
mate, material, and neuroscience, as well as for engineering design.
Recent laboratory experiments in weakly turbulent shallow water re-
veal a remarkable transition from Gaussian to anomalous behavior
as surface waves cross an abrupt depth change (ADC). Downstream
of the ADC, PDFs of surface displacement exhibit strong positive
skewness, accompanied by an elevated level of extreme events. Here
we develop a statistical dynamical model to explain and quantita-
tively predict the above anomalous statistical behavior as experi-
mental control parameters are varied. The first step is to use in-
coming and outgoing truncated Korteweg-de Vries (TKdV) equations
matched in time at the ADC. The TKdV equation is a Hamiltonian sys-
tem which induces incoming and outgoing statistical Gibbs invariant
measures. The statistical matching of the known nearly Gaussian in-
coming Gibbs state at the ADC completely determines the predicted
anomalous outgoing Gibbs state, which can be calculated by a sim-
ple sampling algorithm, verified by direct numerical simulations, and
successfully captures key features of the experiment. There is even
an analytic formula for the anomalous outgoing skewness. The strat-
egy here should be useful for predicting extreme anomalous statisti-
cal behavior in other dispersive media.

extreme anomalous event | statistical TKdV model | matching Gibbs
measures | surface wave displacement and slope

Understanding and predicting extreme events and their
anomalous statistics in complex nonlinear systems is a

grand challenge in climate, material and neuroscience as well
as for engineering design. This is a very active contemporary
topic in applied mathematics with qualitative and quantitative
models (1–7) and novel numerical algorithms which overcome
the curse of dimensionality for extreme event prediction in
large complex systems (2, 8–11). The occurrence of Rogue
waves as extreme events within different physical settings of
deep water (12–16) and shallow water (17–19) is an important
practical topic.

Recent laboratory experiments in weakly turbulent shallow
water reveal a remarkable transition from Gaussian to anoma-
lous behavior as surface waves cross an abrupt depth change
(ADC). A normally-distributed incoming wave train, upstream
of the ADC, transitions to a highly non-Gaussian outgoing
wave train, downstream of the ADC, that exhibits large posi-
tive skewness of the surface height and more frequent extreme
events (20). Here we develop a statistical dynamical model
to explain and quantitatively predict this anomalous behavior
as experimental control parameters are varied. The first step
is to use incoming and outgoing truncated Korteweg-de Vries
(TKdV) equations matched in time at the ADC. The TKdV

equation is a Hamiltonian system which induces incoming and
outgoing Gibbs invariant measures. The statistical matching
of the known nearly Gaussian incoming Gibbs state at the
ADC completely determines the predicted anomalous outgo-
ing Gibbs state, which can be calculated by a simple MCMC
algorithm, verified by direct numerical simulations, and suc-
cessfully captures key features of the experiment. There is
even an analytic formula for the anomalous outgoing skewness.
The strategy here should be useful for predicting extreme
anomalous statistical behavior in other dispersive media in
different settings (21, 22).

1. Experiments showing anomalous wave statistics in-
duced by an abrupt depth change

Controlled laboratory experiments were carried out in (20) to
examine the statistical behavior of surface waves crossing an
ADC. In these experiments, nearly unidirectional waves are
generated by a paddle wheel and propagate through a long,
narrow wave tank. Midway through, the waves encounter a
step in the bottom topography, and thus abruptly transition
to a shallower depth. The paddle wheel is forced with a
pseudo-random signal intended to mimic a Gaussian random
sea upstream of the ADC. In particular, the paddle angle is
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specified as

θ (t) = θ0 + ∆θ
N∑

n=1

an cos (ωnt+ δn) , E ∼ (∆θ)2
∑

n

a2
nω

2
n.

where the weights an are Gaussian in spectral space with
peak frequency ωp and the phases δn are uniformly distributed
random variables. The peak frequency gives rise to a char-
acteristic wavelength λc which can be estimated from the
dispersion relation. The energy E injected into the system
is determined by the angle amplitude ∆θ, which is the main
control parameter varied in (20). Optical measurements of the
free surface reveal a number of surprising statistical features:

• Distinct statistics are found between the incoming and
outgoing wave disturbances: incoming waves display near-
Gaussian statistics, while outgoing waves skew strongly
towards positive displacement.

• The degree of non-Gaussianity present in the outgoing
waves depends on the injected energy E: larger energies
generate stronger skewness in the surface displacement
PDFs and more extreme events.

• Compared to the incoming wave train, the power spectrum
of the outgoing wave field decays more slowly, which
indicates that the anomalous behavior is associated with
an elevated level of high frequencies.

2. Surface wave turbulence modeled by truncated KdV
equation with depth dependence

The Korteweg-de Vries (KdV) equation is a one-dimensional,
deterministic model capable of describing surface wave tur-
bulence. More specifically, KdV is leading-order approxima-
tion for surface waves governed by a balance of nonlinear
and dispersive effects, valid in an appropriate far-field limit
(23). Moreover, KdV has been adapted to describe waves
propagating over variable depth (23). Here, we consider the
variable-depth KdV equation truncated at wavenumber Λ
(with J = 2Λ + 1 grid points) in order to generate weakly
turbulent dynamics. The surface displacement is described
by the state variable u±Λ (x, t) with superscript ‘−’ for the
incoming waves and ‘+’ for the outgoing waves. The Galerkin
truncated variable uΛ =

∑
1≤|k|≤Λ ûk (t) eikx is normalized

with zero mean û0 = 0 and unit energy 2π
∑Λ

k=1 |ûk|
2 = 1,

which are conserved quantities. Here, uΛ ≡ PΛu denotes the
subspace projection. The evolution of u±Λ is governed by the
truncated KdV equation with depth change D±

∂u±Λ
∂t

+
D
−3/2
±
2 E

1/2
0 L

−3/2
0

∂

∂x
PΛ
(
u±Λ
)2 +D

1/2
± L−3

0
∂3u±Λ
∂x3 = 0.

