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We consider three a priori totally different setups for Hopf algebras
from number theory, mathematical physics and algebraic topology.
These are the Hopf algebra of Goncharov for multiple zeta values,
that of Connes–Kreimer for renormalization, and a Hopf algebra
constructed by Baues to study double loop spaces. We show that
these examples can be successively unified by considering simplicial
objects, co–operads with multiplication and Feynman categories at
the ultimate level. These considerations open the door to new con-
structions and reinterpretations of known constructions in a large
common framework which is presented step–by–step with exam-
ples throughout. In this second part of two papers, we give the
general categorical formulation.
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Introduction

In this sequence of two papers, we provide a common background for Hopf
algebras that appeared prominently in vastly different areas of mathemat-
ics. Standout examples are the Hopf algebras of Goncharov [22] in number
theory, those of Connes and Kreimer [10, 11, 12] in mathematical physics
and that of Baues [3] in algebraic topology. There are several Hopf algebras
of Connes and Kreimer and variations of these which are of great interest in
physics and number theory, e.g. [8, 7]. The most basic ones being those for
rooted trees; see [15, 16]. These algebras and those of Baues and Goncharov
have been identified as examples of universal constructions stemming from
simplicial and operadic setups in the first part [17]. The next level of com-
plexity is represented by the Connes–Kreimer Hopf algebras for renormal-
ization defined on graphs. These Hopf algebras are most properly discussed
on the categorical level. This is the purview of this second part.

The natural setup for this definitive source of Hopf algebras of this type
are the Feynman categories of [35]. The results of [17] can be re–derived by
restricting to special types of Feynman categories. As in the first part, the
key observation is that the Hopf algebras are quotients of bi–algebras. Here
we add that these bi–algebras have a natural origin coming from Feynman
categories, which can be seen as a special type of monoidal category. This
allows us to uncover the “raison d’être” of the co–product simply as the dual
to the partial product given by the composition in the Feynman category.
The quotient is furthermore identified as the natural quotient making the
bi–algebras connected.

In particular, we show that under reasonable assumptions a Feynman
category gives rise to a Hopf algebra formed by the free Abelian group
of its morphisms. Here the co–product, motivated by a discussion with D.
Kreimer, is defined by deconcatenation. With hindsight, this type of co–
product goes back at least as far as [23] or [41], who considered a deconcate-
nation co–product from a combinatorial point of view. Feynman categories
are monoidal, and this monoidal structure yields a product. Although it is
not true in general for any monoidal category that the multiplication and
comultiplication are compatible and form a bi–algebra, it is for Feynman
categories, and hence also for their opposites. This also gives a new un-
derstanding for the axioms of a Feynman category. The case relevant for
co–operads with multiplication, treated in the first part, is the Feynman
category of finite sets and surjections and its enrichments by operads. The
constructions of the bi–algebra then correspond to the pointed free case con-
sidered in [17] if the co–operad is the dual of an operad. Invoking opposite
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categories, one can treat the co–operads appearing in [17] directly. For this
one notices that the opposite Feynman category, that for co–algebras, can
be enriched by co–operads. It is here that we can also say that the two
constructions of Baues and Goncharov are related by Joyal duality to the
operad of surjections.

The quotients are obtained by “dividing out isomorphisms”. This
amounts to taking co–invariants or alternatively dividing out by certain
co–ideals. This allows us to distinguish the levels between planar, symmet-
ric, labeled and unlabeled versions analogous to the tree Hopf algebras of
Connes and Kreimer and [17]. To actually get the Hopf algebras, rather than
just bi–algebras, one has to take quotients and require certain connected-
ness assumptions. Here the conditions become very transparent. Namely, the
unit, hidden in the three examples [17, §1] by normalizations, will be given
by the unit endomorphism of the monoidal unit 1 of the Feynman category,
viz. id1. Isomorphisms keep the co–algebra from being co–nilpotent. Even if
there are no isomorphisms, still all identities are group–like and hence the
co–algebra is not connected. This explains the necessity of taking quotients
of the bi–algebra to obtain a Hopf algebra. We give the technical details
of the two quotients, first removing isomorphisms and then identifying all
identity maps.

There is also a distinction here between the non–symmetric and the
symmetric case. While in the non–symmetric case, there is a Hopf structure
before taking the quotient, the passing to the quotient, viz. coinvariants is
necessary in the symmetric case.

The categorical constructions are more general than those in [17] as there
are other Feynman categories besides those which yield co-operads with mul-
tiplication. One of the most interesting examples of a Feynman category
which yields a deep connection to mathematical physics is the Feynman
category G whose “morphisms are graphs”, see [35, §2] and §3.4. This is
the medium which allows us to obtain graph Hopf algebras of Connes and
Kreimer, those based on 1-PI graphs and motic graphs, the latter yielding
the new Hopf algebras of Brown [8]. Mathematically G is also at the heart
of the whole zoo of operad–types [35, 26, 4]. Consequentially, there are also
the Hopf algebras corresponding to cyclic operads, modular operads, etc.. To
obtain these examples several general constructions on Feynman categories,
such as enrichment, decoration, universal operations, and free construction
come into play. These constructions also give interrelations between the ex-
amples. Among the examples discussed are the examples of [17] which are
analyzed in various contexts that provide new depths of understanding. In
particular, we revisit operads, simplicial structures and Joyal duality in the
context of Feynman categories, decorations and enrichments.
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Organization of the paper and overview of results. We start by
giving an overview of the results of the rest of the paper in §1.1. We then
treat the non–symmetric case, where the bi–algebra equation follows directly
from the conditions on a Feynman category, viz. Theorem 1.20. With more
work, there is a version for symmetric Feynman categories; see Theorem
1.21. Under certain conditions, there is again a Hopf quotient, see §1.6. In
order to get a practical handle, we consider graded Feynman categories.
The result is Theorem 1.37. We conclude the section with a discussion of
functoriality in §1.7. This analysis explains why there is no Hopf algebra
map from the Hopf algebra of Connes–Kreimer to that of Goncharov.

The shorter §2 gives further constructions and twists. It contains the
original construction on indecomposables as well as a different quotient con-
struction.

Having the whole theory at hand, we give a detailed discussion of a
slew of examples in §3, including previously undiscussed ones. The reader
is encouraged to skip ahead to these examples at any time for concreteness,
and some references to these examples are given throughout. Here we first
treat the examples introduced in [17, §1] as well as the Connes–Kreimer
category for graphs. This discussion also identifies the construction of [17,
§2 and §3] as the special case of Feynman categories with trivial vertex
set. We then review constructions from [35] to put these special cases into
a larger context. These include decorations (§3.5), enrichments (§3.8) and
universal operations (§3.9). These explain the underlying mechanisms and
allow for alterations for future applications. Among the special cases of these
general construction is the motic Hopf algebra of Brown. The enrichment
adds another layer of technical sophistication and is kept short referring to
[35] for additional details. We also consider colored operads, which naturally
appear in this situation and show that the formulas for Goncharov’s Hopf
algebra become apparent in the colored context. This also gives a bridge
back to the simplicial setting, as the nerve of a category is naturally at the
same time simplicial and a colored operad; see Proposition 3.5.

The subsection §3.6 also contains a detailed discussion of simplicial struc-
tures and the relationship with Joyal duality. The latter is of independent
interest, since this duality explains the ubiquitous occurrence of two types
of formulas, those with repetition and those without repetition, in the con-
texts of number theory, mathematical physics and algebraic topology. This
duality also explains the two graphical versions used in this type of calcu-
lations, polygons vs. trees, which are now just Joyal duals of each other,
see especially §§3.6.4–3.6.4. The presentation of Joyal duality is novel, both
graphically and combinatorially.
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In §4, we give a short summary of the given constructions in both parts,
their interrelations and specializations to the original examples and end with
an outlook to further results.

To be self-contained the paper also has an appendix on graphs and their
formalization due to [6, 35] we use. Again, this can serve as an independent
guide to a very useful tool as this particular presentation of graphs is “just
right” in terms of complexity to handle all combinatorial intricacies, such as
those appearing when considering auto– and isomorphisms.

Notation

As usual for a setX with an action of a groupG, we will denote the invariants
by XG = {x|g(x) = x} and the co–invariants by XG = X/ ∼ where x ∼ y if
and only if there exists a g ∈ G : g(x) = y.

For an object V in a monoidal category, we denote by TV the free unital
algebra on V , that is TV =

⊕
n V

⊗n, in the case of an Abelian monoidal
category, and by T̄ V the free algebra on V , that is reduced the tensor algebra
on T̄ V =

⊕
n≥1 V

⊗n in the case of an Abelian monoidal category. Similarly

SV =
⊕

n≥0 V
�n denotes the free symmetric algebra and S̄V the free non–

unital symmetric algebra. We use the notation � for the symmetric aka.
symmetrized, aka. commutative tensor product: V �n

= (V ⊗n)Sn
where Sn

permutes the tensor factors.
Furthermore, we use n = {1, . . . , n} and denote by [n] to be the category

with n + 1 objects {0, . . . , n} and morphisms generated by the chain 0 →
1 → · · · → n.

Given two functors f : F ′ → F and g : F ′′ → F , we denote the comma
category by (f ↓ g), or —if the functors are clear form the context— simply
by (F ′ ↓ F ′′). The objects are triples (X,Y, φ : f(X) → g(Y )) with X ∈
Obj(F ′), Y ∈ Obj(F ′′). Morphisms from (X,Y, φ) to (X ′, Y ′, φ′) are pairs
(ψ : X → X ′, ψ′ : Y → Y ′) such that g(ψ′) ◦ φ = φ′ ◦ f(ψ).

1. The general case: bi– and Hopf algebras from Feynman
categories

1.1. Preview

As a paradigm, let us consider the Connes–Kreimer Hopf algebra of graphs,
in particular the core Hopf algebra [40], see also §3.4. The key point to
understand this example is that the graphs (along with extra data) form
the morphisms of a special type of monoidal category, a Feynman category
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as introduced in [35], also see §1.3.1 below. The graphs in particular appear
in the Feynman category G defined in [35, §2], see §3.4 below. The pairs of
sub– and quotient graphs appearing in the co–product (3.5) then represent
factorizations of morphisms; see Figure 2 for an example. This exhibits the
co–product as deconcatenation. The product is induced by the monoidal
product which in this case is simply disjoint union.

More generally for a Feynman category we will use deconcatenation and
monoidal product to construct a bi–algebra and then show that under certain
natural conditions a quotient of this bi–algebra yields a Hopf algebras. This
makes the theory particularly transparent and allows to recover the previous
constructions of [17] by specialization. Or, taking the reverse perspective,
we can generalize the constructions appearing in [17] by lifting them to the
categorical level.

More specifically, in a monoidal category there are two products on mor-
phisms, the tensor product ⊗ and the partially defined product of compo-
sition ◦. The product for morphisms will just be their tensor product. The
co–product with be dual to partial composition product ◦. Unlike the com-
position, deconcatenation is not a partial operation, but rather uncondition-
ally defined. The compatibility, viz. bi–algebra equation, is guaranteed by
the axioms of a Feynman category.

There are three main types of examples for Feynman categories, the
first are of combinatorial type and are based on sets. The second are those
of graph type, where the graphs are a structure of the morphisms. These
also appear in physics in the form of Feynman diagrams, whence the name.
The last type are the enriched Feynman categories. These will be discussed
in §3.8.

The Hopf algebras of Goncharov and Baues are combinatorial as are
the tree Hopf algebras of Connes and Kreimer. The graph Hopf algebra of
Connes and Kreimer is of graph type. The Hopf algebras from co–operads
more generally are of enriched type, however, they still have a description
of combinatorial type if the co–operad is in Set.

There are also two flavors, depending on whether one is working in sym-
metric or simply monoidal (non-Σ) categories. We preview the results of this
section:

Theorem 1.1. Let F be a non–Σ decomposition finite strict monoidal Feyn-
man category. Set B = ZMor(F). Let μ = ⊗, η(1) = id1, set Δ(φ) =∑

(φ0,φ1):φ=φ0◦φ1
φ0 ⊗ φ1 and define ε(φ) = 1 if φ = idX for some X, else

ε(φ) = 0 then (B, μ, η,Δ, ε) is a bi–algebra.
Let F be a factorization finite Feynman category. Let Biso be the free

Abelian group on the isomorphisms classes of morphisms. Then there is
a bi–algebra structure on Biso given by (μ, ηiso,Δiso, εiso) where μ is the
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tensor product on classes ηiso = [id1], Δiso is the co–product induced on
co–invariants, and εiso evaluates to 1 precisely on the isomorphism classes
of identities.

If F is almost connected then there is a bi–ideal I spanned by [idX ]−[id1]
and the quotient H = Biso/I is connected and Hopf.

For the notion of “almost connected” in this context, see Definition §1.35.
In the next section, we give alternative descriptions in terms of indecom-

posables §2.1 and in the non–Σ case we have a different construction for tak-
ing isomorphism classes using a quotient rather than co–invariants, cf. §2.2.
Proposition 1.2. The relation of being in the same isomorphism class gives
rise to a co–ideal C spanned by f − g for any two morphisms that are iso-
morphic in the arrow category. In the non-Σ case Bquot

Q := B/C ⊗ Q is a
bi–algebra for a normalized εquot. If F is almost–connected then there is an
ideal J and the quotient Bquot/J is connected and a Hopf algebra over Q

in general.

Here the ideal J is spanned by |Aut(X)||Iso(X)|idX−|Aut(Y )||Iso(Y )|
idY , where |Aut(X)| is the cardinality of the automorphism group and
|Iso(X)| is the number of objects isomorphic to X. Both are finite if F
is decomposition finite. If F is skeletal the |Iso(X)| = 1, and if V is further-
more discrete, the ideal is simply (idX− idY ). This is the case for non–sigma
co–operads, in which case the two constructions coincide. For the symmetric
case, it is possible to twist the co–multiplication in certain cases, so that the
bi–algebra equation holds; see Theorem 2.15 for a summary.

In order to recover the previous cases, one has to use several construc-
tions defined in [35, §3, §4]. This is done in §3. In particular, case I corre-
sponds to the Feynman level category F+ and its relation to enriched Feyn-
man categories, see [35, §3.6,§4] and [32] for more details, applied to the
Feynman category of surjections FS, that is the Feynman categories FSO,
where O is an operad. The generalization comes from the nc–construction
[35, §3.2] applied to the Feynman category for operads O and a B+ oper-
ator as given in [35, Example 3.5.2]. The construction of simplicial strings
is captured by the nc–construction applied to the Feynman category Δ∗,∗
together with a decoration, that is the construction of FdecO, see [26] and
[35, §3.3], see §3 in particular §3.8 and 3.3.2. Finally, universal operations
3.9 explain the amputation mechanism.

We will begin by considering algebra and co–algebra structures for mor-
phisms and isomorphisms classes of morphisms. We then introduce the no-
tion of a Feynman category in the symmetric and non-Σ version. Thus allows
us to prove the bi–algebra structures under standard assumptions. After-
wards, we turn to the Hopf algebras and functoriality.
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1.2. Algebra and co-algebra structures for morphisms

Given a category F let B = Z[Mor(F)] ⊂ Hom(Mor(F),Z) be the free
Abelian group on the morphisms of F .

1.2.1. Isomorphism classes. Set Biso = B/ ∼ where ∼ is the equiva-
lence relation on morphisms given by isomorphisms in (F ↓ F). In particu-
lar, the equivalence relation ∼, which exists on any category, means that for
given f and g: f ∼ g if there is a commutative diagram with isomorphisms
as vertical morphisms.

X
f

�σ

Y

� σ′

X ′ g
Y ′

i.e.: f = σ′−1 ◦ g ◦ σ.
Biso is the free Abelian group on isomorphism classes. Fixing a skeleton

Fsk of F , Biso = Z[
X,Y ∈Obj(Fsk)Aut(Y )Hom(X,Y )Aut(X)], that is the free
Abelian group of the co–invariants of the left Aut(Y ) and right Aut(X)
action of the Hom sets of Fsk. In general Biso(F) � Biso(Fsk).

Remark 1.3. The morphisms of F together with these isomorphisms are
also precisely the groupoid of vertices V ′ of the iterated Feynman category
F′, cf. [35, §3.4].
Lemma 1.4. idX ∼ g if and only if g : X ′ → Y ′ is an isomorphism and
X � X ′ � Y ′.

1.2.2. Algebra of morphisms of a (strict) monoidal category. We
refer to [25] for details on monoidal categories. An introduction can be found
in [32].

Proposition 1.5. Let (F ,⊗) be a strict monoidal category. Then B is a
unital algebra with multiplication μ(φ, ψ) = φ⊗ ψ and unit 1 = id1.

If (F ,⊗) is a monoidal category then Biso is a unital algebra with mul-
tiplication μ([φ], [ψ]) = [φ ⊗ ψ] and unit 1 = [id1]. If (F ,⊗) is symmetric
monoidal then Biso is a commutative unital algebra.

Proof. Recall that strict monoidal means that in the unit constraints and
associativity constraints are identities. Thus X ⊗ (Y ⊗ Z) = (X ⊗ Y ) ⊗ Z
which guarantees the associativity (φ1⊗φ2)⊗φ3 = φ1⊗ (φ2⊗φ3). Likewise
X ⊗ 1 = X = 1 ⊗X shows that indeed φ⊗ id1 = φ = φ⊗ id1.
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The product is well defined on isomorphism classes, since if φ′ � φ, ψ′ �
φ then φ′ = σ−1φσ′ and ψ′ = τ−1ψτ ′ for isomorphisms, σ, σ′, τ, τ ′ and
φ′⊗ψ′ = (σ−1⊗τ−1)(φ⊗ψ)(σ′⊗τ ′), so that [φ⊗ψ] = [φ′⊗ψ′]. Without the
assumption of strictness, if φi : Xi → Yi, i = 1, 2, 3 we have (φ1⊗φ2)⊗φ3 =
A(φ1 ⊗ (φ2 ⊗ φ3)) in B where A is given by pre- and post-composing with
associativity isomorphisms aX1,X2,X3

and a−1
Y1,Y2,Y3

. Thus when one passes to
isomorphism classes, the algebra structure is strict. In the same way, the
unit constraints provide the isomorphism, which make the unit strict on
Biso. If F is symmetric, then the commutativity constraints CX,Y give the
isomorphisms, proving that [φ]⊗ [ψ] = [ψ]⊗ [φ].

Remark 1.6. The condition of being strict is not severe as by using Mac
Lane’s coherence theorem [42] one can pass from any monoidal category
to an equivalent strict one. We make this assumption, so that the algebra
structure will be unital and associative rather than only weakly unital and
weakly associative. After taking isomorphism classes the algebra structure
is strict even if the monoidal category is not. Note that if we are working in
the enriched version Hom(1,1) = K will play the role of a ground ring.

1.2.3. The decomposition co–product. Suppose that F is a decom-
position finite category. This means that for each morphism φ of F the set
{(φ0, φ1) : φ = φ0◦φ1} is finite. Then, B carries a co–associative co–product
given by the dual of the composition. On generators it is given by the sum
over factorizations:

(1.1) X
φ

φ1

Z

Y
φ0

that is

(1.2) Δ(φ) =
∑

{(φ0,φ1):φ=φ0◦φ1}
φ0 ⊗ φ1.

where a morphism φ is identified with its characteristic morphisms δφ that
evaluates to 1 on φ and zero on all other generators, as an element in
Hom(Mor(F),Z) = Z[Mor(F)].

A co–unit is defined on the generators by:

(1.3) ε(φ) =

{
1 if for some object X : φ = idX

0 else
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The co–unit axioms are readily verified and the co–associativity follows from
the associativity of composition.

Remark 1.7. One can enlarge the setting to the situation in which the sets
of morphisms are graded and composition preserves the grading. In this case,
one only needs the condition: degree–wise composition finite. This will be
the case for any graded Feynman category [35]. See also Example [17, 2.11.4].

Remark 1.8. We realized with hindsight that the co–product we con-
structed on indecomposables, guided by remarks from D. Kreimer given
below §2.1, is equivalent to the co–product above. A little bibliographical
sleuthing revealed that the the co–product for any finite decomposition cat-
egory appeared already in [41] and was picked up later in [23].

1.2.4. Co–product of the identity morphisms.

Remark 1.9.

(1.4) Δ(idX) =
∑

(φL,φR):φL◦φR=idX

φL ⊗ φR

where idX : X
φR→ X ′ φL→ X. This mean that each φL has a right inverse

φR, and each φR has a left inverse φL. They do not have to be invertible in
general.

Corollary 1.10. In a decomposition finite category the automorphism
groups Aut(X) are finite for all objects X, as are the classes Iso(X) of
objects isomorphic to X.

