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This paper exposes the fundamental role that the Drinfel’d double D(k[G]) of the group
ring of a finite group G and its twists Dβ(k[G]), β ∈ Z3(G, k∗) as defined by Dijkgraaf–
Pasquier–Roche play in stringy orbifold theories and their twistings. The results pertain
to three different aspects of the theory. First, we show that G-Frobenius algebras arising
in global orbifold cohomology or K-theory are most naturally defined as elements in the
braided category of D(k[G])-modules. Secondly, we obtain a geometric realization of the
Drinfel’d double as the global orbifold K-theory of global quotient given by the inertia
variety of a point with a G action on the one hand and more stunningly a geometric
realization of its representation ring in the braided category sense as the full K-theory
of the stack [pt/G]. Finally, we show how one can use the co-cycles β above to twist the
global orbifold K-theory of the inertia of a global quotient and more importantly, the
stacky K-theory of a global quotient [X/G]. This corresponds to twistings with a special
type of two-gerbe.
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1. Introduction

The Drinfel’d double D(k[G]) of a group ring of a finite group G and in particular
its twisted version Dβ(k[G]) where β ∈ Z3(G, k∗) were introduced and studied
by Dijkgraaf, Pasquier and Roche [17] (see [2] for a very nice brief summary).
Their aim was to understand the constructions of [13] concerning orbifold conformal
field theory on the one hand and the constructions of [14] pertaining to orbifold
Chern–Simons theory on the other. We will realize these algebraic constructions
geometrically using the orbifold K-theory of [25] and newly defined twists.

Mathematically, the appearance of the Drinfel’d double D(k[G]) as a main char-
acter in orbifold theory has its roots in [22, 18] where a (2 + 1)-dimensional theory
was considered. See also [20, 21] for related material on equivariant K-theory of
a compact group G. The importance and algebraic relevance of D(k[G]) in the
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theory of G-Frobenius algebras was made precise in [30] where we showed that
any G-Frobenius algebra is a D(k[G])-module and in particular also a k[G]-module
algebra and k[G] co-module algebra. G-Frobenius algebras arise in the (1 + 1)-
dimensional theory [29] such as orbifold Gromov–Witten theory [11] and hence in
orbifold cohomology [11, 19] in particular. In this paper, we go one step further
and give a definition of a G-Frobenius algebra and more generally a G-Frobenius
object in terms of the braided tensor category D(k[G])-Mod of D(k[G])-modules.
The rather lengthy original definition of a G-Frobenius algebra [28, 29] then can
be replaced by the statement that a G-Frobenius object is a Frobenius object in
D(k[G])-Mod which satisfies two additional axioms (S) and (T ) of which the former
is the famous trace axiom. This is the content of Theorem 3.16.

Another upshot of the categorical treatment is that these objects give the right
algebraic structure to encode the trace axiom in infinite dimensional situations.
We recall that in [25], we introduced pre-Frobenius algebras with trace elements
to be able to write the trace axiom. This was necessary since the Chow ring of
a smooth projective variety may not be a Frobenius algebra as it can be infinite
dimensional. Here, by a Frobenius algebra we mean a unital associative commu-
tative algebra with a non-degenerate even symmetric invariant bi-linear pairing.
Nevertheless, there are traces one can define using the trace elements and for these,
the trace axiom holds. In the categorical context, any Frobenius object defines a
trace for any endomorphism which we call Frobenius trace or F-trace for short. In
particular, the trace elements of [25] can be recovered as the F-traces of the relevant
endomorphisms. This fact holds true in all the known constructions involving the
string and global versions of the functors F ∈ {H∗,K∗, A∗,K0} [19, 3, 4, 11, 25]
which is shown in Theorem 4.3. Thus, D(k[G]) is at the bottom of the very defini-
tion of the algebras associated to global orbifolds. Analogous statements are true
for singularities with symmetries [28, 29, 31].

The Drinfel’d double makes its appearance in two more guises. First, we show
that in the case of an Abelian symmetry group G, the global K-theory as defined
in [25]. See also Sec. 3 for a review, of the inertia variety of a point with the
trivial G action satisfying K∗

global(I(pt, G), G) = D(k[G]) as an algebra. In the non-
Abelian case, the resulting algebra together with its G-action is Morita equivalent
to D(k[G]) as a groupoid. See Corollary 4.12.

