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The Linear Algebra Version of the Chain Rule*

IDEA

The differential of a differentiable function at a point gives a good linear approximation of the
function — by definition. This means that locally one can just regard linear functions. The algebra
of linear functions is best described in terms of linear algebra, i.e. vectors and matrices. Now,
in terms of matrices the concatenation of linear functions is the matrix product. Putting these
observations together gives the formulation of the chain rule as the Theorem that the linearization
of the concatenations of two functions at a point is given by the concatenation of the respective
linearizations. Or in other words that matrix describing the linearization of the concatenation is
the product of the two matrices describing the linearizations of the two functions.

1. LINEAR MAPS
Let V™ be the space of n—-dimensional vectors.

1.1. Definition. A linear map F : V" — V™ is a rule that associates to each n—dimensional
vector & = (x1,...x,) an m—dimensional vector F(Z) = ¢ = (y1,...,yn) = (f1(Z), ..., (fim(Z))) in
such a way that:

1) For ¢ € R: F(cZ) = ¢F(Z)
2) For any two n-dimensional vectors Z and ¥': F(Z + &) = F(Z) + F(Z')
If m = 1 such a map is called a linear function. Note that the component functions fi,..., fm
are all linear functions.
1.2. Examples.
1) m=1, n=3: all linear functions are of the form

y = axy1 + bxo + cx3

for some a,b,c € R. E.g.: y = 2x1 4+ 1529 — 2723
2 m=2, n=3: The linear maps are of the form

y1 = axy+bxo+ crs
Yo = dx1+exs+ fx3

for some a,b,c,d,e, f € R. E.g.: y; = 1721 4+ 15.629 — 323,92 = 2z, — Bxg — %563
3) m=3, n=2:The linear maps are of the form

y1 = axi+ brs
y2 = cx1+dxg
ys = ex1+ fxo
for some a,b,c,d,e, f € R. E.g.: y1 = 1721 + 222, y2 = —bx2,y3 = —%a:l
4) n=m=2:
y1 = azy+bxy
Yo = bri+ cxo

for some a,b,c,d € R. E.g.: y1 = 3x1 4+ 229, y2 = 21

1.3. Remark. If F: V¥ — V™ and G : V" — V¥ are linear maps the the concatenation F o G
given by Z — F o G(Z) := F(G(Z)) is also a linear map.
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2. MATRICES

2.1. Definition. A m x n matrix is an array of real numbers made up of m rows and n columns.
It will be denoted as follows:

aill a9 e A1n
asy a9 e aon
aAml aAm2 ... Qmn

Notice that a;; is the the entry in the i-th row and j-th column of A.
We call m x 1 matrices column vectors and 1 x n matrices row vectors.

2.2. Examples.
1) m=1, n=3: The 3 x 1 matrices have the following form:
(a b c)
for some a,b,c € R
E.g.: (2 15 —27r)
2 n= 3, m=2: The matrices have the following form

a b c
d e f
17 15.6 -3
for some a,b,c,d,e, f € R. E.g.: /3 5 % )
3) m=3, n=2: The matrices have the following form
a b
c d
e f
17 2
for some a,b,c,d,e, f € R. E.g.: 0 -5
_% 0
4) m=n=2: The matrices have the following form

(¢ )

2.3. Remark. We can think of a n x m matrix in two ways: either as a collection of n row vectors
or a collection of m column vectors.

for some a,b,c,d € R. E.g.: <g ?)

ail ai19 e A1n T1 (A)
aiz a9 ... Qop ro(A)

= = (Cl (A) CQ(A) Cn(A))
Gml Qm2 .. Gmn rm(A)

where 7;(A) is the i—th row of A and ¢;(A) is the i-th column of A.



3. MATRIX MULTIPLICATION

U1

V2
3.1. The dot product. Given a row vector u = (ujus...u,) and a column vector v =

Un
we set

n
UV = ULV + UV2 + .. . UpUy = E U;V;
=1

3.2. Definition. Given an m x k matrix A and and k x n matrix B we define their product

all a1 e a1k bll 512 e bln

asy ano e agf b12 bzg e an
AB = . . .