[1]
Equation [1] is non-dimensionalized on the periodic domain x ∈
[−π, π]. The depth is assumed to be unit D− = 1 before the
ADC and D+ < 1 after the ADC. The conserved Hamiltonian
can be decomposed as

H±Λ = D
−3/2
± E

1/2
0 L

−3/2
0 H3

(
u±Λ
)
−D1/2

± L−3
0 H2

(
u±Λ
)
,

H3 (u) = 1
6

∫ π

−π
u3dx, H2 (u) = 1

2

∫ π

−π

(
∂u

∂x

)2
dx.

where we refer to H3 as the cubic term and H2 the quadratic
term. We introduce parameters (E0, L0,Λ) based on the fol-
lowing assumptions:

• The wavenumber truncation Λ is fixed at a moderate
value for generating weakly turbulent dynamics.

• The state variable u±Λ is normalized with zero mean and
unit energy,M (uΛ) = 0, E (uΛ) = 1, which are conserved
during evolution. Meanwhile, E0 characterizes the total
energy injected into the system based on the driving
amplitude ∆θ.

• The length scale of the system L0 is chosen so that the
resolved scale ∆x = 2πL0/J is comparable to the the
characteristic wave length λc from the experiments.

Some intuition for how equation [1] produces different dynam-
ics on either side of the ADC can be gained by considering
the relative contributions of H3 and H2 in the Hamiltonian
H±Λ . The depth change, D+ < 1, increases the weight of H3
and decreases that of H2, thereby promoting the effects of
nonlinearity over dispersion and creating conditions favorable
for extreme events. Since ∂u

∂x
is the slope of the wave height,

H2 (u) measures the wave slope energy.
A deterministic matching condition is applied to the surface

displacement u±Λ to link the incoming and outgoing wave trains.
Assuming the abrupt depth change is met at t = TADC, the
matching condition is given by

u−Λ (x, t) |t=TADC−= u+
Λ (x, t) |t=TADC+,

Equation [1] is not designed to capture the short scale changes
in rapid time. Rather, since we are interested in modeling
statistics before and after the ADC, we will examine the long-
time dynamics of large-scale structures.

Interpreting experimental parameters in the dynamical model.
The model parameters (E0, L0,Λ) in [1] can be directly linked
to the basic scales from the physical problem. The important
parameters that characterize the experiments (20) include:
ε = a

H0
the wave amplitude a to (upstream) water depth H0

ratio; δ = H0
λc

the water depth to wavelength λc ratio; and
D0 = d

H0
the depth ratio with upstream value d = H0 and

downstream value d < H0. By comparing the characteristic
physical scales, the normalized TKdV equation [1] can be
linked to these experimental parameters via

L0 = 6
1
3

(
Mε

1
2 δ−1

)
, E0 = 27

2 γ
−2
(
Mε

1
2 δ−1

)
, [2]

where M defines the computational domain size Mλc as M -
multiple of the characteristic wavelength λc, and γ = U

a
with

U a scaling factor for the state variable uΛ normalizes the
total energy of the system to one.

Consider a spatial discretization with J = 2Λ + 1 grid
points, so that the smallest resolved scale is comparable to
the characteristic wavelength

∆x = 2πMλc
J

. λc ⇒ M = J

2π ∼ 5, J = 32.

In the practical numerical simulations, we select M = 5 and
let γ vary in the range [0.5, 1]. Using reference values from the
experiments, (20), we find ε ∈ [0.0024, 0.024] , δ ∼ 0.22, and
D0 changes from 1 to 0.24 at the ADC. These values yield
the following ranges for the model parameters: L0 ∈ [2, 6] and
E0 ∈ [50, 200]. These are the values we will test in the direct
numerical simulations. See details about the derivation from
scale analysis in SI Appendix, A.
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3. Equilibrium statistical mechanics for generating the
stationary invariant measure

Since the TKdV equation satisfies the Liouville property, the
equilibrium invariant measure can be described by a statis-
tical formalism (24–26) based on a Gibbs measure with the
conserved energy EΛ and Hamiltonian HΛ. The equilibrium
invariant measure is dictated by the conservation laws in the
TKdV equation. In the case of fixed energy E0, this is the
mixed Gibbs measure with microcanonical energy and canonical
Hamiltonian ensembles (24)

G±θ
(
u±Λ ;E0

)
= C±θ exp

(
−θ±H

(
u±Λ
))
δ
(
E
(
u±Λ
)
− E0

)
, [3]

where θ represents the “inverse temperature”. The distinct
statistics in the upstream and downstream waves can be con-
trolled with θ. As shown below, we find that negative tem-
perature, θ± < 0, is the appropriate regime to predict the
experiments. In the incoming wave field, θ− is chosen so that
G−θ has nearly Gaussian statistics. Using the above invariant
measures [3], the expectation of any functional F (u) can be
computed as

〈F 〉Gθ ≡
∫
F (u)Gθ (u) du.