The most stunning appearance of D(k[G]) is the one of Theorem 4.13 where
we prove that Kfull([pt/G]) ∼= Rep(D(k[G])). Here, the non-commutativity in the
ring structure is now given by the natural braiding of the moniodal category of
representations.

Armed with these results, we define twistings by co-cycles in Zi(G, k∗) where
i = 1, 2, 3 for the various theories-associated to a global quotient (X,G). In other
words, twist by 0-,1-, and 2-gerbes that are pulled back from [pt/G] or gerbes on
X that are trivial but not equivariantly trivial. See [34, 23] for this point of view
of gerbes.

The 0-twists are performed on Kglobal(X,G) or any of the other stringy functors
F . They correspond to the Ramond twist defined in [28, 29]. The twists by 1-gerbes
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are identified as the twist of discrete torsion that were algebraically defined in [30].
Finally, the most interesting twists come from 2-gerbes. There are basically two
types. First, we can transgress the 2-gerbe to the inertia variety I(X,G) considered
together with its G-action and then consider twists on Kglobal((I(X,G), G)). Here,
the twist will just be a special type of discrete torsion. However, we do recover
the algebra structure of Dβ(k[G]) for the β-twisted Kβ((I(pt, G), G). The more
intriguing twist is on Kfull[X/G]. Twists of orbifold K-theory of the inerita have
been independently studied in [6]. In our case, we remain on Kfull(X) and our
twist yields the natural generalization of the results above. Namely Kβ([pt/G]) ∼=
Rep(Dβ(k[G])). See Theorem 5.8. This result is striking in several aspects. The most
prominent feature being that the representation ring of Dβ(k[G]) is understood in
the braided monoidal setting with a non-trivial associator. This tells us that this
twist twists outside the associative world. A posteriori this is however not totally
unexpected, since we know from the work of Moore and Seiberg [33] that the fusion
ring is not associative in general, but only associative in the braided monoidal
category sense. We can of course get an associative algebra by restricting to the
dimensions of the intertwiners and defining a Verlinde algebra. See Sec. 4 and
also [20, 21] for related material.

The paper is organized as follows:

In Sec. 2, we review all the necessary definitions for the twisted Drinfel’d dou-
ble including DPR induction and the relevant background from braided monoidal
categories. Section 3 contains the first set of results that pertain to the definition
of G-Frobenius algebra objects. The third section starts with a brief review of the
constructions of [25] and introduces all the variants of stringyK-theory we will con-
sider. Section 4 terminates with the second and third appearance of the Drinfel’d
double: (i) as the global K-theory of the inertia of (pt, G) and (ii) in the theorem
that Kfull([pt/G]) ∼= Rep(D(k[G])). The various twistings are contained in Sec. 5.
Here, we consider twists of 0-, 1-, and 2-gerbes on global quotients that are trivial
but not equivariantly trivial.

2. The Twisted Drinfel’d Double

In this section, we collect the basic definitions and constructions of the twisted
Drinfel’d double for the readers’ convenience.

2.1. Basic definitions

Definition 2.1. For a finite group G and an element β ∈ Z3(G, k∗), the twisted
Drinfel’d double Dβ(k[G]) is the quasi-triangular quasi-Hopf algebra whose

(1) underlying vector space has the basis g�
x

with x, g ∈ G

Dβ(k[G]) =
⊕

k g�
x
, (2.1)
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(2) algebra structure is given by

g�
x
h�

y
= δg,xhx−1θg(x, y) g �

xy
, (2.2)

where

θg(x, y) =
β(g, x, y)β(x, y, (xy)−1g(xy))

β(x, x−1gx, y)
, (2.3)

(3) co-algebra structure is given by

∆( g�
x
) =

∑
g1g2=g

γx(g1, g2) g1�
x
⊗ g2�

x
, (2.4)

where

γx(g1, g2) =
β(g1, g2, x)β(x, x−1g1x, x

−1g2x)
β(g1, x, x−1g2x)

. (2.5)

(4) The Drinfel’d associator Φ is given by

Φ =
∑

g,h,k∈G

β(g, h, k)−1 g�
e
⊗ h�

e
⊗ k�

e
. (2.6)

(5) The R matrix is given by

R =
∑
g∈G

g�
e
⊗ 1�

g
, where 1�

g
=

∑
h∈G

h�
g
. (2.7)

(5) The antipode S is given by

S( g�
x
) =

1
θg−1(x, x−1)γx(g, g−1)

x−1g−1x �
x−1

. (2.8)

Remark 2.2. There are several things which we would like to point out:

(1) In case β ≡ 1, that is, β is trivial, we obtain the a braided Hopf algebraD(k[G])
which is the Drinfel’d double of the group ring.