Proof. For each automorphism φ of X and for each isomorphism φ : X → X ′

there is a factorisation idX = φ−1 ◦φ, and there are only finitely many such
factorisations.

Lemma 1.11. If F is decomposition finite, if the identity of an object has

a factorization idX : X
φR→ X

φL→ X then both φR and φL are invertible.

Proof. Using the powers of φL and φR, there are decompositions of φL =
φl
L◦(φl

R◦φL). Since F is decomposition finite, we have to have that φl
L = φk

L

for some k > l. Applying φl
R from the right, we see that φk−l

L = idX . That
is φL is unipotent and hence an isomorphism.

1.2.5. Co–algebra on isomorphisms classes. The set Hom(X,Y ) has

a natural action of Aut(Y )×Aut(X): φ
λσY

ρ
σ
−1
X−→ σY ◦φ◦σ−1

X . We let Aut(φ) ⊂
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Aut(Y )×Aut(X) be the stabilizer group of φ. There is an action of Aut(Y )

on Hom(Y, Z) × Hom(X,Y ) given by d̄ : (σ)(φ0, φ1) = (φ0 ◦ σ−1, σ ◦ φ1),

which leaves the composition map invariant: φ0 ◦ φ1 = φ0 ◦ σ−1 ◦ σ ◦ φ1.

There is also an action on decompositions which is a specialization of the

actions of IX,X′ = Iso(X,X ′), IY,Y ′ = Iso(Y, Y ′) and IZ,Z′ = Iso(Z,Z ′) that
maps Hom(Y, Z)×Hom(X,Y ) → Hom(Y ′, Z ′)×Hom(X ′, Y ′): (φ0, φ1) �→
(φ′

0, φ
′
1) = (σZφ0σ

−1
Y , σY φ1σ

−1
X ).

There is an equivalence relation on factorizations (φ0, φ1) of the type

(1.1) given by the action of IY,Y ′ , namely we set: (φ0, φ1) ∼ (φ′
0, φ

′
1) if

φ′
0 = φ0σ

−1
Y and φ′

1 = σY φ1. For a given class c under this equivalence

choose a representative c = [f ] = [(φ0, φ1)] and consider the corresponding

summand Δf of Δ together with the IX,X′ , IY,Y ′ and IZ,Z′ actions and co–

invariants on this decomposition.

(1.5)

φ
Δf

λσZ
ρ
σ
−1
X

π◦p◦Δf

(φ0, φ1)

p

λσZ
ρ
σ
−1
Y

⊗λσY
ρ
σ
−1
X

[φ] ([φ0], [φ1]) [(φ0, φ1)]
π

σZφσ
−1
X Δf′

π◦p◦Δf′

(σZφ0σ
−1
Y , σY φ1σ

−1
X )

p

here f = (φ0, φ1) is a factorization f ′ = (φ′
0, φ

′
1) is a different representative

of the same class [(φ0, φ1)] under the action of λ×d̄×ρ of IZ,Z′×IY,Y ′×IX,X′ .

For simplicity assume that F is skeletal. To shorten notation, we let

F(X,Y ) = HomF (X,Y ), and AX = Aut(X).

Fix a representative of the intermediate space Y in its isomorphism class

and a choice of representative decompositions F , one for each class of the φ ∈
F(X,Z) this fixes a system of representatives obtained by conjugation F ′.

Assume that F is finite if for any morphism φ and fixed space Y . Under

this condition, the map Δiso
X,Y,Z in the diagram below is well defined due

to the properties of co–limits and the finiteness assumption., we obtain a

diagram of the type [17, (2.51)].

(1.6)

F(X,Z)
ΔF

λσZ
ρ′
σ
−1
X

π◦p◦ΔF

F(Y, Z)×F(X,Y )

p

λσZ
ρ
σ
−1
Y

⊗λσY
ρ
σ
−1
XAZ

F(X,Z)AX

Δiso
X,Y,Z

AZ
F(Y, Z)AY

× AY
F(X,Y )AZ AZ

F(Y, Z)×AY
F(X,Y )AX

π

F(X ′, Z ′)
ΔF ′

π◦p◦ΔF ′

F(Y ′, Z ′)×F(X ′, Y ′)

p
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Assume further that for any φ only finitely many isomorphism classes Y

appear in the decompositions of φ. If both finiteness assumptions are satis-

fied, we call F factorization finite. Fixing a representative φ and summing

over isomorphism classes of Y , we then obtain Δiso([φ]) if F is factorization

finite.

Lemma 1.12. If Fsk is decomposition finite, then F is factorization finite.

Proposition 1.13. If F is factorization finite, then the decomposition co–

product Δ and the co–unit ε descend to a co–product Δiso and co–unit εiso

on Biso as co–invariants and (Biso,Δiso, εiso) is a co–unital co–algebra.

Proof. Co–associativity follows readily. The co–unit ε is invariant under the

left and right actions by automorphisms and descends to εiso

(1.7) εiso([φ]) =

{
1 if [φ] = [idX ]

0 else

1.2.6. Direct formula for Δiso. There is a direct way to describe the

co–product, by analyzing the image of Δiso
X,Y,Z .

We call a pair (φ0, φ1) of morphisms weakly composable, if there is an

isomorphism σ, such that φ1◦σ◦φ0 is composable. A weak decomposition of

a morphism φ is a pair of morphisms (φ0, φ1) for which there exist isomor-

phisms σ, σ′, σ′′ such that φ = σ◦φ1 ◦σ′ ◦φ0 ◦σ′′. In particular, a decomposi-

tion (φ0, φ1) is weakly composable. We introduce an equivalence relation on

weakly composable morphisms, which says that (φ0, φ1) ∼ (ψ0, ψ1) if they

are weak decompositions of the same morphism. An equivalence class of

weak decompositions will be called a decomposition channel. The notation

will be ([φ0], [φ1]). In this notation, we have that π([(φ0, φ1)]) = ([φ0], [φ1])

and the image of Δiso
X,Y,Z are precisely the decomposition channels. These

may, however, appear with multiplicities.

Proposition 1.14. For an element/equivalence class [φ] ∈ Biso.

(1.8) Δiso([φ]) =
∑

[(φ0,φ1)]

[φ0]⊗ [φ1]

where the sum is over a complete system of decompositions for a fixed rep-

resentative φ.
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Remark 1.15. Notice that there are many ways in which two weakly com-
posable morphisms are composable and hence may yield different composi-
tions. Thus the right hand side may have terms that can be collected to-
gether. To obtain a representative one has to again rigidify by “enumerating
everything”, as in was done in [17, Remark 2.73].

This is also the reason that the composition dual to decomposition in
Biso in [17, (2.49)] is on invariants. A similar phenomenon is known in
physics, when composing graphs [39]. For Feynman categories of graph type
such aspect have been previously discussed in [35, §2.1].
Example 1.16. In particular in §3.4 the construction is made concrete
for the Connes-Kreimer Hopf algebra of graphs. An isomorphism class of a
morphism is fixed by the ghost graph. The ghost graph of φ1 is naturally
a subgraph of the ghost graph of φ. The action on the intermediate space
allows to “forget” the target of φ up to isomorphism and identify the ghost
graph of φ0 with the quotient graph. In the co–product one forgets the
structure of being a subgraph, which is also what leads to multiplicities, cf.
Example 3.9.

1.2.7. Bi–algebra structure conditions. By the above, in any strict
monoidal category with finite decomposition B has a unital product and a
co–unital co–product. However, the compatibility axioms of a bi–algebra do
not hold in general. For instance, one needs to check

Δ ◦ μ = (μ⊗ μ) ◦ π2,3 ◦ (Δ⊗Δ)

where π2,3 switches the 2nd and 3rd tensor factors. Each side of the equation
is represented by a sum over diagrams.

For Δ ◦ μ the sum is over diagrams of the type

(1.9) X ⊗X ′ Φ=φ⊗ψ

Φ1

Z ⊗ Z ′

Y

Φ0

where Φ = Φ0 ◦ Φ1.
When considering (μ⊗ μ) ◦ π23 ◦ (Δ⊗Δ) the diagrams are of the type

(1.10) X ⊗X ′ φ⊗ψ

φ0⊗ψ0

Z ⊗ Z ′

Y ⊗ Y ′

φ1⊗ψ1
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where φ = φ0 ◦ φ1 and ψ = ψ0 ◦ ψ1. And there is no reason for there to be
a bijection of such diagrams.

The compatibility does hold when dealing with Feynman categories; as
we now show.

1.3. Feynman categories and bi–algebra structures

Here we give the definition of the various Feynman categories and prove the
theorems previewed above. Examples can be found in §3.

1.3.1. Definition of a Feynman category. Consider the following data:

1. V a groupoid, with V⊗ the free symmetric monoidal category on V.
2. F a symmetric monoidal category, with monoidal structure denoted

by ⊗.
3. ı : V → F a functor, which by freeness extends to a monoidal functor

ι⊗ on V⊗,

V
j

ı F

V⊗
ı⊗

Iso(F)

where Iso(F) is the maximal (symmetric monoidal) sub–groupoid of F .

Consider the comma categories (F ↓F) and (F ↓V) defined by (idF , idF )
and (idF , ı).

Definition 1.17. A triple F = (V,F , ı) as above is called a Feynman cate-
gory if

i. ı⊗ induces an equivalence of symmetric monoidal groupoids between
V⊗ and Iso(F).

ii. ı and ı⊗ induce an equivalence of symmetric monoidal groupoids
Iso(F ↓ V)⊗ and Iso(F ↓ F).

iii. For any object ∗v of V, (F ↓ ∗v) is essentially small.

The first condition says that V knows all about the isomorphisms. The
third condition is technical to guarantee that certain colimits exist. The
second condition, also called the hereditary condition, is the key condition.
It can be understood as follows: any morphism in F is isomorphic, up to
unique isomorphism, to a tensor product of basic morphisms, which are
those in (F ↓ V) (aka. one-comma generators). Viz.:
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1. For any morphism φ : X → X ′, if we choose X ′ �
⊗

v∈I ı(∗v) by (i),

there are Xv and φv : Xv → ι(∗v) in F such that φ is isomorphic to⊗
v∈I φv,

(1.11) X
φ

�

X ′

�⊗
v∈I Xv

⊗
v∈I φv ⊗

v∈I ı(∗v).

2. For any two such decompositions
⊗

v∈I φv and
⊗

v′∈I′ φ′
v′ there is a

bijection ψ : I → I ′ and isomorphisms σv : Xv → X ′
ψ(v) such that

P ◦
⊗

v φv =
⊗

v(φ
′
ψ(v)◦σv) where P is the permutation corresponding

to ψ.

3. These are the only isomorphisms between morphisms.

1.3.2. Non-symmetric version. Now let (V,F , ı) be as above with the

exception that F is only a monoidal category, V⊗ the free monoidal category,

and ı⊗ is the corresponding morphism of monoidal groupoids.

Definition 1.18. A triple F = (V,F , ı) as above is called a non-Σ Feynman

category if

i. ı⊗ induces an equivalence of monoidal groupoids between V⊗ and

Iso(F).

ii. ı and ı⊗ induce an equivalence of monoidal groupoids Iso(F ↓ V)⊗
and Iso(F ↓ F).

iii. For any object ∗v in V, (F ↓ ∗v) is essentially small.

1.3.3. Strict Feynman categories. We call a Feynman category strict

if the monoidal structure on F is strict, ι is an inclusion, and V⊗ = Iso(F)

where we insist on using the strict free monoidal category, see e.g. [31] for a

thorough discussion. Up to equivalence in V, F and in F this can always be

achieved.

In the strict case, one can assume that the right vertical arrow in (1.11) is

an identity, thus for any morphism φ we have φ =
⊗

φv ◦P . Here φv : Xv →
ι(∗v) and P is an isomorphism in V⊗ = Iso(F), which we can fix to be simply

a permutation P : X
∼→

⊗
v Xv after absorbing possible isomorphisms τv :

Xv
∼→ X ′

v into the φv by pre-composition. The permutation is by definition

trivial in the non-Σ case.
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1.3.4. Bi–algebra structure for non–Σ Feynman categories.

Lemma 1.19. In a strict decomposition finite Feynman category Δ(id1) is

group–like, i.e.: Δ(id1) = id1 ⊗ id1

Proof. By (1.4) Δ(id1) = id1 ⊗ id1 +
∑

φL ⊗ φR with φR : 1 → X and

φL : X → 1 with φL ◦ φR = id1. It follows from axiom (ii) that there are

only morphisms X → 1 for X = 1 and thus φL, φR : 1 → 1. By Lemma 1.11

they have to be isomorphisms, 1 → 1 and thus by axiom (i) φL = φR = id1.

Hence Δ(id1) only has one summand corresponding to id1 ⊗ id1.

Theorem 1.20. For any strictly monoidal, finite decomposition, non-Σ

Feynman category F the tuple (B,⊗,Δ, ε, η) defines a bi–algebra over Z.

Proof. We check the compatibility axioms:

(1) The co–unit is multiplicative ε(φ⊗ψ) = ε(φ)ε(ψ). First, idX ⊗ idY =

idX⊗Y , since F is strict monoidal. Because of axiom (i) this is then the

unique decomposition of idX⊗Y , and hence both sides are either zero or

φ = n idX and ψ = midY , in which case both sides equal to nm.

(2) The unit is co–multiplicative: by Lemma 1.19, Δ(id1) = id1 ⊗ id1,

so Δ ◦ η = η ⊗ η.

(3) Compatibility of unit and co–unit: ε(1) = ε(id1) = 1 and hence

ε ◦ η = id.

(4) Bi–algebra equation: In order to prove that Δ is an algebra mor-

phism, we consider the two sums over the diagrams (1.9) and (1.10) above

and show that they coincide. First, it is clear that all diagrams of the second

type appear in the first sum. Vice–versa, given a diagram of the first type,

we know that Y � Ŷ ⊗ Ŷ ′, since Φ1 has to factor by axiom (ii) and the

Feynman category is strict. Then again by axiom (ii) Φ0 must factor. We

see that we obtain a diagram:

(1.12) X̂ ⊗ X̂ ′ �
σ=σ1⊗σ2

φ̂0⊗ψ̂0

X ⊗X ′ Φ=φ⊗ψ

Φ0

Z ⊗ Z ′

Y = Y ′ ⊗ Y ′′

Φ1

σ′=σ′
1⊗σ′

2 �

Ŷ ⊗ Ŷ ′

φ̂1⊗ψ̂1
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Now since the Feynman category is strict and non-symmetric, the two iso-
morphisms also decompose as σ = σ1 ⊗ σ2, and σ′ = σ′

1 ⊗ σ′
2, for a split-

ting Y = Y ′ ⊗ Y ′′ so that Φ0 = σ′−1
1 ◦ φ̂0 ◦ σ−1

1 ⊗ σ′−1
2 ◦ ψ̂0 ◦ σ−1

2 and

Φ1 = φ̂1 ◦ σ′
1 ⊗ ψ̂2 ◦ σ′

2 : Y = Y ′ ⊗ Y ′′ → Z ⊗ Z ′ and one obtains that both
diagram sums agree.

Examples are discussed in detail in §3.

1.3.5. Bi–algebra structure on Biso for a Feynman category.

Theorem 1.21. Given a factorization finite Feynman category F, (Biso,
⊗, η,Δiso, εiso) is a bi–algebra, both in the symmetric and the non–Σ case.

Proof. We can retrace the steps in the proof of Theorem 1.20, up until the
decomposition of σ and σ′ into tensor products. Even without this assump-
tion, the diagram (1.12) clearly shows that [(Φ0,Φ1)] = [(φ̂0⊗ψ̂0), (φ̂1⊗ψ̂1)],
so that there is indeed a bijection of the equivalence classes and hence the
bi–algebra equation holds. The compatibilities for the unit and co–unit are
simple computations along the lines of the proof of Theorem 1.20.

Remark 1.22.

1. If V is discrete in the non–Σ case, then Biso = B.
2. In the symmetric case, there is a difference in the count of diagrams

in B, which is controlled by the action d̄ and the symmetric group
actions. This is made precise in §2.

3. We have so far considered Feynman categories over Set. The theorems
also hold in the case of enriched Feynman categories such as FO, see
(§3.8.1) and [32] for more details. The enrichment can be over a tensor
category E which has a faithful functor to Ab, e.g. Vectk. In this case
one should work over the ring K = HomF (1,1), see §3.8.1 and [35,
§4] for more details.

4. This co–product actually corresponds to the category F′
V ′ of universal

operations [35, §6]. Here all channels with [φ1] = [ψ] corresponds to
the class of morphisms in HomF ′(φ, ψ). That means that each class
of such a morphism under isomorphism corresponds to a channel and
contributes a term to the sum. The associativity of the co–product is
then just the associativity of the composition in F′

V .

1.4. Co–module structure

Let B1 = B1 = Z[Ob(ı⊗ ↓ ı)] be the free Abelian group on the basic
morphisms —see also §2.1 below.
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Proposition 1.23. For a decomposition finite (non–Σ) Feynman category
the set of basic morphisms, that is objects of (F ↓ V) form a co–module, viz.
ρ := Δ|B1

: B1 → B1 ⊗ B is a co–module for Δ. For a factorization finite
Feynman category the analogous statement holds true for Biso

1 = B1/ ∼ and
Biso.

Proof. If φ ∈ Ob(ı⊗ ↓ ı), then Δ(φ) ∈ B1 ⊗B, since the target of φ0, which
is the target of φ, is an object of B for any factorization φ = φ0 ◦ φ1.

See §2.1 for more details on this point of view.

1.4.1. B+ operator. The definition of B+ operators in general is quite
involved, see [35, §3.2.1]. Functorially, such an operator gives a morphism
B → B1. Without going into a full analysis, which will be done in [33]. At
this points, we simply make the following definition.

Definition 1.24. A B+ multiplication or B+–operator for F is a morphism
B+ : B → B1 such that Δ1 := (id ⊗ B+) ◦ Δ : B1 → B1 ⊗ B1 and
μ1 := B+ ◦ μ⊗ together with the unit and co–unit, yield a unital, co–unital
bi–algebra structure on B1.

The multiplication for a co–operad with multiplication of [17, §3] is an
example, see §3.17.

This description also links the B+ operator to Hochschild homology, as
considered in [10].

1.5. Opposite Feynman category yields the co-opposite
bi–algebra

Notice that usually the opposite category of a Feynman category is not a
Feynman category, but it still defines a bi–algebra. Namely, the constructions
above just yield the co-opposite bi–algebra structure Bco−op. This means,
the multiplication is unchanged but the co–multiplication is switched. That
is Δ(φop) =

∑
φ1◦φ0=φ φ

op
1 ⊗ φop

0 .
The same holds for quotient and Hopf algebra structures discussed be-

low, i.e. H is replaced by H co−op.

1.6. Hopf algebras from Feynman categories

The above bi–algebras are usually not connected. There are several obstruc-
tions. Each identity morphism of an object X potentially gives a group–like
element. Additionally, unless V is discrete, there are isomorphisms which
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are not co–nilpotent. At a deeper level, they can prevent the identities of
the different X from being group-like elements and hence keep the putative
Hopf quotient form being connected. There are several other obstructions
to co–nilpotence, which one has to grapple with in the general case. We
will now formalize this and give checkable criteria that are met by the main
examples.

1.6.1. Almost group–like identities and the putative Hopf quo-
tient. A Feynman category has almost group–like identities if each of the
φL and hence each of the φR appearing in a co–product of any idX (1.4) is
an isomorphism.

Example 1.25. A counter–example, that is a Feynman category that does
not have group–like identities, is FinSet< or its skeleton Δ+. In this case, the
category is also not decomposition finite. The reason is that each id : n → n
factors as n ↪→ m � n for all m ≥ n. Both FS and FI as well as all
the graphical examples have group–like identities. For these notations and a
detailed analysis of the examples, see §3, especially §3.6, Table 1 and Table 2.

The assumption of almost group–like identities is, however, very natural
and is often automatic. The example above is symptomatic.

Lemma 1.26. If F is decomposition finite and has almost group–like iden-
tities then both in the symmetric and non–Σ case:

1. The classes [idX ] are group–like in Biso that is Δiso([idX ]) = [idX ]⊗
[idX ].

2. The two–sided ideal I = 〈[idX ]− [idY ]〉 in Biso is also a co–ideal.

Proof. Under the assumption of almost group–like identities:

(1.13) Δ(idX) =
∑

X′,σ∈Iso(F)(X,X′)

σ ⊗ σ−1

thus there is only one decomposition channel with multiplicity 1, since
[(σ, σ−1)] = [(idX ⊗ idX)].