The value of θ in the invariant measure is specified from 〈HΛ〉Gθ
(24, 26).

In addition to producing equilibrium PDFs of uΛ, the in-
variant measure can be used to predict the equilibrium energy
spectrum without the direct simulation of TKdV. Direct sim-
ulation, however, is required to recover transient statistics of
uΛ and time autocorrelations.

Statistical matching condition of the invariant measures be-
fore and after the abrupt depth change. The Gibbs measures
G±θ are defined based on the different inverse temperatures θ±
on the two sides of the solutions

µ−t
(
u−Λ ;D−

)
, uΛ |t=TADC− = u0, t < TADC;

µ+
t

(
u+

Λ ;D+
)
, uΛ |t=TADC+= u0, t > TADC,

where u0 represents the deterministic matching condition be-
tween the incoming and outgoing waves. The two distributions,
µ−t , µ

+
t should be matched at TADC giving

µ−t=TADC
(uΛ) = µ+

t=TADC
(uΛ) .

In matching the flow statistics before and after the abrupt
depth change, we first use the conservation of the determinis-
tic Hamiltonian H+

Λ after the depth change. Then assuming
ergodicity (24, 25), the statistical expectation for the Hamil-
tonian

〈
H+

Λ
〉
is conserved in time after the depth change at

t = TADC and should remain at this value as the system ap-
proaches equilibrium as t→∞. The final statistical matching
condition to get the outgoing flow statistics with parameter
θ+ can be found by

〈
H+

Λ
〉
G+
θ

=
〈
H+

Λ
〉
G−
θ

, [4]

with the outgoing flow Hamiltonian H+
Λ and the Gibbs mea-

sures G±θ before and after the abrupt depth change.

4. The nearly Gaussian incoming statistical state

For the parameters explored in (20), the incoming wave field
is always characterized by a near-Gaussian distribution of the
surface displacement. It is found that a physically consistent
Gibbs measure should take negative values in the inverse
temperature parameter θ < 0, where a proper distribution
function and a decaying energy spectrum are generated (see
(26) and SI Appendix, B.1 for the explicit simulation results).
The upstream Gibbs measure G−θ with D− = 1 displays a wide
parameter regime in

(
θ−, E0

)
with near-Gaussian statistics.

In the left panel of Figure 1 (a), the inflow skewness κ−3
varies only slightly with changing values of E0 and θ−. The
incoming flow PDF then can be determined by picking the
proper parameter value θ− in the near Gaussian regime with
small skewness. In contrast, the downstream Gibbs measure
G+
θ with D+ = 0.24 shown in the right panel of Figure 1 (a)

generates much larger skewness κ+
3 as the absolute value of

θ+ and the total energy level E0 increases. The solid lines in
Figure 1 (c) offer a further confirmation of the transition from
near-Gaussian statistics with small κ−3 to a strongly skewed
distribution κ+

3 after the depth change.
In the next step, the value of the downstream θ+ is deter-

mined based on the matching condition [4]. The expectation〈
H+

Λ
〉
G−
θ

about the incoming flow Gibbs measure can be cal-
culated according to the predetermined parameter values of
θ− as well as E0 from the previous step. For the direct nu-
merical experiments shown later in Figure 2, we pick proper
choices of test parameter values as L0 = 6, E0 = 100 and
θ− = −0.1,−0.3,−0.5. More test cases with different system
energy E0 can be found in SI Appendix, B.2 where similar
transition from near Gaussian symmetric PDFs to skewed
PDFs in the flow state u±Λ can always be observed.

Direct numerical model simulations. Besides the prediction of
equilibrium statistical measures from the equilibrium statisti-
cal approach, another way to predict the downstream model
statistics is through running the dynamical model [1] directly.
The TKdV equation is found to be ergodic with proper mixing
property as measured by the decay of autocorrelations as long
as the system starts from a negative inverse temperature state
as described before. For direct numerical simulations of the
TKdV equations, a proper symplectic integrator is required to
guarantee the Hamiltonian and energy are conserved in time.
It is crucial to use the symplectic scheme to guarantee the
exact conservation of the energy and Hamiltonian since they
are playing the central role in generating the invariant measure
and the statistical matching. The symplectic schemes used
here for the time integration of the equation is the 4th-order
midpoint method (27). Details about the mixing properties
from different initial states and the numerical algorithm are
described in SI Appendix, C.

5. Predicting extreme anomalous behavior after the
ADC by statistical matching

With the inflow statistics well described and the numerical
scheme set up, we are able to predict the downstream anoma-
lous statistics starting from the near-Gaussian incoming flow
going through the abrupt depth change from D− = 1 to
D+ = 0.24. First, we consider the statistical prediction in the
downstream equilibrium measure directly from the matching
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Fig. 1: Fist row: skewness from the Gibbs measures in incoming and outgoing flow states with different values of total energy
E0 and inverse temperature � (notice the different scales in the incoming and outgoing flows); Second row: outgoing
flow parameter �+ as a function of the incoming flow �� computed from the statistical matching condition with three
energy level E0; Last row: skewness in the outgoing flow with the matched value of �+ as a function of the inflow
parameter �� (the theoretical predictions using (5) are compared).

