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Closed/open string diagrammatics
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Abstract

We introduce a combinatorial model based on measured foliations in surfaces which captures the phe-
nomenology of open/closed string interactions. The predicted equations are derived in this model, and new
equations can be discovered as well. In particular, several new equations together with known transforma-
tions generate the combinatorial version of open/closed duality. On the topological and chain levels, the
algebraic structure discovered is new, but it specializes to a modular bi-operad on the level of homology.
© 2006 Elsevier B.V. All rights reserved.

1. Introduction

There has been considerable activity towards a satisfactory diagrammatics of open/closed
string interaction and the underlying topological field theories. For closed strings on the topo-
logical level, there are the fundamental results of Atiyah and Dijkgraaf [1,2], which are nicely
summarized in [3]. The topological open/closed theory has proved to be trickier since there have
been additional unexpected axioms, notably the Cardy condition [4–8]; this algebraic background
is again nicely summarized in [9].

In closed string field theory [10–12], there are many new algebraic features [13–15], in par-
ticular, coupling to gravity [16,17] and a Batalin–Vilkovisky structure [18,19]. This BV structure
has the same origin as that underlying string topology [20–24] and the decorated moduli spaces
[25–27].
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In terms of open/closed theories beyond the topological level, many interesting results have
been established for D-branes [28–45] and Gepner models in particular [46–48]. Mathematically,
there has also been work towards generalizing known results to the open/closed setting [49–53].

We present a model which accurately reflects the standard phenomenology of interact-
ing open/closed strings and which satisfies and indeed rederives the “expected” equations of
open/closed topological field theory and the BV-structure of the closed sector. Furthermore, the
model allows the calculation of many new equations, and there is an infinite algorithm for gen-
erating all of the equations of this theory on the topological level. A finite set of equations, four
of them new, are shown to generate open/closed duality.

The rough idea is that as the strings move and interact, they form the leaves of a foliation, the
“string foliation”, on their world-sheets. Dual to this foliation is another foliation of the world-
sheets, which comes equipped with the additional structure of a “transverse measure”; as we shall
see, varying the transverse measure on the dual “measured foliation” changes the combinatorial
type of the string foliation.

The algebra of these string interactions is then given by gluing together the string foliations
along the strings, and this corresponds to an appropriate gluing operation on the dual measured
foliations. The algebraic structure discovered is new, and we axiomatize it (in Appendix A) as
a “closed/open” or “c/o structure”. This structure is present on the topological level of string
interactions as well as on the chain level. On the homology level, it induces the structure of a
modular bi-operad, which governs c/o string algebras (see Appendix A and Theorem 5.4).

Roughly, a measured foliation in a surface F is a collection of rectangles of some fixed widths
and unspecified lengths foliated by horizontal lines (see Appendix B for the precise definition).
One glues such a collection of rectangles together along their widths in the natural measure-
preserving way (cf. Fig. 5), so as to produce a measured foliation of a closed subsurface of F .
In the transverse direction, there is a natural foliation of each rectangle also by its vertical string
foliation, but this foliation has no associated transverse measure. In effect, the physical length of
the string is the width of the corresponding rectangle. A measured foliation does not determine a
metric on the surface, rather, one impressionistically thinks of a measured foliation as describing
half of a metric since the widths of the rectangles are determined but not their lengths (see also
Section B.1 for more details).

Nevertheless, there is a condition that we may impose on measured foliations by rectangles,
namely, a measured foliation of F by rectangles is said to quasi-fill F if every component of
F complementary to the rectangles is either a polygon or an exactly once-punctured polygon.
The cell decomposition of decorated Riemann’s moduli space for punctured surfaces [54–58]
has been extended to surfaces with boundary in [26], and the space of quasi-filling measured fo-
liations by rectangles again turns out to be naturally homotopy equivalent to Riemann’s moduli
space of F (i.e., classes of structures on surfaces with one distinguished point in each hyperbolic
geodesic boundary component; see the next section for further details). Thus, in contrast to a
measured foliation impressionistically representing half a metric, a quasi-filling measured foli-
ation actually does determine a conformal class of metrics on F . See the closing remarks for a
further discussion of this “passage from topological to conformal field theory”.

More explicitly in Fig. 1, each boundary component comes equipped with a non-empty col-
lection of distinguished points that may represent the branes, and the labeling will be explained
presently. That part of the boundary that is disjoint from the foliation and from the distinguished
points has no physical significance: the physically meaningful picture arises by replacing each
distinguished point in the boundary by a small distinguished arc (representing that part of the in-
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Fig. 1. Foliations for several string interactions, where the strings are represented by dashed lines and the dual measured
foliation by solid lines. The white regions in parts (a), (b) are for illustration purposes only.

teraction that occurs within the corresponding brane) and collapsing to a point each component
of the boundary disjoint from the foliation and from the distinguished arcs.

Since the details for general measured foliations may obfuscate the relevant combinatorics and
phenomenology of strings, we shall restrict attention for the most part to the special measured
foliations where each non-singular leaf is an arc properly embedded in the surface. The more
general case is not without interest (see Appendix B).

The natural equivalence classes of such measured foliations are in one-to-one correspondence
with “weighted arc families”, which are appropriate homotopy classes of properly and disjointly
embedded arcs together with the assignment of a positive real number to each component (see the
next section for the precise definition). Furthermore, the quotient of this subspace of foliations
by the mapping class group is closely related to Riemann’s moduli space of the surface (again
see the next section for the precise statement).

A windowed surface F = Fs
g (δ1, . . . , δr ) is a smooth oriented surface of genus g � 0 with

s � 0 punctures and r � 1 boundary components together with the specification of a non-empty
finite subset δi of each boundary component, for i = 1, . . . , r , and we let δ = δ1 ∪ · · · ∪ δr de-
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note the set of all distinguished points in the boundary ∂F of F and let σ denote the set of all
punctures. The set of components of ∂F − δ is called the set W of windows.

In the physical context of interacting closed and open strings, the open string endpoints are
labeled by a set of branes in the physical target, and we let B denote this set of brane labels,
where we assume ∅ /∈ B. In order to account for all possible interactions, it is necessary to label
elements of δ ∪ σ by the power set P(B) (comprised of all subsets of B). In effect, the label
∅ denotes closed strings, and the label {B1, . . . ,Bk} ⊆ B denotes the formal intersection of the
corresponding branes. This intersection in the target may be empty in a given physical circum-
stance.

A brane-labeling on a windowed surface F is a function

β : δ � σ → P(B),

where � denotes the disjoint union, so that if β(p) = ∅ for some p ∈ δ, then p is the unique point
of δ in its component of ∂F . A brane-labeling may take the value ∅ at a puncture. (In effect,
revisiting windowed surfaces from [61] now with the additional structure of a brane-labeling
leads to the new combinatorial topology of the next sections.)

A window w ∈ W on a windowed surface F brane-labeled by β is called closed if the end-
points of w coincide at the point p ∈ δ and β(p) = ∅; otherwise, the window w is called open.

To finally explain the string phenomenology, consider a weighted arc family in a windowed
surface F with brane-labeling β . To each arc a in the arc family, associate a rectangle Ra of width
given by the weight on a, where Ra is foliated by horizontal lines as before. We shall typically
dissolve the distinction between a weighted arc a and the foliated rectangle Ra , thinking of Ra as
a “band” of arcs parallel to a whose width is the weight. Disjointly embed each Ra in F with its
vertical sides in W so that each leaf of its foliation is homotopic to a rel δ. Taken together, these
rectangles produce a measured foliation of a closed subsurface of F as before, and the leaves of
the corresponding unmeasured vertical foliation represent the strings.

Thus, a weighted arc family in a brane-labeled windowed surface represents a string interac-
tion. Given such surfaces Fi with weighted arc families αi and a choice of window wi of Fi ,
for i = 1,2, suppose that the sum of the weights of the arcs in α1 meeting w1 agrees with the
sum of the weights of the arcs in α2 meeting w2. In this case as in open/closed cobordism (see,
e.g., [9]), we may glue the surfaces F1,F2 along their windows w1,w2 respecting the orienta-
tions so as to produce another oriented surface F3, and because of the condition on the weights,
we can furthermore combine α1 and α2 to produce a weighted arc family α3 in F3 (cf. Fig. 5).
This describes the basic gluing operations, namely, the operations of a c/o structure on the space
of all weighted arc families in brane-labeled windowed surfaces (cf. Section 3 for full details).
Furthermore, these operations descend to the chain and homology levels as well (cf. Section 3
and Appendix A).

As we shall explain (in Section 4), the degree zero indecomposables of the c/o structure are
illustrated in Figs. 3 and 4, and further useful degree one indecomposables are illustrated in Fig. 6
(whose respective parts a-e correspond to those of Fig. 1).

Relations in the c/o structure of weighted arc families or measured foliations are derived from
decomposable elements, i.e., from the fact that a given surface admits many different decompo-
sitions into “generalized pairs of pants” (see the next section), so the weighted arc families or
measured foliations in it can be described by different compositions of indecomposables in the
c/o structure.

We shall see that all of the known equations of open/closed string theory, including the
“commutative and symmetric Frobenius algebras, Gerstenhaber–Batalin–Vilkovisky, Cardy, and
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center (or knowledge)” equations, hold for the c/o structure on chains on weighted arc families
(cf. Figs. 7–11).

Furthermore, we shall derive several new such equations (cf. Fig. 12) and in particular a set
of four new equations which together with known relations generate closed/open string duality
(see Theorem 4.1).

Indeed, it is relatively easy to generate many new equations of string interactions in this way,
and we shall furthermore (in Section 4.2) describe an algorithm for generating all equations of
all degrees on the topological level, and in a sense also on the chain level.

We turn in Section 5 to the algebraic analysis of Section 4 and derive independent sets of gen-
erators and relations in degree zero on the topological, chain, or homology levels. In particular,
this gives a new non-Morse theoretic calculation of the open/closed cobordism group in dimen-
sion two [5,9]. Several results on higher degree generators and relations are also presented, and
there is furthermore a description of algebras over our c/o structure on arc families.

Having completed this “tour” of the figures and this general physical discussion of the discov-
eries and results contained in this paper, let us next state an “omnibus” theorem likewise intended
to summarize the results mathematically:

Theorem 1.1. For every brane-labeled windowed surface (F,β), there is a space Ãrc(F,β) of
mapping class group orbits of suitable measured foliations in F together with geometrically
natural operations of gluing surfaces and measured foliations along windows. These operations
descend to the level of piecewise-linear or cubical chains for example.

These operations furthermore descend to the level of integral homology and induce the struc-
ture of a modular bi-operad, cf. [9]. Algebras over this bi-operad satisfy the expected equations
as articulated in Theorem 5.4.

Furthermore, new equations can also be derived in the language of combinatorial topology:
pairs of “generalized pants decompositions” of a common brane-labeled windowed surface give
rise to families of relations.

In degree zero on the homology level, we rederive the known presentation of the open/closed
cobordism groups [5,9], and further partial algebraic results are given in higher degrees. In
particular, several new relations (which have known transformation laws) are shown to act tran-
sitively on the set of all generalized pants decompositions of a fixed brane-labeled windowed
surface.

This paper is organized as follows. Section 2 covers the basic combinatorial topology of mea-
sured foliations in brane-labeled windowed surfaces and their generalized pants decompositions
leading up to a description of the indecomposables of our theory, which in a sense go back to the
1930s. Section 3 continues in a similar spirit to combinatorially define the spaces Ãrc(n,m) un-
derlying our algebraic structure on the topological level as well as the basic gluing operations on
the topological level. The operations on the chain level then follow tautologically. The operations
on the homology level require the analysis of certain fairly elaborate flows, which are defined and
studied in Appendix C and also discussed in Section 3. In Section 4 continuing with combinator-
ial topology, we present generators, relations, and finally prove the result that appropriate moves
act transitively on generalized pants decompositions. Section 5 finally turns to the algebraic dis-
cussion of the material described in Section 4 and explains the precise sense in which the figures
actually represent traditional algebraic equations; Section 5 furthermore presents our new alge-
braic results about string theory. Closing remarks in particular include a discussion of how one
might imagine our results extending from topological to conformal field theory.
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Appendix A gives the formal algebraic definition and basic properties of a c/o structure, and
Appendix B briefly surveys Thurston’s theory of measured foliations from the 1970–1980s and
describes the extension of the current paper to the setting of general measured foliations on
windowed surfaces. It is fair to say that Appendix A could be more appealing to a mathematician
than a physicist (for whom we have tried to make Appendix A optional by emphasizing the
combinatorial topology in the body of the paper), and that the physically speculative Appendix B
should probably be omitted on a first reading in any case.

Appendix C defines and studies certain flows which are fundamental to the descent to ho-
mology as described in Appendix A. Nevertheless, the discussion of the flows and their salient
properties in Appendix C is independent of the technical aspects of Appendix A (since chains
are interpreted simply as parameterized families); in a real sense, Appendix C is the substance
of this paper beyond the combinatorial topology, algebraic structure, and phenomenology, so we
have strived to keep it generally accessible.

2. Weighted arc families, brane-labeling, and generalized pants decompositions

2.1. Weighted arc families in brane-labeled windowed surfaces

In the notation of the introduction, consider a windowed surface F = F s
g (δ1, . . . , δr ), with

punctures σ , boundary distinguished points δ = δ1 ∪ · · · ∪ δr and windows W , together with a
brane-labeling β : δ ∪ σ → P(B). Define the sets

δ(β) = {
p ∈ δ: β(p) 	= ∅}

,

σ (β) = {
p ∈ σ : β(p) 	= ∅}

.