Using (1): Δiso([idX ]− [idY ]) = [idX ]⊗ [idX ]− [idY ]⊗ [idY ] = ([idX ]−
[idY ])⊗ [idX ] + [idY ]⊗ ([idX ]− [idY ]) and εiso([idX ]− [idY ]) = 1− 1 = 0, so
that I is a co–ideal.

Definition 1.27. If F is factorization finite and has almost group–like iden-
tities then both in the symmetric and non–Σ case, we set H = Biso/I. We
call F Hopf, if it satisfies the stated conditions and the bi–algebra H has
an antipode, i.e. H is a Hopf algebra.
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Theorem 1.28. A Hopf Feynman category yields a Hopf algebra H :=
Biso/I, both in the symmetric and non–symmetric case. H is commuta-
tive in the symmetric case and not necessarily commutative in the non–
symmetric case.

Proof. The only new claim is the commutativity in the symmetric case. This
is due to the fact that the commutativity constraints are isomorphisms and
these become identities already in Biso.

In general, the existence of an antipode is complicated. We do know that
for graded connected bi–algebras an antipode exists. In terms of Feynman
categories this situation can be achieved by looking at definite Feynman
categories.

1.6.2. Graded Feynman categories. One thing that helps to check
connectedness and co–nilpotence is a grading. Each Feynman category has a
native length for objects and morphisms. Due to condition (i) for a Feynman
category every object X has a unique length |X| given by the tensor word
length of any object of V⊗ representing it. We define the length decrease (or
just length) of a morphism φ : X → Y as |φ| = |X| − |Y |. This is additive
under composition and tensor. Isomorphic objects have the same length, so
isomorphisms have length zero. Morphisms can also increase length, that
is, have negative length (decrease), as one may have a morphism 1 → ı(∗)
which increases length by one and hence has length −1, see [35, Remark
1.4.3].

An integer degree function for a Feynman category is a function deg :
Mor(F) → Z which is additive under composition and tensor product:
deg(φ ◦ ψ) = deg(φ ⊗ ψ) = deg(φ) + deg(φ), with the additional condi-
tion that isomorphisms have degree 0. Thus the length function | . | is a
degree function.

A graded Feynman category with an integer degree function is non-
negative or non-positive if all morphisms have non-negative or non-positive
degree respectively. We call a graded Feynman category definite if it is non–
positive or non–negative. Of course by changing deg to −deg, one can change
from non–positive to non–negative. One has extra structure in the definite
case, which allows one to define the condition of almost connected, see Def-
inition 1.35 and Lemma 1.32. All the main examples are definite.

Remark 1.29. In [35, Definition 7.2.1], similar notions were introduced: a
degree function has the two additional conditions: (1) to have positive values
and (2) all the morphisms are generated by degree 0 and 1 morphisms by
composition and tensor product. It is called a proper, if all morphisms of
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degree 0 are isomorphisms. Many, but not all, Feynman categories have a

proper degree function. Proper implies definite.

Example 1.30.

1. In the set based examples: for FinSet, |φ| is a proper integer degree

function. On FS, |φ| is a proper degree function and on FI, deg(φ) =

−|φ| is a proper degree function.
2. In the case of graphs of higher genus (b1 > 0), loop contractions are

of native length 0. It is more natural, to have a different grading, in

which both loop and edge contractions have degree 1 and mergers

have degree 0. This makes the relations homogeneous, cf. [35, §5.1].
For Aggctd this is a proper degree function. The degree of a morphism

φ is the number of edges of Γ(φ).
In most practical examples, mergers are excluded, making life simple.

This includes the Feynman categories for operads, colored operads,

modular operads, etc., however this excludes PROPs and other “dis-

connected” types. In all of Agg it actually suffices to have the gener-

ators (a) isomorphisms, (c) simple loop contractions and (d) mergers.

In this setting a proper degree function is given by assigning isomor-

phisms degree 0, and loop contractions and mergers degree 1.

3. All three main examples are definite. The Feynman categories FSO
for algebras over operads, see §3.8.1 and [35, §4] are precisely non–

negative, if there is no O(0); the length of elements of O(n) is n −
1. They are proper if O(1) = 1 is reduced. In the split unital case,

O(1) = 1 ⊕Ored(1), if Ored(1) has no invertible morphisms, they are

have group–like identities. Surjections are also non–negative. Dually,

regarding only injections is an example of a non–positive Feynman

category. All graph examples — without extra morphisms, see [35] —

are also non–negative.

Proposition 1.31. Given a factorization idX : X
φR→ Y

φL→ X it follows that

1. For any integer degree function deg(φR) = −deg(φL).

2. |φR| ≤ 0 and |φL| ≥ 0.

3. If F has a definite integer degree function then deg(φR) = deg(φL) = 0.

I.e. any morphism with a left or right inverse has degree 0.

4. If F is definite and if the only morphisms of F with length 0, which have

one–sided inverses are isomorphisms, then F has group–like identities.

5. If F has a proper degree function then F has almost group–like identi-

ties.
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6. If F is decomposition finite, then the identity of any object X does not

have a factorization idX : X
φR→ X ⊗ Y

φL→ X with |φR| < 0.

Proof. (1): deg(φL) + deg(φR) = deg(φL ◦ φR) = deg(idX) = 0. (2): De-

composing the morphisms for X =
⊗

v ∗v according to (ii) we end up with

sequences

∗v
φR,v→ Yv

φL,v→ ∗v

with φL,v ◦φR,v = id∗v
. This follows from decomposing φL and φR and then

comparing to the decomposition of the isomorphism φ. We see that |Yv| ≥ 1

since there are no morphisms from any X of length greater or equal to one

to 1. Thus |φRv
| ≤ 0 and hence |φR| =

∑
v |φRv

| ≤ 0. (3) follows from (2)

and (4) and (5) follow from (3).

(6): Define φ
(1)
R = φR and for n ≥ 2: φ

(n)
R = φR ⊗ id ◦ φ

(n−1)
R : X →

X ⊗ Y ⊗n and likewise set φ
(1)
L = φL and for n ≥ 1: φ

(n)
L = φ

(n−1)
L ◦ φL ⊗ id :

X ⊗ Y ⊗n → X. These satisfy φ
(n)
L ◦ φ(n)

R = idX and there will be infinitely

many possible decompositions of idX , one for each n, and, hence, we arrive

at a contradiction.

1.6.3. Morphisms of degree 0 and almost–connectedness in the

definite case. We can reduce the question of the existence of an antipode

further in the case of a definite Feynman category to the connectedness of

the degree 0 morphisms. Let B0 be the span of the morphisms of degree 0

and set BV = Z[HomF (ı(V), ı(V))].

Lemma 1.32. Assume that F is decomposition finite, strict and definite

w.r.t. deg, then

1. B0 together with the restriction of the co–unit ε|B0
are a sub–co–

algebra of B. Together with ⊗ the unit η, B0 is a sub–algebra.

2. B0 is isomorphic to the symmetric tensor algebra on morphisms φv :

X → ı(∗v) of degree 0.

If the length function | . | is definite, then

3. BV together with the co–unit ε|BV and the unit η form a pointed co–

algebra.

4. BV = HomF (ι(V), ι(V))⊗ = B⊗
V . Thus any morphism of length 0

has a decomposition into morphisms of BV up to permutations in the

symmetric case.
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Proof. Suppose φ : X
φR→ Z

φL→ Y has degree 0, then deg(φR) + deg(φL) =
deg(φ) = 0. In the definite case this implies deg(φR) = deg(φL) = 0, which
shows that B0 is a sub–co–algebra and since ⊗ has is additive in degree, B0

is also subalgebra. The co-unit restricts and the unit is of length 0. Also if
deg(φ) = 0 as φ �

⊗
v∈V φv with deg(φv) ≥ 0 (or ≤ 0) and

∑
v∈V |φv| = 0,

which means that ∀v ∈ V : deg(φv) = 0. In particular, if |Y | = 1, we see
that |X| = 1 as |φ| = 0 and since |φL| = |φR| = 0, also |Z| = 1 so that BV is
a sub–co–algebra. The image of η is in BV and ε restricts as the idX ⊂ BV .
The last statement follows from (2) by the observation that if |φv| = 0, then
|Xv| = 1 and hence Xv = ı(∗v).
Remark 1.33. The elements of BV split according to whether they are
isomorphisms or not. That is, whether or not they lie in Mor(V).

By induction, one can see that what can keep things from being con-
nected is B0 or in the case of deg = | . | being definite BV . This is analogous
to the situation for co–operads with multiplication, where, V is trivial and
BV = O(1) is the pointed co–algebra as in Definition 1.35.

Corollary 1.34. Assume that F has almost group–like identities. If F has
a definite degree function then

1. Biso
0 := (B0/ ∼) is a sub–bi–algebra with the induced unit and co–unit.

2. If I0 is the restriction of the ideal and co–ideal I = 〈[idX ]− [idY ]〉 to
B0 then (H0 = Biso

0 , η, ε) is a sub–bi–algebra of H .
3. If | . | is a definite degree function then Biso

V := (BV/ ∼) is a sub–bi–
algebra with the induced unit and co–unit.

4. Let IV be I restricted to Biso
V then (HV := Biso

V /IV ,Δiso, εiso, ηiso) is
a sub–bi–algebra of H .

Proof. Immediate from the above.

Definition 1.35. We call F almost connected with respect to a given definite
degree function if

i. F is factorization finite.
ii. F has almost group–like identities.
iii. (H iso

0 ,Δiso, ε, η) is connected as a pointed co–algebra

Lemma 1.36. Assume F is factorization finite, has almost group–like iden-
tities and | . | is a definite degree function. Then: if (HV , ε, η) is almost
connected, (H0, ε, η) is as well and hence F is almost connected w.r.t. | . |.
Proof. This follows from Lemma 1.32 (4) by applying the bi–algebra equa-
tion.
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Theorem 1.37. If F is almost connected then F is Hopf.

Proof. We show that H is co–nilpotent and hence connected. WLOG we as-
sume deg is non–negative. Any decomposition of a morphisms φ into (φ0, φ1)
for which deg(φ0), deg(φ1) �= 0 has deg(φ0), deg(φ1) < deg(φ) due to the ad-
ditivity of deg. These terms of Δiso of lesser degree are taken care of by
induction. The terms with degree 0 factors are taken care of by the almost
connectedness of B0 and co–associativity.

Proposition 1.38. If deg is a proper degree function for a factorization
finite F, then F is almost connected and hence Hopf.

Proof. By Proposition 1.31 (5) F has almost group–like identities. H0 = [id1]
and is connected.

Remark 1.39. Any morphism φ : X → Y satisfies Δ(φ) = idX ⊗ φ + φ ⊗
idY + . . . . In the case of almost group–like identities, the idX are group–like
elements in Biso. Hence it is interesting to study the co–radical filtration
and the ([idX ], [idY ])–primitive elements in B. They correspond to the gen-
erators for morphisms in Feynman categories [35]. In the main examples
they are all tensors of elements of length 1.

1.7. Functoriality

Let f : F → F′ be a morphism of Feynman categories. In the strict case,
this is a pair of functors f = (v, f): v : V → V and f : F → F ′, strict
symmetric monoidal, compatible with all the structures, see [35, Chapter
1.5]. In general, one allows strong monoidal functors. In the non-Σ case, the
functor f is required to be strict, resp. strong monoidal. For a morphism φ ∈
Mor(F ′) thought of as a characteristic function φ(ψ) = δφ,ψ one calculates

(1.14) f∗(φ) := φ ◦ f =
∑

φ̂∈Mor(F):f(φ̂)=φ

φ̂

This induces a pull–back operation under f. The pull–back descends to iso-
morphism classes. We set [φ]([ψ]) = 1 if φ and ψ are in the same class and
0 otherwise. The lift is defined by f∗([φ])([ψ̂]) := [φ]([f(ψ̂)]).

Proposition 1.40. For non–Σ Feynman categories:

1. Via f∗, f induces a morphism of unital algebras BF′ → BF.
2. If f is injective on objects, then f∗ induces a morphism of co–algebras

BF′ → BF.
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3. If f∗ is bijective on objects, it induces a morphism of co–unital co–
algebras BF′ → BF.

For Feynman categories:

4. Via f∗, f induces a morphism of unital algebras Biso
F′ → Biso

F .
5. If f is essentially injective on objects, then f∗ induces a morphism of

co–algebras Biso
F′ → Biso

F .
6. If f∗ is essentially bijective on objects, it induces a morphism of co–

unital co–algebras Biso
F′ → Biso

F .

Proof. In the non–Σ case: For a strictly monoidal f : F → F ′, f∗ is functo-
rial in the algebra structure: using (1.14). Consider φ : X → Y, ψ : X ′ → Y ′,
then (f∗ ⊗ f∗)(φ ⊗ ψ) = (φ ◦ f) ⊗ (ψ ◦ f) = (φ ⊗ ψ) ◦ f = f∗(φ ⊗ ψ).
Here for the penultimate equality: let X̂, X̂ ′, Ŷ and Ŷ ′ be lifts of X,X ′, Y
and Y ′ and let Φ̂ : X̂ ⊗ X̂ ′ → Ŷ ⊗ Ŷ ′ then Φ̂ decomposes as Φ̂1 ⊗ Φ̂2,
Φ̂1 : X̂ → Ŷ , Φ̂2 : X̂ ′ → Ŷ ′, since we are in the non–Σ case, and thus
f(Φ̂) = f(Φ̂1 ⊗ Φ2) = f(Φ̂1)⊗ f(Φ2).

For the co–product one calculates:

Δ(f∗φ) =
∑

φ̂∈Mor(F):f(φ̂)=φ

∑
(φ̂0,φ̂1):φ̂1◦φ̂0=φ̂

φ̂0 ⊗ φ̂1(1.15)

(f∗ ⊗ f∗)Δ(φ) =
∑

(φ0,φ1):φ1◦φ0=φ

∑
φ̂0,φ̂1∈Mor(F):f(φ̂0)=φ0,f(φ̂1)=φ1

φ̂0 ⊗ φ̂1

We now check that the sums coincide. Certainly for any term in the first
sum corresponding to decomposition φ̂ = φ̂1 ◦ φ̂0 appears in the second sum,
since f is a functor: f(φ̂1) ◦ f(φ̂0) = f(φ̂0 ◦ φ̂1) = f(φ̂) = φ. The second
sum might be larger, since the lifts need not be composable. If, however,
f is injective on objects, then all lifts of a composition are composable
and the two sums agree. The unit agrees, because of the injectivity and
uniqueness of the unit object and the triviality of Hom(1,1). For the co–
unit, we need bijectivity. Namely, 1 = ε(idX), but if f is not surjective, then
some f∗(idX) = 0 and ε(f∗(idX)) = 0 �= 1. If f is not injective, then as all
the f(idX̂) = idX for all X̂ : f(X̂) = X, ε(f∗(idX)) =

∑
X̂:f(X̂)=X and the

sum is > 2 for some X. Thus the condition is necessary. It is also sufficient.
If f is bijective on objects, then, îdX = idX̂ +T , with ε(T ) = 0. This implies
that ε(f∗(idX)) = ε(idX̂) = 1 and ε(f∗(φ)) = 0 if φ �= idX̂ . as there is no
idX̂ in the fiber over φ if φ is not an identity. If the functor is not injective,
we might have more objects in the fiber and if it is not surjective f∗(idX)
can be 0.
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In the symmetric situation, the arguments are analogous using isomor-
phism classes. Although one cannot guarantee the decomposition of Φ as
above, there is a decomposition up to isomorphism Φ̂ = Φ̂1 ⊗ Φ̂2 ◦ σ. Like-
wise, the essential injectivity ensures that the lifts are composable as classes
and the essential surjectivity is needed to preserve the co–unit.

Remark 1.41. A functor between Feynman categories is an indexing if it
is bijective on objects, cf. [32] for more details on indexings.

Definition 1.42. We call a functor f as above Hopf compatible if it is
essentially bijective and f∗(IF′) ⊂ IF.

The following is straightforward.

Proposition 1.43. If F and F′ are Hopf, a Hopf compatible functor induces
a morphism of Hopf algebras HF′ → HF.

The following is a useful criterion:

Proposition 1.44. If in addition to being essentially bijective f does not
send any non–invertible elements of Mor(F) to invertible elements in
Mor(F ′), then f is Hopf compatible.

Proof. That the condition is necessary is clear. Fix X, then up to isomor-
phism there is a unique lift X̂ of X. Any lift of idX is then an isomorphism
φ̂ : Ŷ → Ŷ ′ with both Ŷ and Ŷ ′ being isomorphic to X̂ which means that
[φ̂] = [idX̂ ] and f∗[idX ] = [idX̂ ].

These criteria reflect that Hopf algebras are very sensitive to invert-
ible elements. It says that we can identify isomorphisms and are allowed to
identify morphisms, but only in each class separately.

Example 1.45. An example is provided by the map of operads: rooted 3–
regular forests → rooted corollas. This give a functor of Feynman categories
enriching FS or in the planar version of FS<, see 3.8.1. This functor is
Hopf compatible thus induces a map of Hopf algebras which is the morphism
considered by Goncharov in [22].

Example 1.46. Another example is given by the map of rooted forests with
no binary vertices → corollas. The corresponding morphisms of Feynman
categories is again Hopf compatible.

However, if we consider the functor of Feynman categories induced by
rooted trees→ rooted corollas is not Hopf compatible. It sends all morphisms
corresponding to binary trees to the identity morphism of the corolla with
one input. Thus is maps non–invertible elements to invertible elements. The
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presence of these extra morphisms in HCK is what makes it especially in-
teresting. They also correspond to a universal property, see [44] and [17,
Example 2.50].

2. Variations on the bi– and Hopf algebra structures

Here we will give some variations of the structures above. The first is an
analysis of the role of basic morphisms as indecomposables. The second is
the possibility to modify the bi–algebra structure and how to twist by co–
cycles. For the latter there are two relevant constructions. The first involves
quotienting by isomorphisms and the second uses co–cycles to twist the co–
multiplication.

The need to regard twists stems from the fact, that in the symmetric case
the bi–algebra equation fails on the level of morphisms, i.e. without passing
to the isomorphism classes. The reason for this is that Aut(X)×Aut(X ′) ⊂
Aut(X ⊗ X ′) is a proper subset due to the permutation symmetries. To
remedy this one can twist in certain situations, for example if d̄ is a free
action.

There would be a third alternative, which is to use representations, in
the spirit in which they appear in the fusion rules in physics. But, we will
not delve into this further technical complication at this point and leave it
for future study.

2.1. Bi-algebra structure induced from indecomposables

For a strict Feynman category Mor(F) = Obj(ı⊗ ↓ ı)⊗ and hence B is the
strictly associative free monoid on B1 = Z[Ob(ı⊗ ↓ ı)] ⊂ B with additional
symmetries possibly given by the commutativity constraints induced by F .

Lemma 2.1. If F is strict and non–Σ, B1 is the set of indecomposables.

Proof. By axiom (ii) any morphism with target of length greater or equal to
2 is decomposable. If the target of a morphism φ has length 1, it can only
decompose as φ = φ̂ ⊗Z λ with λ ∈ Z[Hom(1,1)] = Zid1, since the only
object of length 0 is unit 1 and F was taken to be strict. Hence λ = ±id1 is
itself a unit in the algebra and φ = ±φ̂.

We now suppose that B1 is decomposition finite, which means that the
sum in (2.1) is finite. Consider the one–comma generators B1 and define

(2.1) Δindec(φ) =
∑

{(φ0,φ1):φ=φ0◦φ1}
φ0 ⊗ φ1
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here φ0 ∈ B1 and φ1 =
⊗

v∈V φv for φv ∈ B1. We extend the definition of
Δindec to all of B via the bi-algebra equation.

(2.2) Δindec(φ⊗ ψ) :=
∑

(φ0 ⊗ ψ0)⊗ (φ1 ⊗ ψ1)

where we used Sweedler notation.1

ε(φ) =

{
1 if φ = idX

0 else

In this case there is a direct proof of the bi–algebra structure. A posteri-
ori using Lemma 2.1 it follows that this bi–algebra structure coincides with
the decomposition bi–algebra structure.

Proposition 2.2. With the assumptions on F as above and that B1 is de-
composition finite, the tuple (B,⊗F ,Δindec,1, ε) is a bi–algebra. A posteriori
Δ = Δindec.