(2) The algebra is associative and the unit of this algebra is 1�
e
.

(3) There is an injection of algebras k[G]∗ → Dβ(k[G]) given by δg �→ g�
e
, where

δg(h) := δg,h, since

g�
e
h�

e
= δg,h g�

e
. (2.9)

(4) There is a special element v−1 which is central. It is given by

v−1 =
∑
g∈G

g�
g
. (2.10)

In case β ≡ 1, this is the element which gives the inner operation of S2 of the
braided Hopf-algebra D(k[G]) [27].

(5) The various θg are almost co-cycles for G,

θg(x, y)θg(xy, z) = θg(xy, z)θx−1gx(y, z). (2.11)

It follows that when θg is restricted to Z(g)×Z(g), it is a two-co-cycle for Z(g).
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2.2. The braided monoidal category Dβ(k[G])-Mod

Since Dβ(k[G]) is a quasi-triangular quasi-Hopf algebra, there is a natural braided
monoidal structure on the category of its modules. We recall that if U and V

are modules over Dβ(k[G]) or in general any quasi-triangular quasi-Hopf algebra
(H,µ, η,∆, ε, S,Φ, R), then U ⊗ V has the structure of an H module via ∆ : H →
H ⊗H .

Recall (see e.g. [27]) that in general for three representation U, V,W and ele-
ments u ∈ U, v ∈ V,w ∈ W, the associator is given by

aU,V,W : (U ⊗ V )⊗W → U ⊗ (V ⊗W ),

aU,V,W ((u ⊗ v)⊗ w) = Φ(u⊗ (v ⊗ w)),
(2.12)

and likewise for two representations U, V and elements u ∈ U, v ∈ V , the braiding
is given by

cU,V : U ⊗ V → V ⊗ U,
cU,V (u ⊗ v) = τU,V (R(u⊗ v)), (2.13)

where τU,V (u⊗ v) = v ⊗ u.
In particular, let U, V,W be Dβ(k[G])-modules and let ug ∈ Ug, vh ∈ Vh,

wk ∈ Wk be homogeneous elements with respect to the grading by G, then

aU,V,W ((ug ⊗ vh)⊗ wk) = β−1(g, h, k)ug ⊗ (vh ⊗ wk), (2.14)

and

cU,V (ug ⊗ vh) = ρ( ghg−1�
g
)(vh)⊗ ug = φ(g)(vh)⊗ ug. (2.15)

Moreover on U ⊗ V , the Dβ(k[G])-module structure is given by

ρ( g�
x
)(uh ⊗ vk) = δxhkx−1,gγx(xhx−1, xkx−1)ρ(xhx−1�

x
)(uh)⊗ ρ(xkx−1 �

vk

).

(2.16)

Remark 2.3. It is well-known [33] that the pentagon relation for associativity
constraint is equivalent to the fact that β as a function on G3 is an element of
Z3(G, k∗).

Proposition 2.4. Any left Dβ(k[G])-module (ρ,A) is G graded A =
⊕

g∈GAg

and if πg denotes the projection of A onto Ag, then

(1) ρ( g�
e
) = πg.

(2) ρ( g�
x
) = πg ◦ ρ( g�

x
) ◦ πx−1gx and ρ( g�

x
) : Ax−1gx

∼→ Ag by isomorphisms.

In particular, ρ( g�
x
)(ah) = δx−1gx,hρ( g�

x
)(ah).

Proof. Equation (2.9) means that the ρ( g�
e
) act as projectors and since ρ(1�

e
) =

idA, the first claim follows from Eq. (2.9) by setting

Ag := ρ( g�
e
)(A). (2.17)
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For the first part of the second claim, we notice that

g�
x

= g�
e
g�

x
(x−1gx)�

e
, (2.18)

which implies the statement in conjunction with (1). For the second part, we cal-
culate that x−1gx �

x−1
g�

x
= θx−1gx(x−1, x)x−1gx�

e
and since θxgx−1(x−1, x) �= 0 and

ρ(x−1gx�
e
)|A

x−1gx
= πx−1gx|Ax−1gx

= id, the claim follows.