Fix some brane label A ∈ B, and define the brane-labeling βA to be the constant function
on δ ∪ σ with value {A}; βA corresponds to the “purely open sector with a space-filling brane-
label”. On the other hand, the constant function β∅ with value ∅ corresponds to the “purely closed
sector”.

It is also useful to have the notation Fs
g,(#δ1,...,#δr )

, where #S is the cardinality of a set S. For
instance, a pair of pants with one distinguished point on each boundary component is a surface
of type F 0

0,(1,1,1), while the data of the windowed surface Fs
g (δ1, δ2, δ3) includes the specification

of one point in each boundary component as well. One further point of convenient notation is
that we shall let simply F s

g,r denote a surface of genus g with s punctures and r > 0 boundary
components when there is a unique distinguished point on each boundary component.

Define a β-arc a in F to be an arc properly embedded in F with its endpoints in W so that a

is not homotopic fixing its endpoints into ∂F − δ(β). For example, given a distinguished point
p ∈ ∂F , consider the arc lying in a small neighborhood that simply connects one side of p to
another in F ; a is a β-arc if and only if β(p) 	= ∅.

Two β-arcs are parallel if they are homotopic rel δ, and a β-arc family is the homotopy class
rel δ of a collection of β-arcs, no two of which are parallel. Notice that we take homotopies rel δ
rather than rel δ(β).

A weighting on an arc family is the assignment of a positive real number to each of its com-
ponents.

Let Arc′(F,β) denote the geometric realization of the partially ordered set of all β-arc families
in F . Arc′(F,β) is described as the set of all projective positively weighted β-arc families in F

with the natural topology. (See, for instance, [25] or [59] for further details and Fig. 2 for an
illustrative example.)
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Fig. 2. The arc complex Arc(F 2
0,1, β∅) is homeomorphic to a circle S1. We omit the common label ∅ at each point of

δ ∪ σ to avoid cluttering the figure. There are exactly the two MC(F 2
0,1)-orbits of β∅-arcs on the right and left. These

can be disjointly embedded in the two distinct ways at the top and bottom. As the parameter t on the bottom varies in
the range 0 � t � 1, there is described a projectively weighted β∅-arc family, that is, the two disjoint arcs determine a
one-dimensional simplex in Arc(F,β∅), and likewise for the parameter s on the top. The two one-simplices are incident at
their endpoints as illustrated to form a circle Arc(F,β∅) ≈ S1. Furthermore, Arc′(F,β∅) ≈ R, Ãrc(F,β∅) ≈ S1 × R>0,
and Ãrc′(F,β∅) ≈ R × R>0 with the primitive mapping classes acting by translation by one on R.

The (pure) mapping class group MC(F ) of F is the group of orientation-preserving homeo-
morphisms of F pointwise fixing δ ∪ σ modulo homotopies pointwise fixing δ ∪ σ . MC(F ) acts
naturally on Arc′(F,β) by definition with quotient the arc complex

Arc(F,β) = Arc′(F,β)/MC(F ).

We shall also require the corresponding deprojectivized versions: Ãrc′(F,β) ≈ Arc′(F,β) ×
R>0 is the space of all positively weighted arc families in F with the natural topology, and

Ãrc(F,β) = Ãrc′(F,β)/MC(F ) ≈ Arc(F,β) × R>0.

It will be useful in the sequel to employ a notation similar to that in Fig. 2, where parameter-
ized collections of arc families are described by pictures of arc families together with functions
next to the components, where the functions represent the parameterized evolution of weights.
We shall also typically let the icon • denote either a puncture or a distinguished point on the
boundary as in Fig. 2.

In contrast to Fig. 2, if we instead consider the purely open sector with space-filling brane-
label βA, for A 	= ∅, then there is yet another MC(F 2

0,1)-orbit of arc encircling the boundary

distinguished point. In this case, Arc(F 2
0,1, βA) is homeomorphic to the join of the circle in

Fig. 2 with the point representing this arc, namely, Arc(F 2
0,1, βA) is homeomorphic to a two-

dimensional disk.
For another example of an arc complex, take the brane-labeling β∅ ≡ ∅ on F 0

0,2, for which

again MC(F 0
0,2) ≈ Z. There is a unique MC(F 0

0,2)-orbit of singleton β∅-arc, and there are two

possible MC(F 0
0,2)-orbits of β∅-arc families with two component arcs illustrated in Fig. 3. Again,

Arc(F 0
0,2, β∅) is homeomorphic to a circle. If A 	= ∅, then Arc(F 0

0,2, βA) is homeomorphic to a
three-dimensional disk.
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To explain the connection with earlier work, consider the purely closed sector β∅ ≡ ∅ on F =
Fs

g,r . Let Arc#(F ) denote the subspace of Arc(F,β∅) corresponding to all projective positively
weighted arc families α so that each component of F − ∪α is either a polygon or an exactly
once-punctured polygon, i.e., α quasi-fills F ; Arc#(F ) was shown in [26] to be proper homotopy
equivalent to a natural bundle over Riemann’s moduli space of the bordered surface F as defined
in the introduction provided F is not an annulus (g = s = 0, r = 2).

Let Arc(F ) ⊇ Arc#(F ) denote the subspace of Arc(F,β∅) corresponding to all projective pos-
itively weighted arc families α so that each window of F (i.e., each boundary component) has at
least one arc in α incident upon it. The spaces Arc(F ) comprise the objects of the basic topolog-
ical operad studied in [25].

2.2. Generalized pants decompositions

A generalized pair of pants is a surface of genus zero with r boundary components and s

punctures, where r + s = 3, with exactly one distinguished point on each boundary component,
that is, a surface of type F 0

0,3, F 1
0,2, or F 2

0,1.
A (standard) pants decomposition Π of a windowed surface F = Fs

g (δ1, . . . , δr ) is (the ho-
motopy class of) a collection of disjointly embedded essential curves in the interior F , no two of
which are homotopic, together with a condition on the complementary regions to Π in F .

To articulate this condition, let us enumerate the curves c1, . . . , cK in Π , choose disjoint
annular neighborhoods Uk of ck in F , for k = 1, . . . ,K , and set U = U1 ∪ · · · ∪ UK . Just for the
purposes of articulation, let us also choose on each boundary component of U a distinguished
point. We require that each component of F–U is a generalized pair of pants or a boundary-
parallel annulus of type F 0

0,(1,n), for some n � 1.
Simple Euler characteristic considerations give the following lemma.

Lemma 2.1. For a windowed surface F = F s
g (δ1, . . . , δr ), there are #W = ∑r

i #δi = #δ many
windows. The real dimension of Arc(F,β∅) is 6g − 7 + 3r + 2s + #δ. Furthermore, there are
3g − 3 + 2r + s curves in a pants decomposition Π of F and 2g − 2 + r + s generalized pairs
of pants complementary to an annular neighborhood of the pants curves.

If β is a brane-labeling on the windowed surface F , then a generalized pants decomposition
of (F,β) is (the homotopy class of) a family of disjointly embedded closed curves in the in-
terior of F and arcs with endpoints in δ(β) ∪ σ(β), no two of which are parallel, so that each
complementary region is one of the following indecomposable brane-labeled surfaces:

– a triangle F 0
0,(3)

with no vertex brane-labeled by ∅;

– a generalized pair of pants F 0
0,3, F 1

0,2, or F 2
0,1 with all points δ in the boundary brane-labeled

by ∅;
– a once-punctured monogon F 1

0,1 with puncture brane-labeled by ∅ and boundary distin-
guished point by A 	= ∅;

– an annulus F 0
0,2 with at least point of δ labeled by ∅.

For instance, if every brane label is empty, then a generalized pants decomposition is a stan-
dard pants decomposition. At the other extreme, if every brane label is non-empty, then F admits
a decomposition into triangles and once-punctured monogons, a so-called quasi-triangulation of
F , cf. [58]; see Figs. 12(b) and 13 for examples. Provided there is at least one non-empty brane
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label, we may collapse each boundary component with empty brane label to a puncture to pro-
duce another windowed surface F ′ from F . A quasi-triangulation of F ′ can be completed with
brane-labeled annuli to finally produce a generalized pants decomposition of F itself.

Thus, any brane-labeled windowed surface admits a generalized pants decomposition. Fur-
thermore, any collection of disjointly embedded essential curves and arcs connecting non-empty
brane labels so that no two components are parallel can be completed to a generalized pants
decomposition.

2.3. Indecomposables

We shall introduce standard foliations on indecomposable surfaces which are the basic build-
ing blocks of the theory, and we begin with the annulus in Fig. 3.

In the notation of Fig. 3, consider the purely closed sector with brane-labeling β∅ ≡ ∅ on a
fixed annulus A of type F 0

0,2. Define a one-parameter “Dehn twist flow” D(t), for −1 � t � 1,

on Ãrc′(A, β∅), as illustrated in the figure, where m denotes the sum of the weights of the arcs
in α ∈ Ãrc′(A, β∅). Letting T denote the right Dehn twist along the core of the annulus, one
extends to all positive real values of t by setting D(t)(α) = T [t]D(t − [t])(α), where [t] denotes
the integral part of t , and likewise for negative real values of t .

Fig. 4 illustrates the remaining building blocks of the theory. Notice that F 1
0,1 brane-labeled

with some β taking value ∅ on the boundary is absent from Fig. 4 and implicitly from the theory
since Arc(F 1

0,1, β) is empty.
A fact going back to Max Dehn in the 1930s is that “free” homotopy classes rel δ(β∅) = ∅

in a fixed pair of pants P of type F 0
0,3 are determined by the three “intersection numbers” m1,

m2, m3, namely, the number of endpoints of component arcs in each respective boundary com-
ponent, subject to the unique constraint that m1 + m2 + m3 is even. Two representative cases
are illustrated in Fig. 4(e), and the full partially ordered set is illustrated in Fig. 4(d). There are
conventions in the pair of pants that have been suppressed here insofar as the “arc connecting a
boundary component to itself goes around the right leg of the pants”; see Fig. 4(f) and see [60]
for details.

One further remark is that arc families in all generalized pairs of pants are also implicitly
described by Fig. 4(d)–(f), where punctures correspond to boundary components with no incident
arcs.

Fig. 3. The twist flow on Ãrc′(A, β∅).
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Fig. 4. Indecomposables. We depict the geometric realization of Arc(F 0
0,(3)

, β) in part (a) for some brane-labeling β

whose image does not contain ∅, and which is simply omitted from the figure. There is the unique element of Arc(F 1
0,1, β)

depicted in part (b) when the brane-label on the boundary is non-empty. For the brane-labeling β on F 0
0,2 indicated in

part (c), we consider instead the homotopy classes of β-arc families rel δ(β), rather than rel δ as before. Likewise, for the
brane-labeling β∅ on F 0

0,3, which we omit from the figure, we consider again the homotopy classes of β∅-arc families
rel δ(β∅), where δ(β∅) = ∅ by definition, and depict the geometric realization in part (d).

2.4. Standard models of arc families

Suppose that Π is a generalized pants decomposition of a brane-labeled windowed surface
(F,β), where Π has curve components c1, . . . , cK and arc components d1, . . . , dL. Let Uk denote
a fixed annular neighborhood of ck for k = 1, . . . ,K , and set U = U1 ∪ · · · ∪ UK .

In order to parameterize weighted arc families, we must make several further choices, as
follows. Choose a framing to the normal bundle to each curve ck , which thus determines an
identification of the unit normal bundle to ck in F with the standard annulus A. In turn, the unit
normal bundle is also identified with the neighborhood Uk , and there is thus an identification
of Uk with A determined by the framing on ck . Furthermore, choose homeomorphisms of each
generalized pair of pants component of F − U with some standard generalized pair of pants
P . Choose an embedded essential arc a0 once and for all in A, and likewise choose standard
models for arc families in P (say, with the conventions for twisting as in Fig. 4(f)). Let us call
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a generalized pants decomposition together with this specification of further data a basis for arc
families.

Given α ∈ Ãrc′(F,β), choose a representative weighted arc family that meets each component
of Π transversely a minimal number of times, let mk denote the sum of the weights of the arcs
in α that meet ck counted with multiplicity (and without a sign), and let n� denote the analogous
sum for the arcs d�.

Theorem 2.2. Fix a basis for arc families with underlying generalized pants decomposition
Π of a brane-labeled windowed surface (F,β), and adopt the notation above given some
α ∈ Ãrc′(F,β). Then under the identifications with the standard annulus A and standard pants
P , α is represented by a weighted arc family that meets complementary regions to U in F in
exactly one of the configurations shown in Fig. 4 and meets each Uk in D(tk)(a0) for some
well-defined tk ∈ R, where a0 is weighted by mk . Furthermore, a point of Ãrc′(F ) is uniquely
determined by its coordinates (mk, tk) for k = 1, . . . ,K and n�, for � = 1, . . . ,L.

Proof. Since the arcs in a generalized pants decomposition connect points of δ ∪ σ and the
components of an arc family avoid a neighborhood of δ∪σ , intersections with triangles and once-
punctured monogons are established. We may homotope an arc family to a standard model in
each pair of pants; the twisting numbers tk are then the weighted algebraic intersection numbers
(with a sign) with a0 in each annulus (all arcs oriented from top-to-bottom or bottom-to-top of
the annulus); see the “Dehn–Thurston” coordinates from [60,61] for further details. �
Corollary 2.3. In the notation of Theorem 2.2, any parameterized family in Ãrc′(F,β) is rep-
resented by one that meets complementary regions to U in F in parameterized families of the
configurations shown in Fig. 4 and meets each Uk in D(tk)(a0), where tk depends upon the pa-
rameters, for k = 1, . . . ,K . Furthermore, a parameterized family is uniquely determined by its
parameterized coordinates (mk, tk) for k = 1, . . . ,K , and n� for � = 1, . . . ,L.