Proof. The multiplication is unital and associative. That the co–product
is co–associative and ε is a co-unit is a straightforward check. The latter
follows from the decomposition idX = ⊗vid∗v

if X = ⊗v∗v. The fact that
the bi–algebra equation holds, follows from the fact that all elements in B1

are indecomposable with respect to this product. For the co–associativity,
we notice that in both iterations we get sum over decomposition diagrams
φ = φ′′′ ◦ φ′′ ◦ φ′.
(2.3)

X =
⊗

v

⊗
w∈Vv

Xw

φ′=⊗wφw

⊗
v

⊗
w∈Vv

⊗
u∈Vw

∗u
φ=

⊗
u φu ∗

Z1 =
⊗

v

⊗
w∈Vv

∗w
⊗

v Zv
φ′′=

⊗
v φ′′

v
Z2 =

⊗
v ∗v

φ′′′=
⊗

φ′′′
v

where the order of the factors is fixed and the sum is over the possible
morphisms and bracketings. That Δ = Δindec follows from the equality of
the co–products on indecomposables for the bi–algebra which by Lemma 2.1
are precisely B1.

Remark 2.3. This two step process corresponds to the free construction
Ǒnc in Chapter 1. A prime example is the bi–algebra of rooted planar trees

1If there is a non–trivial commutativity constraint, we take this to mean σ23 ◦
Δ⊗Δ
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aka. bi–algebra of forests of Connes and Kreimer [10]. The usual way this
is defined is to give the co–product on indecomposable, viz. trees, and then
extend using the bi–algebra equation.

2.2. Isomorphisms, quotients and twists

We collect more precise information about the isomorphisms and their role
in order to make the more specialized constructions. The first is a quotient
by the co–ideal of isomorphisms in the non–Σ case. In the symmetric case,
although we have a co–ideal to divide by, there is a problem with the bi–
algebra equation already on the level of the morphisms. Note, we are not
taking isomorphisms yet. To remedy the situation, one can introduce twists
in certain situations.

2.2.1. Iso– and automorphisms. By the conditions of a Feynman cat-
egory for X =

⊗k
i=1 ∗i. In the non–symmetric case, any automorphism

factors, so

Aut(X) � Aut(∗1)× · · · ×Aut(∗k) in the non–symmetric case.

In the symmetric case its automorphisms group is the wreath product

Aut(X) � (Aut(∗1)× · · · ×Aut(∗k)) � Sk in the non–symmetric case.

2.2.2. The co–ideal generated by the isomorphisms relation. Re-
call that f ∼ g if they are isomorphic, c.f. §1.2.1.

Proposition 2.4. Let C be the ideal generated by elements f−g with f ∼ g.
Then

(2.4) Δ(C) ⊂ B ⊗ C + C ⊗ B

and hence B/C is a unital algebra and (non–co–unital) co–algebra.

Extending scalars to Q, there is a co–unit on Bquot
Q = B/C ⊗Z Q

(2.5) εquot([f ]) :=

{
1

|Iso(X)||Aut(X)| if [f ] = [idX ]

0 else

Proof. To compute the co–product, we break up the sum over the factoriza-
tions of f and g with f ∼ g into the pieces that correspond to a factorization
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through a fixed space Z.

(2.6) Z
f2

X
f

�σ′

f1

Y

� σ

X ′ g

g1

Y ′

Z

g2

Now the term in Δ(f − g) corresponding to Z is
∑

i f
i
2 ⊗ f i

1 −
∑

j g
j
2 ⊗ gj1.

Re–summing using the identification gi1 := f i
1 ◦ σ′−1 and gi2 := σ ◦ f i

2 this

equals to∑
i

(f i
2 ⊗ f i

1 − gi2 ⊗ gi1) =
∑
i

(f i
2 − gi2)⊗ gi1 +

∑
i

f i
2 ⊗ (f i

1 − gi1)

For the co–unit, notice that Δ([f ]) = [Δ(f)] is a sum of terms factoring

through an intermediate space Z. If Z �� X,Y then these terms are killed by

εquot on either side, since there will be no isomorphism in the decomposition.

If Z � X, then any factorization f ◦σ−1⊗σ with σ ∈ Iso(X,Z) descends to

[f ◦σ−1]⊗ [σ] = [f ]⊗ [idX ]. Since Iso(X,Z) is a left Aut(X) torsor, there are

exactly |Aut(X)||Iso(X)| of these terms and εquot ⊗ id evaluates to 1 ⊗ [f ]

on their sum. By Lemma 1.4, all other decompositions will evaluate to 0

and we obtain that εquot is a left co–unit. Likewise εquot is a right co–unit

by considering the terms which factor through Y ′ ∈ Iso(Y ).

Remark 2.5.

1. Note that C is not a co–ideal in general, since for any automorphism

σX ∈ Aut(X) : [σX ] = [idX ] and hence ε(C) �⊆ ker(ε). Likewise if

X � Y and φ : Y
∼→ Y ′ then [idX ] = [φ] from Lemma 1.4. This is why

we need a new definition for the co–unit. If there are no automorphisms

and the underlying category is skeletal, then ε descends as claimed in

[23].

2. The equivalence relation ∼ is coarser than the equivalence studied in

[23] for the standard reduced incidence category.
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3. Extending scalars from Z all the way to Q may not be necessary; we

only need that |Iso(X)| and |Aut(X)| are invertible for allX. Although

in the symmetric case, the automorphisms groups will contain all Sn
and hence Q is necessary.

4. One can get rid of the terms X ′ ∈ Iso(X) in Δ(idX) and the factor

|Iso(X)| by considering a skeletal version. Recall that skeletal means

that there is only one object per isomorphism class.

5. Although in the symmetric case, the bi–algebra equation does not hold

on B, it does on a non–Σ Feynman category. The difference is due to

§2.2.1. The failure in the symmetric case is analyzed in detail in §2.2.3
below.

Theorem 2.6. Let F be a decomposition finite non–Σ Feynman category

set Bquot
Q with the induced product, unit, co–product and co–unit εquot is a

bi–algebra.

Proof. In the non–symmetric case, the compatibility of product and co–

product descend as does the compatibility of the unit. For the co–unit, we

notice that εquot([φ ⊗ ψ]) as well as εquot([φ])εquot([ψ]) are 0 unless [φ] =

λ[idX ] and [ψ] = μ[idY ]. If this is satisfied, by the conditions of a non–

symmetric Feynman category |Aut(X)||Aut(Y )| = |Aut(X ⊗ Y )| as well as
|Iso(X)||Iso(Y )| = |Iso(X ⊗ Y )| so that εquot([idX ] ⊗ [idY ]) = εquot([idX ])

εquot([idY ]).

We define the ideal J̄ = 〈|Aut(X)||Iso(X)|idX −|Aut(Y )||Iso(Y )|idY 〉
of Bquot

Q , and then consider H quot
Q = Bquot

Q /J̄ .

Theorem 2.7. Assume that F is decomposition finite non–Σ and has almost

group–like identities, then, J̄ is a co–ideal in Bquot
Q and H quot

Q = Bquot
Q /J̄

is a bi–algebra with co–unit induced by εquot and unit ηH quot
Q

(1) = [id1F ]. If

H quot
Q is connected, then it is a Hopf algebra.

Proof. In Bquot
Q , (1.13) reads Δ([idX ]) = |Aut(X)||Iso(X)|[idX ]⊗ [idX ], so

that

Δ(|Aut(X)||Iso(X)|[idX ])− |Aut(Y )||Iso(Y )|[idY ]
= (|Aut(X)||Iso(X)|)2[idX ]⊗ [idX ]− (|Aut(Y )||Iso(Y )|)2[idY ]

= (|Aut(X)||Iso(X)|[idX ]−|Aut(Y )||Iso(Y )|[idY ]⊗|Aut(X)||Iso(X)|[idX ]+

|Aut(Y )||Iso(Y )|[idY ]⊗ (|Aut(X)||Iso(X)|[idX ]− |Aut(Y )||Iso(Y )|[idY ])
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Hence, the ideal J̄ is generated by elements |Aut(X)||Iso(X)|[idX ] −
|Aut(Y )||Iso(Y )|[idY ] is also a co–ideal, as these also satisfy

εquot(|Aut(X)||Iso(X)|[idX ]− |Aut(Y )||Iso(Y )|[idY ]) = 1− 1 = 0

It is easy to check that ηH quot
Q

yields a split co–unit.

Remark 2.8.

1. One can use a notions of grading and almost connectedness here as in
previous analysis of connectedness. This is entirely analogous to [17,
§2.5.1].

2. If V is also discrete and F skeletal then J̄ = 〈[idX ] − [idY ]〉 and
Bquot

Q = Biso ⊗Z Q. This is the case for the non–Σ operads, see §3.8.

2.2.3. The symmetric case: a careful analysis of the two sides of
the bi–algebra equation. The following proposition a finer version of
Proposition 1.20 which also holds in the symmetric case.

Proposition 2.9. For any factorization of Φ = φ⊗ψ : X×X ′ → Z⊗Z ′ as
Φ0 ◦Φ1 : X×X ′ → Y → Z⊗Z ′ there exists a decomposition σ′ : Y � Ŷ ⊗ Ŷ ′

and a factorization (φ0 ⊗ ψ0, φ1 ⊗ ψ1) factoring through Ŷ ⊗ Ŷ ′ such that
(Φ0,Φ1) = d̄(σ′)(φ0⊗ψ0, φ1⊗ψ1) = (φ0⊗ψ0◦σ′−1, σ′◦φ1⊗ψ1). Furthermore,
all such factorizations are in 1–1 correspondence with the cosets Iso(Y, Ŷ ⊗
Ŷ ′)/Aut(Ŷ )×Aut(Ŷ ′).

Proof. Given a decomposition of Φ as (Φ0,Φ1), we can follow the argument
of the proof of Theorem 1.20 up until the discussion of the isomorphisms σ
and σ′.

In the symmetric case, a priori there could be permutations involved for
σ and σ′. This is, however, not the case for σ, and we can absorb it to get
decompositions of Φ. More precisely, the isomorphism σ has to be a block
isomorphism as axiom (ii) applies to the two decompositions Φ = φ ⊗ ψ
and Φ � φ̂0 ◦ ψ̂0 ⊗ φ̂1 ◦ ψ̂1. This means that σ in (1.12) is uniquely a tensor
product of isomorphisms σ = σ1 ⊗ σ2, since both decompositions have the
same target decomposition Z ⊗ Z ′. By pre-composing, we get the tensor
decomposition Φ = (φ̂0 ⊗ ψ̂0) ◦ (φ̂1 ⊗ ψ̂1) ◦ (σ−1

1 ⊗ σ−1
2 ).

Continuing with the decomposition of this form, we turn to σ′. We know
that by (ii) that σ′ can be written as a tensor product decomposition pre-
ceded by a permutation. If σ′ = σ′

1 ⊗ σ′
2, we have that Y = Y ′ ⊗ Y ′′ and

(Φ0,Φ1) appears as a tensor product. Again absorbing the tensor decompo-
sition means that the remaining terms corresponding to non–tensor decom-
posable permutations, and hence to a sum over the respective cosets.
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Notice that fixing any isomorphism in Iso(Y, Ŷ ⊗ Ŷ ′) identifies it with
Aut(Ŷ⊗Ŷ ′) so that the quotient group Iso(Y, Ŷ⊗Ŷ ′)/[Aut(Ŷ )×Aut(Ŷ ′)] be-
comes identified with Aut(Ŷ ⊗Ŷ ′)/[Aut(Ŷ )×Aut(Ŷ ′)] � Aut(Y )/(Aut(Y ′)×
Aut(Y )). Using this identification, we can see that if F is a Feynman cat-
egory, then in the proof of Theorem 1.20 the sets of diagrams agree up to
a choice of cosets of isomorphisms of σ′ in (1.12), that is the difference in
the count of diagrams will result from the cosets Aut(Ŷ ⊗ Ŷ ′)/(Aut(Ŷ ) ×
Aut(Ŷ ′)). More precisely:

Corollary 2.10. Splitting the sum Δ ◦μ into sub–sums over a fixed decom-
position of Y = Y ′ ⊗ Y ′′, Δ ◦ μ =

∑
Y (Δ ◦ μ)Y , we have

(2.7)
∑
Y

(Δ ◦ μ)Y =∑
Y=Y ′⊗Y ′′

∑
[σ′]∈Aut(Y )/(Aut(Y ′)×Aut(Y ′′))

d̄(σ′) (μ⊗ μ ◦ π23 ◦Δ⊗Δ)Ŷ⊗Ŷ ′

where we have fixed a decomposition Ŷ ⊗ Ŷ ′ � Y and used the identification
above.

In the non–Σ case, Aut(Y ) � Aut(Y ′) × Aut(Y ′′), which implies that
Aut(Y )/(Aut(Y ′)×Aut(Y ′′)) is trivial and we recover Theorem 1.20.

Thus, in the symmetric case, the bi–algebra equation fails on B. An
interesting aspect is the possibility to twist the co–multiplication by a co–
cycle, to make it hold on B/C, which in certain cases leads to a bi–algebra
structure.

Example 2.11. In the case of trivial V, in the symmetric case, we have
Aut(n)×Aut(m) = Sn×Sm ⊂ Sn+m = Aut(n+m) in V⊗. Let us consider the
trivial Feynman category with trivial V, that is F = S, the skeletal version
of V⊗, which has the natural numbers as objects and only isomorphisms as
morphisms, where Hom(n, n) = Aut(n, n) = Sn. We will consider Δ(idn ⊗
idm) = Δ(idn+m) =

∑
σ∈Sn+m

σ ⊗ σ−1. We analyze the possible diagrams

(1.12) for the summand σ ⊗ σ−1 in the proof of Theorem 1.20.

(2.8) n⊗m
σ′

σ̂n⊗σ̂m

n⊗m = n+m
idn+m=idn⊗idm

σ

n+m

n⊗m

σ−1

σn⊗σm◦σ−1

n⊗m

σ−1
n ⊗σ−1

m
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And we see that σ′ = σ−1
n ⊗ σ−1

m ◦ σ̂n ⊗ σ̂m = σ−1
n ◦ σ̂n ⊗ σ−1

m ◦ σ̂m absorbing
this block isomorphism into σ̂n ⊗ σ̂m, we get the diagram.

(2.9) n⊗m = n+m
idn+m=idn⊗idm

σ

σn⊗σm

n+m

n⊗m

σ−1

σn⊗σm◦σ−1

n⊗m

σ−1
n ⊗σ−1

m

If σ is of the form σn ⊗ σm, then the term appears in Δ(idn) ⊗ Δ(idm).
Otherwise, the action of Aut(Y ) on Hom(X,Y ) ⊗ Hom(Y, Z) with X =
Y = Z = n+m, on the decompositions appearing in Δ(idn)⊗Δ(idm) and
moreover, picking representatives σr of Aut(n+m)/(Aut(n)×Aut(m)) and
summing over their action, we get an equality

Δ(idn ⊗ idm) =
∑

σr∈Sn+m/(Sn⊗Sm)

ρ(σr)Δ(idn)⊗Δ(idm)

In particular for equivalence classes in B/C, we get

Δ([idn]⊗ [idm]) =
(n+m)!

n!m!
Δ([idn])⊗Δ([idm])

which shows the failure of the bi–algebra equation.

However, the difference can be absorbed by a co–cycle: Set β(σn, σ
−1
n ) =

1
|Aut(n)| =

1
n! . Define a new co–multiplication: Δβ(idn) = β(σn, σ

−1
n )σn⊗σ−1

n

then ⊗ and Δβ on Bquot
Q satisfy the bi–algebra equation.

2.2.4. Actions and co–cycles. Recall that there is an Aut(Z) action on
Hom(Z, Y )×Hom(X,Z) given by d̄(σ)(φ0, φ1) = (φ0 ◦ σ−1, σ ◦ φ1).

By a twisting co–cycle for the co–product, we mean a morphism B →
Hom(B ⊗ B,K) that is a linear collection of bilinear morphisms βφ, s.t.
Δβ(φ) =

∑
(φ0,φ1)

βφ(φ0, φ1)φ0⊗φ1 is still co–associative. Such a co–cycle is
called multiplicative if βφ⊗ψ = βφβψ on decomposables. β is called co–unital,
if there exists a co–unit εβ for Δβ .

Proposition 2.12. Assuming for simplicity that we are in the skeletal case.
If the Aut(Z) action is free on all decompositions, then we can define a
modified co–product Δβ on B, defined the multiplicative co–cycle, which is
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given by a co–cycle β(φ0, φ1) =
1

|Aut(Z)| for a factorization φ : X
φ1→ Z

φ0→ Y .

In the non-Σ case the co–cycle is multiplicative, and, if the identities are
almost group–like, co–unital.

This co–algebra structure descends to B/C furnishing a bi–algebra struc-
ture:

(2.10) Δred([φ]) := [Δβ ](φ) =
∑
Z

∑
ir

[φir
1 ]⊗ [φir

0 ]

where the sum runs over representatives of the Aut(Z) action. There is a
co–unit

(2.11) εred([φ]) =

{
1 if [φ] = [idX ]

0 else

This is true, both in the non–Σ and the symmetric case.

Proof. The fact that this is co–associative is a straightforward calculation
given that the action is free and that the Aut(Z1) and Aut(Z2) actions on
decompositions X → Z1 → Z2 → Y commute. The co–unit in the skeletal
case is simply εβ(φ) = 1 if φ = idX and 0 else. The multiplicativity in the
non–Σ case corresponds to the fact that Aut(Y ⊗ Y ′) � Aut(Y )⊗Aut(Y ′).

On B/C one calculates:

Δred[(φ]) = [Δβ(φ)] =
∑
Z

∑
i

β(φ0, φ1)[φ
i
0 ⊗ φi

1]

=
∑
Z

∑
ir

∑
σ∈Aut(Z)

1

|Aut(Z)| [φ
ir
0 ◦ σ−1]⊗ [σ ◦ φir

1 ]

=
∑
Z

∑
ir

[φir
0 ]⊗ [φir

1 ]

For the bi–algebra equation in the symmetric case: Inspecting the proof
of Corollary 2.10, we get an additional factor of 1

|Aut(Y )| for each summand

in Δ◦μ, while on the other side of the equation the factor is 1
|Aut(Ŷ )||Aut(Ŷ ′)| .

These cancel with the additional factor of |Aut(Y )|
|Aut(Ŷ )||Aut(Ŷ ′)| in (2.7).

2.2.5. Balanced actions. More generally, one could define the putative
co–cycle β(φi

1, φ
i
0) = 1

|Or(φ1,φ0)| where Or(φ0, φ1) is the orbit under the

Aut(Z) action. If this is indeed a co–cycle then we say that F has a bal-
anced action by automorphisms. The trivial and free actions are balanced.
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Proposition 2.13. If F is non–symmetric, skeletal in the above sense, and
decomposition finite with balanced actions as above then tuple (B,⊗,Δβ ,
η, εβ) is also a bi–algebra.

Proof. The fact that we have an algebra remains unchanged. For the co–
algebra, we have to check co–associativity, which is guaranteed by the as-
sumption that the action is balanced. The bi–algebra equation still holds,
since the co–cycle is multiplicative: β(φ1⊗ψ1, φ0⊗ψ0) = β(φ1, ψ1)β(φ0, ψ0).
This follows from the fact that in the non–Σ case: Aut(Z ⊗Z ′) = Aut(Z)⊗
Aut(Z ′).

Remark 2.14.

1. The reduced structure is available for the non–skeletal version. Here,
for instance in the free action case, one obtains factors |Iso(Z)||Aut(Z)|
which again constitutes a multiplicative co–cycle.

2. A priori It seems that the two bi–algebra structures Δβ for a balanced
action and Δiso may differ. We conjecture that they do coincide for all
Feynman categories of crossed type [35, §5.2].

2.2.6. Summary. Since there are many constructions at work here, we
will collect the results for the bi–algebras in an overview theorem:

Theorem 2.15. Fix a decomposition finite non–Σ or a factorization finite
Feynman category F, let B = Z[Mor(F) and Bsk := BFsk

based on the
skeletal version of F . Let C be the ideal generated by ∼ in B and Csk the
respective ideal in Bsk. Set Biso = B/C, Bquot

Q = Biso ⊗Z Q.

1. Both B and Bsk are unital algebras with ⊗ as product and id1 as the
unit. They are Morita equivalent as algebras

2. Both B and Bsk are co–unital co–algebras with respect to the decon-
catenation co–product with co–unit ε.

3. If F is a non–Σ Feynman category: B and Bsk are unital, co–unital
bi–algebras.

4. Biso � Bsk/Csk as algebras and there is a bi–algebra structure (Biso,
⊗, ηiso,Δiso, εiso) defined via co–invariants as in Theorem 1.21.