Gml Am2 ... OGmk b1 bk .. ben

to be the following n x m matrix

r1(A)ci(B)  ri(A)ea(B) ... 11(A)cn(B)
AB — TQ(A)Cl(B) T'Q(A)CQ(B) R TQ(A)Cn<B)
ron(A)et(B) r(A)es(B) .. tn(A)em(B)

where again r;(A) is the i~th row vector of A and ¢;(B) is the j-th column vector of B.
In other words, if we denote by (AB);; the entry in the i-th row and j-th column of AB then

k
(AB)Z'J‘ = TZ'(A)CJ'(B) = Z aisbsj = aﬂblj + aigbgj —+ ... aikbkj
s=1

3.3. Remarks.

1) Remember that n x k and k x m yields n x m. Thus one can think of plumbing pipes:
you can plumb them together only if they fit. After fitting them together the ends in the
middle are eliminated, leaving only the outer ends.

2) The matrix product is associative.

3) In general, if AB makes sense, then BA does not. If one restricts to square matrices, i.e.
n X n matrices then AB and BA are also n X n matrices, but even then the matrix product
is not commutative.

3.4. Examples.

2 3 2:0+3-1 2-143--1 2-343-0 3 -1 6
1 1 4 <0 1 3)2 1-0+4-1 1-14+4--1 1-3+4-0| _[4 -3 3
4 5[\1 -1 0 4-0+5-1 4-14+5--1 4-3+5-0 5 -1 12
0 0 0-0+0-1 0-140--1 0-3+0-0 0 0 0
310
2) (1 2 3)(2 1 3]=(30 14 6)
740
3.1 0\ (1
3) |2 13 (2)(5 13 15)
74 0/ \3



4. LINEAR MAPS GIVEN BY MATRICES

In order to connect the matrix notation with linear maps we think of vectors £ € V" as column
vectors!

4.1. Definition. Given an m x n matrix A we associate to it the following linear map:

ailr a2 ... Gip x1 1171 + a1222 + ... + 1Ty Y1

. . al2 Q22 ... G2n ) @121 + a22%2 + ... + A2pTn Y2
Fy(%) := A = = =

Aml Am2 ... Amn Tn Am1x1 + amax2 + ...+ QGmnTy Yn

Thus y; = >_7_; aijz;.

4.2. Proposition. If F' : V¥ — V" is a linear map given by a matrix A and G : V* — V¥ is a
linear map given by a matrix B then concatenation F' o G is given by the matrix AB.
Proof.

We set § = G(Z) and 7' = F(§) then ys = > 7,

k n k
Zi =D ey aiS(Z?:l bsjzj) = zjzl(zjzl Uisbsj ) T;

5. THE CHAIN RULE FOR MAPS OF SEVERAL VARIABLES

bsjx; and z; = Zl;:l a;sys and thus

5.1. Definition. A map F from D C R™ to R™ is a rule that associates to each point x € D a point
F(x) =y in R™. It is given by its component functions: F' = (f1(z1,...Zpn),- -, fm(x1,...2p))
which are just functions of n variables.

We call a map continuous or differentiable if all of the component functions have this property.

5.2. Examples.
1) Polar coordinates: F(r,0) = (rcos®,rsinf) with domain R? mapping to R?
2) Spherical coordinates: F(r,,$) = (pcos@sin ¢, psin fsin ¢, p cos ¢) with domain R? map-
ping to R3
3) Some arbitrary function: e.g. F(z,y,2) = (2 + y, tan(z)e* 1Y, Y xyz) with the domain
D = {(z,y,2) ER3: 2z € (—m/2,7m/2) \ {0}} mapping to R*

5.3. Definition. Suppose F' = (fi(x1,...2pn),..., fm(x1,...2y,)) is a map D C R" to R™ from
such that all of partial derivatives of its component function gf L exist at a point xg. We define

the Jacobian of F' at xy to be the m x n matrix of all partial dlfferentlals at that point

0 0 o

?)T;(XO) ggj; (x0) ... ax?b (x0)

9J2 X0 2 X0 . 2 0
Jr(xg) = 89”1:( ) 3902:( ) 8xn:( )

Ofm. 8 fm BT

81;1 (x0) 8f;2 (x0) ... Tﬁ,n (x0)

that is the ij-th entry is (Jr)y;(x0) = af (x0))

5.4. Definition. The linear approximation Lr of a map F' at a point xq is given by

LF(X> = F(Xo) -+ JF(X — XQ)



5.5. Examples.

1) The Jacobian a function of three variables f(x,y,2): Jr = Vf = (fz fy f-) and the linear
approximation at (zo, Yo, 20) is
Lr(z,y,2) = f(xo,y0, 20)+ fz (%0, Yo, 20) (x—20)+ fy (0, Yo, 20) (Y—y0) + f=(z0, Yo, 20) (2—20)
— whose graph is the tangent plane.