Notice that in either case of the theorem or the corollary, the intersection numbers on any
triangle satisfy all three possible weak triangle inequalities.

3. C/O string operations on weighted arc families

Recall that a window w ∈ W in a brane-labeled windowed surface F is closed if its closure
is an entire boundary component of F and the distinguished point complementary to w is brane-
labeled by ∅, and otherwise the window is open.

Given a positively weighted arc family in F , let us furthermore say that a window w ∈ W is
active if there is an arc in the family with an endpoint in w, and otherwise the window is inactive.

In order to most directly connect with the usual phenomenology of strings, we shall require
all windows to be active, but the more general case of operations on inactive windows is not
uninteresting, specializes to the treatment here, and will be discussed in Appendix B.

Given a positively weighted arc family in F , we may simply collapse each inactive window, or
consecutive sequence of inactive windows in a boundary component, to a new distinguished point
on the boundary, where the brane-labeling of the resulting distinguished point is the union of all
the brane labels on the endpoints of the windows collapsed to it. In case a boundary component
consists entirely of inactive windows, then it is collapsed to a new puncture, which is again brane-
labeled by the union of all the brane labels on the collapsed boundary component. Thus, given
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any positively weighted arc family in F , there is a corresponding positively weighted arc family
in a corresponding surface so that each window is active. (This is one explanation for why we
brane-label by the power-set of branes, namely, in order to effectively take every window to be
active.)

For any windowed surface F , define

Ãrc(F ) =
⊔

Ãrc(F,β),

where the disjoint union is over all brane-labelings on F . The basic objects of our topological
c/o structure are

Ãrc(n,m) =
⊔{

α ∈ Ãrc(F ): α has n closed and m open active windows and no

inactive windows
}
,

where the disjoint union is over all orientation-preserving homeomorphism classes of windowed
surfaces.

If α ∈ Ãrc(n,m), then define the α-weighting of an active window w to be the sum of the
weights of arcs in α with endpoints in w, where we count with multiplicity (so if an arc in α has
both endpoints in w, then the weight of this arc contributes twice to the weight of w).

Suppose we have a pair of arc families α1, α2 in respective windowed surfaces F1, F2 and
a pair of active windows w1 in F1 and w2 in F2, so that the α1-weight of w1 agrees with the
α2-weight of w2. Since F1, F2 are oriented surfaces, so too are the windows w1,w2 oriented. In
each operation, we identify windows reversing orientation, and we identify certain distinguished
points.

To define the open and closed gluing (F1 	= F2) and self-gluing (F1 = F2) of α1, α2 along
the windows w1, w2, we identify windows and distinguished points in the natural way and
combine foliations. In closed string operations, we “replace the distinguished point, so there
is no puncture” whereas with open string operations, “distinguished points always beget either
other distinguished points or perhaps punctures”. In any case whenever distinguished points are
identified, one takes the union of brane labels (the intersection of branes) at the new resulting
distinguished point or puncture.

More explicitly, the general procedure of gluing defined above specializes to the following
specific operations on the Ãrc(n,m):

Closed gluing and self-gluing
See Fig. 5(a). Identify the two corresponding boundary components of F1 and F2, identifying

also the distinguished points on them and then including this point in the resulting surface F3.
F3 inherits a brane-labeling from those on F1, F2 in the natural way. We furthermore glue α1
and α2 together in the natural way, where the two collections of foliated rectangles in F1 and
F2 which meet w1 and w2 have the same total width by hypothesis and therefore glue together
naturally to provide a measured foliation F of a closed subsurface of F3. (The projectivization
of this gluing operation is precisely the composition in the cyclic operad studied in [25]; we
have deprojectivized and included the weighting condition in the current paper in order to allow
self-gluing of closed strings as well.)

Open gluing
The surfaces F1 and F2 are distinct, and we identify w1 to w2 to produce F3. There are cases

depending upon whether the closure of w1 and w2 is an interval or a circle. The salient cases
are illustrated in Fig. 5(b)–(d). In each case, distinguished points on the boundary in F1 and
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Fig. 5. The c/o operations on measured foliations.

F2 are identified to produce a new distinguished boundary point in F3, and the brane labels are
combined, as is also illustrated. As before, since the α1-weight on w1 agrees with the α2-weight
on w2, the foliated rectangles again combine to provide a measured foliation F of a closed
subsurface of F3.

Open self-gluing
There are again cases depending upon whether the closure of w1 or w2 is a circle or an interval,

but there is a further case as well when the two intervals lie in a common boundary component
and are consecutive. Other than this last case, the construction is identical to those illustrated in
Fig. 5(b)–(d). In case the two windows are consecutive along a common boundary component,
again they are identified so as to produce surface F3 with a puncture resulting from their common
endpoint as in Fig. 5(e)–(f), where the puncture is brane-labeled by the label of this point, and
the foliated rectangles combine to provide a measured foliation F of a closed subsurface of F3.

At this stage, we have only constructed a measured foliation F of a closed subsurface of
F3, and indeed, F will typically not be a weighted arc family. By Poincaré recurrence, the sub-
foliation F ′ comprised of leaves that meet ∂F corresponds to a weighted arc family α3 in F3.
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Notice that the α3-weight of any window uninvolved in the operation agrees with its α1- or
α2-weight, so in particular, every window of F3 is active for α3.

Let us already observe here that the part of F that we discard to get α3 can naturally be
included (as we shall discuss in Appendix B). Furthermore, notice that a gluing operation never
produces a “new” puncture brane-labeled by ∅.

The assignment of α3 in F3 to αi in Fi , for i = 1,2 completes the definition of the various
operations. Associativity and equivariance for bijections are immediate, and so we have our first
non-trivial example of a c/o structure (see Appendix A for the precise definition):

Theorem 3.1. Together with open and closed gluing and self-gluing operations, the spaces
Ãrc(n,m) form a topological c/o structure. Furthermore, this c/o structure is brane-labeled by
P(B) and is a (g,χ − 1)-c/o structure, where g is the genus and χ is the Euler-characteristic.

Proof. See Appendix A for the definitions and the proof. �
Corollary 3.2. The open and closed gluing operations descend to operations on the PL chain
complexes of Ãrc(n,m) giving them a chain level c/o structure.

Proof. We define a “chain level c/o structure” in such a manner that this follows immediately
from the previous theorem; see Appendix A for details. �
Theorem 3.3. The integral homology groups H∗(Ãrc(n,m)) comprise a modular bi-operad when
graded by genus for closed gluings and self-gluings and by Euler-characteristic-minus-one for
open gluings and self-gluings.

Proof. In contrast to the previous corollary, this requires more than just a convenient definition
since we must first show that the gluing operations descend to the level of homology; specifically,
given homology classes in Ãrc(n,m) and Ãrc(n′,m′), we must find representative chains that
assign a common weight on the windows to be glued.

This is accomplished by introducing two continuous flows on Ãrc(F,β) for each window w,
namely, ψw

t , for 0 � t � 1 for non-self-gluing and φw
t , for −1 � t < 1 for self-gluing, where β

is a fixed brane-labeling on the windowed surface F . In effect for non-self-gluing, ψw
t simply

scales in the R>0-action on Ãrc(F,β) so that the weight of window w is unity at time one. To
describe the key attributes of the more complicated flow for self-gluing, suppose that w′ 	= w is
any other window of F and α ∈ Ãrc(F,β) where the α-weight of w′ is less than the α-weight of
w.

There is a well-defined “critical” value tc = tc(α) of t so that the φw
tc

(α)-weight of w first
agrees with the φw

tc
(α′)-weight of w′; furthermore, the function tc(α) is continuous in α.

These flows are defined and studied in Appendix C, and the theorem then follows directly
from Proposition A.2. �
4. Operations, relations, duality

4.1. Operations

Operations may be conveniently described by weighted arc families, or by parameterized
families of weighted arc families. If a parameterized family of arc families depends upon p real
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Fig. 6. Standard operations of degrees zero and one. If there is no brane-label indicated, then the label is tacitly taken to
be ∅. See Section 5.1 for the traditional algebraic interpretations.

parameters, then we shall say that it is an operation of degree p. In order to establish notation,
the standard operations in degrees zero and one are illustrated in Fig. 6.

In this figure, the distinguished points on the boundary come with an enumeration that we have
typically suppressed. Only for clarity for the bracket in Fig. 6(k) do we indicate the enumeration
of the distinguished points with the numerals “1” and “2”; we shall omit such enumerations in
subsequent figures since they can be inferred from the incidence and labeling of arcs in the figure.

It is worth remarking that the BV operator Δa(t) is none other than the projection to MC(F )-
orbits of the Dehn twist operator D(t) discussed in Section 2.3.
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Fig. 7. Open/closed cobordism relations.

4.2. Relations

Relations in the c/o structure on Ãrc(n,m) or its chain complexes can be described and derived
by fixing some decomposable windowed surface F , choosing two generalized pants decompo-
sitions Π , Π ′ of F and specifying an arc family α or a parameterized family of arc families in
F . Each of Π and Π ′ decompose F into indecomposable surfaces and annular neighborhoods
of the pants curves.

According to Theorems 2.2 and 3.1, α thus admits two different descriptions as iterated com-
positions of operations in the c/o structure, and these are equated to derive the corresponding
algebraic relations. We shall abuse notation slightly and simply write an equality of two pictures
of F , one side of the equation illustrating α and Π in F and the other illustrating α and Π ′; we
shall explain the algebraic interpretations in the next section. As with operations, a relation on a
p parameter family of weighted arc families is said to have degree p.

Accordingly, Figs. 7 and 8 illustrate all of the standard relations of two-dimensional
open/closed cobordism (cf. [5,7–9]). In particular, notice that the “Whitehead move” in Fig. 7(a)
corresponds to associativity of the open string operation. The Cardy equation in Fig. 7(e) de-
pends upon the two generalized pants decompositions Π , Π ′ of the surface F 0

0,2 with no empty
brane labels, where Π consists of a single simple closed curve, and Π ′ is an ideal triangulation.

The Frobenius equation is more interesting since it consists of two pairs (αi,Πi), for i = 1,2,
where (αi,Πi) is comprised of a weighted arc family αi with each window active and an ideal
triangulation Πi of a quadrilateral; see Fig. 7(c) at the far left and right. Perform the unique
possible Whitehead move on Πi to get Π ′

i , for i = 1,2. In fact, the pairs (α1,Π
′
1) and (α2,Π

′
2)

are not identical, rather they are homotopic in Ãrc(0,4), as is also illustrated in Fig. 7(c).
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Fig. 8. Further open/closed cobordism relations: associativity and the Frobenius equation in the closed sector.

Fig. 9. Closed sector relations: compatibility of bracket and composition.

The other closed sector relations were already confirmed in [25] and are rendered in Figs. 8–
11 in the current formalism, where all brane-labelings are tacitly taken to be ∅; furthermore all
boundary-parallel pants curves are omitted from the figures (except in Fig. 11 for clarity). The
Frobenius equation is again degree one, and the BV equation itself is degree two.

It is thus straight-forward to discover new relations, and several such relations of some sig-
nificance are indicated in Fig. 12. Fig. 12(a) illustrates a degree one equation on F 0

0,2 called
the “BV sandwich”, which can be succinctly described by “close an open string, perform a BV
twist, and then open the closed string”. One-parameter families of weighted arc families on two
triangles are combined by parameterized open string gluing to produce a closed string BV twist
sandwiched between closing/opening the string. The significance of the relations in Fig. 12(b)
and the justification for the choice of terminology will be explained in the next section.
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Fig. 10. Homotopy for one-third of the BV equation.

Fig. 11. The homotopy BV equation. There are three summands in this figure, each of which is parameterized by an
interval, which together combine to give the sides of a triangle. For each side of this triangle, there is the homotopy
depicted in Fig. 10 with the appropriate labeling. Glue the three rectangles from Fig. 10 to the three sides of the triangle
in the manner indicated. The BV equation is then the fact that one boundary component of this figure (9 terms) is
homotopic to the other boundary component (3 terms); Fig. 11 of [25] renders this entire homotopy.

Here is an algorithm for deriving all of the relations in degree zero on the topological level:
Induct over the topological type of the surface and over the MC(F )-orbits of all pairs of general-
ized pants decompositions of it. (Though there are only finitely many MC(F )-orbits of singleton
generalized pants decompositions, there are infinitely many MC(F )-orbits of pairs.) In each inde-
composable piece, consider each of the possible building blocks illustrated in Figs. 3, 4. Among
these countably many equations are all of the degree zero equations of the topological c/o struc-
ture.
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Fig. 12. New relations.

To derive all higher degree relations on the topological level, notice that each indecompos-
able surface has (the geometric realization of) its arc complexes of some fixed rather modest
dimension. Thus, parameterized families may be described as specific parameterized families in
each building block, for instance, in the coordinates of Corollary 2.3. Such parameterized fam-
ilies can be manipulated using known transformations (see the next section) to explicitly relate
coordinates for different generalized pants decompositions and derive all topological relations.