6 Predicting extreme anomalous behavior after the ADC by statistical matching

With the inflow statistics well described and the numerical scheme set up, we are able to predict the downstream anomalous
statistics starting from the near-Gaussian incoming flow going through the abrupt depth change from D� = 1 to D+ = 0.24.
First, we consider the statistical prediction in the downstream equilibrium measure directly from the matching condition.
The downstream parameter value �+ is determined by solving the nonlinear equation (4) as a function of �+, F (�+) =�
H+

�
�
G +

�
(�+)�

�
H+

�
�
G�

�
= 0. In the numerical approach, we adopt a modified secant method avoiding the stiffness in the

parameter regime (see Supporting material for details of the algorithm). The fitted solution is plotted in Figure 1 (b) as a
function of the proposed inflow ��. A nonlinear ��-�+ relation is discovered from the matching condition. The downstream
inverse temperature �+ will finally saturate at some level. The corresponding downstream skewness of the wave displacement
u� predicted from the statistical matching of Gibbs measures is plotted in the right panel of Figure 1. In general, a large
positive skewness for outgoing flow �+ is predicted from the theory, while the incoming flow skewness �� is kept in a small
value in a wide range of ��. Note that with �� � 0 (that is, using the microcanonical ensemble only with energy conservation),
the outflow statistics are also near Gaussian with weak skewness. The skewness in the outflow statistics grows as the inflow
parameter value �� increases in amplitude.

For a second approach, we can use direct numerical simulations starting from the initial state sampled from the incoming
flow Gibbs measure G�

� and check the transient changes in the model statistics. Figure 2 illustrates the change of statistics
as the flow goes through the abrupt depth change. The first row plots the changes in the skewness and kurtosis for the state
variable u� after the depth change at t = 0. The PDFs in the incoming and outgoing flow states are compared with different
initial inverse temperature ��. After the depth changes to D0 = 0.24 abruptly at t = 0, both the skewness and kurtosis jump
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Fig. 1: Fist row: skewness from the Gibbs measures in incoming and outgoing flow states with different values of total energy
E0 and inverse temperature � (notice the different scales in the incoming and outgoing flows); Second row: outgoing
flow parameter �+ as a function of the incoming flow �� computed from the statistical matching condition with three
energy level E0; Last row: skewness in the outgoing flow with the matched value of �+ as a function of the inflow
parameter �� (the theoretical predictions using (5) are compared).
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With the inflow statistics well described and the numerical scheme set up, we are able to predict the downstream anomalous
statistics starting from the near-Gaussian incoming flow going through the abrupt depth change from D� = 1 to D+ = 0.24.
First, we consider the statistical prediction in the downstream equilibrium measure directly from the matching condition.
The downstream parameter value �+ is determined by solving the nonlinear equation (4) as a function of �+, F (�+) =�
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parameter regime (see Supporting material for details of the algorithm). The fitted solution is plotted in Figure 1 (b) as a
function of the proposed inflow ��. A nonlinear ��-�+ relation is discovered from the matching condition. The downstream
inverse temperature �+ will finally saturate at some level. The corresponding downstream skewness of the wave displacement
u� predicted from the statistical matching of Gibbs measures is plotted in the right panel of Figure 1. In general, a large
positive skewness for outgoing flow �+ is predicted from the theory, while the incoming flow skewness �� is kept in a small
value in a wide range of ��. Note that with �� � 0 (that is, using the microcanonical ensemble only with energy conservation),
the outflow statistics are also near Gaussian with weak skewness. The skewness in the outflow statistics grows as the inflow
parameter value �� increases in amplitude.

For a second approach, we can use direct numerical simulations starting from the initial state sampled from the incoming
flow Gibbs measure G�

� and check the transient changes in the model statistics. Figure 2 illustrates the change of statistics
as the flow goes through the abrupt depth change. The first row plots the changes in the skewness and kurtosis for the state
variable u� after the depth change at t = 0. The PDFs in the incoming and outgoing flow states are compared with different
initial inverse temperature ��. After the depth changes to D0 = 0.24 abruptly at t = 0, both the skewness and kurtosis jump
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Fig. 1: Fist row: skewness from the Gibbs measures in incoming and outgoing flow states with different values of total energy
E0 and inverse temperature � (notice the different scales in the incoming and outgoing flows); Second row: outgoing
flow parameter �+ as a function of the incoming flow �� computed from the statistical matching condition with three
energy level E0; Last row: skewness in the outgoing flow with the matched value of �+ as a function of the inflow
parameter �� (the theoretical predictions using (5) are compared).

6 Predicting extreme anomalous behavior after the ADC by statistical matching

With the inflow statistics well described and the numerical scheme set up, we are able to predict the downstream anomalous
statistics starting from the near-Gaussian incoming flow going through the abrupt depth change from D� = 1 to D+ = 0.24.
First, we consider the statistical prediction in the downstream equilibrium measure directly from the matching condition.
The downstream parameter value �+ is determined by solving the nonlinear equation (4) as a function of �+, F (�+) =�
H+

�
�
G +

�
(�+)�

�
H+

�
�
G�

�
= 0. In the numerical approach, we adopt a modified secant method avoiding the stiffness in the

parameter regime (see Supporting material for details of the algorithm). The fitted solution is plotted in Figure 1 (b) as a
function of the proposed inflow ��. A nonlinear ��-�+ relation is discovered from the matching condition. The downstream
inverse temperature �+ will finally saturate at some level. The corresponding downstream skewness of the wave displacement
u� predicted from the statistical matching of Gibbs measures is plotted in the right panel of Figure 1. In general, a large
positive skewness for outgoing flow �+ is predicted from the theory, while the incoming flow skewness �� is kept in a small
value in a wide range of ��. Note that with �� � 0 (that is, using the microcanonical ensemble only with energy conservation),
the outflow statistics are also near Gaussian with weak skewness. The skewness in the outflow statistics grows as the inflow
parameter value �� increases in amplitude.