Notation 2.5. It will be convenient to denote ρ(1�
g
) by φ(g). For any D(k[G])

module A, we let Ag := Im(ρ( g�
e
)) and denote the projection by πg. Notice that

then

ρ( g�
x
) = φ(x) ◦ πx−1gx = φ(x)|Ax−1gx

: Ax−1gx → Ag. (2.19)

Remark 2.6. If β ≡ 1 then φ yields a k[G] module structure on A while the grading
corresponds to the k[G] co-module structure given by ag �→ ag ⊗ g. Moreover, one
can check that these two structures are compatible so as to form a crossed D(k[G])
module in the sense of [27], as is well-known.

2.3. DPR induction

A very useful tool in the theory of the twisted Drinfel’d double is the Dijkgraaf–
Pasquier–Roche (DPR) induction [17].

For any α ∈ Z2(G, k∗), let Rα(G) be the group of α twisted representations,
that is, maps ρ : G → GL(V ) with ρ(g)ρ(h) = α(g, h)ρ(g, h). We write C(G) for
the set of conjugacy classes of G. With this notation, DPR induction allows one to
constructively prove the following result.

Theorem 2.7 [17]. Rep(Dβ(k[G])) is equivalent to
⊕

[g]∈C(G)R
θg(Z(g)).

Remark 2.8. One can also view the theorem above as following from the Morita
equivalence of the loop version of the inertia groupoid and the fiber product/stack
version of the inertia groupoid.

A very nice compilation of the results is given in [2]. We also review the DPR
induction process below.

Remark 2.9. We wish to point our several facts:

(1) Notice that the individual Rα(G) do not form rings. The product induced by
the tensor product on the underlying modules is rather from Rα(G)⊗Rβ(G)→
Rαβ(G). The direct sum over the θg is in a certain sense “closed” under this
operation, whence the product structure. We refer to [17] for the details, but
also see Sec. 2.3 below.

(2) The product in Rep(Dβ(k[G])) is not associative for general β, but only braided
associative, with the braiding given by the Drinfel’d associator Φ. See Sec. 2.2.
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(3) We write kα[G] for the twisted group ring that is
⊕

g∈G k1g with multiplication
1g1h = α(g, h)1gh. It is worth remarking that G acts by conjugation ρ(g)1h =
ε(g, h)1ghg−1 with ε(g, h) = α(g,h)

α(ghg−1,g) . With this action (see e.g. [26]):

(kα[G])G ⊗ C = Rα(G)⊗ C. (2.20)

Also, a module over kα[G] is the same as an α twisted representation.

Here and everywhere, the superscipt G denotes the G-invariants.

Definition 2.10 [17]. Fix β and g ∈ G. Given (V, λ) a left θg twisted representa-
tion of Z(g) the DPR induced representation is IndDPR(V) := k[G]⊗kθg [Z(g)]V where
for the tensor product kθg acts on the right on k[G] via xρ(h) = θxgx−1(x, h)xh with
the action of Dβ(k[G]) given by

h�
x
(r ⊗ v) := δh,xrg(xr)−1θh(x, r)xr ⊗ v. (2.21)

Remark 2.11. Notice that if one chooses representatives xi for G/Z(g), then the
action amounts to

h�
x
(xi ⊗ v) = δh,xrg(xr)−1θh(x, xi)xxi ⊗ v

= δh,xrg(xr)−1θh(x, xi)xkz ⊗ v

= δh,xrg(xr)−1
θh(x, xi)

θxkgx−1
k

(xk, z)
xkρ(z)⊗ v

= δh,xkgx−1
k

θh(x, xi)
θh(xk, z)

xk ⊗ λ(z)(v), (2.22)

which is the formula one can find for instance in [2].

2.4. An exterior tensor product

Recall [28, 29] that for G-graded spaces A =
⊕

g∈G and B =
⊕

g∈GBg, there is
another natural tensor product, which is given by

A⊗̂B :=
⊕
g∈G

Ag ⊗Bg. (2.23)

Proposition 2.12. If A is a Dβ(k[G])-module and B is a Dβ′
(k[G])-module, then

A⊗̂B is a Dββ′
(k[G])-module via the diagonal action ∆̂( g�

x
) = g�

x
⊗ g�

x
.

