
MA 571. Problems for the final.

The midterm will consist of problems chosen from the following three lists.

• Definitions and examples

• Assigned exercises and theorems from the book

• Qualifying exam problems

On the exam, it’s not enough just to have the right idea or to say something that’s
approximately correct—you must give a solution which is mathematically correct and is
explained in a clear and logical way to get full points.

Unless otherwise stated, you may use anything in Munkres’ book in your solution—but
be careful to make it clear what fact you are using.

When you use a set theoretic fact that isn’t obvious, be careful to give a clear explanation.

Definitions and examples

1. Give the definition of (locally) compact

2. Give the definition of (locally) path connected

3. Give the definition and comparisons between the different versions of compactness.

4. Give the definition of a Hausdorff, regular and normal space.

5. Give the definition of an m–manifold.

6. Give the definition of a coherent topology.

7. Give the definition of a complete metric space.

8. Give the definition of the uniform metric on Y J

9. Give the definition of the topology of pointwise convergence, the topology of compact
convergence and the compact–open topology.

10. Give the definition of the fundamental group and the group law of the fundamental
group.

11. Give the definition of homotopic and path homotopic.

12. Give the definition of a simply connected space

13. Give the definition of a covering map.



14. Give an example of a covering.

15. Give an example of a local homeomorphism which is not a covering map.

16. Give the definition of the lifting correspondence.

17. Give the definition of a deformation retract.

18. Give the definition of the group of covering transformations and of a regular cover.

19. Give an example of a space that is not semi–locally connected.

Theorems and exercises

1. Prove that a closed subset of a compact space is compact.

2. Prove that a compact subset of a Hausdorff space is closed. (give a counterexample in
the non–Hausdorff space.

3. Prove the sequence lemma.

4. Give the theorem that if X is locally path connected then the components and path
components are the same.

5. Give the theorems of comparison of the topologies of function spaces

6. Show that for a compact Hausdorff space the composition map is continuous and give
the definition and the theorem involving C(X × Z, Y ) and C(Z,C(X, Y ))

7. Sketch a proof of how the composition of paths gives a group structure to homotopy
classes of loops.

8. State the Brouwer fixed–point theorem.

9. Prove that homotopy equivalent spaces have isomorphic fundamental groups.

10. State the Path Lifting Lemma for covering maps.

11. State the Seifert–van–Kampen Theorem

12. State the Classification Theorem for surfaces.

13. State and prove that the fundamental group of an n–wedge of S1s is Fn.

Qualifying exam problems

1. Let X be a Hausdorff space and let A and B be disjoint compact subsets of X. Prove
that there are open sets U and V such that U and V are disjoint, A ⊂ U and B ⊂ V .

2. Show that if Y is compact, then the projection map X × Y → X is a closed map.



3. Let X be a compact space and suppose we are given a nested sequence of subsets

C1 ⊃ C2 ⊃ · · ·

with all Ci closed. Let U be an open set containing ∩Ci.

Prove that there is an i0 with Ci0 ⊂ U .

4. Let X be a compact space, and suppose there is a finite family of continuous functions
fi : X → R, i = 1, . . . , n, with the following property: given x 6= y in X there is an i
such that fi(x) 6= fi(y). Prove that X is homeomorphic to a subspace of Rn.

5. Let X be a compact metric space and let U be a covering of X by open sets.

Prove that there is an ε > 0 such that, for each set S ⊂ X with diameter < ε, there
is a U ∈ U with S ⊂ U . (This fact is known as the “Lebesgue number lemma.”)

6. Let X be a locally compact Hausdorff space. Explain how to construct the one-point
compactification of X, and prove that the space you construct is really compact (you
do not have to prove anything else for this problem).

7. Show that if
∞∏

n=1

Xn is locally compact (and each Xn is nonempty), then each Xn is

locally compact and Xn is compact for all but finitely many n.