For a second approach, we can use direct numerical simulations starting from the initial state sampled from the incoming
flow Gibbs measure G�

� and check the transient changes in the model statistics. Figure 2 illustrates the change of statistics
as the flow goes through the abrupt depth change. The first row plots the changes in the skewness and kurtosis for the state
variable u� after the depth change at t = 0. The PDFs in the incoming and outgoing flow states are compared with different
initial inverse temperature ��. After the depth changes to D0 = 0.24 abruptly at t = 0, both the skewness and kurtosis jump

(c) prediction of downstream skewness

Fig. 1. First row: skewness from the Gibbs measures in incoming and outgoing flow
states with different values of total energy E0 and inverse temperature ◊ (notice
the different scales in the incoming and outgoing flows); Second row: outgoing flow
parameter ◊+ as a function of the incoming flow ◊≠ computed from the statistical
matching condition with three energy level E0; Last row: skewness in the outgoing
flow with the matched value of ◊+ as a function of the inflow parameter ◊≠ (the
theoretical predictions using [5] are compared).

condition. The downstream parameter value ◊+ is determined
by solving the nonlinear equation [4] as a function of ◊+,
F

!
◊+"

=
+
H+

�
,
G+

◊

!
◊+"

≠
+
H+

�
,
G≠

◊

= 0. In the numerical
approach, we adopt a modified secant method avoiding the
sti�ness in the parameter regime (see the SI Appendix, B.2
for the algorithm). The fitted solution is plotted in Figure
1 (b) as a function of the proposed inflow ◊≠. A nonlinear
◊≠–◊+ relation is discovered from the matching condition. The
downstream inverse temperature ◊+ will finally saturate at
some level. The corresponding downstream skewness of the
wave displacement u� predicted from the statistical matching
of Gibbs measures is plotted in Figure 1 (c). In general, a
large positive skewness for outgoing flow Ÿ+

3 is predicted from
the theory, while the incoming flow skewness Ÿ≠

3 is kept in
a small value in a wide range of ◊≠. Note that with ◊≠ ≥ 0
(that is, using the microcanonical ensemble only with energy
conservation), the outflow statistics are also near Gaussian
with weak skewness. The skewness in the outflow statistics
grows as the inflow parameter value ◊≠ increases in amplitude.

For a second approach, we can use direct numerical simula-
tions starting from the initial state sampled from the incoming
flow Gibbs measure G≠

◊ and check the transient changes in the
model statistics. Figure 2 illustrates the change of statistics
as the flow goes through the abrupt depth change. The first

row plots the changes in the skewness and kurtosis for the
state variable u� after the depth change at t = 0. The PDFs
in the incoming and outgoing flow states are compared with
three di�erent initial inverse temperatures ◊≠. After the depth
changes to D0 = 0.24 abruptly at t = 0, both the skewness
and kurtosis jump to a much larger value in a short time,
implying the rapid transition to a highly skewed non-Gaussian
statistical regime after the depth change. Further from Figure
2, di�erent initial skewness (but all relatively small) is set
due to the various values of ◊≠. With small ◊≠ = ≠0.1, the
change in the skewness is not very obvious (see the second row
of Figure 2 for the incoming and outgoing PDFs of u�). In
comparison, if the incoming flow starts from the initial param-
eter ◊≠ = ≠0.3 and ◊≠ = ≠0.5, much larger increase in the
skewness is induced from the abrupt depth change. Further-
more, in the detailed plots in the third row of Figure 2 for the
downstream PDFs under logarithmic scale, fat tails towards
the positive direction can be observed, which represent the
extreme events in the downstream flow (see also Figure 3 for
the time-series of u�).

As a result, the downstream statistics in final equilibrium
predicted from the direct numerical simulations here agree with
the equilibrium statistical mechanics prediction illustrated in
Figure 1. The prediction from these two di�erent approaches
confirm each other.

6. Analytic formula for the upstream skewness after
the ADC

A statistical link between the upstream and downstream en-
ergy spectra can be found for an analytical prediction of the
skewness in the flow state u after the ADC. The skewness of
the state variable uj at one spatial grid point is defined as the
ratio between the third and second moments

Ÿ3 =
+
u3
j

,
µ
/

+
u2
j

, 3
2
µ
.

Now we introduce mild assumptions on the distribution func-
tions:

• The upstream equilibrium measure µ≠ has a relatively
small skewness so that

ÈH3Íµ≠
= 1

6

⁄ fi

≠fi

+
u3,

µ≠
dx © ‘;

• The downstream equilibrium measure µ+ is homogeneous
at each physical grid point, so that the second and third
moments are invariant at each grid point

+
u2
j

,
µ+

= ‡2 = fi≠1,
+
u3
j

,
µ+

= ‡3Ÿ3 = fi≠ 3
2 Ÿ+

3 .