5. If F is non–Σ then there is a unital, co–unital quotient bi–algebra
(Bquot

Q ,⊗, ηquot,Δquot, εquot) as defined in §2.2.
6. If the action of Aut(Z) on Hom(X,Z)×Hom(Z, Y ) is trivial, free or

in general balanced for all X,Y, Z, then the twisted B descends to a
bi–algebra (Bquot

Q ,⊗, ηquot,Δred, εred).
7. All the structures above are graded by the length of a morphism or the

degree of a morphism if there is an integer degree function.
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2.3. Feynman categories, groupoids and de–compositions

The co–nilpotence of the deconcatenation is related to iterated factoriza-
tions, which appear in [35, §3.3] in the form of iterated Feynman categories
F′, . . .F(n), . . . . The associated maximal sub–groupoids V(n)⊗, . . . form a
simplicial groupoid: objects at level n are factorizations of morphisms into
n chains, with the isomorphisms between these chains. In operad theory
this type of groupoid explicitly appeared already in [21] in the context of
(twisted) modular operads, cf. also [43].

More explicitly, consider the ‘fat nerve’ X = X (F) of any category F ,
the simplicial groupoid with Xn the groupoid of n-chains

αn = (X0 → X1 → · · · → Xn) in F

and the isomorphisms between such chains, and X0 = Iso(F). The simplicial
operator d1 : X2 → X1 is composition in F . Its homotopy fiber over an object
φ : X → X ′ in X1 is thus the groupoid Fact(φ) of factorizations φ � φ1 ◦φ2.

In a special situation, one can use the theory of decompositions which
was developed after [35] and the beginning of this paper, cf. [34, §3.3].

In the transition to decomposition spaces, one however looses the sim-
plicity that the co–product was initially just the dual of the composition.

Suppose F is any Feynman category such that the factorisations of the
identity on the monoidal unit form a contractible groupoid. Then it can be
shown that in fact X (F) is a symmetric monoidal decomposition groupoid
[18, §9]. The tensor and unit of F clearly define η : ∗ → X , μ : X ×X → X ,
but it is the key hereditary condition of a Feynman category that shows
that tensor and composition are compatible: they form a homotopy pullback
square

Fact(φ)× Fact(φ′)

�⊗

X2 × X2
◦×◦

⊗

X1 ×X1

⊗

� (φ, φ′)

Fact(φ⊗ φ′) X2 ◦ X1 � φ⊗ φ′,

for all φ : X → Y and φ′ : X ′ → Y ′, that is, ⊗ : Fact(φ) × Fact(φ′) →
Fact(φ⊗ φ′) is a groupoid equivalence.

From [18, Theorem 7.2 and §9] we see that X (F) induces a bi–algebra
in the symmetric monoidal category of comma categories of groupoids and
linear functors between them, and in [19] the finiteness conditions necessary
and sufficient to pass to bi–algebras in the category of Q-vector spaces are
studied.
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3. Constructions and examples

The main examples are already directly accessible via the formalism above.
However, more context is provided, by using several universal constructions
on Feynman categories from [35, §3], see also [32] for more details.

We will go through the examples starting with the basic ones, which
contain the three main examples, and then introduce further complexity to
provide better insight and further examples.

3.1. Examples with trivial V a.k.a. operads and the three main
examples

Let V = ∗ be the trivial category with one object ∗ and its identity morphism
id∗. In the non–symmetric case, there is an equivalence V⊗ � N0 with the
discrete category whose objects are the natural numbers, with n representing
∗⊗n. The monoidal structure is given by addition. Here 0 = ∗⊗0 = ∅. In the
symmetric monoidal case there is an equivalence V⊗ = S, which again has
the natural numbers as objects, but with HomS(n,m) = ∅ for n �= m and
HomS(n, n) = Sn, the symmetric group. This category is sometimes also
denoted by Σ and it is the skeleton of Iso(FinSet), where FinSet is the
category of finite sets with set maps. For more details, see [31], especially
§2.4.

Consider a strict Feynman category F = (∗,F , ı) with Obj(F) = N0. The
monoidal unit is 1 = 0. The basic morphisms will be F(n, 1) := O(n). Since
HomF (n, n) = Sn, the collection O(n) has an action of Sn in the symmetric
case. By the hereditary condition (ii):

(3.1) HomF (n, k) = 
(n1,...,nk:
∑

ni=nHomF (n1, 1)
 · · · 
HomF (nk, 1)

= 
(n1,...,nk:
∑

ni=nO(n1)
 · · · 
 O(nk)

and the composition ◦ : HomF (k, 1) × HomF (n, k) → HomF (n, 1) will be
given by

(3.2) ◦ : O(k)× (
(n1,...,nk:
∑

ni=nO(n1)
 · · · 
 O(nk)) → O(n)

or in components by

(3.3) γk;n1,...,nk
: O(k)× (O(n1)
 · · · 
 O(nk)) → O(n)

The fact that ◦ is associative together with the properties of id1 implies that
the γ give the collection O(n) the structure of an operad with unit u = id1.
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Furthermore, because of axiom (i), we see that Aut(1) = id1, so that
O(1) only has id1 as an invertible element. In principle, there can be mor-
phisms in HomF (0, 1) = O(0). The length of a morphisms in HomF (n, k) =
n− k.

This recovers [17, §2.3] for the duals of operads in Set, which contains
the examples of rooted trees. For operads in other categories, see §3.8.1.
Proposition 3.1. The strict Feynman categories whose underlying V is
trivial are in 1–1 correspondence with set–operads, whose O(1) splits as
O(1) = id1 
 O(1)red where no element in Ored(1) is invertible. They are
non–negative with respect to length, if O(0) = ∅ and are non–positive w.r.t.
length, if O(i) = ∅ for i > 0.

The construction of bi–algebras and conditions for Hopf algebras coincide
in both formulations under this translation.

3.2. Connes–Kreimer tree algebras

Let FCK be the Feynman category with trivial V, F having objects N0 and
morphisms given by rooted forests: HomFCK

(n,m) is the set of n-labeled
rooted forests with m roots. The composition is given by gluing the roots
to the leaves. This is the twist of FS by the operad of leaf-labeled rooted
trees, see §3.8.1.

In the non-Σ version, one uses planar forests/trees and omits labels or
equivalently uses orders on the sets of labels. Here this is the twist by the
non–Σ operad of planar forests of FS<.

Here there is non–trivial O(1). This is basically the difference of the +
and the hyp construction, see §3.8.1. The grading n−p is the native grading
and the co–radical length is the word length of a morphism and is given by
the number of vertices.

3.2.1. Leaf labeled and planar version of Connes–Kreimer. We
now give complete details. Let O be the operad of leaf labeled rooted trees
or planar planted trees. Here O(1) has two generators: id1 which we denote
by |, and •|, the rooted tree with one binary non–root vertex. Composing
•| with itself n times will result in •|n, the rooted tree with n binary non–
root vertices, aka. a ladder with n vertices. We also identify •| 0 = |. Taking
the dual, either as the free Abelian group of morphisms, or simply the dual
as a co–operad, we obtain a co–operad and the multiplication is either ⊗
from the Feynman category or ⊗ from the free construction. That these two
coincide follows from condition (ii) of a Feynman category. η is given by
| = id1. The Feynman category and the co–operad are almost connected,
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since Δ(•|n) =
∑

(n1,n2):n1,n1≥0,n1+n2=n •|n1⊗•|n2 and hence the reduced co–

product is given by Δ̄(•|n) =
∑

(n1,n2):n1,n1≥1,n1+n2=n •|n1⊗•|n2 whence Ǒ(1)
is nilpotent.

If we take planar trees, there are no automorphisms and we obtain the
first Hopf algebra of planted planar labeled forests. Notice that in the quo-
tient [|] = [|| . . . |] = [1] which says that there is only one empty forest. If we
are in the non–planar case, we obtain a Hopf algebra of rooted forests, with
labeled leaves. These structures are also discussed in [17], and in [15], [16]
and [14].

3.2.2. Algebra over the operad description for Connes–Kreimer.
If one considers algebras over the operad O, then for a given algebra (ρ, V ),
ρ(•|) ∈ Hom(V, V ) is a “marked” endomorphism. This is the basis of the
constructions of [44]. One can also add more extra morphisms, say •| c for
c ∈ C where C is some indexing set of colors. This was considered in [45].
In general one can include such marked morphisms into Feynman categories
(see [35, 2.7]) as morphisms of ∅ → ∗[1].

3.2.3. Unlabeled and symmetric version. In the non–planar case, we
have the action of the symmetric groups as Aut(n). The bi–algebra on the
co–invariants and the Hopf quotient of Theorem 1.21 yield the same re-
sults as the constructions [17, §2] in the symmetric case. The result is the
commutative Hopf algebra of rooted forests with unlabeled tails.

The action of the automorphisms is free and hence there is also the
reduced version of the co– and Hopf algebras.

3.2.4. No tail version. For this particular operad, there is the construc-
tion of forgetting tails and we can use the construction of [17, §2.10]. In this
case, we obtain the Hopf algebras of planted planar forests without tails or
the commutative Hopf algebra of rooted forests, which is called HCK . On
the Feynman category level, this construction is done using universal opera-
tions of §3.9 applied to the decorated Feynman categories, see §3.5, FSdecO
and FS<,decO for the (non–Σ) operad of leaf labeled trees.

3.3. Colored operads and their dual co–operads

Colored operads are partial operads, where the compositions are allowed
if the colors match. More precisely, fix a set of colors C then, a colored
operad is a collection O(c1, . . . , cn; c) with c, ci ∈ C and there is a compo-
sition γ : O(c1, . . . , cn; c) ⊗ O(c11, . . . , c

m1

1 ; c1) ⊗ · · · ⊗ O(c1n, . . . , c
mn
n ; cn) →

O(c11, . . . , c
m1

1 , . . . , c1n, . . . , c
mn
n ; c).
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Remark 3.2. The dual of a colored operad is a co–operad. Indeed, one only

decomposes into factors that are a priori composable.

In the Feynman category terms, cf. [35, §2.5], these are Ops for a Feyn-

man category whose vertices are rooted corollas together with a morphisms

of the flags to C. This is technically a decoration, see §3.5. One then restricts

to those morphisms whose underlying ghost graphs have the property that

both flags of any ghost edge have the same color, see §3.4. Coloring is a form

of decoration and restriction as discussed in [26, §6.4]. Such a colored operad

also furnishes an (enriched) Feynman category whose vertices are c ∈ C and

whose basic morphisms are given by the O(c1, . . . , cn; c) : 
n
i=1ci → c. The

ci are called input colors and c is the output color.

Proposition 3.3. The strict Feynman categories based on colored operads

as above are non–negative with respect to length, if O(∅, c) = ∅ and are

non–positive w.r.t. length if O(c1, . . . , cn, c) = ∅ for n > 0.

The construction of bi–algebras and conditions for Hopf algebras coin-

cide in both formulations under this translation to the bi–algebras and Hopf

algebras obtained from the dual co–operads.

This includes the examples of Goncharov and Baues in the form dis-

cussed in [17, §2.24].

Remark 3.4. If the co–operads are not in Set the construction and state-

ment are analogous, see §3.8.1 below.

3.3.1. Bi– and Hopf algebras from categories, sequences and Gon-

charov’s Hopf algebra.

Proposition 3.5. Every category defines a colored operad and thus we ob-

tain an associated bi–algebra and possibly a Hopf algebra from any category.

This recovers the Hopf algebra of Goncharov’s and Baues’ construction

when considering a complete groupoid.

Proof. Consider Xn = Nn(C) the simplicial object given by the nerve of a

category. Let C = N1(C) = Mor(C) be the set of colors. Then there is a

colored operad defined by O(φ1, . . . , φn, φ) = {X0
φ1→ · · · φn→ Xn ∈ Nn(C) :

φ = φn◦· · ·◦φn}. If X0
φ1→ · · · φn→ Xn is an n simplex and Xi−1 = Y0

ψ1→ · · · ψm→
Ym = Xi is an m simplex, with ψm ◦ · · · ◦ ψ1 = φi, then we can compose to

X0
φ1→ · · · φi−1→ Xi−1 = Y0

ψ1→ · · · ψm→ Ym = Xi+1
φi+1→ · · · φn→ Xn
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Figure 1: Marking a corolla by a simplex in N•(C). The morphisms decorate
the ends of the tree, while the objects decorate the angles which correspond
to the marks on the half circle.

If the underlying category is a complete groupoid, so that there is exactly
one morphism per pair of objects, then any n–simplex can simply be replaced
by the word X0 · · ·Xn of its sources and targets.

Notice that in the complete groupoid case V = {X0X1} is the set of
words of length 2 not 1. This explains the constructions of Goncharov involv-
ing multiple zeta values, but also polylogarithms [22], and the subsequent
construction of Brown. This matches our discussion in [17, §4] and §3.5.1.

3.3.2. Marking angles by morphisms. Considering the simplicial ob-
ject given by the nerve of a category N•(C) yields a particularly nice exam-
ple of the duality between marking angles vs. marking tails. An n–simplex

X0
φ1→ X1 · · ·

φn→ Xn naturally gives rise to a decorated corolla, where the
angles are decorated by the objects and the leaves are decorated by the
morphisms, viz. the colors, see Figure 1. The operation that the corolla
represents is the composition of all of the morphisms to get a morphism
φ = φn ◦ · · · ◦ φ0 : X0 → Xn, viz. the output color. If there is a single
morphism between any two objects either one of the markings, tail or an-
gle, will suffice to give a simplex. In the general case, one actually needs
both the markings. The angle/tail duality is related to Joyal duality; see
[17, Appendix B] and §3.6 below.

3.4. Graph examples

The basic graph Feynman category is G = (Crl ,Agg , ı), defined in detail in
[35, §2.1]; see also Appendix A. The notion of graph that is used is that of
[6]. The BM–graphs from a category, and Agg is the full subcategory whose
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objects are aggregates of corollas. A corolla is a graph with one vertex and

no edges, and an aggregate is a disjoint union of these. Crl is the groupoid of

corollas and their isomorphisms, and ı is inclusion. To each BM–morphism

φ : X → Y between two aggregatesX and Y , one can associate a ghost graph

Γ(φ), see Appendix §A.1.4. A morphism φ is roughly a graph Γ(φ), together
with an identification of the vertices of Γ(φ) with the source aggregate and an

identification of Γ(φ)/EΓ(φ) with the target aggregate, see [35, §2.1] and the

appendix for details. Different varieties of graph based Feynman categories

are then given by restricting or decorating graphs in a manner respected by

composition (see the appendix and the examples in §5). A first new example

is that of collections of 1-PI graphs, which we call the Broadhurst–Connes–

Kreimer Feynman category.

Without going into all the details, we wish to note the following facts,

cf. [35, §2.1, §5 and Appendix A].

1. The morphisms of Agg are generated by (a) isomorphisms, (b) simple

edge contractions, (c) simple loop contractions, (d) simple mergers.

A simple edge contraction glues two flags from two different corollas

together to form an edge and then contracts the edge leaving a corolla.

A simple loop contraction does the same with the exception that the

two flags come from the same corolla. A simple merger identifies two

distinct corollas by identifying their vertices and keeping all flags. The

ghost graph keeps track of which flags have been glued together to

form edges that are subsequently contracted.

2. The subcategory generated by only the first three classes defines the

wide subcategory Aggctd of Agg and the Feynman category Gctd =

(Crl ,Aggctd , ı). The ghost graphs of morphisms in (Agg ↓ Crl) are

connected.

3. A ghost graph does not define a morphism uniquely, but the isomor-

phisms class [φ] for φ ∈ Aggctd is fixed by the ghost graph Γ(φ). In Agg

the same is true for the morphisms in (Agg ↓ Crl). The ghost graph

also fixes the source of a morphism and the target up to isomorphism.

4. Composition of morphisms corresponds to graph insertion. In particu-

lar in Aggctd, Γ(φ◦ψ) = Γ(φ)◦Γ(ψ) where Γ(φ) has connected compo-

nents corresponding to the vertices of Γ(ψ): Γ(φ) = 
v∈V (Γ(ψ))Γv(φ).

The insertion inserts Γv(φ) into the vertex v of Γ(ψ) – using extra

data provided by the morphisms to identify the flags aka. half–edges

adjacent to v with the tails aka. external legs of Γv(φ). An example is

given in Figure 2.
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5. For a basic morphism in Agg, i.e. one whose target is a corolla, the
ghost graph determines the isomorphism class. In Aggctd the isomor-
phism class of any morphism is determined by its ghost graph and
vice–versa.

6. If φ = φ0 ◦ φ1 then (a) Γ(φ) = Γ(φ0) ◦ Γ(φ1) as above, but also (b)
Γ(φ1) ⊂ Γ(φ) is (not necessarily connected) subgraph and Γ(φ0) �
Γ(φ)/Γ(φ1). The corresponding factorization of a morphism in (F ↓ V)
is

(3.4) X
φ

φ1

∗

Y
φ0

and on
iso classes

X
Γ(φ)

Γ(φ1)

∗

Y
Γ(φ0)=Γ(φ)/Γ(φ1)

where Γ(φ1)a is a subgraph, Γ(φ)/Γ(φ0) is sometimes called the co–
graph and ∗ is the residue in the physics nomenclature; see Figure 2
for an example.

Lemma 3.6. In Aggctd the action of Aut(Y ) on Hom(X,Y ) is free.

Proof. We use the terminology and formalism of Appendix A. A morphism
is given by φ = (φV , φ

F , ıφ) the action of σ = (σV , σ
F , id) with both σF and

σV bijections. Now (σ ◦ φ)F = φF ◦ σF , which already implies the result as
σF is an injection.

Corollary 3.7. In Aggctd the action on the middle space is a free action
on the decompositions.

Proposition 3.8. On isomorphism classes Γ in Aggctd.

(3.5) Δiso(Γ) =
∑
Γ1⊂Γ

Γ/Γ1 ⊗ Γ1 =
∑
Γ1⊂Γ

Γ0 ⊗ Γ1

Here Γ is the isomorphism class Γ = [φ] = Γ(φ) and Γ1 = Γ(φ1) is a
subgraph, which corresponds to the isomorphism class of a decomposition
[(φ0, φ1)] where then necessarily Γ(φ0) = Γ(φ)/Γ1. Moreover if Γ is con-
nected, so is Γ0. — both are isomorphism classes in (Aggctd ↓ Crl).
Proof. Given φ its isomorphism type is fixed by Γ(φ). We can choose a
representative for φ. The claim is that the factorizations up to the action
on the middle space are given precisely by the subgraphs. Indeed, given
any subgraph, there is surely a factorization. We have to show that there
is exactly one term per sub–graph. For this, we “enumerate everything”.
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Figure 2: An example of a factorization in three–valent graphs aka. φ3.
Alternatively the top graph Γ results from inserting the left graph Γ1, which
has three components, into the right graph according Γ0 to the vertex map
{u, v, w} �→ r, p �→ p, q �→ q, viz. Γ = Γ0 ◦ Γ1, or the left graph is a subgraph
of the top graph Γ1 ⊂ Γ and the right graph Γ0 is the quotient graph.
Γ0 = Γ/Γ1.

That is the flags, vertices, ghost edges etc. to fix the morphism. For a given
subgraph there is a putative morphism, whose source is fixed and whose
target is fixed up to isomorphism. This ambiguity is exactly compensated
by the action on the middle space. This actions is free, on the decompositions
and does not change the subgraph and hence every subgraph appears exactly
once in the sum.

Note that the multiplicities of the graphs appearing on the right side can
be higher than one as the same graph may appear in several ways yielding
different subgraphs, but isomorphic quotient graphs.

Example 3.9. We consider the morphism of Figure 3. Each edge leads to a
factorization. One such factorization is given in Figure 4. If we write φ = φ0◦
φ1, we note that im(φF

1 ) = {1, 1′, 2, 2′}. If (φ̂0, φ̂1) is the decomposition with
respect to the other edge {2, 2′}, then im(φF

1 ) = {1, 1′, 3, 3′}. Since this in-
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Figure 3: The co–product of a graph. The factor of 2 is there, since there
are two distinct subgraphs —given by the two distinct edges— which give
rise to two factorizations whose abstract graphs coincide.

Figure 4: One decomposition. To fix φ we specify φF (1) = 1, φF (2) = 1′, to
fix φ1, we set φF

1 (1) = 1, φF
1 (2) = 1, φF

1 (3) = 1′, φF
1 (4) = 2′ and to fix φ0 we

fix φF
0 (1) = 1, φF

0 (2) = 2. There is no choice for the vertex maps and the
involution is the one given by the ghost graph.

variant under the Aut(∗1,2,3,4) action (φ̂0, φ̂1) and (φ1, φ0) are not equivalent

under this action. But the abstract one edge graphs are the same. Γ(φ̂i) =
Γ(φi) : i = 0, 1. To be clear, different subgraphs, same underlying graph.