Proof. First notice that indeed A and B are G-graded by Proposition 2.4.
We need to check that

∆̂( g�
x
h�

y
)(ak ⊗ bk) = ∆̂( g�

x
)(∆̂(h�

y
)(ak ⊗ bk)). (2.24)

For this to be non-zero, we need h = yky−1 and g = xyk(xy)−1, so fix these
values, then g�

x
h�

y
= θω

g (x, y) g �
xy

in any Dω(k[G]). Also, notice that by a simple
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substitution into the definitions θββ′
g (x, y) = θβ

g (x, y)θβ′
g (x, y), with which the claim

follows. Finally, ∆̂( g�
e
) = g�

e
⊗ g�

e
which means that indeed the degree g part of

A⊗̂B is given by Ag ⊗Bg.

2.5. A second exterior tensor product

Notice that D(k[G]) as a vector space is actually bi-graded by G × G and for
bi-graded modules, there is again a tensor product.

Now, given any bi-graded A =
⊕

(g,x)∈G×GAg,x and B =
⊕

(g,x)∈G×GBg,x, we
define

A ̂̂⊗B :=
⊕

(g,x)∈G×G

Ag,x ⊗Bg,x. (2.25)

Of course, this is just ⊗̂ for the group H = G × G, but since we consider the
group G to be fixed, this notation will be very useful.

Lemma 2.13. When using the diagonal product, Dβ(k[G]) ̂̂⊗Dβ′
(k[G]) =

Dββ′
(k[G]).

Proof. Straightforward calculation.

3. G-Frobenius Algebras

3.1. Frobenius algebras

We wish to recall that there are two notions of Frobenius algebra. The first goes
back to Frobenius and is given as follows:

Definition 3.1. A Frobenius algebra is a finite-dimensional commutative associa-
tive unital algebra A together with a non-degenerate symmetric pairing η that is
invariant, that is,

η(a, bc) = η(ab, c). (3.1)

A possibly degenerate Frobenius algebra is the same data as above, only that we
do note require that η is non-degenerate.

In the categorical setting, there is the notion of a Frobenius algebra object in a
monoidal category.

Definition 3.2. A non-unital Frobenius algebra object or Frobenius object for short
in a monoidal category C is an associative commutative algebra object, which is
also a co-associative co-commutative object given by a datum (A, µ : A ⊗ A →
A,∆ : A→ A⊗A) that additionally satisfies

∆ ◦ µ = (µ⊗ id) ◦ (id⊗∆) = (id⊗ µ) ◦ (∆⊗ id). (3.2)

A Frobenius algebra object is the data above together with a unit υ : IC → A

and a co-unit ε : A→ IC , where IC is the unit object of C .
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Remark 3.3. Notice that a Frobenius algebra always gives a Frobenius algebra
object in the monoidal category (k-Vect,⊗), by letting ∆ be the adjoint of µ with
respect to the pairing. The co-unit is given by pairing with the unit of the algebra.

Vice-versa if A is a Frobenius algebra object in (k-Vect,⊗) then A with its unit,
multiplication and η(a, b) := ε(µ(a⊗ b)) is a possibly degenerate Frobenius algebra.

3.2. F-traces and trace elements

One main difference between the finite-dimensional and the non-finite dimensional
case is the existence of traces. In the finite-dimensional case, for any operator φ ∈
Aut(A) we can consider Tr(φ). The trace actually has an analog in the Frobenius
object case. For this, we need an expression in terms of the morphisms.

Proposition 3.4. For a Frobenius algebra, let 1k be the unit in k, then

Tr(φ) = ε(µ(φ⊗ id)∆(υ(1k))). (3.3)

Proof. Let 1A = υ(1k) be the unit ofA and let ∆i be a basis ofA. If gij = η(∆i,∆j)
is the metric and gij is its inverse, then ∆(υ(1k)) = ∆(1A) =

∑
ij g

ij∆i⊗∆j , since

η ⊗ η(∆k ⊗∆l,∆(1A)) := η(∆k∆l, 1a) = η(∆k,∆l) = gkl,

and

η ⊗ η
∆k ⊗∆l,

∑
ij

gij∆i ⊗∆j

 =
∑
ij

gkig
ijgjl =

∑
i

gkiδi,l = δk,l,

and hence, if ∆̌i :=
∑

j g
ij∆j is the inverse basis,

ε(µ(φ ⊗ id)∆(υ(1k))) = ε

∑
ij

gijφ(∆i)∆j


=

∑
i,j

η

∑
ij

gijφ(∆i),∆j

 =
∑

i

∆̌i(φ(∆i)) = Tr(φ).