Then the skewness of the downstream state variable u+
� after

the ADC is given by the di�erence between the inflow and
outflow wave slope energy of ux

Ÿ+
3 =3

2fi
1
2L

≠ 3
2

0 E
≠ 1

2
0 D2

+

⁄ fi

≠fi

Ë+
u2
x

,
µ+ ≠

+
u2
x

,
µ≠

È
dx

+ 3fi
1
2 ‘.

[5]

The detailed derivation is shown in SI Appendix, B.2 . In
particular, the downstream skewness with near-Gaussian inflow
statistics ‘ π 1 is positive if and only if the di�erence of the
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Fig. 1. First row: skewness from the Gibbs measures in incoming and outgoing flow
states with different values of total energy E0 and inverse temperature θ (notice
the different scales in the incoming and outgoing flows); Second row: outgoing flow
parameter θ+ as a function of the incoming flow θ− computed from the statistical
matching condition with three energy level E0; Last row: skewness in the outgoing
flow with the matched value of θ+ as a function of the inflow parameter θ− (the
theoretical predictions using [5] are compared).

condition. The downstream parameter value θ+ is determined
by solving the nonlinear equation [4] as a function of θ+,
F
(
θ+) =

〈
H+

Λ
〉
G+
θ

(
θ+) −

〈
H+

Λ
〉
G−
θ

= 0. In the numerical
approach, we adopt a modified secant method avoiding the
stiffness in the parameter regime (see the SI Appendix, B.2
for the algorithm). The fitted solution is plotted in Figure
1 (b) as a function of the proposed inflow θ−. A nonlinear
θ−–θ+ relation is discovered from the matching condition. The
downstream inverse temperature θ+ will finally saturate at
some level. The corresponding downstream skewness of the
wave displacement uΛ predicted from the statistical matching
of Gibbs measures is plotted in Figure 1 (c). In general, a
large positive skewness for outgoing flow κ+

3 is predicted from
the theory, while the incoming flow skewness κ−3 is kept in
a small value in a wide range of θ−. Note that with θ− ∼ 0
(that is, using the microcanonical ensemble only with energy
conservation), the outflow statistics are also near Gaussian
with weak skewness. The skewness in the outflow statistics
grows as the inflow parameter value θ− increases in amplitude.

For a second approach, we can use direct numerical simula-
tions starting from the initial state sampled from the incoming
flow Gibbs measure G−θ and check the transient changes in the
model statistics. Figure 2 illustrates the change of statistics
as the flow goes through the abrupt depth change. The first

row plots the changes in the skewness and kurtosis for the
state variable uΛ after the depth change at t = 0. The PDFs
in the incoming and outgoing flow states are compared with
three different initial inverse temperatures θ−. After the depth
changes to D0 = 0.24 abruptly at t = 0, both the skewness
and kurtosis jump to a much larger value in a short time,
implying the rapid transition to a highly skewed non-Gaussian
statistical regime after the depth change. Further from Figure
2, different initial skewness (but all relatively small) is set
due to the various values of θ−. With small θ− = −0.1, the
change in the skewness is not very obvious (see the second row
of Figure 2 for the incoming and outgoing PDFs of uΛ). In
comparison, if the incoming flow starts from the initial param-
eter θ− = −0.3 and θ− = −0.5, much larger increase in the
skewness is induced from the abrupt depth change. Further-
more, in the detailed plots in the third row of Figure 2 for the
downstream PDFs under logarithmic scale, fat tails towards
the positive direction can be observed, which represent the
extreme events in the downstream flow (see also Figure 3 for
the time-series of uΛ).

As a result, the downstream statistics in final equilibrium
predicted from the direct numerical simulations here agree with
the equilibrium statistical mechanics prediction illustrated in
Figure 1. The prediction from these two different approaches
confirm each other.

6. Analytic formula for the upstream skewness after
the ADC

A statistical link between the upstream and downstream en-
ergy spectra can be found for an analytical prediction of the
skewness in the flow state u after the ADC. The skewness of
the state variable uj at one spatial grid point is defined as the
ratio between the third and second moments

κ3 =
〈
u3
j

〉
µ
/
〈
u2
j

〉 3
2
µ
.

Now we introduce mild assumptions on the distribution func-
tions:

• The upstream equilibrium measure µ− has a relatively
small skewness so that

〈H3〉µ−
= 1

6

∫ π

−π

〈
u3〉

µ−
dx ≡ ε;

• The downstream equilibrium measure µ+ is homogeneous
at each physical grid point, so that the second and third
moments are invariant at each grid point
〈
u2
j

〉
µ+

= σ2 = π−1,
〈
u3
j

〉
µ+

= σ3κ3 = π−
3
2 κ+

3 .

Then the skewness of the downstream state variable u+
Λ after

the ADC is given by the difference between the inflow and
outflow wave slope energy of ux

κ+
3 =3

2π
1
2L
− 3

2
0 E

− 1
2

0 D2
+

∫ π

−π

[〈
u2
x

〉
µ+ −

〈
u2
x

〉
µ−

]
dx

+ 3π
1
2 ε.