3.4.1. Graph based Feynman categories and Connes–Kreimer Hopf
algebras. If we look at the Feynman category G = (Crl ,Agg , ı) then we
obtain the core Hopf algebra of graphs of Connes and Kreimer [10]. The
standard “refined” grading is as follows. Usually there will be no mergers
involved, and edge contractions and loop contractions are assigned degree
1. The co-radical grading is by word length in the elementary morphisms,
that is the grading above, which coincides with the number of edges.

There are several restrictions and decoration that one can put on the
graphs to obtain sub–categories indexed over the category G. Here indexing
means that there is a functor surjective on objects, cf. [35, §1.2.7]. Decoration
is used in the technical sense described below §3.5; see [26, §6.4] for standard
decorations of graphs.

The key thing is that the extra structures and restrictions respect the
concatenation of morphisms, which boils down to plugging graphs into ver-
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tices. Examples of this type furnish bi– and Hopf algebras of of modular
graphs, non–Σ modular graphs, trees, planar trees, etc.

3.4.2. 1–PI graph version. A not so standard example, at least for
mathematicians, are 1–PI graphs. Recall that a connected 1–PI graph is
a connected graph that stays connected, when one severs any edge and in
general a 1–PI graph is a graph whose every component is 1–PI. A nice way
to write this is as follows [8]: Let b1(Γ) be the first Betti number of the graph
Γ. Then a graph is 1–PI if for any proper subgraph γ � Γ: b1(γ) < b1(Γ).
This means that 1-PI for non-connected graphs any edge cut decreases the
first Betti (or loop) number by one.

It is easy to see that the property of being 1–PI is preserved under
composition in G, namely, blowing up a vertex of a 1-PI graphs into a 1-PI
graph leaves the defining property (namely connectivity) invariant. Hence,
we obtain a bi–algebra of 1–PI graphs. It is almost connected and after
amputation, one obtains the Hopf algebra used in physics.

A decorated version of this is Brown’s Hopf algebra of motic graphs, see
below §3.5.1.

3.5. Decoration: FdecO

This type of modification was defined in [26] and further analyzed in the
set–based case in [5]. It gives a new Feynman category FdecO from a pair
(F,O) of a Feynman category F and a strong monoidal functor O : F → C.
The objects of FdecO are pairs (X, aX), aX ∈ O(X) (aX ∈ HomE(1,O(X))
in the general enriched case). The morphisms from (X, aX) to (Y, aY ) are
those φ ∈ HomF (X,Y ) for which O(φ)(aX) = aY . For a morphism φ, we
let s(φ) and t(φ) be the source and target of φ.

Lemma 3.10. The morphism of FdecO are pairs (φ, as(φ)), as(φ) ∈ O(s(φ)).
If F is decomposition finite, then so is FdecO. If F is Hopf, then so is FdecO.

Proof. By descriptions, any morphism (X, aX) → (Y, aY ) is a lift of a
morphism φ : X → Y . Such a lift exists if aY = O(aX). Thus fixing
φ : X → Y and aX ∈ O(X), there is a unique morphism (φ, aX) : (X, aX) →
(Y,O(φ)(aX)) and these are all the morphisms. Since the source and φ fix
the target:

(3.6) Δ((φ, aX)) =
∑

(φ0,φ1):φ=φ0◦φ1

(φ0,O(φ1)(aX))⊗ (φ1, aX)

This equation also shows that the Hopf property is preserved.
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3.5.1. Brown’s motic Hopf algebras. In [8] a generalization of 1–PI

graphs is given. In this case there are the decorations of (ghost) edges of the

morphisms by masses and the momenta; that is, maps m : E(Γ) → R and

q : T (Γ) → Rd∪{∅}. Notice that these are decorations in the technical sense

of [26] as well. For this, the decoration operad is O(∗S) = {S �→ Rd
R}, so
that each flag is either decorated by a momentum, or a mass. As a functor,

under edge/loop contractions the decoration on the contracted flags is simply

forgotten. This gives a decoration of all the flags of the ghost graph. This

is not the end result, but we further to restrict to those morphisms whose

ghost graphs have the same decoration for any two flags that make up a

ghost edge, which is the standard procedure, cf. [26, §6.4]. This results in

the ghost edges being decorated by masses. The masses carry over onto the

new edges upon insertion. Note that the flags that carry momenta are never

glued.

A subgraph γ of a graph Γ is called momentum and mass spanning

(m.m.) if it contains all the tails and all the edges with non–zero mass. This

means that as a ghost graph its target has corollas, whose flags are labeled

with 0 mass except possibly one corolla whose flags are labeled with all the

external momenta. A graph Γ is called motic if for any m.m. subgraph γ:

b1(γ) < b1(Γ). This condition invented by Brown generalizes 1–PI. It is again

stable under composition, i.e. gluing graphs into vertices as can be readily

verified; see [8, Theorem 3.6].

After taking the quotient and amputating all tails marked by momenta,

we see that the one vertex ghost graph becomes identified with the empty

graph and we obtain the Hopf algebra structure of [8, Theorem 4.2].

3.6. Simplicial structures and Feynman categories

In this section, we consolidate and expand the construction of [17, §4] in the

setting of Feynman categories.

3.6.1. The Feynman category FinSet and variations. The basic

non–trivial Feynman category with trivial V, is FinSet = (∗,FinSet, ı)
where FinSet, the category of finite sets and set maps with monoidal struc-

ture given by the disjoint union 
. The functor ı is given by sending ∗
to the atom {∗}. The equivalence between S and Iso(FinSet) is clear as

S is the skeleton of Iso(FinSet). Condition (iii) holds as well. Given any

morphisms S → T between finite sets, we can decompose it using fibers
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as

(3.7) S
f

=

T

=


t∈T f−1(t)
�ft 
t∈T {∗}

where ft is the unique map f−1(t) → {∗}. Note that this map exists even

if f−1(t) = ∅. This shows the condition (ii), since any isomorphisms of this

decomposition must preserve the fibers.

FinSet has the Feynman subcategories FS = (∗, FS, ı), where the maps

are restricted to be surjections and FI = (∗, F I, ı) where the maps are

restricted to be injections. This means that none of the fibers are empty or

all of the fibers are empty, respectively.

In the non–Σ case, a basic example is FinSet< = (∗,FinSet<, ı), where
FinSet< is the category of ordered finite sets with order preserving maps

has as F the category of and with 
 as monoidal structure. The order of

S 
 T is lexicographic, S before T . The functor ı is given by sending ∗ to

the atom {∗}. Viewing an order on S as a bijection to {1, . . . , |S|}, we see

that N0, the set N0 viewed as a discrete category (that is with only identity

morphisms), is the skeleton of Iso(FinSet<). The diagram (3.7) translates

to this situation and we obtain a non–Σ Feynman category. The skeleton

of Feynman category is the strict Feynman category (∗,Δ+, ı), where Δ

is the augmented simplicial category and ı(∗) = [0]). Restricting to order

preserving surjections and injections, we obtain the Feynman subcategories

FS< = (∗, OS, ı) and FI< = (∗, OI, ı). We can also restrict the skeleton of

FinSet< given by Δ+ and the subcategories of order preserving surjections

and injections. See Tables 1 and 2. In Δ+ the image of ∗⊗n under ı⊗ will be

the set n with its natural order.

Example 3.11 (Bi– and Hopf–algebra structures). FinSet and FinSet<
are not decomposition finite, but the restrictions to injections and surjec-

tions in the skeletal version are. The bi–algebra structure on surjections is

as follows: the basic morphisms are surjections πn : n � 1 which can be

alternatively viewed as corollas with n inputs. In the non–sigma case, V is

discrete and B = Biso. We get

(3.8)

Δ(πn) =
∑

1≤k≤n,f :(n,<)�(k,<)

πk ⊗ f =
∑

1≤k≤n,(n1,...,nk):n1≥1,
∑

ni=n

πk ⊗ (πn1
⊗ · · · ⊗ πnk

)
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Table 1: Set based Feynman categories Feynman categories. V = ∗ is trivial

F F definition
FinSet FinSet Finite sets and set maps
FS Surj Finite sets and surjections
FI Inj Finite sets and injections

Table 2: Set based non-Σ Feynman categories. V = ∗ is trivial

non-Σ F F definition
FinSet< FinSet< Finite sets and order preserving maps.
FS<, OS Ordered finite sets and ordered preserving surjections
FI< OI Ordered finite sets and order preserving injections
Δ+ Δ+ Augmented Simplicial category, Skeleton of FinSet<
FI∗,∗ OI∗,∗ Subcategory of Δ+ of double base–point preserving

injections

since an order preserving surjection is uniquely determined by the cardinal-

ities of its ordered set of fibers. In the Hopf algebra, we get

(3.9)

ΔH (πn) = πn⊗1+1⊗πn+
∑

1<k<n,(n1,...,nk):ni>1,1<
∑

ni<n

πk⊗(πn1
⊗· · ·⊗πnk

)

as in the quotient [id1] = [1 � 1] = 1 as well as its products. This reproduces

the example of corollas [17, Example 2.54].

For the case of FS, we can use a skeleton for the isomorphism classes.

The bi–algebra is then

Δ([πn]) =
∑

1≤k≤n,[f ]:f :�(k,<)

[πk]⊗ [f ](3.10)

=
∑

1≤k≤n,{n1,...,nk}:n1≥1,
∑

ni=n

πk ⊗ [πn1
] · · · [πnk

]

ΔH (πn) = [πn]⊗ 1 + 1⊗ [πn](3.11)

+
∑

1<k<n,{n1,...,nk}:ni>1,1<
∑

ni<n

[πk]⊗ [πn1
] · · · [πnk

]

Note that this gives the same multiplicities as in Example [17, 2.77].

3.6.2. The Feynman category of simplices, intervals and the Joyal

dual of FS<. As stated previously, there is a very interesting and useful

contravariant duality [24] of subcategories of Δ+ between Δ and the cat-
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egory Δ∗,∗, which are the endpoint preserving morphisms in Δ+. It maps

surjections OS in Δ to double base point preserving injections OI∗,∗.
Thus the category FIop∗,∗ is also a non–Σ Feynman category with triv-

ial V. One has to be careful with the monoidal structure: while in Δ the

monoidal structure is disjoint union of small categories, for which [n]⊗[m] =

[n + m + 1], with unit ∅ = [−1]. The monoidal structure on Δ∗,∗ is the

one defined e.g. in Definition [17, 4.9], whose unit is [0]. We will denote

this tensor product by ∗⊗∗, so that [n]∗⊗∗[m] = [n + m] by identifying n

and 0.

FI∗,∗ = (∗, OI∗,∗, ∗⊗∗), ı) is also a subcategory of the non–Σ Feynman

FI< category. The underlying objects of F are the natural numbers. To

each n we associate [n], technically ı(∗) = [1]. For the morphisms, we have

the identity id[1] in Hom([1], [1]), and one can check that indeed id∗⊗∗n
[1] =

id[n].

To get injections in Δ+, we only need to add one morphism: p : [0] → [1]

which we will call special. This generates all injections, cf. [35, §2.10.3].
Any double–base point preserving injection from [n + 1] to [m + 1] in Δ+

is then represented by a tensor product of identities and special maps for

the tensor product ⊗. This can be used to give a representation of the

Feynman category FI∗,∗ in terms of generators and relations in the sense

of [35, §5]. In particular, any double base point preserving injection can be

written as id ⊗ pn1−1 ⊗ id ⊗ pn2−1 ⊗ · · · ⊗ pnd−1 ⊗ id : [d] → [N ], where

N =
∑d

i=1 ni is the operadic degree, the length is N − 1. Let us introduce

the notation (1; 0n1−1, 1, 0n2−1, . . . , 1, 0nd−1; 1) for this morphism. Where we

think of 0n−1 = 0, 0, . . . , 0 as n− 1 occurrences of 0 indicating the elements

in the target that are not hit.

Just as surjections are generated by the unique maps n � 1, so too are,

dually, the double base point preserving injections generated by the unique

maps [1] → [n] ∈ Hom∗,∗([1], [n]). These are the basic morphisms. In the

notation above the unique double base point preserving injection [1] → [n]

is (1; 0n−1; 1) = (1; 0, . . . , 0; 1) with n − 1 copies of 0. It is given by id ⊗
p⊗n−1⊗ id. For example: (1; 0n−1, 1)∗⊗∗(1; 0m−1, 1) = (1; 0n−1, 1, 0m−1; 1) =

id⊗ p⊗n−1 ⊗ id⊗ p⊗m−1 ⊗ id : [1]∗⊗∗[1] = [2] → [n]∗⊗∗[m] = [n+m] is the

morphism that sends 0 �→ 0, 1 �→ n, 2 �→ n+m.

In general

(1; 0n1−1, 1, 0n2−1, . . . , 1, 0nd−1; 1) =

(1; 0n1−1; 1)∗⊗∗(1; 0
n2−1; 1)∗⊗∗ · · · ∗⊗∗(1; 0

nd−1; 1)
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The factorizations dual to the surjections n � k � 1, i.e. [0] → [k] → [n]
yields the co–product

Δ(1; 0n−1; 1) =
∑
k≥0

(n1,...,nk):
∑

ni=n)

(1; 0k−1; 1)⊗ (1; 0n1−1, 1, . . . , 0nk−1; 1) =(3.12)

∑
k≥0

(n1,...,nk):
∑

ni=n)

(1; 0k−1; 1)⊗
(
(1; 0n1−1; 1)∗⊗∗(1; 0

n2−1; 1)∗⊗∗ · · · ∗⊗∗(1; 0
nk−1; 1)

)

The Hopf quotient is then given by setting id1 = (1;∅; 1) = 1 = id1.

Remark 3.12. In terms of [17, §3] a multiplication is given by sending free
tensor product � to ∗⊗∗ —and evaluating. See §3.6.3 for pictorial repre-
sentations. This corresponds to the equivalence in axiom (ii) for Feynman
categories by picking a functor from the free monoidal category realizing
the equivalence. Identifying � with ⊗ explains the appearance of (op)-lax
monoidal functors, see §3.7 and [17, Proposition 4.10].

Remark 3.13. Note that the depth is the number of 1s. Except for the
interpretation as a lax monoidal functor, it is not clear how this is exactly
related to the multi–zeta values and will be a field of further study. A differ-
ent encoding would be to use the symbol (0; 1, . . . , n − 1;n) for the unique
double base point preserving injection [1] → [n]. Then the formula becomes.

Δ(0; 1, . . . , n− 1;n) =
∑
k≥0

(j1,...,jk):
∑

ji=n)

(0; 1, . . . , k − 1; k)⊗(3.13)

(
(0; 1, . . . , j1 − 1; j1)∗⊗∗(0; 1, . . . , j2 − 1; j2)∗⊗∗ · · · ∗⊗∗(0; 1, . . . , jk − 1; jk)

)
This is the basic structure of Goncharov’s co–product, see e.g. [17, (1.6)],

which only needs one more step of decoration, see §3.5, and especially §3.6.5.
In this particular case, these are angle markings, see §3.3.2. Further connec-
tions are given in Example 3.23 and §3.7.1.

3.6.3. Pictorial representation. Pictorially, the surjection is naturally
depicted by a corolla while the injection is nicely captured by drawing an
injection as a half circle. The use of half circles goes back to Goncharov,
albeit he did not associate them to double base point preserving injections.
Joyal duality can then be seen by superimposing the two graphical images.
The superposition goes back to [20]. The connection to Joyal duality is
new. This duality is also that of dual graphs on bordered surfaces. This
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Figure 5: The interval injection [1] → [n] on the left, the surjection n → 1 on
the right and and Joyal duality in the middle. Here reading the morphism
upwards yields the double base point preserving injection, while reading it
downward the surjection.

Figure 6: The first step of the composition is to assemble a collection of half
discs or a forest into one morphism. This is pictured on the right. The j
and i are related by il = j1 + . . . jk. Notice that in the half disc assembly
is glued at the il essentially repeating them, while the forest assembly does
not repeat. This also corresponds to an iterated cup product.

is summarized in Figure 5. Notice that in this duality, the elements of [n]

correspond to the angles of the corolla and the elements of n label the leaves

of the corolla.

This also explains the adding and subtraction of 1 in the formulas for

Joyal duality [17, (B.2)].

For general surjections, the picture is the a forest of corollas and a col-

lection of half circles. The composition then is given by composing corollas

to corollas and by gluing on the half circles to the half circles by identifying

the beginning and endpoints. This is exactly the map of combining simpli-

cial strings. The prevalent picture for this in the literature on multi–zetas

and polylogs is by adding line segments as the base for the arc segments.

This is pictured in Figure 6. The composition is then given by contracting
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Figure 7: The second step of composition. For half circles on the left, where
we have deformed the half circles such that the outer boundary is now a
half circle, corollas on the right and the duality in the middle. is done in
Figure 6. The result of the composition is after the third step, which erases
the inner curves or segments and in the corolla picture contracts the edges.
The result is in Figure 5.

the internal edges or dually erasing the internal lines. This is depicted in
Figure 7.

We have chosen here the traditional way of using half circles. Another
equivalent way would be to use polygons with a fixed base side. Finally, if
one includes both the tree and the half circle, one can modify the picture
into a perhaps more pleasing aesthetic by deforming the line segments into
arcs as is done in [17, §4], where also one explicit composition is given in all
details, see [17, Figure 8].

3.6.4. Joyal duality in formulas. In this formulation Joyal duality is
also easy to grasp. A double base point preserving injection is given by the
symbol (1; 0n1−1, 1, . . . , 0nd−1; 1) = (1;w; 1) : [d] → [N ] as above. Where 1
stands for id, 0 for p and w is a word in these letters. Now, the word w in the
middle is uniquely fixed by knowing the ni. Vice–versa, given the ni there
is a unique order preserving surjection [N − 1] � [d − 1] whose fibers have
cardinalities n1, . . . nd, that is πn1


· · ·
πnd
. This gives half of Joyal duality

OI∗,∗([n+ 1], [m+ 1]) � OS([m], [n]), where the bijections are natural. One
can think of mapping the intervals in Figures 5 and 7 surjectively from the
top to the bottom.

To get the other direction note that any injection is given uniquely by
a word w as above. This will be a morphism [d − 2] → [N − 2]. The corre-
sponding surjection is a map [N − 1] → [d− 1]. Now since OS = OS∗.∗ since
all order preserving surjections have to preserve the base points, we have the
second part of Joyal duality given by OI(n,m) � OS∗,∗(m + 1, n + 1). We
also see the different monoidal structures. In the surjections, the monoidal
structure is just 
; for the half–circles, intervals, dually this means that they
have to be joined at the base points, see Figure 7.
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Remark 3.14. Using this logic, we also see that OI(n,m) � OS∗,∗(m +
1, n+1) = OS(m+1, n+1) � OI∗,∗(n+2,m+2), where the bijections are
natural. This is just the isomorphism which sends w to (1;w; 1). In OI, we
just have the concatenation of words: w1⊗w2 = w1w2. Thus to get the right
monoidal structure on OI∗,∗, we have to use ∗⊗∗ : (1;w1; 1)∗⊗∗(1;w2; 1) =
(1;w1w2; 1). Dually, we see that when combining the words w1w2 if there are
occurrences of 0 in the middle they will add as 0nd−10m1−1 = 0nd−1+m1−1

which means that the two surjections will be merged using ∗⊗∗

3.6.5. Decorating with sequences. Consider the Feynman category
Δ+ and fix a set S. The contravariant functor Seq : Δop

+ → Set: [n] →
Hom([n],
S) associates to [n] the set of sequences {(a0, . . . , an) : ai ∈ S} in S. Injec-
tions act as restrictions and surjections as repetitions. The usual tensor prod-
uct which takes the ordered sets ([n], [m]) to the ordered set [n+m+1] con-
catenates two sequences. (a0, . . . , an)
 (b0, . . . , am) = (a0, . . . , an, b0, . . . , bn)
thus making Seq into a monoidal functor. For the Feynman category version,
we can consider Seq : Δ+ → Setop. In the decorated version, we have ob-
jects ([n], (a0, . . . , an)) which one can view as an interval with n− 1 marked
internal points (only their order matters), where the i–th point, counting
both internal and boundary points, is marked by ai.

Restricting to FIop∗,∗ � FS, we see that alternatively, Seq : FS → Set.
In this setting is more natural to set the image of [n] to be n = {1, . . . , n}.
Now, the decoration of n is by (a0, . . . , an), that is n + 1 elements, which
we can take as an angle decorations. The morphism πn := n � 1 dual to
(1; 0n−1; 1) : [1] → [n] sends a decoration (a0, . . . , an) to (a0, a1), that is the
two outer angle markings. The graphical depiction of the morphism πn is
a planar corolla as previously discussed, and the decoration by (a0, . . . , an)
then naturally is carried by the angles; see Figure 3.3.2.