A fortiori, topological relations hold on the chain level (and likewise for the chain and ho-
mology levels as well). For parameterized families, there is again the analogous exhaustively
enumerative algorithm, but one must recognize when two parameterized families are homotopic,
which is another level of complexity.

It is thus not such a great challenge to discover new relations in this manner. The remaining
difficulties involve systematically understanding not only higher degree equations like the BV
sandwich but also in determining a minimal set of relations, and especially in understanding the
descent to homology.

4.3. Open/closed duality

We seek a collection of combinatorially defined transformations or “moves” on generalized
pants decompositions of a fixed brane-labeled windowed surface, so that finite compositions of
these moves act transitively. In particular, then any closed string interaction (a standard pants
decomposition of a windowed surface brane-labeled by the emptyset) can be opened with the
“opening operator” (iAa )∗ illustrated in Fig. 6(d), say with a single brane-label A; this surface can
be quasi-triangulated, giving thereby an equivalent description as an open string interaction.
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Fig. 13. Four combinatorial moves, where absent brane labels are arbitrary.

In particular, the two moves In Fig. 13(a), (b) were shown in [58] to act transitively on the
quasi-triangulations of a fixed surface, and likewise the two “elementary moves” on F 0

1,1 and F 0
0,4

of Fig. 13(c), (d) were shown in [62] to act transitively on standard pants decompositions, where
we include also the generalized versions of Fig. 13(d) on F s

0,r with r + s = 4 and Fig. 13(c) on

F 1
1,0 as well (though this includes some non-windowed surfaces strictly speaking).

For another example, the Cardy equation can be thought of as a move between the two gen-
eralized pants decompositions depicted in Fig. 7(e), and likewise for the four new relations in
Fig. 12(b).

Theorem 4.1. Consider the following set of combinatorial moves: those illustrated in Fig. 13
together with the center equation Fig. 7(d), the Cardy equation Fig. 7(e), and the four closed/open
duality relations Fig. 12(b). Finite compositions of these moves act transitively on the set of all
generalized pants decompositions of any surface.

Proof. One first observes that the center and Cardy equations together with the moves in Fig. 13
act transitively on the generalized pants decompositions of the surfaces in Fig. 12(b). In light of
the transitivity results mentioned above by topological induction, it remains only to show that the
indicated moves allow one to pass between some standard pants decomposition and some quasi-
triangulation of a fixed surface F of type Fs

g,r . This follows from the fact that on any surface
other than those in Figs. 7(e) and 12(b), one can find in F a separating curve γ separating off
one of these surfaces. Furthermore, one can complete γ to a standard pants decomposition Π

so that there is at least one window in the same component of F − ⋃
Π as γ . Choose an arc

a in F − ⋃
Π connecting a window to γ ; the boundary of a regular neighborhood of a

⋃
γ

corresponds to one of the enumerated moves, and the theorem follows by induction. �
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It is an exercise to calculate the effect of these moves on the natural coordinates in Theo-
rem 2.2 in the case of the quadrilateral F 0

0,(4) and the once-punctured monogon F 1
0,1, and the

calculation of the new duality relations on generalized pairs of pants Fs
0,r , for r + s = 3, and on

F 0
1,1 is implicit in Fig. 4. The calculation of the first elementary move on F 0

1,1 is also not so hard,
but the formulas are, unfortunately, incorrectly rendered in [67]; see [61] or [70]. The calculation
of the second elementary move on F 0

0,4, a problem going back to Dehn, was solved in [61].

5. Algebraic properties on the chain and homology levels

5.1. Operations on the chain level

The moves discussed in the last section give rise to relations on the chain level as well. As
explained in Appendix A upon fixing a chain functor Chain, a chain may be thought of as a para-
meterized family of arc families, i.e., as a suitable continuous function a(s) ∈ Ãrc(n,m), where
s represents a tuple of parameters. The gluing operations on the chain level can furthermore be
thought of as gluing in families, where the gluing is possible when the weights of the appropri-
ate windows agree in the two families. As mentioned previously, any relation on the topological
level gives rise to a relation of degree zero on the chain level. Some of the relations we discuss
will be only up to homotopy, i.e., of higher degree.

Given any a ∈ Chain(Ãrc(n,m)), i.e., given any suitable parameterized family a(s) ∈
Ãrc(n,n) on a component of Ãrc(n,m), say with underlying surface F , we may fix a window w

on F and regard a,w as an operation in many different ways:

• (n+m−1)-ary operation: given chains a1, . . . , an+m−1, each on a surface with distinguished
window, glue them to all windows of F except w; the n+m−1 inputs a1, . . . , an+m−1 yield
the output w;

• dual unary operation: given a chain b on a surface with distinguished window, glue it to F

along w to produce the chain we shall denote a∗(b); the input b yields the output a∗(b).

More generally, we may partition the windows of the underlying surfaces into inputs and
outputs to obtain more exotic operations associated with chains. (The mathematical structure of
PROPs were invented to formalize this structure; for a review see [64,65].)

For instance, let us explain the sense in which the constant chain mABC
ab in Fig. 6(b) de-

scribes the binary operation of multiplication. Taking the base of the triangle as the distin-
guished window w, consider families a(s) ∈ Chain(Ãrc(n,m)) with distinguished window wa

and b(t) ∈ Chain(Ãrc(n′,m′)) with distinguished window wb , where the brane labels at the end-
points of wa are A,B and of wb are B,C. These chains can be glued to the constant family
mABC

ab if and only if the weight of a(s) on its distinguished window is constant equal to a and
the weight of b(t) on its distinguished window is constant equal to b. Let the base of the triangle
in Fig. 6(b) be the window 0, the side AB the window 1, and the side BC the window 2. The
chain operation is defined as (mABC

ab •1,wa a(s)) •2,wb
b(t). Notice that the resulting chain will

have constant weight a + b on its window 0. It is in this sense that we shall regard the constant
chain mABC

ab as a binary multiplication.
On the other hand, mABC

ab acts as a co-multiplication as well: given a(s) with brane labels
A,C on its distinguished window, we have mABC∗ ◦ a(s) = mABC •0,wa a(s).
ab ab
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5.1.1. Degree 0 indecomposables and relations
Degree zero chains are generated by zero-dimensional families, that is, by points of the spaces

Ãrc(n,m).
For the indecomposable brane-labeled surfaces of Section 2.2, the relevant degree 0 chains

are enumerated in Fig. 6(a)–(e) and (l)–(n). They become explicit operators by fixing the dis-
tinguished window w to be the lower side in 6(a), the base in 6(b) and the outside boundary
in Fig. 6(c)–(e) and (l)–(n): this is the algebraic meaning of the illustrations in Fig. 6. For ex-
ample, Fig. 6(b) and (e) give the respective open and closed binary multiplications mABC

ab and
mab , while Fig. 6(a) and (c) give the respective identities idAB

a and ida on their domains of def-
inition, namely, families whose weight on the distinguished window is constant equal to a. The
subscripts indicate compatibility for chain gluing and self-gluing in the chain level c/o structure,
and the superscripts denote brane-labels in the open sector.

It follows from Figs. 7(a) and 8(a), that the multiplications mABC
ab and mab are associative:

(5.1)mADB
a+c,b ◦ (

mACD
ac ⊗ idBC

b

) = mACB
a,b+c ◦ (

idAC
a ⊗ mCDB

c,b

)
,

(5.2)ma+c,b ◦ (mac ⊗ idb) = ma,b+c ◦ (ida ⊗ mc,b),

where ◦ means the usual composition of operations. The dual unary operations to these mul-
tiplications satisfy the Frobenius equations up to homotopy as shown in Fig. 7(c) for the open
sector:(

idAD
a ⊗ mDBC

bc

) ◦ (
mBDA∗

ab ⊗ idBC
c

) = mCDA∗
a,b+c ◦ mABC

a+b,c

∼ mCDA∗
ac ◦ mABC

ac ∼ mCDA∗
a+b,c ◦ mABC

a,b+c

(5.3)= (
mABD

ab ⊗ idCD
c

) ◦ (
idAB

a ⊗ mCDB∗
bc

)
,

and in Fig. 8(b) for the closed sector:

(id ⊗ mbc) ◦ (
m∗

ab ⊗ id
) = m∗

a,b+c ◦ ma+b,c ∼ m∗
ac ◦ mac ∼ m∗

a+b,c ◦ ma,b+c

(5.4)= (mab ⊗ id) ◦ (
id ⊗ m∗

bc

)
.

The “closing” operation iAa of Fig. 7(d) acts as a unary operation which changes one window
from open to closed. Its dual “opening” operation changes one closed to one open window. It
follows from Fig. 7(b) that iAa is an algebra homomorphism:

(5.5)iAa+b ◦ mab = mAAA
ab ◦ (

iAa , iAb
)
.

The image of iAa lies in the center, as in Fig. 7(d):

(5.6)mABA∗
ab ◦ iAa = τ1,2 ◦ mBAB∗

ba ◦ iBb ,

where τ12 interchanges the tensor factors, namely, interchanges the two non-base sides of the
triangle, and it satisfies the Cardy equation in Fig. 7(e):

(5.7)iAa+b ◦ iB∗
a+b = mABA

ab ◦ τ1,2 ◦ mBAB∗
ab .

The operators in Fig. 6(l)–(n) are puncture operators, which are “shift operators for the punc-
ture grading”.

We finally express the center equation in a less symmetric but more familiar form:

(5.8)mAAB
ac ◦ (

iAb ◦ id
) ∼ mABB

ba ◦ τ1,2 ◦ (
iB ◦ id

)
.
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Fig. 14. Homotopy of Eq. (5.8) to Eq. (5.6), where the dotted lines indicate generalized pants decompositions.

As indicated in Fig. 14, Eq. (5.8), which is represented by the far left and right figures, is equiv-
alent on the chain level to two copies of our Eq. (5.6), represented by the two equalities in the
figure, which holds on the nose.

5.1.2. Degree one indecomposables and relations
The known degree one operations are given by the binary operation ◦ab of Fig. 7(g) and the

operation Δa of Fig. 7(h). These operations are related, indeed, they satisfy the GBV equations
up to homotopy: ◦ab is a homotopy pre-Lie operation whose induced homotopy Gerstenhaber
structure coincides with the induced homotopy Gerstenhaber structure of the homotopy BV op-
erator Δa (see Figs. 9–11). This completes the discussion of know relations.

There is a degree one chain which is of interest, namely, the family which is generated by the
BV sandwich setting a = t and b = a − t in Fig. 12(a). This is supported on the annulus F 0

0,2

with brane labels A and B. We shall call this operator DAB
a . The BV sandwich equation then

gives the equality of chain level operators

(5.9)DA,B
a = (

iBa
)∗ ◦ Δa ◦ iAa .

In the same spirit, there is another degree one chain which is associated to mABC
t,(a−t) for 0 �

t � 1. Although this chain is not closed, it appears naturally as follows. Using the BV sandwich
relation for the chain DAB

a , we see that it also decomposes as:

(5.10)DAB
a = mABA

(a−t),t ◦ τ1,2 ◦ mBAB∗
(a−t),t .

Thus, D
A,B
a admits the two expressions (5.9) and (5.10), so the chain DBC

a DAB
a , which is a

kind of “BV-squared in the open sector”, likewise admits the two expressions corresponding to
two different generalized pants decompositions of F 1

0,2:

DBC
a DAB

a = (
iCa

)∗ ◦ Δa ◦ iBa ◦ (
iBa

)∗ ◦ Δa ◦ iAa

= mBCB
(a−t),t ◦ τ1,2 ◦ mCBC∗

(a−t),t ◦ mABA
(a−t),t ◦ τ1,2 ◦ mBAB∗

(a−t),t .

See the closing remarks for a further discussion of this operator DAB
a .

Lemma 5.1. Suppose that (F,β) is an indecomposable brane-labeled windowed surface. If F

is a triangle or a once-punctured monogon, then Ãrc(F,β) is contractible. For an annulus,
Ãrc(F,β) is homotopy equivalent to a circle, and for a generalized pair of pants with r > 0
boundary components, Ãrc(F,β) is homotopy equivalent to the Cartesian product of r circles.

Proof. The claims for triangles and once-punctured monogons are clear from Fig. 4(a), (b).
For the degree one indecomposables, we first have the annuli F 0

0,2 brane-labeled by ∅,∅ or by
∅,A 	= ∅; the free generator of the first homology of the former is precisely the BV operator Δ,
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while the free generator of the latter is iA ◦1,1 Δ, where 1 is the window labeled by ∅. In each
case, we have that Ãrc(F 0

0,2, β) is homotopy equivalent to a circle. For (F 2
0,1, β∅), we again have

Ãrc(F 2
01, β∅) homotopy equivalent to a circle as in Fig. 2, with the free generator P 1

2 ◦ Δ.
For the generalized pairs of pants, first notice that the set of all homotopy classes of families of

projective weighted arcs in a generalized pair of pants with r > 0 boundary components (where
the arc family need not meet each boundary component) is homeomorphic to the join of r circles.
(In effect, a point in the circle determines a projective foliation of the annulus as in Fig. 3, and
one deprojectivizes and combines as in Fig. 4(d) to produce a foliation of the pair of pants.) The
complement of two spaces in their join is homeomorphic to the Cartesian product of the two
spaces with an open interval, and the lemma follows. In fact, the first homology of Ãrc(F 1

0,2, β∅)
is freely generated by Δ ◦1,1 P2, and Δ ◦1,2 P2, and the first homology of Ãrc(F 0

0,3, β∅) is freely
generated by Δ ◦1,1 ma , Δ ◦1,2 ma , and Δ ◦1,3 ma . �

For a final chain calculation, consider the degree two chain defined by ΔB
sq = Δa ◦ (iBa )∗ ◦

iBa ◦Δa , which is another type of “BV-squared operator in the open sector” arising on the surface
F 1

0,2 with brane-labeling β given by ∅ on the boundary and by B at the puncture. In fact, ΔB
sq

generates H2(Ãrc(F 1
0,2, β)), where H2(Ãrc(F 1

0,2, β)) = Z by Lemma 5.1.

