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Idea

The differential of a differentiable function at a point gives a good linear approximation of the
function – by definition. This means that locally one can just regard linear functions. The algebra
of linear functions is best described in terms of linear algebra, i.e. vectors and matrices. Now,
in terms of matrices the concatenation of linear functions is the matrix product. Putting these
observations together gives the formulation of the chain rule as the Theorem that the linearization
of the concatenations of two functions at a point is given by the concatenation of the respective
linearizations. Or in other words that matrix describing the linearization of the concatenation is
the product of the two matrices describing the linearizations of the two functions.

1. Linear Maps

Let V n be the space of n–dimensional vectors.

1.1. Definition. A linear map F : V n → V m is a rule that associates to each n–dimensional
vector ~x = 〈x1, . . . xn〉 an m–dimensional vector F (~x) = ~y = 〈y1, . . . , yn〉 = 〈f1(~x), . . . , (fm(~x))〉 in
such a way that:

1) For c ∈ R : F (c~x) = cF (~x)
2) For any two n–dimensional vectors ~x and ~x′: F (~x + ~x′) = F (~x) + F (~x′)

If m = 1 such a map is called a linear function. Note that the component functions f1, . . . , fm

are all linear functions.

1.2. Examples.
1) m=1, n=3: all linear functions are of the form

y = ax1 + bx2 + cx3

for some a, b, c ∈ R. E.g.: y = 2x1 + 15x2 − 2πx3

2 m=2, n=3: The linear maps are of the form

y1 = ax1 + bx2 + cx3

y2 = dx1 + ex2 + fx3

for some a, b, c, d, e, f ∈ R. E.g.: y1 = 17x1 + 15.6x2 − 3x3, y2 =
√

2x1 − 5x2 − 3
4x3

3) m=3, n=2:The linear maps are of the form

y1 = ax1 + bx2

y2 = cx1 + dx2

y3 = ex1 + fx2

for some a, b, c, d, e, f ∈ R. E.g.: y1 = 17x1 + 2x2, y2 = −5x2, y3 = −3
4x1

4) n=m=2:

y1 = ax1 + bx2

y2 = bx1 + cx2

for some a, b, c, d ∈ R. E.g.: y1 = 3x1 + 2x2, y2 = x1

1.3. Remark. If F : V k → V n and G : V n → V k are linear maps the the concatenation F ◦ G
given by ~x 7→ F ◦G(~x) := F (G(~x)) is also a linear map.
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2. Matrices

2.1. Definition. A m× n matrix is an array of real numbers made up of m rows and n columns.
It will be denoted as follows: 

a11 a12 . . . a1n

a21 a22 . . . a2n
...

...
. . .

...
am1 am2 . . . amn


Notice that aij is the the entry in the i–th row and j–th column of A.
We call m× 1 matrices column vectors and 1× n matrices row vectors.

2.2. Examples.
1) m=1, n=3: The 3× 1 matrices have the following form:(

a b c
)

for some a, b, c ∈ R
E.g.:

(
2 15 −2π

)
2 n= 3, m=2: The matrices have the following form(

a b c
d e f

)
for some a, b, c, d, e, f ∈ R. E.g.:

(
17 15.6 −3√

2 −5 3
4

)
3) m=3, n=2: The matrices have the following forma b

c d
e f


for some a, b, c, d, e, f ∈ R. E.g.:

 17 2
0 −5
−3

4 0


4) m=n=2: The matrices have the following form(

a b
c d

)
for some a, b, c, d ∈ R. E.g.:

(
3 2
0 1

)
2.3. Remark. We can think of a n×m matrix in two ways: either as a collection of n row vectors
or a collection of m column vectors.

a11 a12 . . . a1n

a12 a22 . . . a2n
...

...
. . .

...
am1 am2 . . . amn

 =


r1(A)
r2(A)

...
rm(A)

 =
(
c1(A) c2(A) . . . cn(A)

)
where ri(A) is the i–th row of A and ci(A) is the i–th column of A.
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3. Matrix multiplication

3.1. The dot product. Given a row vector u = (u1u2 . . . un) and a column vector v =


v1

v2
...

vn


we set

uv := u1v1 + u2v2 + . . . unvn =
n∑

i=1

uivi

3.2. Definition. Given an m× k matrix A and and k × n matrix B we define their product

AB =


a11 a12 . . . a1k

a21 a22 . . . a2k
...

...
. . .

...
am1 am2 . . . amk




b11 b12 . . . b1n

b12 b22 . . . b2n
...

...
. . .

...
bk1 bk2 . . . bkn


to be the following n×m matrix

AB =


r1(A)c1(B) r1(A)c2(B) . . . r1(A)cn(B)
r2(A)c1(B) r2(A)c2(B) . . . r2(A)cn(B)

...
...