This gives rise to the colored operad structure of §3.3 in the context of
Goncharov, see also [17, Example 2.24] as the decorations need to match
and the category splits into connected components whose final objects are
(1, (a0, a1)). The monoidal structure in this setting on 1 is addition while
the monoidal structure on the decorations is ∗⊗∗ due to the use of Joyal
duality.

Remark 3.15. One can view the tensor product ∗⊗∗ as a partial product,
whose dual co–product is the reason for the op–lax structure, namely the
dual to the partial multiplication given by ∗⊗∗.

(3.14) Δ((a0, . . . , an)) =

n∑
i=1

(a0, . . . , ai)∗⊗∗(ai, . . . , an)
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which is also the co–derivation discussed in [17, §2.7] and an instance of the
Alexander–Whitney map; see the next paragraph.

3.6.6. Sequences as (semi)–simplicial objects. In general, we can
decorate FS�

< with the semi–simplicial setX•, and then regard the decorated
FS�

<,decX•
. By definition, the objects will be (n1 � · · ·� nk, x1 ⊗ · · · ⊗ xk ∈

Xn1
⊗· · ·⊗Xnk

). Using the B+ operator given by � �→ ⊗ and the Alexander
Whitney map, we re–obtain the simplicial results of [17, §4].

In order to read off the structure for Baues, we see that under the ten-
sor product, we are looking at the tensor algebra on the simplicial objects
C•, which is the underlying space of the bar–transform, when we regard
everything as graded and use the usual shift B(C•) = TC•[1].

Such a transition to the tensor algebra is also known as second quanti-
zation, cf. e.g. [27].

Example 3.16. The decoration above can be viewed as a decoration by
(semi)–simple objects. For this, we just consider S to be the vertex set of an
abstract simplicial complex S . Then the sequences are simply the ordered
simplices of S. Their linearization is Cord

∗ (S) the ordered simplicial chain
complex. In this setting, we have a different tensor product. It corresponds
to the tensor product of chain complexes, so that (a0, . . . , an)⊗(b0, . . . , bm) ∈
Cord
n (S )⊗Cord

m (S ). This gives rise to the construction of Goncharov if we
regard the Cn as ungraded objects and use Joyal duality as in the previous
paragraph. In this context, the shuffle product [17, (1.7)] appears naturally,
as the Eilenberg–Zilber map Cn(S )⊗ Cm(S ) → Cn+m(S ).

3.6.7. Bi– and Hopf–algebra from the decoration by the algebra
of co–chains. As FS-OpsC are algebras in C, we can decorate by any
algebra.

Given a semi–simplicial set X• then C∗(X•) can be made into a func-
tor from FS<, since it is an algebra. Namely, we assign to each n the set
C∗(X•)⊗n � C∗(X×n

• ) and to the unique map n → 1 the iterated cup prod-
uct ∪n−1. After decorating, the objects become collections of co–chains, and
there is a unique map with source an n–collection of co–chains and target a
single co–chain, which is the iterated cup product. Thus, one can identify the
morphisms of this type with the objects. Furthermore, the set of morphisms
possesses a natural structure of Abelian group. Dualizing this Abelian group,
we get the co–operad structure on C∗(X•) and the co–operad structure with
multiplication on C∗(X•)⊗ that coincides with the one considered in [17, §4].

The bi–algebra is almost connected if the 1–skeleton of X• is connected.
And after quotienting we obtain the same Hopf algebra structure from both
constructions.
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3.6.8. Decorating with the bar/cobar complex. Given an algebra A,
we can decorate FS< directly. Alternatively, we can decorate FS< with BA
as an op decoration. OS → Cop. Conversely given a co–algebra C, we can
decorate with the algebra ΩC. This leads to the construction of Baues.

3.6.9. Relation to ∪i products. It is here that we find the similarity to
the ∪i products also noticed by JDS Jones. Namely, in order to apply ∪n−1

to a simplex, we first use the Joyal dual map [1] → [n] on the simplex. This
is the map that is also used for the ∪i product. The only difference is that
instead of using n co–chains, one only uses two. To formalize this one needs a
surjection that is not in Δ, but uses a permutation, and hence lives in SΔ+.
Here the surjection FS gives rise to what is alternatively called the sequence
operad. Joyal duality is then the fact that one uses sequences and overlapping
sequences. The pictorial realizations and associated representations can be
found in [29] and [30]. This is also related to the notion of discs in Joyal
[24]. This connection will be investigated in the future.

In the Hopf algebra situation, we see that the terms of the iterated
∪1 product coincide with the second factor of the co–product Δ. Compare
Figure 6.

3.7. Non–connected and free Feynman categories, simplicial
objects and strings

Given a Feynman category F there are two associated Feynman categories
F�,Fnc (nc stands for non–connected), which have the properties

(3.15) Fun⊗(F�, C) = Fun(F, C) and Fun⊗(Fnc, C) = Funlax−⊗(F , C)

see [35, §3.1,3.2].
Remark 3.17 (Co–operads with multiplication as an example of a B+

operator). Using §1.4.1 in the particular case of FS<,O, μ = B+ : Ǒnc → Ǒ
is precisely which satisfies the compatibility equations for a co–operad with
multiplication and the conditions for the unit and co–unit. This allows us
to understand the constructions of [17, §3] which become natural in this
definition.

3.7.1. Simplicial objects and links to the simplicial construction of
[17]. By definition a simplicial object in C is(1) a functor X• : Δop → C,
and rewriting this, we see that this is equivalent either (2) to a functor

Xop
• : Δ → Cop or (3) to a functor XJoy

• : Δ∗,∗ → C. The second and third
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descriptions open this up for a description in terms of Feynman categories
and our constructions of [17, §4] mostly work with the last interpretation.

For (2) and (3) notice that in this interpretation Xop
• can be extended

to a functor from Δ+, but it is not monoidal. However, it does give rise to

a functor Xop,�
• ∈ Δ�

+-OpsCop , or an element in XJoy,�
• ∈ Δ�

∗,∗-OpsC .
In particular, the relevant constructions are on semi-simplicial objects

in C which again described as (1) a functor X• : FS
op
< → C, (2) to a functor

Xop
• : FS< → Cop, equivalently Xop,�

• ∈ FS�
<-OpsCop , or (3) a functor

XJoy
• : Δ∗,∗ → C, equivalently an element XJoy,�

• ∈ Δ�
∗,∗-OpsC .

There is one more level of sophistication given by [17, Proposition 4.10]
which one can rephrase as:

(3.16) Δ�
+ = ΩΔ and Δnc

∗,∗ = ΩΔ

which identifies simplicial strings as the free, receptively n.c. construction

by using that in the correspondence Fun(Fop, C) 1−1↔ Fun(F , Cop) an oplax
monoidal functors map to lax monoidal functors. What is intriguing is that
although in (i) the original tensor product ⊗ is basically forgotten, in (ii) the
dual tensor product already is weakly respected by the functor and hence
Joyal duality furnishes an intermediate step. That is one only has to add the
the oplax monoidal structure [17, §4.3], induced by the Alexander–Whitney
map Xp+q → Xp ×Xq, which is also represented in the monoidal structure
of Joyal duality, as explained above, see also §3.6.5 for a concrete example.

The cubical realization of this using the functors L of [17, §4.3]. in the
more general context of F⊗ and Fnc will be the subject of further investiga-
tion.

3.8. Enrichment and operad based Feynman categories

3.8.1. Enrichments, plus construction and hyper category Fhyp.
The first construction is the plus construction F+ and its quotient Fhyp

and its equivalent reduced version Fhyp,rd, see [35]. The main result of [35,
Lemma 4.5] says that for any Feynman category F there exists a Feynman
category Fhyp and the set of monoidal functors O : Fhyp → E is in 1–1
correspondence with indexed enrichments FO of F over E .

For such an enrichment, one has Obj(FO) = Obj(F) and

(3.17) HomFO(X,Y ) =
∐

φ∈HomF (X,Y )

O(φ)
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And the additional condition that if φ is an isomorphism, then O(φ) � 1E
This generalizes the notion of hyper–operads of [21], whence the superscript
hyp.

The compositions in F then give rise to compositions in FO for instance
for the composition φ = φ1 ◦ φ0, we get:

(3.18) O(φ1)⊗O(φ0) → O(φ)

The extra condition guarantees that one does not have to enlarge V.
A slightly less strict restriction is that one regards O : F+ → E which is
suitably split. This is the +gcp construction of [32]. Then there is FO =
(VO,FO, ı) with FO as defined as above is still a Feynman category. In this
case one can enlarge V to VO to include any invertible generators. In all of
the cases FO is a weak Feynman category [35, Definition 1.9.1]. One possible
enrichment is given for any O : F+ → E , such that O(φ) is free of rank one.
This is called the free enrichment.

3.8.2. Bootstrap. There is the following nice observation. The simplest
Feynman category is given by Ftriv = (V = ∗,F = V⊗, ı) and F

+
triv = FS<

[32]. The underlying category are finite sets with surjections and orders on
the fibers. This is indexed over FS by forgetting the order on the fibers..
Going further, FS+ = O, the Feynman category for operads. Going backOV
gives FSO=leaf labeled trees = FCK . Decorating by simplicial sets, we obtain
the three original examples from these constructions. More details can be
found in [32].

3.8.3. Bi– and Hopf algebras in the enriched case. The bi– and
Hopf algebras in the enriched case use the formulation of the hereditary
condition in the enriched setting. We refer the reader to [35, §4] for the
rather technical details. In the enriched setting, we will already postulate
that the Hom spaces are Abelian groups. This means that the category E
over which F is enriched, has a faithful functor to the category of Abelian
groups. In this case, we say FO is Ab enriched over E . We also assume
that E has internal Homs and regard it as enriched over itself. A basic
example is E = dgVect. Assume that sk(F) is small, F is strict. In this
case, we set B =

⊕
X,Y Hom∨

sk(FO
)(X,Y ), where ∨ is the dual in E given

by V̌ = Hom(V,1) and define the multiplication on B by ⊗. The unit is
again id1. For the co–multiplication Δ, we take the dual of the composi-
tion ◦

(3.19) ◦ : HomFO
(Y, Z)⊗HomFO

(X,Z) → HomFO
(X,Y )
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as a morphism in E .

(3.20) Δ : Hom∨
FO

(X,Y ) → Hom∨
FO

(Y, Z)⊗Hom∨
FO

(X,Z)

Again it is clear that ε(φ) = 1 if φ = idX and ε(φ) = 0 if φ is not in a
component 1 corresponding to idX is a co–unit. Similarly to §1, assuming
that the we can define Biso by using co–invariants, assuming that these
exist.

Theorem 3.18. Let FO be an indexed enriched Feynman category or more
generally a weak Feynman category Ab enriched over a co–complete E, which
is enriched over Ab, and F is factorization finite, then Biso is a bi–algebra
in E. In the non–Σ case, already B is a bi–algebra.

Proof. The co–associativity and well–definedness of Δ follows from the con-
dition the underlying F is factorization finite. The hereditary condition (ii)
is replaced by a co–end formula which can be written as, cf. [35, Proposition
1.8.8, §4]:

(3.21) HomF (ı
⊗ · , X ⊗ Y ) =∫ Z,Z′

HomF (ı
⊗Z,X)⊗HomF (ı

⊗Z ′, Y )⊗HomV⊗( · , Z ⊗ Z ′)

This formula precisely states that the space of morphisms into a product
coincides with the product of the space of morphisms, up to natural isomor-
phisms changing the intermediate Z ⊗ Z ′.

(3.22) W
φ

�

X ⊗ Y

Z ⊗ Z ′
φ1⊗φ2

This directly implies that the bi–algebra equation holds on the level of iso-
morphism classes.

In the non–Σ case, the isomorphism between W and Z ⊗ Z ′ must be a
product as well, as HomV⊗(W,Z ⊗ Z ′) = HomV⊗(W,Z) ⊗ HomV⊗(W,Z ′)
so that the bi–algebra equation already holds on the level of morphism
spaces.

Again, define I = 〈[idX ] − [idY ]〉 and H = Biso/I, then H is a bi–
algebra which may or not be Hopf.

Definition 3.19. We call FO as above Hopf, if H has an antipode.
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The discussion of criteria is analogous to that of the non–enriched case,
by lifting all the notions from F to FO. This is straightforward and will be
omitted here.

Example 3.20. The relevant example is that FShyp,rd � O0 that is the
Feynman category for operads without O(0) and whose O(1) is reduced.
Thus any such operad, that is a strong monoidal functor O : O0 → E gives
rise to a Feynman category FSO whose morphisms are determined by

(3.23) HomFSO(n, 1) = O(n)

In particular, if f : S � T then O(f) =
⊗

t∈T O(f−1(t)) since f decom-
poses as one–comma generators ft : f

−1(t) � {t}.
Remark 3.21. For operads with not necessarily reduced O(1), one can use
the FS+ = O, and restrict to those functors whose O(1) is split unital. See
also §3.1 and [32, §3.4].

3.8.4. Bi– and Hopf algebras. For concreteness, we will provide the
details for the framework of twisted Feynman categories, in the specific case
FSO. In this language, the diagrams [17, (2.51)] identify certain summands
in the co–product and on the coinvariants one is left with the channels.

Indeed in FS decomposing πS : S � {∗} yields the sum S
f
� T

πT� {∗}. This
is a typical morphism in FS′ from πS to πT .

The composition operation on the twisted FSO: γf : O(f) ⊗ O(T ) →
O(S), corresponding to the composition πT ◦ f = πS cf. 3.8.1. Dually, there
is one summand of this type γ̌f in the co-product. We identify two such
summands in the co–product under the action of the automorphism groups.
This corresponds to the diagrams [17, (2.48)] which are the isomorphisms
in FS′. Effectively, this means that fixing the size of S and T there is only
one channel per partition of S = S1 
 · · · 
 Sk into fibers of f .

If one would like to include O(1) has more invertible elements, one has
to enlarge FS by choosing the appropriate V. In the case of Cartesian E this
is HomV ′(1, 1) = O(1)×. This gives rise to extra isomorphisms and/or a
K–collection, see [35, 2.6.4]. This means in particular that any operad gives
rise to an enriched Feynman category whose morphisms are this operad.
The dual of the morphisms are then co–operads and the co–operadic and
Feynman categorical construction coincide.

The non-Σ case is similar. For this one uses FS< and then obtains
enrichments by non–Σ operads. Thus again the co–operadic methods apply
and yield the same results as the Feynman category constructions. In this
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case, we see that B is the free tensor algebra on the basic morphisms, that
is B = T Ǒ(n) as in [17, §2] and we obtain the following theorem, recovering
all of [17, §2].
Theorem 3.22. In both the symmetric case FSO and non–symmetric case
FS<O, we obtain unital, co–unital bi–algebras Biso respectively B. If the
quotient by the ideal I = 〈id1 − id1〉 is connected, we obtain a Hopf algebra.
The latter is the case if there (a) there is no O(0) or (b) there is no O(i) :
i > 1, and (O(1), id1, ε) is connected.

3.8.5. Enrichment over Cop and opposite Feynman category. No-
tice that we can regard functors F → Cop as co–operads. In particular if we
have a functor Fhyp → Cop, we get a Feynman category FO enriched over
Cop. This means that Fop

O is enriched over C.
Example 3.23. In particular, O : FShyp = O0 → Cop a reduced co–operad
in C. Then twisting with O gives us FS<,O which is enriched in Cop. Tak-
ing the opposite we get FS

op
<,O. The underlying category is FI∗,∗ enriched

by Ǒ, where Ǒ is the co–operad in C corresponding to the operad in Cop.
This means that the objects are the natural numbers n and the morphisms
are Hom(1, n) = Ǒ(n). This is the enrichment in which the unique map
in HomFI∗,∗([1], [n]) is assigned Ǒ(n) in the overlying enriched category
(FI∗,∗)Ǒ.

Putting all the pieces together then yields the following:

Theorem 3.24. Given a co–operad Ǒ that is given by a functor O : O0 →
Cop. Let BǑnc be the bi–algebra of [17, §2]. And let BFS

op
<,O

be the bi–algebra
of the Feynman category discussed above then these two bi–algebra coincide.

Moreover if FS<,O is almost connected, the so is Ǒ and the correspond-
ing Hopf algebras coincide.

Remark 3.25. This extends to split unital operads as split functors from
FS+gcp = O, and also to operads with O(0) (see [32] for these notions).

This is another explanation of the relation between Joyal duality and
the dual co–operad structure to a colored operad structure.

3.9. Universal operations

It is shown that FV , which is given by FV = colimV ı, yields a Feynman
category with trivial groupoid VV � ∗. This generalizes the Meta–Operad
structure of [28]. The result is again a Feynman category whose morphisms
define an operad and hence the free Abelian group yields a co–operad.
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Moreover in many situations, the morphisms of the category are weakly
generated [35, §6.4] by a simple Feynman category obtained by “forgetting
tails”. The action is then via a foliation operator as introduced in [28].
In fact there is a poly–simplicial structure here; see also [2]. In order to
establish this, we recall that any operad under the equivalence established
in [35, Example 4.12] can be thought of either an enrichment of the Feynman
category of sets and surjections or as a functor from the Feynman category
for operads to a target category; see also §3.8. As the latter, we obtain
universal operations through colimits; see paragraph §6 of [35]. On the other
hand, we obtain the colimits, in the same form as here, via the construction
in paragraph §1 below.

Example 3.26. For the operad of leaf labeled trees, one can effectively
amputate the tails using this construction. One obtains the co–operad dual
to the pre–Lie operad [9, 28]. That is Hamp is realized naturally from a
weakly generating sub–operad.

4. Summary and outlook

4.1. Constructions

We have shown that one can construct Bi–algebras that under checkable
conditions yield Hopf algebras in the following related constructions, all of
which exist in a symmetric and a non-Σ version.

i. From a locally finite (unital) operad.
ii. From a locally finite co–operad.
iii. From a locally finite co–operad with multiplication.
iv. From a simplicial object.
v. From a suitable Feynman category.
vi. From a suitable Feynman category with a B+ operator.

Here the transition from (i) to (ii) is dualization. The construction (iii)
replaces the free product with a chosen compatible one. Construction (i)
and (ii)and (iv) are the special cases of (v) that appear as enriched Feynman
categories, in particular enrichments of the Feynman categories of surjections
or ordered surjections. The construction (iii) is a special case of the nc
construction together with a B+ operator. The construction (iv) can be
seen as a special case of (i) and (ii), but there is an additional structure
coming from the simplicial category and Joyal duality.

We also gave criteria when these constructions are functorial. Further-
more, there are infinitesimal versions, which yield Brown’s derivations in
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the (co)–operad case and are related to the generators for the Feynman
categories and hence to master equations, cf. [35, 36].

4.1.1. Main results. The main upshot is that in all these cases and the
classical examples the co–algebra structure is simply the dualization of a
partial product structure provided by concatenation in a category. Further-
more, the bi–algebra equation in a general monoidal category is non–trivial
and the conditions for Feynman categories are a sufficient condition for it
to hold. The Hopf algebras of interest are connected and they are quotients
of the natural bi–algebras. The quotient effectively identifies all the objects
of mentioned categories.

4.1.2. Further results and constructions. Further results and con-
structions concern deformations, co–module structures, derivations/infini-
tesimal structures and a detailed analysis of Joyal duality and its conse-
quences among others.

4.2. Connes–Kreimer

There are several types of Connes–Kreimer Hopf algebras which appear as
special examples. The tree–type Hopf algebras stem from the construction
(i) while the graph–type algebras are examples of (iii).

4.2.1. CK–forests. The CK–forests in the planar and non–planar ver-
sion can be viewed as coming from construction (i) for the (non-Σ) operads
of leaf–labeled and leaf–labeled planar trees. These are alternatively con-
structed using set–based Feynman categories with trivial V, which can be
thought of as indexed enrichments. The amputated versions can be thought
of as co–limits, either over a semi–simplicial system of maps, or via the
universal operations in Feynman categories.

4.2.2. Decorated/motic versions. Using decorations and restrictions,
one can obtain other versions, such as the motic versions from Brown, a 1-PI
version and more generally colored and weighted versions.

4.2.3. CK-graphs. The full graph algebra is the basic example coming
from a graphical Feynman category, i.e. one that is indexed over the Feyn-
man category G, which is a full subcategory of the Borisov–Manin category
of graphs. A main ingredient is that the ghost graph of a morphism fixes its
isomorphism class.