Tautologically, ΔB
sq(s, t) can be written as the sum of two non-closed chains ΔB

sq = (ΔB
sq)+ +

(ΔB
sq)− given by(

ΔB
sq

)
+ = Δa(t) ◦ iBa ◦ (

iBa
)∗ ◦ Δa(s), s + t � 1,

(5.11)
(
ΔB

sq

)
− = Δa(t) ◦ iBa ◦ (

iBa
)∗ ◦ Δa(s), s + t � 1.

Furthermore, we may homotope each of the operators (iCa )∗ ◦ (ΔB
sq)+ ◦ iAa and (iCa )∗ ◦ (ΔB

sq)− ◦
iAa into “traces over multiplications” in the following sense, where we concentrate on (ΔB

sq)+
with the parallel discussion for (ΔB

sq)− omitted. Consider the homotopy of arc families in F 1
0,2

depicted in Fig. 15, which begins with (ΔB
sq)+ and ends with the indicated family. Cutting on the

dotted lines in Fig. 15 decomposes each surface into a hexagon, and these hexagons may be tri-
angulated into four triangles corresponding to four multiplications. Thus, each of the operations
(ΔB

sq)+ and (ΔB
sq)− is given as the double trace over a quadruple multiplication. Again, see the

closing remarks for a further discussion of these operators.

5.2. Algebraic properties on the homology level

Since Ãrc(F,β) is connected for any windowed surface F with brane-labeling β , we conclude

H0
(
Ãrc(n,m)

) =
⊕

Z,

the sum over all homeomorphism classes of brane-labeled surfaces (F,β) with n closed and m

open windows. It follows that the degree zero relations on the homology level are precisely those
holding on the chain level up to homotopy.

This observation together with Theorem 4.1 implies the result of [5,9] that the open/closed
cobordism group admits the standard generators with the complete set of relations depicted in
Figs. 7 and 8: associativity, algebra homomorphism, the Frobenius equations, center and Cardy
together with duality.
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Fig. 15. The operators (ΔB
sq)± and the homotopy of (ΔB

sq)+ .

Lemma 5.2. Each component of Ãrc(0,m) is contractible, hence the homology H∗(Ãrc(0,m)) is
concentrated in degree 0.

Proof. Consider the foliation which has a little arc around each of the points of δ with constant
weight one. We can define a flow on Ãrc(0,m), by including these arcs with any element α ∈
Ãrc(0,m) and then increasing their weights to one while decreasing the weights of all the original
arcs to zero. �

In particular, the first open BV operator DAB
a itself thus vanishes on the homology level,

while the second open BV operator iB ◦ Δ and even its “square” ΔB
sq do not. (The situation may

be different in conformal field theory as discussed in the closing remarks.)
Let m, mABC , iA be the respective images in homology of the chains m1, mABC

11 , iA1 , define
P A,P 1

2 ,P 2
1 to be the images of the puncture operators P A

1 , P 1
2 1, P 2

1 11 in homology, and Δ the
image in homology of Δ1.

Just as chains can be regarded as operators on the chain level, so too homology classes can be
regarded as operators on the homology level.

Proposition 5.3. The degree zero operators on homology are precisely generated by the degree
zero indecomposables m, mABC , and iA provided ∅ /∈ β(σ ), where σ denotes the set of punctures.
If ∅ ∈ β(σ ), then one must furthermore include the operators P A, P 1

2 , P 2
1 . The degree zero

relations on homology are precisely those given by the moves of Theorem 4.1. All operations of
all degrees supported on indecomposable surfaces are generated by the degree zero operators
and Δ.
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Proof. The degree zero operators arise from constant families and each Ãrc(F,β) is connected.
By Theorem 2.2, the operators of degree zero arise from degree zero chains on indecomposable
surfaces, proving the first part. The second part follows from Lemma 5.1. �
Theorem 5.4. Suppose ∅ /∈ β(σ ). Then algebra over the modular bi-operad H∗(

∐
n,m Ãrc(n,m))

is a pair of vector spaces (C,A) which have the following properties: C is a commutative Frobe-
nius BV algebra (C,m,m∗,Δ), and A = ⊕

(A,B∈P(B)×P(B))AAB is a P(B)-colored Frobe-
nius algebra (see, e.g., [9] for the full list of axioms). In particular, there are multiplications
mABC :AAB ⊗ABC → AAC and a non-degenerate metric on A which makes each AAA into a
Frobenius algebras.

Furthermore, there are morphisms iA :C → AAA which satisfy the following equations: let-
ting i∗ denote the dual of i, τ12 the morphism permuting two tensor factors, and letting A,B be
arbitrary non-empty brane-labels, we have

(5.12)iB ◦ iA
∗ = mB ◦ τ12 ◦ m∗

A (Cardy),

(5.13)iA(C) is central in AA (Center),

(5.14)iA ◦ Δ ◦ iB
∗ = 0 (BV vanishing).

These constitute a spanning set of operators and a complete set of independent relations in degree
zero. All operations of all degrees supported on indecomposable surfaces are generated by the
degree zero operators and Δ.

Proof. By definition, an algebra over a modular operad is a vector space with a non-degenerate
bilinear form such that the operations are compatible with dualization [63]. The previous proposi-
tion substantiates the first sentence of the theorem, and the second sentence follows in particular.

The claim that iA and i∗A are morphisms and the Cardy and center equations then follow
from the chain level equations and the fact that the operation a∗ for a chain a is in fact the dual
operation on the Frobenius algebra. Indeed by Theorem 4.1, the Cardy and Center equations
generate the relations in degree zero. Finally, BV vanishing follows from Lemma 5.2 and the last
assertion from Lemma 5.1. �

Notice that if A is a symmetric Frobenius algebra with a pairing 〈 , 〉 then our center equation
(5.6) mABA∗ ◦ ia = τ1,2 ◦ mBAB∗ ◦ iB implies that iA takes values in the center, that is, the
equation mAAB ◦ (iA ◦ id) = mABB ◦ τ1,2 ◦ (iB ◦ id) holds. Indeed, we have〈

iA(a)b, c
〉 = 〈

iA(a), bc
〉 = 〈

mAAA∗(a), b ⊗ c
〉

(5.15)= 〈
τ1,2 ◦ mAAA∗ ◦ iA(a), b ⊗ c

〉 = 〈a, cb〉 = 〈ba, c〉,
where the last equation holds since the Frobenius algebra was assumed to be symmetric.

There is a further grading by the number of punctures which are brane-labeled by ∅. (Recall
that gluing operations never give rise to new punctures labeled by ∅.) In this case, representations
will actually lie in triples of vector spaces (C,A,W), where W corresponds to closed string
insertions which give deformations of the original operations.

6. Closing remarks

An important challenge is to understand the transition to conformal field theory from the
topological field theory described in this paper as the degree zero part of the homology.
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The higher degree part of the homology studied in the body of this paper is based on “ex-
haustive” arc families Ãrc(F,β) which meet each window of a brane-labeled windowed surface
(F,β). As mentioned in the Introduction, such an exhaustive family is not enough to determine
a metric on the surface unless the arc family quasi-fills the surface, i.e., complementary regions
are either polygons or exactly once-punctured polygons, and we shall let Ãrc#(F,β) ⊆ Ãrc(F,β)

denote the corresponding subspace.
Furthermore, as in the introduction, the subspace Ãrc#(F,β) is naturally identified with what

is essentially Riemann’s moduli space of F with one point in each boundary component. One
might thus hope to describe CFT via the chains and homology groups of the quasi-filling sub-
space Ãrc#(n,m) of the spaces Ãrc(n,m). In this setting, both the chain and homology levels
must be re-examined compared to the exhaustive case studied in the body of the paper insofar as
homotopies must respect Ãrc#(n,m), which in particular is not invariant under the gluing or self-
gluing operations. To give a c/o-structure on the topological or chain level on Ãrc#(n,m), one
can imagine using homotopies in the appropriate combinatorial compactification (see [59]) to
define the gluings for compactified quasi-filling arc families, or alternatively, one might proceed
solely on the level of cellular chain complexes, see below.

By Lemma 5.2 for exhaustive arc families, the open sector BV operator DBB = iB∗ ◦ Δ ◦ iB

and its square vanish on the level of homology, while on the other hand, the other open BV-
squared operator ΔB

sq = Δ◦ iB ◦ iB∗ ◦Δ is not zero, but rather a generator of the second homology

group of Ãrc(F 1
0,2, β), where β takes value ∅ on the boundary and value B at the puncture. In

physical terms for exhaustive families, the corresponding bulk operator ΔB
sq vanishes only after

coupling to the boundary, i.e., (DBB)2 = 0 yet ΔB
sq 	= 0.

On the other hand in the context of quasi-filling arc families, Lemma 5.2 does not hold, and
neither the operator DBB nor its square now vanishes. This serves to emphasize one basic alge-
braic difference between exhaustive and quasi-filling arc families, which are presumably required
for CFT.

Furthermore, the non-vanishing of ΔB
sq is reminiscent of the appearance of the Warner term in

Landau–Ginzburg theory [71]. The other open sector BV-squared operator (DBB)2 we consider
is supported on the surface F 1

0,2 that is the “open square” of the surface F 0
0,2 which supports the

Cardy equation. This gives additional credence to this point of view since it is shown in [28] that
the Cardy condition is intimately related to the compensatory term required to make the action
of the LG model BRST invariant.

The fact that the open sector BV-squared operator (DBB)2 vanishes in the exhaustive case is
what one would naively expect. However, the non-vanishing of this operator in the quasi-filling
case might help to explain the appearance of unexpected D-branes in the LG models, cf. [28,36,
44]. In particular, in relation to Kontsevich’s approach to D-branes on LG-modes (cf. [44]), one
might ask if our open sector BV-squared operator ΔB

sq or another “square of a BV-like operator”

satisfies an equation of the form ΔB
sqa = [UB,a], or in a representation, ΔB

sqm = UBm, for some
operator UB , on the level of either exhaustive or quasi-filling families.

These remarks explain our attention to the chains D
A,B
a and ΔB

sq in Section 5.1.2. Although

our results do not match this formulation exactly, the decomposition ΔB
sq = (ΔB

sq)+ + (ΔB
sq)− is

suggestive of a commutator equation, and the homotopy we described in Section 5.1.2 shows
that each of (ΔB

sq)± is indeed a sort of multiplication operator, for instance, if the representing
algebra is super-commutative.

In summary, the fact that the open sector BV-squared operator (DBB)2 does not vanish in the
quasi-filling case and that ΔB

sq does not vanish in the exhaustive case may be regarded as the
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statement that the boundary contribution of the BRST operator need not square to zero; rather, it
may be necessary to introduce additional terms to make the entire action BRST invariant. Further
analysis could give conditions on the representations of algebras over our c/o structure which can
be considered physically relevant.

Although it has not been the focus in this paper, we wish to point out that there is a discretized
version of G-colored c/o structures in the category of topological spaces giving G the discrete
topology, and the G-colored c/o-structure then naturally descends to a G-colored c/o structure
on both the chain and homology levels. We can, for instance, restrict the topological c/o structure
on Ãrc(F,β) to the subspaces where each window has total weight given by a natural number.

In particular, for closed strings, it can be shown [72] that there is a natural chain complex of
open or relative cells, which calculates the homology of the moduli spaces, i.e., the homology of
Ãrc#(F,β∅), which can be given the structure of an operad. In effect, these spaces are graded by
the number of arcs in an arc family, and the corresponding filtration is preserved by the gluing op-
erations when viewed as operations on filtered families. Now projecting to the associated graded
object of the filtration, one obtains a cell level operad. Furthermore, discretizing as in the previ-
ous paragraph, one obtains actions on the tensor algebra and on the Hochschild co-chain complex
of a Frobenius algebra. This discretized and filtered elaboration of the c/o structure could give
a formulation of a version of CFT purely in terms of algebraic topology. A proving ground for
these considerations might be the topological LG models of [73,74] and their orbifolds [75,76].

Let us also mention that Thurston invented a notion of “tangential measure” (see [67]) pre-
cisely to capture the lengths as opposed to the widths of the rectangles in a measured foliation,
suggesting yet another geometric aspect of this passage from TFT to CFT. It is perhaps also
worth saying explicitly that an essential point of Thurston theory is that twisting about a curve
accumulates in the space of projective measured foliations to the curve itself, and this suggests
that the limit of the BV operator Δ(t) as t diverges might be profitably studied projectively in
the context of Appendix B.

There is presumably a long way to go until the algebraic structure discovered here is fully
understood in higher degrees on the level of homology, let alone for compactifications of arc
complexes in the quasi-filling and exhaustive cases. In the quasi-filling case on the level of ho-
mology, the underlying groups supporting these operations comprise the homology groups of
Riemann’s moduli spaces of bordered surfaces, which are themselves famously unknown, yet
these unknown groups apparently support the modular bi-operad structure of Theorem 5.4 at
least in this discretized filtered sense.
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Appendix A. C/O structures

A.1. The definition of a c/o-structure

Specify an object O(S,T ) in some fixed symmetric monoidal category for each pair S and T

of finite sets. A G-coloring on O(S,T ) is the further specification of an object G in this category
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and a morphism μ :S � T → Hom(O(S,T ),G), and we shall let Oμ(S,T ) denote this pair of
data.