8. Let X be a locally compact Hausdorff space, let Y be any space, and let the function
space C(X, Y ) have the compact-open topology.

Prove that the map
e : X × C(X, Y ) → Y

defined by the equation
e(x, f) = f(x)

is continuous.

9. Let I be the unit interval, and let Y be a path-connected space. Prove that any two
maps from I to Y are homotopic.

10. Let X be a topological space and f : [0, 1] → X any continuous function. Define f̄ by
f̄(t) = f(1− t). Prove that f ∗ f̄ is path-homotopic to the constant path at f(0).

11. Let X be a topological space and let x0, x1 ∈ X. Recall that any path α from x0 to x1

gives a homomorphism α̂ from π1(X, x0) to π1(X, x1) (you do not have to prove this).

Suppose that for every pair of paths α and β from x0 to x1 the homomorphisms α̂ and
β̂ are the same. Prove that π1(X, x0) is abelian.

12. Let p : E → B be a covering map with B connected. Suppose that p−1(b0) is finite for
some b0 ∈ B. Prove that, for every b ∈ B, p−1(b) has the same number of elements as
p−1(b0).



13. Let p : E → B be a covering map. Assume that B is connected and locally connected.
Show that if C is a component of E, then p|C : C → B is a covering map.

14. Let B be a Hausdorff space.

Let p : E → B be a covering map.

Prove that E is Hausdorff.

15. Let p : E → B be a covering map. Prove that p takes open sets to open sets.

16. Let X be a topological space and let f : X → X be a homeomorphism for which f ◦ f
is the identity map.

Suppose also that each x ∈ X has an open neighborhood Vx for which Vx ∩ f(Vx) is
empty.

Define an equivalence relation ∼ on X by: x ∼ y if and only if x = y or f(x) = y.
(You do not have to prove that this is an equivalence relation; this is the only place
where the assumption that f ◦ f is the identity is used).

(a) (5 points) Prove that the quotient map q : X → X/∼ takes open sets to open
sets.

(b) (9 points) Prove that q is a covering map. (You may use part (a) even if you
didn’t prove it.)

17. Let p : E → B be a covering map with E path-connected. Let p(e0) = b0.

(a) Give the definition of the standard map φ : π1(B, b0) → p−1(b0) constructed in
Munkres (you do NOT have to prove that this is well-defined).

(b) Suppose that α and β are two elements of π1(B, b0) with φ(α) = φ(β). Prove that
there is an element γ of π1(E, e0) with β = p∗(γ) · α.

18. Let X and Y be topological spaces and let f : X → Y be a continuous function. Let
x0 ∈ X and let y0 = f(x0).

(a) (6 points) Give the definition of the function f∗ : π1(X, x0) → π1(Y, y0), including
the proof that it is well-defined.

(b) (10 points) Prove that if f is a covering map then f∗ is one-to-one.

19. Let X be a path-connected space.

Let x0 and x1 be two different points in X.

Suppose that every path from x0 to x1 is path-homotopic to every other path from x0

to x1.

Prove that X is simply-connected.



20. Let X and Y be topological spaces, let x0 ∈ X, y0 ∈ Y , and let f : X → Y be a
continuous function which takes x0 to y0.

Is the following statement true? If f is 1-1 then f∗ : π1(X, x0) → π1(Y, y0) is 1-1. Prove
or give a counterexample (and if you give a counterexample justify it). You may use
anything in Munkres’s book.

21. Let X and Y be topological spaces and let f : X → Y be a continuous function. Let
x0 ∈ X and let y0 = f(x0).

Find an example in which f is onto but f∗ : π1(X, x0) → π1(Y, y0) is not onto. Prove
that your example really has this property. You may use any fact from Munkres.

22. Let D2 be the unit disk {x2 + y2 ≤ 1 } and let S1 be the unit circle {x2 + y2 = 1 }.
Prove that S1 is not a retract of D2 (that is, prove that there is no continuous function
f : D2 → S1 whose restriction to S1 is the identity function). You may use anything
in Munkres for this.