[5]

The detailed derivation is shown in SI Appendix, B.2. In
particular, the downstream skewness with near-Gaussian inflow
statistics ε� 1 is positive if and only if the difference of the
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to a much larger value in a short time, implying the rapid transition to a highly skewed non-Gaussian statistical regime after
the depth change. Further from Figure 1, different initial skewness (but all relatively small) is set due to the various values of
q�. With small q� = �0.1, the change in the skewness is not vary obvious (see the second row of Figure 1 for the incoming
and outgoing PDFs of uL). In comparison, if the incoming flow starts from the initial parameter q� = �0.3 and q� = �0.5,
much larger increase in the skewness is induced from the abrupt depth change. Furthermore, in the detailed plots in the third
row of Figure 1 for the downstream PDFs under logarithmic scale, fat tails towards the positive direction can be observed,
which represent the extreme events in the downstream flow (see also Figure 3 for the time-series of uL).

As a result, the downstream statistics in final equilibrium predicted from the direct numerical simulations here approach
the equilibrium statistical mechanism prediction (see Supporting material for more discussions). The prediction from these
two different approaches confirm each other.
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Fig. 2: Changes in the statistics of the flow state going through the abrupt depth change. The initial ensemble is set with the
incoming flow Gibbs measure with different inverse temperature q�. First row: time evolution of the skewness and
kurtosis. The abrupt depth change is taking place at t = 0; Second row: inflow and outflow PDFs of uL; Third row:
the downstream PDFs fitted with Gamma distributions with the consistent variance and skewness (in log coordinate
in y); Last row: energy spectra in the incoming and outgoing flows.

7 Analytic formula for the upstream skewness after the ADC

A statistical link between the upstream and downstream energy spectra can be found for an analytical prediction of the
skewness in the flow state u after the ADC. The skewness of the state variable u j at one spatial grid point is defined as the
ratio between the third and second moments

k3 =
⌦
u3

j
↵

µ /
⌦
u2

j
↵ 3

2
µ .

Now we introduce mild assumptions on the distribution functions:

• The upstream equilibrium measure µ� has a relatively small skewness so that

hH3iµ� =
1
6

Z p

�p

⌦
u3↵

µ�
dx ⌘ e;

Fig. 2. Changes in the statistics of the flow state going through the abrupt depth change. The initial ensemble is set with the incoming flow Gibbs measure with different inverse
temperature θ−. First row: time evolution of the skewness and kurtosis. The abrupt depth change is taking place at t = 0; Second row: inflow and outflow PDFs of uΛ; Third
row: the downstream PDFs fitted with Gamma distributions with consistent variance and skewness (in log coordinate in y); Last row: energy spectra in the incoming and
outgoing flows.

incoming and outgoing wave slope energy is positive. This
means that there is more small scale wave slope energy in the
outgoing state. As an evidence, in the last row of Figure 2
in all the weak and strong skewness cases, the outflow energy
spectrum always has a slower decay rate than the inflow energy
spectrum which possesses stronger energy in larger scales and
weaker energy in the smaller scales.

In Figure 1 (c), we compare the accuracy of the theoretical
estimation [5] with numerical tests. In the regime with small
incoming inverse temperature θ−, the theoretical formula offers
a quite accurate approximation of the third-order skewness
using only information from the second-order moments of the
wave-slope spectrum.

7. Key features from experiments captured by the sta-
tistical dynamical model

In this final section, we emphasize the crucial features gener-
ated by the statistical dynamical model [1] by making com-
parison with the experimental observations in (20). As from
the scale analysis displayed in Section 2, the theory is set in
the same parameter regime as the experimental setup.

• The transition from near-Gaussian to skewed non-
Gaussian distribution as well as the jump in both skewness
and kurtosis observed in the experiment observations (Fig.
1 of (20)) can be characterized by the statistical model
simulation results (see the first and second row of Figure
2). Notice that the difference in the decay of third and
fourth moments in the far end of the downstream regime
from the experimental data is due to the dissipation effect
in the flow from the wave absorbers that is not mod-
eled in the statistical model here. The model simulation
time-series plotted in Figure 3 can be compared with
the observed time sequences from experiments (Fig. 1 of

(20)). The downstream simulation generates waves with
strong and frequent intermittency towards the positive
displacement, while the upstream waves show symmetric
displacements in two directions with at most small peaks
in slow time. Even in the time-series at a single location
x = 0, the long-time variation displays similar structures.

• The downstream PDFs in experimental data are estimated
with a Gamma distribution in Fig. 2 of (20). Here in
the same way, we can fit the highly skewed outgoing
flow PDFs from the numerical results with the Gamma
distribution

ρ (u; k, α) = e−kα−1

Γ (k)
(
k + α−1u

)k−1
e−α

−1u.

The parameters (k, α) in the Gamma distribution are fit-
ted according to the measured statistics in skewness and
variance, that is, σ2 = kα2, κ3 = 2/

√
k. And the excess

kurtosis of the Gamma distribution can be recovered as
κ4 = 6/k. As shown in the third row of Figure 2, excellent
agreement in the PDFs with the Gamma distributions is
reached in consistency with the experimental data obser-
vations. The accuracy with this approximation increases
as the initial inverse temperature θ− increases in value to
generate more skewed distribution functions.