A G-colored “closed/open” or c/o structure is a collection of such objects O(S,T ) for each
pair of finite sets S,T together with a choice of weighting μ for each object supporting the
following four operations which are morphisms in the category:

Closed gluing: ∀s ∈ S,∀s′ ∈ S′ with μ(s) = μ′(s′),

◦s,s′ :Oμ(S,T ) ⊗Oμ′(S′, T ′) →Oμ′′
(
S � S′ − {s, s′}, T � T ′);

Closed self-gluing: ∀s, s′ ∈ S with μ(s) = μ(s′) and s 	= s′,

◦s,s′
:Oμ(S,T ) → Oμ′′

(
S − {s, s′}, T );

Open gluing: ∀t ∈ T ,∀t ′ ∈ T ′ with μ(t) = μ′(t ′),

•t,t ′ :Oμ(S,T ) ⊗Oμ′(S′, T ′) →Oμ′′
(
S � S′, T � T ′ − {t, t ′});

Open self-gluing: ∀t, t ′ ∈ T with μ(t) = μ(t ′) and t 	= t ′,

•t,t ′ :Oμ(S,T ) → Oμ′′
(
S,T − {t, t ′}).

In each case, the coloring μ′′ is induced in the target in the natural way by restriction, and we
assume that S � S′ � T � T ′ − {s, s′, t, t ′} 	= ∅.

The axioms are that the operations are equivariant for bijections of sets and for bijections of
pairs of sets, and the collection of all operations taken together satisfy associativity.

Notice that we use the formalism of operads indexed by finite sets rather than by natural
numbers as in [64] for instance.

A.2. Restrictions

A c/o structure specializes to standard algebraic objects in the following several ways.
There are the two restrictions (Oμ(S,∅),◦s,s′) and (Oμ(∅, T ),•τ,τ ′) each of which forms a

G-colored cyclic operad in the usual sense.
The spaces (Oμ(S,T ),◦s,s′ ,•τ,τ ′) with only the non-self-gluings as structure maps form a

cyclic G × Z/2Z-colored operad, where the Z/2Z accounts for open and closed, e.g., the win-
dows labeled by S are regarded as colored by 0 and the windows labeled by T are regarded as
colored by 1.

If the underlying category has a coproduct (e.g., disjoint union for sets and topological spaces,
direct sum for Abelian groups and linear spaces), which we denote by

∐
, then the indexing

sets can be regarded as providing a grading: i.e., (
∐

T Oμ(S,T ),◦s,s′) form a cyclic G-colored
operad graded by the sets T , and (

∐
S Oμ(S,T ),•τ,τ ′) form a cyclic G-colored operad graded

by the sets S.

A.3. Modular properties

There is a relationship between c/o structures and modular operads. Recall that in a modular
operad there is an additional grading on the objects, which is additive for gluing and increases
by one for self-gluing. Imposing this type of grading here, we define a (g,χ − 1) c/o-structure
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to be a c/o structure with two gradings (g,χ),

Oμ(S,T ) =
∐

g�0,χ�0

Oμ(S,T ;g,χ)

such that

(1) Oμ(S,T ;χ − 1) = ∐
g�0 Oμ(S,T ;g,χ) is additive in χ − 1 for •t,t ′ , and χ − 1 increases

by one for •t,t ′ ; and
(2) Oμ(S,T ;g) = ∐

χ�0 Oμ(S,T ;g,χ) is additive in g for ◦s,s′ , and g increases by one for

◦s,s′
.

It follows that a (g,χ −1) c/o structure is a modular G-colored bi-operad in the sense that the
Oμ(S,T ;g) form a T -graded R>0-colored modular operad1 for the gluings ◦s,s′ and ◦s,s′

, and
the Oμ(S,T ;1 − χ) form an S-graded R>0-colored modular operad1 for the gluings •t,t ′ and
•t,t ′ .

A.4. Topological and chain level c/o structures

A topological c/o structure is an R>0-colored c/o structure in the category of topological
spaces.

Let Chain denote a chain functor together with fixed functorial morphisms for products
P : Chain(X) ⊗ Chain(Y ) → Chain(X × Y), viz. a chain functor of monoidal categories. The
chain functors of cubical or PL chains, for instance, come naturally equipped with such maps, and
for definiteness, let us just fix attention on PL chains. A chain level c/o structure is a Chain(R>0)-
colored c/o-structure in the category of chain complexes of Abelian groups. Notice that if a
collection {Oμ(S,T )} forms a topological c/o structure, then we have natural maps

Chain(μ) :S � T → Hom
(
Chain

(
Oμ(S,T )

)
,Chain(R>0)

)
.

These maps together with the induced operations make the collection {Chain(Oμ(S,T ))} into
a chain level c/o structure by definition. The compatibility equation for self-gluings explicitly
reads Chain(μ)(w)(a) = Chain(μ)(w′)(a) and for non-self-gluings, we have

P
(
Chain(μ) ⊗ Chain(μ)

)
(w)

(
P(a ⊗ b)

)
(A.1)= P

(
Chain(μ) ⊗ Chain(μ)

)
(w′)

(
P(a ⊗ b)

)
.

It is not true that a topological c/o structure begets a R>0-colored structure on the chain level,
since the topology on R>0 is not the discrete topology. For PL chains, we may regard a gen-
erator a ∈ Chain(Oμ(S,T )) as a parameterized family, say depending on parameters s, and
we shall denote such a parameterized family a(s). Eq. (A.1) then simply reads ∀s, t , we have
μ(w)(a(s)) = μ(w′)(b(t)).

A.5. The homology level

The coloring in a topological c/o structure is given by the contractible group R>0, and we take
the coloring or grading by Chain(R>0) in the definition of chain level c/o structure.

1 We impose neither 3g − 3 + |S| > 0 nor 3(−χ + 1) + |T | − 3 � 0.
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On the homology level, the grading H∗(μ) :H∗(Oμ(S,T )) → H∗(R>0) becomes trivial. Fur-
thermore, it is in general not possible to push a c/o structure down to the level of homology since
the gluing and self-gluing operations on the topological or chain level are defined only if certain
restrictions are met. It is, however, possible in special cases to define operations by lifting to the
chain level.

Lemma A.1. Let Oμ(S,T ) be a topological c/o structure such that each Oμ(S,T ) is equipped
with a continuous R>0 action ρ that diagonally acts on the R>0 grading μ(ρ(r)(α)) = rμ(α).
Then the homology groups H∗(Oμ(S,T )) form a cyclic two colored operad under non-self-
gluings induced by ◦s,s′ and •t,t ′ .

Proof. As in Appendix C, define a continuous flow ψw
t :Oμ(S,T ) → Oμ(S,T ) for each w ∈

S � T by

ψw
t (α) = ρ

(
1 − t + t/μ(w)

)
(α);

thus, ψw
0 is the identity, and ψw

1 (α) has weight one on w. Given two cohomology classes [a] ∈
H∗(Oμ(S,T )) and [b] ∈ H∗(Oμ(S′, T ′)) represented by chains a ∈ Chain(Oμ(S,T )) and b ∈
Chain(Oμ(S′, T ′)) as well as two elements (w,w′) ∈ (S × S′) � (T × T ′), we use the flows
ψw

t ,ψw′
t to move a and b into a compatible position by a homotopy. Explicitly, defining ãt =

Chain(ψw
t )(a) and b̃t = Chain(ψw′

t )(b), we have

Chain(μ)(w)(ã1) = Chain(μ′)(w′)(b̃1) ≡ 1.

The condition (A.1) is therefore met, and we define

[a] ◦s,s′ [b] = [
Chain(◦s,s′)P (ã1, b̃1)

]
,

and likewise for [a] •t,t ′ [b]. Associativity of the operations follows as in Lemma C.1. �
Proposition A.2. Let Oμ(S,T ) be a topological c/o structure satisfying the hypotheses of
Lemma A.1. Furthermore, suppose that for each Oμ(S,T ) and each choice of w ∈ S � T , there
is a continuous flow φw

t :Oμ(S,T ) → Oμ(S,T ), for 0 � t < 1, such that φw
0 is the identity, and

for any other w 	= w′ ∈ S � T with μ(w′)(α) � μ(w)(α), there is a time tc = tc(α,w′) for which
μ(w′)(φtc (α)) = μ(w)(φtc (α)), where tc(α,w′) depends continuously on α. Then the homology
groups H∗(Oμ(S,T )) carry operations induced by ◦s,s′,◦s,s′

and •t,t ′ ,•t,t ′ .
Moreover, given parameterized families a, b, c and letting � denote either operation ◦ or •,

suppose that (a �u,v b) �v′,w c and a �u,v (b �v′,w c) are homotopic, that (a �u,v b) �v′,w c

and a �u,v (b �v′,w c) are homotopic, and that (a �u,v b) �v′,w c and a �u,v (b �v′,w c) are
homotopic. Then the operations on H∗(Oμ(S,T )) are associative.

Finally, if the Oμ(S,T ) furthermore form a topological (g,χ − 1)-c/o structure, then the
induced structure on homology is a modular bi-operad in the sense of Section A.3.

Proof. The non-self-gluing operations are already present and associative by Lemma A.1. For
the self-gluings, the descent of the operations to homology is described in analogy to Lemma C.3,
and the associativity on the chain and hence homology levels of the operations finally follows
from the assumed existence of the homotopies. �
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A.6. Brane-labeled c/o structures

A brane-labeled c/o structure is a c/o structure {Oμ(S,T )} together with a fixed Abelian
monoid P of brane labels and for each α ∈ Oμ(S,T ) a bijection Nα : T → T and a bijection
(λα,ρα) : T →P ×P , such that

(1) ρ(t) = λ(N(t));
(2) if Nα(t) 	= t and Nα′(t ′) 	= t ′,

Nα•t,t ′α′
(
N−1

α (t)
) = Nα′(t ′), Nα•t,t ′α′

(
N−1

α′ (t ′)
) = Nα(t),

ρα•t,t ′α′
(
N−1(t)

) = λα(t)ρα′(t ′), λα•t,t ′α′
(
N(t)

) = λα′(t ′)ρα(t);
(3) Nα(t) 	= t and Nα′(t ′) 	= t ′,

N•t,t ′ (α)

(
N−1

α (t)
) = Nα(t ′), N•t,t ′ (α)

(
N−1

α (t ′)
) = Nα(t),

ρ
α•t,t ′α′

(
N−1(t)

) = λα(t)ρα(t ′), λ
α•t,t ′α′

(
N(t)

) = λα(t ′)ρα(t);
(4) if either Nα(t) = t or Nα′(t ′) = t ′ but not both, then in the above formulas, one should

substitute Nα′(t ′) for Nα(t) in the first case and inversely in the second case. (If both Nα(t) =
t and Nα′(t ′) = t ′, then there is no equation.)

This is the axiomatization of the geometry given by open windows with endpoints labeled by
right (ρ) and left (λ) brane labels, their order and orientation along the boundary components
induced by the orientation of the surface, and the behaviour of this data under gluing.

For a brane-labeled c/o structure and an idempotent submonoid B ⊂ P (i.e., for all b ∈ B,
b2 = b), one has the B ×B-colored substructures defined by restricting the gluings •t,t ′ and •t,t ′

to compatible colors λ(t) = ρ(t ′).
The relevant example for us is B the set of branes, P =P(B) its power set with the operation

of union, where B ↪→P(B) is embedded by considering B ∈ B as the singleton {B}.

A.7. The c/o-structure on weighted arc families

In this subsection we give the technical details for the proof of Theorem 3.1.
First set

Ãrc(S,T ) = {
(α,φ,ψ)

∣∣α ∈ Ãrc
(|S|, |T |),

φ :S
∼→ {Closed windows},

ψ :T
∼→ {Open windows}}.

Define the respective operations ◦s,s′ ,◦s,s′
,•t,t ′ and •t,t ′ to be the closed gluing and self-

gluing and open gluing and self-gluing operations defined in Section 3, where the R>0-coloring is
the map μ given by associating the total weight of a weighted arc family to a window w ∈ S �T .

The (g,χ)-grading is given as follows. For α ∈ Ãrc(S,T ), we let g be the genus and let χ

be the Euler characteristic of the underlying surface F ; if F has punctures σ , then by definition
χ(F ) = χ(F ∪ σ) − #σ .

Finally, the brane-labeling is given by taking λ to be the brane-labeling of the left boundary
point and ρ to be that of the right boundary point of the window.
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Appendix B. C/O structure on measured foliations

B.1. Thurston’s theory for closed surfaces

Let us specialize for simplicity in this section to a compact surface F = F 0
g,0 without boundary

with g > 1 in order to very briefly describe Thurston’s theory of measured foliations; see [66,67]
for more detail.