23. Let X and Y be topological spaces and let x ∈ X, y ∈ Y .

Prove that there is a 1-1 correspondence between

π1(X × Y, (x, y))

and
π1(X, x)× π1(Y, y).

(You do not have to show that the 1-1 correspondence is compatible with the group
structures.)

24. Let p : Y → X be a covering map, let y ∈ Y , and let x = p(y).

Let σ be a loop beginning and ending at x and let [σ] be the corresponding element of
π1(X, x).

Let σ̃ be the unique lifting of σ to a path starting at y.

Prove that if [σ] ∈ p∗π1(Y, y) then σ̃ ends at y.

25. Definition. If W is a space with base point w0 and Z is a space with base point z0,
a map f : W → Z is said to be based if f(w0) = z0, and a homotopy H : W × I → Z
is said to be based if H(w0, t) = z0 for all t.

Let X be a space with basepoint x0 and let u0 = (1, 0) be the base point of S1.

Prove that there is a 1-1 correspondence between π1(X, x0) and the based homotopy
classes of based continuous maps S1 → X.

26. Let p : R → S1 be the usual covering map (specifically, p(t) = (cos 2πt, sin 2πt)). Let
b0 ∈ S1 be the point (1, 0). Recall that the standard map

φ : π1(S
1, b0) → Z



is defined by φ([f ]) = f̃(1), where f̃ is a lifting of f with f̃(0) = 0.

(a) (14 points) Prove that φ is 1-1.

(b) (14 points) Prove that φ is a group homomorphism.

27. Let S1 be the circle
{(x1, x2) |x2

1 + x2
2 = 1}

in R2. Let 0 be the origin in R2.

Prove from the definitions that S1 is a deformation retract of R2 − 0.

28. Let X be a topological space and let x0 ∈ X.

Let U and V be open sets containing x0, and suppose that the hypotheses of the
Seifert-van Kampen theorem are satisfied (that is,

U ∪ V = X,

and U , V , U ∩ V are path-connected).

Let i1 : U ∩ V → U , i2 : U ∩ V → V , j1 : U → X and j2 : V → X be the inclusion
maps.

Suppose that (i1)∗ : π1(U ∩ V, x0) → π1(U, x0) is an isomorphism.

Prove, using the Seifert-van Kampen theorem, that there is an homomorphism

Φ : π1(X, x0) → π1(V, x0)

for which Φ ◦ (j2)∗ is the identity map of π1(V, x0).

29. Let S2 be the 2-sphere, that is, the following subspace of R3:

{ (x, y, z) ∈ R3 |x2 + y2 + z2 = 1 }.

Let x0 be the point (0, 0, 1) of S2.

Use the Seifert-van Kampen theorem to prove that π1(S
2, x0) is the trivial group.

You may use either of the two versions of the Seifert-van Kampen theorem given in
Munkres’s book. You will not get credit for any other method.

30. Let X be a topological space and let x0 ∈ X.

Let U and V be open sets containing x0, and suppose that the hypotheses of the
Seifert-van Kampen theorem are satisfied (that is,

U ∪ V = X,

and U , V , U ∩ V are path-connected).

Let i1 : U ∩ V → U , i2 : U ∩ V → V , j1 : U → X and j2 : V → X be the inclusion
maps.

Suppose that (i1)∗ : π1(U ∩ V, x0) → π1(U, x0) is onto.

Prove, using the Seifert-van Kampen theorem, that (j2)∗ : π1(V, x0) → π1(X, x0) is
onto.



31. Let X be the quotient space obtained from an 8-sided polygonal region P by pasting
its edges together according to the labelling scheme aabbcdc−1d−1.

i) Calculate H1(X). (You may use any fact in Munkres, but be sure to be clear about
what you’re using.)

ii) Assuming X is homeomorphic to one of the standard surfaces in the classification
theorem, which surface is it?