2) The Jacobian and the linear approximation at ¢y of a vector function 7(t) = (x(t),y(t), z(t))

' (to)
are J(7)(to) = | v'(to) | and L(7)(t) = 7(to) + (t — to)7" (to) — the tangent line.
#(to)
99 0y
3) The Jacobian of a map F = (g(z,y), h(x,y)) from D C R? to R? is: Jp = <gﬁ g9 )
Oz 9y
4) The Jacobian of a function f(z1,...,2,)is Jy =V f = (669{1 aafo 887/;)

5.6. Theorem. (The chain rule)

Given two differentiable maps F': D — R™, in components F' = (f1(y1,. .- Yk)s- - fu(y1,---yx)),
and G : E — RF in components G = (g1(21,...,2n),...,gx(71,...,2,)), with E C R™ and
D C G(E) C R* then

Jroc = Jrda

Proof. The ij-th entry of Jrog is (Jroa)ij = %(fz(gl (X1, @)y (1, ..., 2y)). Setting

y = G(x) and z = F(y) the chain rule yields %(fi(gl(:zl, ces @)y (T, ) = g; 37'7’;#—
0z; Oy

ot a—ykgj’ and this is just the ij—th entry of JpJg

5.7. Examples.
1) = f(.%‘,y,Z) = f(X), X = I'(t)

z'(
Jror(z(t0), y(to), 2(t0)) = Vf(x(to), y(to), 2(t0)) y'gt

= fa(2(t0), y(to), 2(to )) "(to) + fy(x(to), y(to), 2(t0))y' (to) + f=((to), y(to), 2(t0))2' (t0)
e A
wn = %(8 £)- (15 45)
s t x Ot y Ot

3) z=f(x1,...xp ®1 = g1(t1,. - tm)sx2 = g2(t1,- -y tm),y -y Ty = gn(t1, ..., tm). We set
G = (g1, ---9n) and obtain:

oz ox1 oz Of Oz + Of Oxo 4. + af Oxn
ot1 Oto e Otn oz 8t1 8t1 Bt1
Oxy  Oxp Oxy f;l + f2 4t
J B v - of Of of ot1 Otg e Otn, o ox1 8t2 oxo 8t2 an 6t2
roc =VIiJe= (g5 50, " wa) | . o R :
0Ty, Oz 0T, Of Oz of 8952 Of Oxn
oh oty Otn a1 Oty T 023 0ty T T Oy Ot

6. EXERCISES

1) Show that the matrix multiplication is associative.
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2) Show that the m x n matrix with 1s on the diagonal and all other entries 0: E =

10 0 --- 0

01 0 --- 0

00 1 0 is a left and right unit. I.e. for any n x n matrix A the follow-
: 0

0 0 0 1

ing holds: AEF = EFA = A.
3) Show that the matrix multiplication of 2 x 2 is not commutative. Consider A = <0 1)

00
00
and B = <1 0> and calculate AB and BA.

4) Prove Remark 1.3!

5) Prove that a linear function of n variables is of the form: ajx1 + ...+ apz,. (Hint either
show that all partial derivatives are constant, or use the linearity and the fact that any
vector ¥ can be written as Z;;l x;e; where the e; are the basis vectors that have all 0
entries except for the i—th one. (In three dimensions these are the vectors e; = i,ey = j
and ez = k))

6) Show that indeed the component functions of a linear map are linear.

7) Use 5) and 6) to show that any linear function can be written in the form F(Z) = A% for
some matrix A and Z considered as a column vector.

8) Calculate the Jacobian of the functions in the Example 5.2

9) Calculate the Jacobian of the function in Example 5.2 3) written in polar coordinates. Le.
fz(r,0,2),y(r,0,2),2(r,0,z2)).

10) Do the same for spherical coordinates: calculate the Jacobian of the function in Example
5.2 3) in spherical coordinates f(z(p,0,®),y(p,0,d),z(p,0,d)).