• Experimental measurements of the power spectra (Fig. 4
of (20)) reveal the downstream measurements to contain
more energy at small scales, i.e. a relatively slower decay
rate of the spectrum. This result is also observed in the
direct numerical simulations here (detailed results shown
in SI Appendix, C.2 ), as the outgoing state contains more
energetic high frequencies.
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The detailed derivation is shown in the supporting material. In particular, the downstream skewness with near-Gaussian inflow
statistics � � 1 is positive if and only if the difference of the two wave slope energy spectra is positive. This means that there
is more small scale wave slope energy in the outgoing state. As an evidence in the last row of Figure 2 in all the weak and
strong skewness cases, the outflow energy spectrum always has a slower decay rate than the inflow energy spectrum which
possesses stronger energy in the large scale and weaker in the smaller scales.

In Figure 1 (c), we compare the accuracy of the theoretical estimation (5) with numerical tests. In the regime with small
incoming inverse temperature ��, the theoretical formula offers a quite accurate approximation of the third-order skewness
using only information from the second-order moments of the wave-slope spectrum.

8 Key features from experiments captured by the statistical dynamical model

In this final section, we emphasize the crucial features generated by the statistical dynamical model (1) by making comparison
with the experimental observations in [3]. As from the scale analysis displayed in the previous section, the theory is set in the
same parameter regime as the experimental setup.
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Fig. 3: Realization of the downstream flow solution u+
� with D0 = 0.24.
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Fig. 4: Realization of the upstream flow solution u�� with D0 = 1.

• The transition from near-Gaussian to skewed non-Gaussian distributions as well as the jump in both skewness and
kurtosis observed in the experiment observations (Fig. 1 in [3]) can be predicted by the statistical model simulation
results (see the first and second row of Figure 2). Notice that the difference in decay of third and fourth moments in the
far end of the downstream regime in the experimental data is due to the dissipation effect in the flow that is not modeled
in the statistical model here. The model simulation time-series are plotted in Figure 3, in comparison with the observed

(a) downstream state D0 = 0.24
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The detailed derivation is shown in the supporting material. In particular, the downstream skewness with near-Gaussian inflow
statistics � � 1 is positive if and only if the difference of the two wave slope energy spectra is positive. This means that there
is more small scale wave slope energy in the outgoing state. As an evidence in the last row of Figure 2 in all the weak and
strong skewness cases, the outflow energy spectrum always has a slower decay rate than the inflow energy spectrum which
possesses stronger energy in the large scale and weaker in the smaller scales.

In Figure 1 (c), we compare the accuracy of the theoretical estimation (5) with numerical tests. In the regime with small
incoming inverse temperature ��, the theoretical formula offers a quite accurate approximation of the third-order skewness
using only information from the second-order moments of the wave-slope spectrum.

8 Key features from experiments captured by the statistical dynamical model

In this final section, we emphasize the crucial features generated by the statistical dynamical model (1) by making comparison
with the experimental observations in [3]. As from the scale analysis displayed in the previous section, the theory is set in the
same parameter regime as the experimental setup.
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Fig. 4: Realization of the upstream flow solution u�� with D0 = 1.

• The transition from near-Gaussian to skewed non-Gaussian distributions as well as the jump in both skewness and
kurtosis observed in the experiment observations (Fig. 1 in [3]) can be predicted by the statistical model simulation
results (see the first and second row of Figure 2). Notice that the difference in decay of third and fourth moments in the
far end of the downstream regime in the experimental data is due to the dissipation effect in the flow that is not modeled
in the statistical model here. The model simulation time-series are plotted in Figure 3, in comparison with the observed

(b) upstream state D0 = 1
Fig. 3. Realization of the downstream and upstream flow solutions u±� . Note the larger vertical scale in the downstream time-series plot.

8. Concluding discussion

We have developed a statistical dynamical model to explain
and predict extreme events and anomalous features of shallow
water waves crossing an abrupt depth change. The theory is
based on the dynamical modeling strategy consisting of the
TKdV equation matched at the abrupt depth change with con-
servation of energy and Hamiltonian. Predictions can be made
of the extreme events and anomalous features by matching
incoming and outgoing statistical Gibbs measures before and
after the abrupt depth transition. The statistical matching of
the known nearly Gaussian incoming Gibbs state completely

determines the predicted anomalous outgoing Gibbs state,
which can be calculated by a simple sampling algorithm, veri-
fied by direct numerical simulations, and successfully captures
key features of the experiment. An analytic formula for the
anomalous outgoing skewness is also derived. The strategy
here should be useful for predicting extreme statistical events
in other dispersive media in di�erent settings.
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Fig. 3. Realization of the downstream and upstream flow solutions u±
Λ . Note the larger vertical scale in the downstream time-series plot.

8. Concluding discussion

We have developed a statistical dynamical model to explain
and predict extreme events and anomalous features of shallow
water waves crossing an abrupt depth change. The theory is
based on the dynamical modeling strategy consisting of the
TKdV equation matched at the abrupt depth change with con-
servation of energy and Hamiltonian. Predictions can be made
of the extreme events and anomalous features by matching
incoming and outgoing statistical Gibbs measures before and
after the abrupt depth transition. The statistical matching of
the known nearly Gaussian incoming Gibbs state completely

determines the predicted anomalous outgoing Gibbs state,
which can be calculated by a simple sampling algorithm, veri-
fied by direct numerical simulations, and successfully captures
key features of the experiment. An analytic formula for the
anomalous outgoing skewness is also derived. The strategy
here should be useful for predicting extreme statistical events
in other dispersive media in different settings.
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