Restricting and decorating allows one to give the “core” versions and
the “renormalization” versions.
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4.3. Goncharov/Baues Hopf algebras

The Hopf algebra of Goncharov and its graded analogue that of Baues can be
analyzed in the settings (i), (ii) and (v). In terms of (i) one is using a colored
operad. There is an additional structure provided by Joyal duality, which we
discussed and which links the constructions to lax–monoidal functors and the
nc–construction. This duality also gives rise to the colored operad structure
and explains the corolla vs. semi–circle representations. Furthermore, using
the cup product, there is a direct link to the decoration by an algebra.

We also found re–interpretations of the additional structures and restric-
tions of Goncharov and Baues.

4.3.1. Goncharov multiple zeta values and polylogarithms. In terms
of (iv) taking the contractible groupoid on 0, 1 we obtain the construction
of HGon for the multi–zeta values. If we take that with objects zi, we obtain
Goncharov’s Hopf algebra for polylogarithms [22].

4.3.2. Baues’s version. This is the case of a general simplicial set, which
however is 1-connected. We note that since we are dealing with graded ob-
jects, one has to specify that one is in the usual monoidal category of graded
Z–modules whose tensor product is given by the Koszul or super sign. The
1–connectedness is needed for the bi–algebra quotient to be Hopf. To obtain
the connection to double loop spaces, we furthermore need 2–connectedness.

4.4. Simplicial

In general, in the simplicial setting, we provided a bi–algebra structure which
is Hopf if the simplicial set is 1–connected. We could explain these construc-
tions on several levels.

1. as derived from the fact that simplices form an operad.
2. through monoidal and lax–monoidal functors.
3. using Joyal duality.
4. using the fact that the simplicial category is a Feynman category.
5. As an operadic enriched Feynman category.
6. As a decorated Feynman using the ∪ product as an algebra structure.

This gives the relationship to the iterated ∪ product. The symmetric
version also give the relationship to iterated ∪i products.

4.5. Outlook

We expect these results to be the basis of further work. There will be a
closer analysis of the role of the B+ operator and its use inside the theory
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of Feynman categories as well as its Hopf-theoretic nature [33]. It will also
play a role in the truncation/blow–up of moduli spaces and outer space
cells [5] its sequel and [37]. There are further applications to the theory
of Feynman categories, theoretical physics, number theory and algebraic
geometry along the basic examples of this paper and loc. cit.. In particular,
we will analyze and build upon the combinatorial invariants and analysis of
Feynman graphs as put forth by the Kreimer group. Here the next steps are
applying our general cubical structures [35, 5] to the understanding of the
Cutkosky rules.

Appendix A. Graph glossary

A.1. The category of graphs

Interesting examples of Feynman categories used in operad–like theories
are indexed over a Feynman category built from graphs. It is important to
note that although we will first introduce a category of graphs Graphs , the
relevant Feynman category is given by a full subcategory Agg whose objects
are disjoint unions or aggregates of corollas. The corollas themselves play
the role of V.

Before giving more examples in terms of graphs it will be useful to recall
some terminology. A very useful presentation is given in [6], slightly modified
in [35], which we follow here.

A.1.1. Abstract graphs. An abstract graph Γ is a quadruple Γ= (VΓ, FΓ,
iΓ, ∂Γ) of a finite set of vertices VΓ, a finite set of half edges or flags FΓ, an
involution on flags iΓ : FΓ → FΓ; i

2
Γ = id and a map ∂Γ : FΓ → VΓ. We will

omit the subscript Γ if no confusion arises.
Since the map i is an involution, it has orbits of order one or two. We

will call the flags in an orbit of order one tails and denote the set of tails by
TΓ. We will call an orbit of order two an edge and denote the set of edges by
EΓ. The flags of an edge are its elements. The function ∂ gives the vertex
a flag is incident to. It is clear that the set of vertices and edges form a
1-dimensional CW complex. The realization of a graph is the realization of
this CW complex.

A graph is (simply) connected if and only if its realization is. Notice that
the graphs do not need to be connected. Lone vertices, that is, vertices with
no incident flags, are also possible.

We also allow the empty graph 1∅, that is, the unique graph with V = ∅.
It will serve as the monoidal unit.
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Example A.1. A graph with one vertex and no edges is called a corolla.
Such a graph only has tails. For any set S the corolla ∗p,S is the unique
graph with V = {p} a singleton and F = S.

We fix the short hand notation ∗S for the corolla with V = {∗} and
F = S.

Given a vertex v of a graph, we set Fv = ∂−1(v) and call it the flags
incident to v. This set naturally gives rise to a corolla. The tails at v is the
subset of tails of Fv.

As remarked above, Fv defines a corolla ∗v = ∗{v},Fv
.

Remark A.2. The way things are set up, we are talking about (finite) sets,
so changing the sets even by bijection changes the graphs.

Remark A.3. As the graphs do not need to be connected, given two graphs
Γ and Γ′ we can form their disjoint union:

Γ � Γ′ = (FΓ � FΓ′ , VΓ � VΓ′ , iΓ � iΓ′ , ∂Γ � ∂Γ′)

One actually needs to be a bit careful about how disjoint unions are
defined. Although one tends to think that the disjoint union X�Y is strictly
symmetric, this is not the case. This becomes apparent if X ∩ Y �= ∅. Of

course there is a bijection X � Y
1−1←→ Y �X. Thus the categories here are

symmetric monoidal. It is also but not strict symmetric monoidal, since there
technically X
(Y 
Z) is not equal to (X
Y )
Z). This is important, since
we consider functors into other not necessarily strict monoidal categories.

Using Mac Lane’s theorem it is, however, possible to make a technical
construction that makes the monoidal structure (on both sides) into a strict
symmetric monoidal structure

Example A.4. An aggregate of corollas or aggregate for short is a finite
disjoint union of corollas, that is, a graph with no edges.

Notice that if one looks at X =
⊔

v∈I ∗Sv
for some finite index set I and

some finite sets of flags Sv, then the set of flags is automatically the disjoint
union of the sets Sv. We will just say just say s ∈ FX if s is in some Sv.

A.1.2. Category structure; Morphisms of graphs.

Definition A.5 ([6]). Given two graphs Γ and Γ′, consider a triple (φF , φV ,
iφ) where

(i) φF : FΓ′ ↪→ FΓ is an injection,
(ii) φV : VΓ � VΓ′ and iφ is a surjection and
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(iii) iφ is a fixed point free involution on the tails of Γ not in the image of
φF .

One calls the edges and flags that are not in the image of φ the contracted
edges and flags. The orbits of iφ are called ghost edges and denoted by
Eghost(φ).

Such a triple is a morphism of graphs φ : Γ → Γ′ if

1. The involutions are compatible:

(a) An edge of Γ is either a subset of the image of φF or not contained
in it.

(b) If an edge is in the image of φF then its pre–image is also an edge.

2. φF and φV are compatible with the maps ∂:

(a) Compatibility with ∂ on the image of φF :

If f = φF (f ′) then φV (∂f) = ∂f ′

(b) Compatibility with ∂ on the complement of the image of φF :

The two vertices of a ghost edge in Γ map to the same vertex in
Γ′ under φV .

If the image of an edge under φF is not an edge, we say that φ grafts
the two flags.

The composition φ′ ◦ φ : Γ → Γ′′ of two morphisms φ : Γ → Γ′ and
φ′ : Γ′ → Γ′′ is defined to be (φF ◦ φ′F , φ′

V ◦ φV , i) where i is defined by its
orbits viz. the ghost edges. Both maps φF and φ′F are injective, so that the
complement of their concatenation is in bijection with the disjoint union of
the complements of the two maps. We take i to be the involution whose
orbits are the union of the ghost edges of φ and φ′ under this identification.

Remark A.6. A näıve morphism of graphs ψ : Γ → Γ′ is given by a pair of
maps (ψF : FΓ → FΓ′ , ψV : VΓ → VΓ′) compatible with the maps i and ∂ in
the obvious fashion. This notion is good to define subgraphs and automor-
phisms.

It turns out that this data is not enough to capture all the needed aspects
for composing along graphs. For instance it is not possible to contract edges
with such a map or graft two flags into one edge. The basic operations of
composition in an operad viewed in graphs is however exactly grafting two
flags and then contracting.

For this and other more subtle aspects one needs the more involved
definition above which we will use.
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Definition A.7. We let Graphs be the category whose objects are abstract
graphs and whose morphisms are the morphisms described in Definition
A.5. We consider it to be a monoidal category with monoidal product � (see
Remark A.3).

A.1.3. Decomposition of morphisms. Given a morphism φ : X → Y
where X =

⊔
w∈VX

∗w and Y =
⊔

v∈VY
∗v are two aggregates, we can de-

compose φ =
⊔

φv with φv : Xv → ∗v where Xv is the sub–aggregate⊔
φV (w)=v ∗w, and

⊔
v Xv = X. Here (φv)V is the restriction of φV to VXv

.

Likewise φF
v is the restriction of φF to (φF )−1(FXv

∩φF (FY )). This is still in-
jective. Finally iφv

is the restriction of iφ to FXv
\φF (FY ). These restrictions

are possible due to the condition (2) above.

A.1.4. Ghost graph of a morphism. The following definition intro-
duced in [35] is essential. The underlying ghost graph of a morphism of
graphs φ : Γ → Γ′ is the graph Γ(φ) = (V (Γ), FΓ, ı̂φ) where ı̂φ is iφ on the
complement of φF (Γ′) and identity on the image of flags of Γ′ under φF .
The edges of Γ(φ) are called the ghost edges of φ.

A.2. Extra structures

A.2.1. Glossary. This section is intended as a reference section.
Recall that an order of a finite set S is a bijection S → {1, . . . , |S|}.

Thus the group S|S| = Aut{1, . . . , n} acts on all orders. An orientation of a
finite set S is an equivalence class of orders, where two orders are equivalent
if they are obtained from each other by an even permutation.

All the following definitions in Table 3 are standard.

A.2.2. Remarks and language.

1. Planar means that the graph can be and up to isotopy is embedded
into the plane.

2. In a directed graph one speaks about the “in” and the “out” edges,
flags or tails at a vertex. For the edges this means the one flag of the
edges is an “in” flag at the vertex. In pictorial versions the direction
is indicated by an arrow. A flag is an “in” flag if the arrow points to
the vertex.

3. A rooted tree is taken to be a tree with a marked vertex. Note that
necessarily a rooted tree as described above has exactly one “out” tail.
The unique vertex whose “out” flag is not a part of an edge is the root
vertex. The usual picture is obtained by deleting this unique “out”
tail.
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Table 3: Nomenclature for Graphs

A tree is a connected, simply connected graph.
A directed graph Γ is a graph together with a map FΓ → {in, out}

such that the two flags of each edge are mapped
to different values.

A rooted tree is a directed tree such that each vertex has exactly
one “out” flag.

A ribbon or fat graph is a graph together with a cyclic order on each of
the sets Fv.

A planar graph is a ribbon graph that can be embedded into the
plane such that the induced cyclic orders of the
sets Fv from the orientation of the plane
coincide with the chosen cyclic orders.

A planted planar tree is a rooted planar tree together with a
linear order on the set of flags incident to the root.

An oriented graph is a graph with an orientation on the set of its edges.
An ordered graph is a graph with an order on the set of its edges.
A γ labeled graph is a graph together with a map γ : VΓ → N0.
A b/w graph is a graph Γ with a map VΓ → {black, white}.
A bipartite graph is a b/w graph whose edges connect only

black to white vertices.
A c colored graph for a set c is a graph Γ together with a map FΓ → c

s.t. each edge has flags of the same color.
A connected 1–PI graph is a connected graph that stays connected,

when one severs any edge.
A 1–PI graph is a graph whose every component is 1–PI.

4. A planted planar tree induces a linear order on all sets Fv, by declaring
the first flag to be the unique outgoing one. Moreover, there is a natural
order on the edges, vertices and flags given by its planar embedding.

A.2.3. Category of directed/ordered/oriented graphs.

1. Define the category of directed graphs Graphsdir to be the category
whose objects are directed graphs. Morphisms are morphisms φ of
the underlying graphs, which additionally satisfy that φF preserves
orientation of the flags and the iφ also only has orbits consisting of
one “in” and one “out” flag, that is the ghost graph is also directed.

2. The category of edge ordered graphs Graphsor has as objects graphs
with an order on the edges. A morphism is a morphism together with
an order ord on all of the edges of the ghost graph.
The composition of orders on the ghost edges is as follows. (φ, ord) ◦⊔

v∈V (φv, ordv) := (φ ◦
⊔

v∈V φv, ord ◦
⊔

v∈V ordv) where the order on
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the set of all ghost edges, that is Eghost(φ)�
⊔

v Eghost(φv), is given by

first enumerating the elements of Eghost(φv) in the order ordv where

the order of the sets E(φv) is given by the order on V , i.e. given by

the explicit ordering of the tensor product in Y =
⊔

v ∗v.2 and then

enumerating the edges of Eghost(φ) in their order ord.

3. The oriented version Graphsor is then obtained by passing from orders

to equivalence classes.

A.2.4. Basic Feynman categories/operads. The Feynman category

G = (Crl ,Agg , ı): Crl is the groupoid of corollas with isomorphisms. Agg

is the full subcategory of graphs whose objects are aggregates and ı is the

inclusion. Gctd = (Crl ,Aggctd , ı) is the sub–Feynman category whose basic

morphisms have connected ghost graphs. C is the sub–Feynman category

whose basic morphisms have trees as ghost graphs.

O is the restriction of a decorated Feynman category. The decoration of

C is by assigning the flags of a vertex in and out. And the restriction is that

there is only one out per vertex and the ghost graph is a directed graph.

A.2.5. Non–Σ versions/planar structures. Although it is hard to write

down a consistent theory of planar graphs with planar morphisms, if not im-

possible, there does exist a planar version of special subcategory of Graphs .
We let Crlpl have as objects planar corollas — which simply means that

there is a cyclic order on the flags — and as morphisms isomorphisms of

these, that is isomorphisms of graphs, which preserve the cyclic order. The

automorphisms of a corolla ∗S are then isomorphic to C|S|, the cyclic group of

order |S|. Let C¬Σ be the subcategory of aggregates of planar corollas whose

morphisms are morphisms of the underlying corollas, for which the ghost

graphs in their planar structure induced by the source is compatible with the

planar structure on the target via φF . For this we use the fact that the tails

of a planar tree have a cyclic order. This is the Feynman category for non–Σ

cyclic operads. This is also a decorated Feynman category C¬Σ = CdecCAssoc,

where CAssoc is the cyclic assocative operad, cf. [26].

Adding a direction one arrives an Crlpl ,dir the groupoid of planar corollas

with one output and let O¬Σ be the corresponding Feynman category. This

is again a decoration O¬Σ = Odec Assoc, see loc. cit and is the Feynman

category for non–Σ operads.

2Now we are working with ordered tensor products. Alternatively one can just
index the outer order by the set V by using [13]
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A.3. Flag killing and leaf operators; insertion operations

A.3.1. Killing tails. We define the operator trun, which removes all tails
from a graph. Technically, trun(Γ ) = (VΓ ,FΓ \ TΓ , ∂Γ |FΓ\TΓ

, ıΓ |FΓ\TΓ
).

A.3.2. Adding tails. Inversely, we define the formal expression leaf which
associates to each Γ without tails the formal sum∑

n

∑
Γ′:trun(Γ ′)=Γ ;F (Γ ′)=F (Γ ′)�n

Γ′,

that is all possible additions of tails where these tails are a standard set,
to avoid isomorphic duplication. To make this well defined, we can consider
the series as a power series in t:

leaf (Γ ) =
∑
n

∑
Γ ′:trun(Γ ′)=Γ ;F (Γ ′)=F (Γ ′)�n̄

Γ ′tn

This is the foliage operator of [38, 28] which was rediscovered in [1].

A.3.3. Insertion. Given graphs, Γ, Γ′, a vertex v ∈ VΓ and an isomor-
phism φ: Fv �→ TΓ′ we define Γ ◦v Γ′ to be the graph obtained by deleting v
and identifying the flags of v with the tails of Γ′ via φ. Notice that if Γ and
Γ′ are ghost graphs of a morphism then it is just the composition of ghost
graphs, with the morphisms at the other vertices being the identity.

A.3.4. Unlabeled insertion. If we are considering graphs with unla-
beled tails, that is, classes [Γ] and [Γ′] of coinvariants under the action of
permutation of tails. The insertion naturally lifts as [Γ] ◦ [Γ′] := [

∑
φ Γ ◦v Γ′]

where φ runs through all the possible isomorphisms of two fixed lifts.

A.3.5. No–tail insertion. If Γ and Γ′ are graphs without tails and v a
vertex of v, then we define Γ ◦v Γ′ = Γ ◦v coeff(leaf (Γ ′), t |Fv |), the (formal)
sum of graphs where φ is one fixed identification of Fv with |Fv|. In other
words one deletes v and grafts all the tails to all possible positions on Γ′.
Alternatively one can sum over all ∂ : FΓ �FΓ′ → VΓ \ v �VΓ′ where ∂ is ∂G
when restricted to Fw, w ∈ VΓ and ∂Γ′ when restricted to Fv′ , v′ ∈ VΓ′ .

A.3.6. Compatibility. Let Γ and Γ′ be two graphs without flags, then
for any vertex v of Γ leaf (Γ ◦v Γ ′) = leaf (Γ ) ◦v leaf (Γ ′).
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A.4. Graphs with tails and without tails

There are two equivalent pictures one can use for the (co–)operad structure
underlying the Connes–Kreimer Hopf algebra of rooted trees. One can either
work with tails that are flags, or with tail vertices. These two concepts are
of course equivalent in the setting where if one allows flag tails, disallows
vertices with valence one and vice–versa if one disallows tails, one allows one–
valenced vertices called tail vertices. In [10] graphs without tails are used.
Here we collect some combinatorial facts which represent this equivalence
as a useful dictionary.

There are the obvious two maps which either add a vertex at each the
end of each tail, or, in the other direction, simply delete each valence one
vertex and its unique incident flag, but what is relevant for the Connes–
Kreimer example is another set of maps. The first takes a graph with no
flag tails to the tree which to every vertex, we add a tail, we will denote this
map by � and we add one extra (outgoing) flag to the root, which will be
called the root flag.

The second map � simply deletes all tails. We see that � ◦ � = id. But �
is not the double sided inverse, since � ◦ � replaces any number of tails at a
given vertex by one tail. It is the identity on the image of �, which we call
single tail graphs.

Notice that � is well defined on leaf labeled trees by just transferring
the labels as sets. Likewise � is well defined on single tail trees again by
transferring the labels. This means that each vertex will be labeled.

There are the following degenerate graphs which are allowed in the two
setups: the empty graph ∅ and the graph with one flag and no vertices |.
We declare that

(A.1) ∅
 = | and vice–versa |� = ∅

A.4.1. Planted vs. rooted. A planted tree is a rooted tree whose root
has valence 1. One can plant a rooted tree τ to obtain a new planted rooted
tree τ↓, by adding a new vertex which will be the root of τ↓ and adding one
edge between the new vertex and the old root. Vice–versa, given a planted
rooted tree τ , we let τ↑ be the uprooted tree that is obtained from τ by
deleting the root vertex and its unique incident edge, while declaring the
other vertex of that edge to be the root.

A.5. Operad structures on rooted/planted trees

There are several operad structures on leaf–labeled trees which appear.
For rooted trees without tails and labeled vertices, we define
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1. τ ◦i τ ′ is the tree where the i-th vertex of τ is identified with the root
of τ ′. The root of the resulting tree being the image of the root of τ .

2. τ ◦+i τ ′ is the tree where the i-th vertex of τ is joined to the root of τ ′

by a new edge, with the root of the resulting tree is then the image of
the root of τ .

It is actually the second operad structure that underlies the Connes-Kreimer
Hopf algebra.

One can now easily check that

(A.2) τ ◦+i τ ′ = τ ◦i τ ′↓ = (τ↓ ◦i τ ′↓)↑

These constructions also allow us to relate the compositions of trees with
and without tails as follows

(A.3) (τ 
 ◦i τ ′
)� = τ ◦+i τ ′

where the ◦i operation on the left is the one connecting the ith flag to the
root flag.

A.5.1. Planar case: marking angles. In the case of planar trees, we
have to redefine � by adding a flag to every angle of a planar tree. The labels
are then not on the vertices, but rather the angles. The analogous equations
hold as above. Notice that to give a root to a planar tree actually means to
specify a vertex and an angle on it. Planting it connects a new vertex into
that angle.

This angle marking is directly to the angle marking in Joyal duality,
see below and Figures 5 and 1. This also explains the appearance of angle
markings in [22].
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