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1. Types of equations and techniques

1.1. Laplace transform. We use the notation L(f(t)) = F (s)

(1) L(f (n)(t) = snF (S) − sn−1f(0) − · · · − sf (n−2)(0) − f (n−1)(0)

if f, f ′, . . . , f (n−1) are continuous and f (n) is piecewise continuous on any interval
0 ≤ t ≤ A and the functions are suitably bounded.

To solve differential equations:

(1) Laplace transform equation to get algebraic equation.
(2) Solve algebraic equation.
(3) Do inverse transform.

Use of step functions.
Example:

f(t) =

{

f1(t) t < c

f2(t) c ≤ t

(2) f(t) = f1(t) + uc(t)[f2(t) − f1(t)]

Techniques. Convolution, shifts, δ–functions, and so forth are all in given
table.

2. Systems of linear equations

2.1. Matrices: basic facts. A is an n × n matrix. We assume real coefficients.
Eigenvectors ~x is an Eigenvector with Eigenvalue r if

(3) A~x = r~x

A has a basis of Eigenvectors if there are n linear independent Eigenvectors.
~x(1) . . . ~x(n). If ~x(i) = (x1i, . . . , xni) let T = (xij) the matrix whose column vectors
are the Eigenvectors. Then

(4) T−1AT = D =







r1

. . .

rn







Characteristic polynomial. χ(r) = det(A − rI)
Eigenvalues/roots χ(A) = (r−r1)

s1 . . . (r−rl)
sk . Note, the ri may be complex.

If A is real then if r is a complex root, then so is r̄. Complex roots occur in pairs
rl,l+1 = λ ± iµ.
Multiplicities. si is the algebraic multiplicity of ri.

The geometric multiplicity of ri is dim(ker(A−riI)). This is the maximal number
of linearly independent Eigenvectors with Eigenvalue ri.
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2.2. Constant Coefficients.

~x′ = A~x

Fact: If ~ξ is an Eigenvector of A with Eigenvalue r then

(5) ~x(t) = ~ξert

is a solution. Linearly independent Eigenvectors give linearly independent solutions.

If r is complex. We get two real solutions. Write ξ = ~a + i~b with ~a and ~b real.

~x(l)(t) = eλt[~a cos(µt) −~b sin(µt)](6)

~x(l+1)(t) = eλt[~b cos(µt) + ~a sin(µt)](7)

2.3. The n=2 cases (see Figures).

2.3.1. A is diagonalizable. This means that there are two linearly independent
Eigenvectors ~x(1) and ~x(2) with Eigenvalues r1, r2.

Assume r1 6= r2. The phase plane will be as follows.
r1,2 < 0 asymptotically stable node solutions converge to axis of largest Eigenvalue
r1,2 > 0 unstable node solutions diverge. Axis of largest Eigenvalue is an

asymptote as t → ∞. (arrow reversal of previous situation)
r1, r2 opposite sign saddle point solutions diverge.

Axis of largest Eigenvalue is asymptote as t → ∞.
r1,2 = λ ± iµ, λ < 0 asymptotically stable spiral solutions spiral to origin
r1,2 = λ ± iµ, λ > 0 unstable spiral solutions diverge

Other behaviors:
r1,2 = ±iµ, λ = 0 closed ellipses solutions bounded
r1 > 0 degenerate unstable improper node
r1 < 0 degenerate stable improper node

2.4. Repeated roots. If ~ξ is an Eigenvector with geometric multiplicity 1 and
algebraic multiplicity 2.

(8) A~ξ = r~ξ

Solve

(9) (A − rI)~η = ~ξ

Solutions of differential equation

~x(1)(t) = ~ξert(10)

~x(2)(t) = ~ξtert + ~ηert(11)

2.5. Matrix notations.

2.5.1. Fundamental matrix. Let x(1)(t), . . . , x(n)(t) be a fundamental set of solu-
tions. Set

(12) Ψ =
(

x(1)(t) . . . x(n)(t)
)

the matrix whose column vectors are the x(i)(t). This is called a fundamental
matrix.

Then

(13) Ψ′ = AΨ
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2.5.2. Matrix exponential. A matrix solution is Ψ = exp(At).

2.5.3. Diagonalizble A. If A = TDT−1 where T = (ξ0 . . . ξn) is the matrix of Eigen-
vectors. Then

Ψ = Texp(Dt)

is a solution.

2.5.4. General A (over C). Use Jordan normal form J = T−1JT the solution is

Ψ = Texp(Jt)

2.6. Nonhomogeneous equations.

(14) ~x′ = A~x + ~g(t)

2.6.1. Diagonalizable A. If A is diagonalizable D = T−1AT , with T the matrix of
Eigenvectors. Set

(15) ~x = T~y

Solve

(16) ~y′ = D~y + T−1~g(t)

This is a system which is decoupled. Solve the system to get ~y. Plug solution ~y

into eq. (15) to get ~x.

2.6.2. Undetermined Coefficients. Just like in the case of one equation, we can
guess solutions.

In case there are no multiplicities (multiplicity of root is zero), use the forms
from the case of one equation, but with each constant replaced by a constant vector.

E.g. ~ae5t or ~at2 +~bt + ~c.
In case of eλt with λ of multiplicity 1 use

(17) ~ateλt +~bet

2.6.3. Laplace transform. The Laplace transform of (14) is

s~x(s) − ~x(0) = A~x(s) + ~g(s)

A solution is
(sId − A)~x(s) = ~g(s) + ~x(0)

or
~x(s) = (sId − A)−1)(~g(s) + ~x(0))
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x ’ = a x + b y
y ’ = c x + d y

b = 2
d = − 4

a = − 4
c = 2
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Figure 1. Stable node

x ’ = a x + b y
y ’ = c x + d y

b = 2
d = 4

a = 4
c = 2
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Figure 2. Unstable node
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x ’ = a x + b y
y ’ = c x + d y

b = 4
d = 2

a = 2
c = 4

 
 

−4 −3 −2 −1 0 1 2 3 4

−4

−3

−2

−1

0

1

2

3

4

x

y

Figure 3. saddle

x ’ = a x + b y
y ’ = c x + d y

b = 1
d = − 1

a = − 1
c = − 1
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Figure 4. Stable spiral
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x ’ = a x + b y
y ’ = c x + d y

b = 1
d = 1

a = 1
c = − 1
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Figure 5. Unstable spiral

x ’ = a x + b y
y ’ = c x + d y

b = 1
d = 0

a = 0
c = − 1
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Figure 6. Closed trajectories
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x ’ = a x + b y
y ’ = c x + d y

b = 1
d = − 1

a = − 1
c = 0
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Figure 7. Improper stable node

x ’ = a x + b y
y ’ = c x + d y

b = 1
d = 1

a = 1
c = 0
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Figure 8. Improper unstable node