A measured foliation of F is a one-dimensional foliation F of F whose singularities are
topologically equivalent to the standard p-pronged singularities of a holomorphic quadratic dif-
ferential zp−2 dz2, for p � 3, together with a transverse measure μ with no holonomy, i.e., if
t0, t1 are transversals to F which are homotopic through transversals keeping endpoints on
leaves of F , then μ(t0) = μ(t1); μ is furthermore required to be σ -additive in the sense that
if a transversal a is the countable concatenation of sub-arcs ai sharing consecutive endpoints,
then μ(a) = ∑

i μ(ai).
Examples arise by fixing a complex structure on F and taking for the foliation F the hori-

zontal trajectories of some holomorphic quadratic differential φ on F . In the neighborhood of
a non-singular point of φ, there is a local chart X :U ⊆ F → R2 ≈ C, so that the leaves of F
restricted to U are the horizontal line segments X−1(y = c), where c is a constant. If the domains
Ui,Uj of two charts Xi,Xj intersect, then the transition function Xi ◦ X−1

j on Ui ∩ Uj is of the

form (hij (x, y), cij ± y), where cij is constant and C � z = x + √−1y = (x, y) ∈ R2. In these
charts, the transverse measure is given by integrating |dy| along transversals.

There is a natural equivalence relation on the set of all measured foliations in F , and there
is a natural topology on the set of equivalence classes; see [66,67]. Roughly, if c is an essential
simple closed curve in F transverse to F , one can evaluate μ on c to determine its “geometric
intersection number” with Fμ; each homotopy class [c] of such curve has a representative min-
imizing this intersection number, and this minimum value is called the geometric intersection
number iFμ

[c] of [c] and Fμ. This describes a mapping Fμ �→ iFμ
from the set of measured

foliations to the function space R
S(F )
�0 , where S(F ) is the set of all homotopy classes of essential

simple closed curves in F , and the function space is given the weak topology. The equivalence
classes of measured foliations can be described as the fibers of this map, and the topology as
the weakest one so that each i[c] is continuous. (It does not go unnoticed that this effectively
“quantizes the observables corresponding to closed curves”.) Both the equivalence relation and
the topology can be described more geometrically; see [66,67]. In fact, the equivalence relation
on measured foliations is generated by isotopy and “Whitehead moves”, which are moves on
measured foliations dual to those depicted in Fig. 13(a).

There is thus a space MF(F ) of measured foliation classes on F embedded in R
S(F )
�0 . Each

measured foliation (class) Fμ determines an underlying projective measured foliation (class),
where one projectivizes μ by the natural action of R>0 on measures and obtains the space of
projective measured foliations PF(F ) as the quotient of MF(F ) by this action.

Remark B.1. It is necessary later to be a bit formal about the empty foliation in F , which we
shall denote by 0 and identify with the zero functional in R

S(F )
�0 . Let MF+(F ) denote MF(F )

together with 0 topologized so that a neighborhood of 0 is homeomorphic to the cone from 0
over PF(F ). In other words, PF(F ) is the projectivization of the R>0-space MF+(F )−{0} ⊆
R
S(F ).
�0
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Projective measured foliations were introduced by William Thurston in the 1970s as a tool
for studying the degeneration of geometric structures in dimensions two and three as well as for
studying the dynamics of homeomorphisms in two-dimensions.

If [d] ∈ S(F ), then there is a corresponding functional i[d] ∈ R
S(F )
�0 , where i[d][c] is the mini-

mum number of times that representatives c and d intersect, counted without sign, the “geometric
intersection number”. In effect, the space PF(F ) forms a completion of S(F ); more precisely,
the projective classes of {i[d]: [d] ∈ S(F )} are dense in the projectivization of MF+(F ) − {0}.

Furthermore, PF(F ) is homeomorphic to a piecewise-linear sphere of dimension 6g − 7.
This sphere compactifies the usual Teichmüller space of F so as to produce a closed ball of
dimension 6g − 6 upon which the usual mapping class group MC(F ) of F acts continuously.
For instance, one immediately obtains non-trivial results from the Lefshetz fixed point theorem.

Thurston’s boundary does not descend in any tractable geometric sense to the quotient by
MC(F ) since the MC(F )-orbit of any non-separating curve is dense in PF(F). The quotient
PF(F)/MC(F ) is thus dramatically non-Hausdorff.

B.2. Measured foliations and c/o structure

Unlike the body of the paper, where we strived to include only those combinatorial aspects
which are manifest for physical interactions of strings, here we briefly describe a more specula-
tive mathematical extension of the foregoing theory in the context of general measured foliations
in a windowed surface F = F s

g (δ1, . . . , δr ) with windows W , set σ of punctures of cardinality
s � 0, and set δ of distinguished points on the boundary. Let β denote a brane-labeling on F , and
set δ(β) = {g ∈ δ: β(g) 	= ∅}.

A measured β-foliation of F is a measured foliation Fμ in the usual sense of a closed
subsurface (perhaps with boundary or punctures) of F so that leaves of F are either simple
closed curves (which may be neither contractible nor puncture-parallel nor boundary-parallel),
bi-infinite lines, or line segments with endpoints in

⋃
W which are not boundary-parallel in

F − δ(β).
We shall furthermore require that Fμ has compact support in the sense that its leaves are

disjoint from a neighborhood of δ ∪ σ . In particular, F is not permitted to have leaves that are
asymptotic to δ ∪ σ .

There is again a natural equivalence relation on the set of all measured β-foliations of compact
support in F and a natural topology on the space of equivalence classes induced by geometric
intersection numbers with curves as before and now also with embedded arcs connecting points
of δ(β). Let

MF0(F,β)

denote the corresponding space of measured β-foliations of compact support.
We shall go a step further and allow puncture- and boundary-parallel curves (for instance, in

order to capture that part of the foliation possibly discarded in the body of the paper in open
self-gluing): a non-negative collar weight on a windowed surface is a R�0-function defined on
σ , and one imagines an annulus of width given by the collar weight foliated by puncture- or
boundary-parallel curves. Let

M̃F�0
0 (F,β) ≈ MF0(F,β) × Rs

�0

denote the corresponding space of measured β-foliations of compact support together with a
non-negative collar weight.
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Fig. 16. Unpinching and self-unpinching.

It is nearly a tautology that any partial measured foliation of compact support with non-
negative collar weight decomposes uniquely into a disjoint union of its “minimal” sets, which
are one of the following: a band of leaves parallel to an arc properly embedded F with endpoints
in ∪W ; an annulus in F foliated by curves parallel to the core of the annulus; a foliation disjoint
from the boundary with no closed leaves.

Finally, define

M̃F�0
0 (n,m, s) =

(⊔
F

⊔
β

M̃F�0
0 (F )

)/∼,

where the outer disjoint union is over all homeomorphism classes of windowed surfaces F with
s � 0 punctures, n � 0 closed windows, and m � 0 open windows with m + n + s > 0, and the
inner disjoint union is over all brane-labelings β on F ; the equivalence relation ∼ on the double
disjoint union is generated by the following identifications: if Fμ is a partial measured foliation
of F and ∂ is a boundary component of F containing no active windows, then we collapse ∂

to a new puncture brane-labeled by the union of the labels on ∂ to produce in the natural way a
measured foliation F ′

μ′ of another brane-labeled windowed surface F ′, and we identify Fμ in F

with F ′
μ′ in F ′ in M̃F�0

0 (n,m, s) in the natural way. In particular, each equivalence class has a
representative measured foliation Fμ in some well-defined topological type of windowed surface
F , where every boundary component of F has at least one active window for Fμ.

The gluing operations in Section 3 extend naturally to corresponding operations on the objects
M̃F�0

0 (n,m, s), where we assume that the boundary component containing each closed window
is framed. In each case, we may also glue inactive windows to inactive windows in analogy to
Fig. 5. Furthermore, rather than discard the part of F3 (in the notation of Section 3) that is not
a band of arcs, we discard only those annuli foliated by null homotopic simple closed curves as
may arise from closed gluing or self-gluing.

We know of no physical interpretation for the minimal sets of a measured foliation other than
bands of arcs as in the body of the paper. Furthermore, the quotient of M̃F�0

0 (F,β) by MC(F )

is typically non-Hausdorff, yet contains the Hausdorff subspace Ãrc′(F,β) studied in the body
of the paper. (The natural appearance of a non-Hausdorff space as part of this theory does not go
unnoticed.)

Geometrically, minimal sets that are not bands of arcs “serve to mitigate other interactions”
for the simple reason that a foliated band of arcs cannot cross an annulus which is foliated by
circles parallel to the core of the annulus.

There are also in the current context two further operations of “unpinching” and “self-
unpinching” which are geometrically natural and are illustrated in Fig. 16.

In the wider context of this appendix, minimal sets that are not bands play three roles: they
arise naturally from the gluing and self-gluing operations so as to mitigate other interactions;
they arise from certain cases of open self-gluing as annuli foliated by puncture-parallel curves,
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Fig. 17. Dual branched one-submanifolds and coupling equations.

which themselves interact via unpinching; and they can be included as a priori data which is
invisible to the c/o structure on Ãrc(n,m) yet to which this c/o structure contributes via gluing
and self-gluing.

Theorem 2.2 holds essentially verbatim in the current context (this was the original purview)
and describes the indecomposables as well as global coordinates. There is, however, a more
elegant parametrization from [68], which should provide useful variables for quantization of
the foregoing theory as closely related coordinates did in Kashaev’s quantization of decorated
Teichmüller space [69]. This parametrization arises by relaxing non-negativity of collar weights
as follows.

Construct the space M̃F0(F,β) in analogy to M̃F�0
0 (F,β) but allow the collar weight on

any puncture to be any real number; one imagines either a foliated annulus as before if the collar
weight is non-negative or a kind of “deficit” foliated annulus if the collar weight is negative.

To explain the parametrization, let us fix a space-filling brane-label βA for simplicity, where
A 	= ∅, and choose a generalized pants decomposition Π of F . Inside each complementary region
to Π insert a branched one-submanifold as illustrated in Fig. 17(a), and combine these in the
natural way to get a branched one-submanifold τ properly embedded in F . Inside each F 0

0,(3) or

F 1
0,1, there is a small triangle, as illustrated, and the edges of these triangles are called the sectors

of τ . Define a measure on τ to be the assignment of a real number to each sector of τ subject to
the constraints that the “coupling equations” hold for each edge of Π ; namely, a = b on F 1

0,1 and

a + b = c + d on F 0
0,(4) as illustrated in Fig. 17(b).

One result from [68] is that the vector space of measures on τ is isomorphic to M̃F0(F,βA),
and there is a canonical fiber bundle

M̃F0(F,βA) →MF+
0 (F,βA),

where the fiber over a point is given by the set of all collar weights on F , and MF+
0 (F,βA)

denotes the space of measured βA-foliations of compact support on F completed by the empty
foliation as in Remark B.1. Indeed, each puncture p corresponds to a closed edge-path on τ

which traverses a collection of sectors, and given a measure μ on τ , the collar weight cp of p is
the minimum value that μ takes on these sectors; modify the original measure μ on τ by taking
μ′(b) = μ(b) − cp if b is contained in the closed edge-path for p. Since μ satisfies the coupling
equations, μ′ extends uniquely to a well-defined non-negative measure on τ , which describes
a (possibly empty) element of MF+

0 (F,βA) by gluing together bands as before, one band for
each edge of τ on which μ′ > 0. A PL section of this bundle gives a PL embedding of the PL
space MF+(F,βA) into the vector space M̃F0(F,βA).
0
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Another result from [68] for r = 0 and s 	= 0 is that the Weil–Petersson Kähler two-form on
Teichmüller space extends continuously to the natural symplectic structure given by Thurston on
the space of measured foliations of compact support.

Appendix C. Flows on ˜Arc(n,m)

In this appendix, we shall define and study useful flows on Ãrc(n,m), two flows for each
window. Fix a brane-labeled windowed surface (F,β) with distinguished window w. If α ∈
Ãrc(F,β), then we shall now denote the α-weight of w simply by α(w).

The first flow ψw
t is relatively simple to define:

ψw
t (α) = (

1 − t + t/α(w)
) · α,

where the multiplication x ·α scales all the weights of α by the factor x; thus, ψw
0 is the identity,

and ψw
1 (α)(w) = 1. This flow ψw

t provides a rough paradigm for the more complicated one to
follow, and it alone is enough to define open and closed non-self-gluing as follows: given families
a in Ãrc(F1, β1) and b in Ãrc(F2, β2), define

a �v,w b =
{

ψv
1 (a) ◦v,w ψw

1 (b), if u,v are closed windows,

ψv
1 (a) •v,w ψw

1 (b), if u,v are open windows,

where v,w are respective distinguished windows of F1,F2. The gluing on the right is defined
on the chain level provided v,w are either both open or both closed since ψv

1 (a)(v) ≡ 1 ≡
ψw

1 (b)(w).

Lemma C.1. The operations �v,w on chains descend to well-defined operations on homology
classes. Furthermore, suppose that a, b, c are respective parameterized families in the brane-
labeled surfaces (Fi, βi), for i = 1,2,3, with distinguished windows u in F1, v 	= v′ in F2, and
w in F3, where {u,v} and {v′,w} each consists of either two open or two closed windows. Then
there is a canonical homotopy between (a �u,v b) �v′,w c and a �u,v (b �v′,w c).

Proof. To be explicit in this context of parameterized families, to say that two families a0,
a1 in Ãrc(F1, β1) of degree k are homologous means that there is a degree k + 1 family A in
Ãrc(F1, β1) so that the boundary of the parameter domain for A decomposes into two sets I0, I1
with disjoint interiors so that A restricts to ai on Ii , for i = 0,1. It follows that ψv

1 A ◦v,w ψw
1 b0

gives the required homology between a0 �v,w b0 and a1 �v,w b0, for any family b0 in Ãrc(F2, β2).
The analogous argument applies to two homologous families b0, b1 in Ãrc(F2, β2), so a1 �v,w b0
is likewise homologous to a1 �v,w b1. Thus, a0 �v,w b0 and a1 �v,w b1 are indeed homologous,
completing the proof that the operations are well-defined on homology.