. . .
...

rm(A)c1(B) rm(A)c2(B) . . . rn(A)cm(B)


where again ri(A) is the i–th row vector of A and cj(B) is the j–th column vector of B.
In other words, if we denote by (AB)ij the entry in the i–th row and j–th column of AB then

(AB)ij = ri(A)cj(B) =
k∑

s=1

aisbsj = ai1b1j + ai2b2j + . . . aikbkj

3.3. Remarks.
1) Remember that n × k and k × m yields n × m. Thus one can think of plumbing pipes:

you can plumb them together only if they fit. After fitting them together the ends in the
middle are eliminated, leaving only the outer ends.

2) The matrix product is associative.
3) In general, if AB makes sense, then BA does not. If one restricts to square matrices, i.e.

n×n matrices then AB and BA are also n×n matrices, but even then the matrix product
is not commutative.

3.4. Examples.

1)


2 3
1 4
4 5
0 0

(0 1 3
1 −1 0

)
=


2 · 0 + 3 · 1 2 · 1 + 3 · −1 2 · 3 + 3 · 0
1 · 0 + 4 · 1 1 · 1 + 4 · −1 1 · 3 + 4 · 0
4 · 0 + 5 · 1 4 · 1 + 5 · −1 4 · 3 + 5 · 0
0 · 0 + 0 · 1 0 · 1 + 0 · −1 0 · 3 + 0 · 0

 =


3 −1 6
4 −3 3
5 −1 12
0 0 0


2)
(
1 2 3

)3 1 0
2 1 3
7 4 0

 =
(
30 14 6

)
3)

3 1 0
2 1 3
7 4 0

1
2
3

 =
(
5 13 15

)
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4. Linear maps given by matrices

In order to connect the matrix notation with linear maps we think of vectors ~x ∈ V n as column
vectors!

4.1. Definition. Given an m× n matrix A we associate to it the following linear map:

FA(~x) := A~x =


a11 a12 . . . a1n

a12 a22 . . . a2n
...

...
. . .

...
am1 am2 . . . amn




x1

x2
...

xn

 =


a11x1 + a12x2 + . . . + a1nxn

a12x1 + a22x2 + . . . + a2nxn
...

am1x1 + am2x2 + . . . + amnxn

 =


y1

y2
...

yn


Thus yi =

∑n
j=1 aijxj .

4.2. Proposition. If F : V k → V n is a linear map given by a matrix A and G : V n → V k is a
linear map given by a matrix B then concatenation F ◦G is given by the matrix AB.

Proof.
We set ~y = G(~x) and ~z = F (~y) then ys =

∑n
j=1 bsjxj and zi =

∑k
s=1 aisys and thus

zi =
∑k

s=1 ais(
∑n

j=1 bsjxj) =
∑n

j=1(
∑k

j=1 aisbsj)xj

5. The chain rule for maps of several variables

5.1. Definition. A map F from D ⊂ Rn to Rm is a rule that associates to each point x ∈ D a point
F (x) = y in Rm. It is given by its component functions: F = (f1(x1, . . . xn), . . . , fm(x1, . . . xn))
which are just functions of n variables.

We call a map continuous or differentiable if all of the component functions have this property.

5.2. Examples.
1) Polar coordinates: F (r, θ) = (r cos θ, r sin θ) with domain R2 mapping to R2

2) Spherical coordinates: F (r, θ, φ) = (ρ cos θ sinφ, ρ sin θ sin φ, ρ cos φ) with domain R3 map-
ping to R3

3) Some arbitrary function: e.g. F (x, y, z) = (x2 + y, tan(z)ex+y, xy
z , xyz) with the domain

D = {(x, y, z) ∈ R3 : z ∈ (−π/2, π/2) \ {0}} mapping to R4

5.3. Definition. Suppose F = (f1(x1, . . . xn), . . . , fm(x1, . . . xn)) is a map D ⊂ Rn to Rm from
such that all of partial derivatives of its component function ∂fi

∂xj
exist at a point x0. We define

the Jacobian of F at x0 to be the m× n matrix of all partial differentials at that point

JF (x0) :=


∂f1

∂x1
(x0) ∂f1

∂x2
(x0) . . . ∂f1

∂xn
(x0)

∂f2

∂x1
(x0) ∂f2

∂x2
(x0) . . . ∂f2

∂xn
(x0)

...
...

. . .
...

∂fm

∂x1
(x0) ∂fm

∂x2
(x0) . . . ∂fm

∂xn
(x0)


that is the ij-th entry is (JF )ij(x0) = ∂fi

∂xj
(x0))

5.4. Definition. The linear approximation LF of a map F at a point x0 is given by

LF (x) = F (x0) + JF (x− x0)
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5.5. Examples.
1) The Jacobian a function of three variables f(x, y, z): JF = ∇f = (fx fy fz) and the linear

approximation at (x0, y0, z0) is
LF (x, y, z) = f(x0, y0, z0)+fx(x0, y0, z0)(x−x0)+fy(x0, y0, z0)(y−y0)+fz(x0, y0, z0)(z−z0)
– whose graph is the tangent plane.

2) The Jacobian and the linear approximation at t0 of a vector function ~r(t) = 〈x(t), y(t), z(t)〉

are J(~r)(t0) =

x′(t0)
y′(t0)
z′(t0)

 and L(~r)(t) = ~r(t0) + (t− t0)~r′(t0) – the tangent line.