Definition 3.5. Given a Frobenius algebra object A and φ ∈ Aut(A), we define
the F -Trace τ(φ) : IC → IC of φ via

τ(φ) := ε ◦ µ ◦ (φ⊗ id) ◦∆ ◦ η. (3.4)

Remark 3.6. If IC = k and all morphisms are k-linear, the map τ(φ) is of course
given by its value on 1k. In this case, we will not distinguish between the map and
this value.

Proposition 3.7. Let F be a monoidal functor with values in vector spaces for
a category with products given by the monoidal structure. Also assume that F has
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pull-backs, push-forwards and satisfies the projection formula for the diagonal mor-
phisms. Then for any object V, it gives rise to a Frobenius algebra object and hence
F-traces.

Proof. We let µ be given by the pull-back along the diagonal ∆V : V → V ×
V where the co-multiplication is given by push-forward along the diagonal: µ =
∆∗

V ,∆ = ∆V ∗.
Equation (3.2) is guaranteed by the projection formula. On one hand,

∆V ∗(∆∗
V (F1 ⊗F2)) = (F1 ⊗F2)∆V ∗(1). (3.5)

On the other hand,

(∆∗
V ⊗ id)(id ⊗∆V ∗)(F1 ⊗ F2) = (∆∗

V ⊗ id)(F1 ⊗∆V ∗(∆∗
V (1⊗F2)))

= (∆∗
V ⊗ id)(F1 ⊗ (1⊗F2)∆V ∗(1))

=
∑
F1∆(1) ⊗F2∆(2)

= (F1 ⊗F2)∆V ∗(1), (3.6)

where we used Sweedler’s notation ∆V ∗(1) =
∑

∆(1) ⊗ ∆(2) and analogously for
the third equation.

The co-unit is furnished by the push-forward to the unit of the monoidal cat-
egory which is a final object, and the unit of the Frobenius algebra object by the
pull-back from it. In our cases of interest, this will be a point or the one-dimensional
vector space of the ground field.

Corollary 3.8. In the situation above, we also obtain pre-Frobenius algebras in the
sense of [25], where the trace element is the morphism given by ∀a ∈ A : a �→ τ(λa),
that is, the F-trace of the morphism of left-multiplication by a; λa(b) := ab.

Example 3.9. Notice that this gives the canonical trace elements considered in
[25] for the pre-Frobenius algebras A∗(V ) and K0(V ), which are prime examples of
Frobenius algebra objects, that give rise to possibly degenerate Frobenius algebras,
as they might be infinite-dimensional. Here ε =

∫
or χ respectively, which are the

push-forwards to a point. For example in A∗, we can calculate the F-trace λv which
is the operation of left-multiplication by v to be given by

τ(λv) =
∫

V

∆∗
V [(v ⊗ 1V ) ∪ (∆V∗(1))]

=
∫

V

(v ∪∆(1)) ∪∆(2)

=
∫

V

v ∪∆∗
V ∆V∗(1)

=
∫

V

v ∪ ctop(TV ), (3.7)
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where we used the notation of the last proposition for the co-product. This is
exactly the expression appearing in [25]. The analogous statement of course holds
for K-theory.

3.3. Twisted Frobenius objects

In general, there is a twisted version of Frobenius algebra objects. This appears
in the definition of G-Frobenius algebras and is necessary for considerations con-
cerning singularities with symmetries, see e.g. [28, 29, 31]. We again fix a monoidal
category C .

Definition 3.10. Let Iχ be an even invertible element in C .
A Iχ-twisted Frobenius algebra object is the datum (A, µ : A → A ⊗ A,∆ :

A → A ⊗ A ⊗ I⊗2
χ , υ : IC → A, ε : A → I⊗2

χ ) such that (3.2) is satisfied, where µ is
associative commutative, ε is co-associative, co-commutative, υ is a unit, and ε is
a co-unit using the isomorphism m : Iχ ⊗ I−1

χ
∼= IC . More precisely,

I⊗−2
χ ⊗ A⊗ I⊗2

χ
ε⊗id⊗id←−−−−− A⊗ A⊗ I⊗2

χ
id⊗ε−−−−→ A⊗ I⊗−2

χ ⊗ I⊗2
χ

m◦m⊗2


 ∆

� 
m◦m⊗2

IC ⊗A −−−−→ A ←−−−− A⊗ IC

where on the left m⊗2 is m applied to the first and fourth and the second and fifth
component and then to the two copies of IC and on the right to the second and
fourth and to the third and fifth and then again to the two copies of IC .