As for the canonical homotopy, we claim that (a �u,v b) �v′,w c and a �u,v (b �v′,w c) rep-
resent the same projective class. Specifically, let F12 denote the surface containing a �u,v b, let
F23 denote the surface containing b �v′,w c, and let F123 denote the common surface contain-
ing (a �u,v b) �v′,w c and a �u,v (b �v′,w c) with its induced brane-label β123. Corresponding
to {u,v} in F123 there is either a properly embedded arc (if u,v are open) or perhaps a simple
closed curve (if u,v are closed or under certain circumstances if u,v are open), and likewise
corresponding to {v′,w}, there is an arc or curve. In the family (a �u,v b) �v′,w c, the latter arc
or curve has transverse measure constant equal to one while the former arc or curve has some
constant transverse measure x; in the family a �u,v (b�v′,w c), the former arc or curve has trans-
verse measure constant equal to one while the latter arc or curve has some constant transverse
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measure y. It follows from the definition of composition �v,w that y = 1/x and

x · [a �v,w (b �v′,w c)
] = (a �v,w b) �v′,w c,

where again · denotes the natural scaling action of R>0 on arc families in F123. The required
homotopy Ψt , for 0 � t � 1, is finally given by(

1 + t (x − 1)
) · [a �v,w (b �v′,w c)

]
. �

Turning now to preparations for the second more intricate flow for self-gluings, suppose that F

is a windowed surface with brane-labeling β . If α ∈ Arc(F,β) and w is some specified window
of F , then the bands of α that meet w can be grouped together as follows: consecutive bands
along w that connect w to a common window w′ are grouped together into the w-bands of α

at w, where consecutive w-bands are not permitted to share a common endpoint other than w

in the obvious terminology. In particular, for any window w′ of F , there is the collection of w-
bands of α with endpoints w and w′. Still more particularly, there are the w-bands that have both
endpoints at w, which are called the self-bands of w.

Fix windows w and w′ 	= w of F and assume that α ∈ Ãrc(F,β) satisfies α(w) > α(w′). We
shall define a flow φw

t , for −1 � t < 1, so that at a certain first critical time tc < 1, we have
equality φw

tc
(w) = φw

tc
(w′).

The flow φw
t is defined in two stages for −1 � t � 0 and for 0 � t < 1, and the first stage is

relatively easy to describe: leave alone the w-bands of α other than the self-bands, and scale the
weight of each self-band by the factor |t |. Thus, φw−1 is the identity, and φw

0 (α) has no self-bands
at w. Furthermore, φw

t (α)(w) is monotone decreasing, and φw
t (α)(u) is constant independent of

t for any u 	= w.
If α has only self-bands at w, then φw

0 (α)(w) = 0 (so the flow is defined in Ãrc(F,β) only
for −1 � t < 0), and there is thus some smallest tc < 0 so that φw

tc
(α)(w) = φw

tc
(α)(w′). More

generally, even if α has non-self-bands at w, it may happen that there is some smallest tc � 0 so
that φw

tc
(α)(w) = φw

tc
(α)(w′). This completes the definition of the first stage of the flow up to the

point that there are no self-bands at w.
If there is no such tc � 0, then we continue to define the second stage of the flow φw

t for
0 � t < 1 in the absence of self-bands as follows.

If there is only one w-band of weight a, then φw
t is defined as in Fig. 18, where the darkened

central part of the original foliated rectangle corresponding to this w-band is left alone, and the
outer white part of the foliation is erased, i.e., leaves are removed from the foliation.

More interesting is the case that there are two w-bands, which is illustrated in Fig. 19. In
between the two bands, we surge together arcs preserving measure in the manner indicated.
Since the w-bands are consecutive and there are no self-bands at w, the resulting arcs must
connect distinct windows, hence must be essential and moreover cannot be a self-band at any
window. We erase leaves from the other sides of the two bands as before. Letting a0 < a1 denote
the weights of the two w-bands, there is a critical time t = a0/a1 when there is a unique w-band.
The flow before the critical time is illustrated in Fig. 19(a) and after it in Fig. 19(b).

For three or more bands, there are two essential cases. Let us fix three consecutive w-bands
b1, b2, b3 of respective weights a1, a0, a2, where a0 � a1 � a2, i.e., b2 is of minimum weight
and b1 � b3. It may happen that b1 and b3 do not share an endpoint other than w, and in this
case, the flow is defined as illustrated in Fig. 20. There are two critical times t = a0/a1, a1/a2, at
each of which the number of w-bands is decreased by one.

Fig. 21 illustrates the case that b1 and b3 do share an endpoint other than w. At the first
critical time t = a0/a1, the number of bands is in effect decreased by two since the two bands
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Fig. 18. The flow φw
t for one w-band.

Fig. 19. The flow φw
t for two w-bands.

must now be combined to one; at the second critical time t = a1/a2, there is then a transition
from two-bands-as-one to a single band.

Now generalizing Figs. 20 and 21 in the natural way to consecutive w-bands, this completes
the definition of the flow φw

t . Notice that additive relations among the weights of the w-bands
can lead to modifications of the evolution, but in all cases, there are two basic types of critical
times when a band becomes exhausted: either the newly consecutive w-bands share an endpoint
other than w so must be combined to a single w-band, or they do not and one adds a new band
of surgered arcs which does not meet w.

By definition, φw
0 is the identity. Furthermore, for any α ∈ Ãrc(F,β) by construction, we have

φw
t (α)(w) tending to zero as t tends to one. In fact, consideration of the formulas in Figs. 18–21

shows that d/dtφw
t (α)(w) = −φw

t (α)(w), so the decay to zero is exponential in t .
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Fig. 20. The flow φw
t for three or more w-bands, first case.

Lemma C.2. Fix a brane-labeling β on a windowed surface F with respective closed and
open windows S and T , fix a window w of F , and let Ãrcw(F,β) ⊆ Ãrc(F,β) denote the sub-
space corresponding to arc families α that have no self-bands at w. Then there is a continuous
piecewise-linear flow

φw
t : Ãrcw(F,β) → Ãrcw(F,β), for 0 � t < 1,

such that φw
0 is the identity, and for any other w 	= w′ ∈ S �T with α(w′) � α(w), there is a first

time tc = tc(α) < 1 for which

φw
tc

(α)(w) = φw
tc

(α)(w′),

where tc(α) depends continuously on α.
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Fig. 21. The flow φw
t for three or more w-bands, second case.

Proof. Suppose that w 	= w′ is another window of F , and consider the w′-bands of α. If there
is a w′-band with an endpoint distinct from w, then φw

t (α)(w′) is bounded below uniformly in
t since such a w′-band is undisturbed by the flow φw

t by definition. Furthermore, suppose that
two consecutive w-bands have respective other endpoints w′ and w′′ 	= w. After an instant of
time, the flow combines these bands to produce a w′-band as in the previous sentence. It follows
that if α(w′) � α(w), then there is indeed some critical first time tc = tc(α) = tc(α,w′) so that
φtc (α)(w) = φtc (α)(w′).

As for continuity, a neighborhood in Ãrc(F,β) of a weighting μ on an arc family α is a choice
of maximal arc family α′ ⊇ α together with an open set V of weightings μ′ on α′ so that μ′ ∈ V

restricts to a neighborhood of μ, and values of μ′ on α′ − α are all bounded above by some ε.
We may choose a maximal arc family α′ with no self-bands at w since α has no self-bands at w.
Adding arcs in α′ − α to α cannot decrease the number of w-bands. Furthermore, if amax is the
maximum value of α on a w-band, then in time t > εamax, the corresponding bands of arcs in α′
are erased or combined by φw

t (α′). Continuity of the flow follows from these facts.
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Continuity of the critical time function also follows from these facts and the following con-
siderations. The number of w-bands for φw

t (α) is a non-increasing function of t , so either
φw

t0
(α)(w) = φw

t0
(α)(w′) for some t0 < t , or there is a unique w-band at time t . In the latter

case, either this w-band has its other endpoint distinct from w′, so φw
t (α)(w) is exponentially

decreasing in t while φw
t (α)(w′) is constant, or this w-band has its other endpoint at w′. In the

latter case, either this w-band is not the unique w′-band, so φw
t (w′) > φw

t (α)(w) and these quan-
tities must have therefore agreed at some time preceding t , or there is a unique w-band and a
unique w′-band connecting w and w′. In the latter case, φw

t (α)(w′) = φw
t (α)(w) for all time

after t . �
As before, suppose that a = a(s) is a parameterized family in Ãrc(F1, β1) and b = b(t) is

a parameterized family in Ãrc(F2, β2), where v,w are respective distinguished windows of F1,
F2. Let

u(s, t) =
{

v, if a(s)(v) � b(t)(w),

w, if a(s)(v) < b(t)(w),

d(s, t) =
{

a(s), if a(s)(v) � b(t)(w),

b(t), if a(s)(v) < b(t)(w),

and finally define

a �v,w b =
{

φ
u(s,t)
tc

a(s) ◦v,w φ
u(s,t)
tc

b(t), if v,w are closed windows,

φ
u(s,t)
tc

a(s) •v,w φ
u(s,t)
tc

b(t), if v,w are open windows,

where tc = tc(d(s, t)) is the critical first time when the flow φ
u(s,t)
tc

achieves a(s)(v) = b(t)(w)

so that gluing is possible.

Lemma C.3. The operations �v,w on chains descend to well-defined operations on homology
classes. Furthermore, suppose that a, b, c are respective parameterized families in the brane-
labeled surfaces (Fi, βi), for i = 1,2,3, with distinguished windows u in F1, v 	= v′ in F2, and
w in F3, where {u,v} and {v′,w} each consists of either two open or two closed windows. Then
there is a canonical homotopy between (a �u,v b) �v′,w c and a �u,v (b �v′,w c).

Proof. That the operations are well-defined on the level of homology follows in analogy to the
previous case Lemma C.1, and it remains only to describe the canonical homotopies. To this end
in addition to the surfaces F12 and F23 respectively containing a �u,v b and b �v′,w c, as well
as the surface F123 containing both (a �u,v b) �v′,w c and a �u,v (b �v′,w c), we must introduce
another auxiliary surface F defined as follows. Among the two operations �u,v and �v′,w , sup-
pose that κ = 0,1,2 of the operations are closed string self-gluings. The auxiliary surface F is
homeomorphic to F123 except that it has 2κ additional punctures, which we imagine as lying in
a small annular neighborhood of the corresponding curve in F123 with one new puncture on each
side of the curve.

In this surface F with punctures σ and distinguished points δ on the boundary, we shall
consider collections of arc families somewhat more general than before. Specifically, we shall
now allow arcs to have one or both of their endpoints in δ ∪ σ . Arc families are still defined
rel δ ∪ σ as before, and the geometric realization of the corresponding partially ordered set is
the space within which we shall define the required homotopy. Arcs with endpoints at δ ∪ σ are
called “special” arcs, and there is a homotopy that simply scales their weights to zero to produce
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an arc family in the usual sense in F123; our homotopies will be described in this augmented arc
complex of F taking care to make sure that this projection to F123 lies in Ãrc(F123, β123), i.e.,
every window has positive weight for the projection, where β123 is the brane-labeling induced
on F123 from the given data.

We modify the constructions of Figs. 18–21 in one manner for open string self-gluing and in
another manner for closed string self-gluing. For the former in the second stage of the homotopy,
instead of erasing the outermost edges of the one or two outermost w-bands, let us instead keep
these arcs and run them as special arcs to the nearby points of δ in the natural way. For closed
gluing, we employ the additional punctures of F and instead of erasing the outermost edges of
the one or two outermost w-bands, we instead run them as special arcs to the nearby additional
punctures in the natural way.

There is thus a modified flow for the augmented arc families with the advantage that only
the weight of the window w changes under the modified flow, and therefore the modified flows
corresponding to different windows commute. There is furthermore a modified operation defined
in analogy to �v,w using the modified flow. Because the modified flows of different windows
commute, the modified expressions (a �u,v b) �v′,w c and a �u,v (b �v′,w c) agree exactly.

Finally, there are the special bands that arise from the operation �u,v , and then there are the
special bands that arise from the operation �v′,w . Scaling the former to zero projects to one
order of composition, and scaling the latter to zero projects to the other order of composition.
This establishes the asserted homotopies. �
Corollary C.4. For any brane-labeled windowed surface (F,β), the space Ãrc(F,β) supports
the collection {φw

t : w is a window of F } of pairwise commuting flows.

Proof. As in the previous proof, scaling to zero first the special bands of one modified flow
and then scaling to zero the special bands of the other modified flow projects to one order of
composition of flows on Ãrc(F,β), while scaling to zero in the other order produces the other
order of composition. �
Lemma C.5. Under the hypotheses and notation of Lemma C.3, there is a canonical homotopy
between (a �u,v b) �v′,w c and a �u,v (b �v′,w c) and a canonical homotopy between (a �u,v

b) �v′,w c and a �u,v (b �v′,w c).

Proof. As in Lemma C.3, there is an auxiliary surface with arc families augmented by special
arcs. Again, modified flows give rise to modified operations so that the asserted pairs are projec-
tively equivalent. Finally, scaling with homotopies as in Lemma C.1 completes the proof. �
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