3) The Jacobian of a map F = (g(x, y), h(x, y)) from D ⊂ R2 to R2 is: JF =

(
∂g
∂x

∂g
∂y

∂h
∂x

∂h
∂y

)
4) The Jacobian of a function f(x1, . . . , xn) is Jf = ∇f = ( ∂f

∂x1

∂f
∂x2

· · · ∂f
∂xn

)

5.6. Theorem. (The chain rule)
Given two differentiable maps F : D → Rm, in components F = (f1(y1, . . . yk), . . . , fn(y1, . . . yk)),
and G : E → Rk, in components G = (g1(x1, . . . , xn), . . . , gk(x1, . . . , xn)), with E ⊂ Rn and
D ⊂ G(E) ⊂ Rk then

JF◦G = JF JG

Proof. The ij–th entry of JF◦G is (JF◦G)ij = ∂
∂xj

(fi(g1(x1, . . . , xn), . . . , gk(x1, . . . , xn)). Setting

y = G(x) and z = F (y) the chain rule yields ∂
∂xj

(fi(g1(x1, . . . , xn), . . . , gk(x1, . . . , xn)) = ∂zi
∂y1

∂y1

∂xj
+

. . . + ∂zi
∂yk

∂yk
∂xj

and this is just the ij–th entry of JF JG

5.7. Examples.
1) z = f(x, y, z) = f(x), x = r(t)

Jf◦r(x(t0), y(t0), z(t0)) = ∇f(x(t0), y(t0), z(t0))

x′(t)
y′(t)
z′(t)


= fx(x(t0), y(t0), z(t0))x′(t0) + fy(x(t0), y(t0), z(t0))y′(t0) + fz(x(t0), y(t0), z(t0))z′(t0)

2) z = f(x, y), x = g(s, t), y = h(s, t):

Jf◦(g,h) = (∂f
∂x

∂f
∂y )
(

∂g
∂s

∂g
∂t

∂h
∂s

∂h
∂t

)
=

(
∂f
∂x

∂x
∂s + ∂f

∂y
∂y
∂s

∂f
∂x

∂x
∂t + ∂f

∂y
∂y
∂t

)
3) z = f(x1, . . . xn x1 = g1(t1, . . . , tm), x2 = g2(t1, . . . , tm), . . . , xn = gn(t1, . . . , tm). We set

G = (g1, . . . gn) and obtain:

Jf◦G = ∇fJG = ( ∂f
∂x1

∂f
∂x2

· · · ∂f
∂xn

)


∂x1
∂t1

∂x1
∂t2

. . . ∂x1
∂tn

∂x2
∂t1

∂x2
∂t2

. . . ∂x2
∂tn

...
...

. . .
...

∂xm
∂t1

∂xm
∂t2

. . . ∂xm
∂tn

 =


∂f
∂x1

∂x1
∂t1

+ ∂f
∂x2

∂x2
∂t1

+ · · ·+ ∂f
∂xn

∂xn
∂t1

∂f
∂x1

∂x1
∂t2

+ ∂f
∂x2

∂x2
∂t2

+ · · ·+ ∂f
∂xn

∂xn
∂t2

...
∂f
∂x1

∂x1
∂tm

+ ∂f
∂x2

∂x2
∂tm

+ · · ·+ ∂f
∂xn

∂xn
∂tm


6. Exercises

1) Show that the matrix multiplication is associative.



6

2) Show that the n × n matrix with 1s on the diagonal and all other entries 0: E =
1 0 0 · · · 0
0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

. . . 0
0 0 · · · 0 1

 is a left and right unit. I.e. for any n × n matrix A the follow-

ing holds: AE = EA = A.

3) Show that the matrix multiplication of 2 × 2 is not commutative. Consider A =
(

0 1
0 0

)
and B =

(
0 0
1 0

)
and calculate AB and BA.

4) Prove Remark 1.3!
5) Prove that a linear function of n variables is of the form: a1x1 + . . . + anxn. (Hint either

show that all partial derivatives are constant, or use the linearity and the fact that any
vector ~x can be written as

∑n
i=1 xiei where the ei are the basis vectors that have all 0

entries except for the i–th one. (In three dimensions these are the vectors e1 = i, e2 = j
and e3 = k))

6) Show that indeed the component functions of a linear map are linear.
7) Use 5) and 6) to show that any linear function can be written in the form F (~x) = A~x for

some matrix A and ~x considered as a column vector.
8) Calculate the Jacobian of the functions in the Example 5.2
9) Calculate the Jacobian of the function in Example 5.2 3) written in polar coordinates. I.e.

f(x(r, θ, z), y(r, θ, z), z(r, θ, z)).
10) Do the same for spherical coordinates: calculate the Jacobian of the function in Example

5.2 3) in spherical coordinates f(x(ρ, θ, φ), y(ρ, θ, φ), z(ρ, θ, φ)).


