R. Kaufmann
 Math 598, Fall 2018

Problem Set 2

Problems
Problem 1: Review, write out that singular chains and homology are functorial.

Problem 2: Check that indeed a contravariant functor $F: \mathcal{C} \rightarrow \mathcal{D}$ is the same as a covariant functor $F: \mathcal{C} \rightarrow \mathcal{D}^{o p}$.
Problem 3: Show that $\left(\mathcal{C}^{o p}\right)^{o p}=\mathcal{C}$.
Problem 4: Write out the details that $\operatorname{Hom}_{\mathcal{C}}(\cdot, \cdot)$ as a functor from $\mathcal{C} \times \mathcal{C} \rightarrow$ Set is contravariant in the first variable and covariant in the second variable. This means that for fixed X the functor given on objects Y as $\operatorname{Hom}_{\mathcal{C}}(Y, X)$ is contravariant. and the functor given on objects Y as $\operatorname{Hom}_{\mathcal{C}}(X, Y)$ is covariant. The first step is to give the definition of the functors on morphisms.
Problem 5: Check the identities for $\partial^{n, i}$ and $\sigma^{n, i}$.
Problem 6: Check the identities for $d^{n, i}, s^{n, i}$.
Problem 7: Using the identities above show that for $d=\sum_{i=1}^{n}(-1)^{i} d^{n, i}$, $d^{2}=0$.

