R. Kaufmann Math 598, Fall 2018

Problem Set 1

Problems

PROBLEM 1: Review the proof that id_X is continuous. Prove that if $f: X \to Y$ and $g: Y \to Z$ are continuous, then $g \circ f: X \to Z$ is continuous.

PROBLEM 2: Prove that a base for a topology indeed defines a topology.

PROBLEM 3: Prove that the metric topology is a topology.

PROBLEM 4: Show that the notion of a continuous map from $\mathbb{R}^n \to \mathbb{R}$ where \mathbb{R}^n and \mathbb{R} have the metric topology for the Euclidean metric, reduces to the usual ϵ - δ criterion.

PROBLEM 5: Show that any map in Δ can be written in terms of the maps δ and σ .

PROBLEM 6: Give the group structure on the free Abelian group on a set S using $F(S) = Hom(S, \mathbb{Z})$.

PROBLEM 7: Look up or prove that in the simplicial setting $\partial^0 = 0$.