Remark 3.11. One could of course twist A � Ā := A ⊗ I−1
χ and obtain similar

operations and axioms. In the language of [28, 29], this is the Ramond twist or
Ramond sector.

3.4. G-Frobenius algebras

First, we recall the main definition. See [28, 29].

Definition 3.12. A G-Frobenius algebra or GFA for short, over a field k of char-
acteristic 0 is 〈G,A, ◦, 1, η, ϕ, χ〉, where

G: finite group,
A: finite dim G-graded k-vector space,

A = ⊕g∈GAg,
Ae is called the untwisted sector and,
the Ag for g �= e are called the twisted sectors,

◦: a multiplication on A which respects the grading:
◦ : Ag ⊗Ah → Agh,

1: a fixed element in Ae-the unit,
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η: non-degenerate bilinear form which respects grading, i.e. g|Ag⊗Ah
= 0

unless gh = e,
ϕ: an action of G on A (which will be by algebra automorphisms),
ϕ ∈ Hom(G,Aut(A)), s.t. ϕg(Ah) ⊂ Aghg−1 ,

χ: a character χ ∈ Hom(G, k∗),

satisfying the following axioms:

Notation. We use a subscript on an element of A to signify that it has homogeneous
group degree — e.g. ag means ag ∈ Ag — and we write ϕg := ϕ(g) and χg := χ(g).

(a) Associativity

(ag ◦ ah) ◦ ak = ag ◦ (ah ◦ ak),

(b) Twisted commutativity

ag ◦ ah = ϕg(ah) ◦ ag,

(c) G Invariant Unit:

1 ◦ ag = ag ◦ 1 = ag and ϕg(1) = 1,

(d) Invariance of the metric:

η(ag, ah ◦ ak) = η(ag ◦ ah, ak),

(i) Projective self-invariance of the twisted sectors

ϕg|Ag = χ−1
g id,

(ii) G-Invariance of the multiplication

ϕk(ag ◦ ah) = ϕk(ag) ◦ ϕk(ah),

(iii) Projective G-invariance of the metric

ϕ∗
g(η) = χ2

gη,

(iv) Projective trace axiom

∀c ∈ A[g,h] and lc left-multiplication by c : χhTr(lcϕh|Ag )

= χg−1Tr(ϕg−1 lc|Ah
).

We call a G-Frobenius algebra strict, if χ ≡ 1.

Remark 3.13. It was shown in [30] that a GFA is a module over D(k[G]) and
moreover proved that it is a k[G] module algebra and a k[G] co-module algebra.
The first part also follows from Remark 2.6.

Example 3.14. Important examples are furnished by the twisted group rings kα[G]
with α ∈ Z2(G, k∗). This group actually acts on the set (category) of G-Frobenius
algebras through ⊗̂ and gives rise to the action of discrete torsion. See [30] for full
details.

Proposition 3.15. A G-Frobenius algebra with character χ is a unital, associative,
commutative algebra object in the category D(k[G])-Mod. It moreover defines a kχ
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twisted Frobenius algebra object, where kχ is the one-dimensional D(k[G])-module
concentrated in group degree e with G action on k given by the character χ.

Proof. This follows in a straightforward fashion, by reinterpreting the pertinent
diagrams using the braided monoidal structure.

Since β ≡ 1 associativity in the category D(k[G])-Mod is just the ordinary
associativity (a).

Let µ denote the multiplication in A. In view of Eq. (2.16) the G-invariance of
the multiplication (ii) is equivalent to µ : A ⊗ A → A being a morphism in the
category D(k[G])-Mod.

Using Eq. (2.15) we see that the condition that the following diagram com-
mutes — which is the commutativity in D(k[G])-Mod — is equivalent to the con-
dition (b) of twisted commutativity.

A⊗A µ−−−−→ A

cA,A


 
id

A⊗A −−−−→ A

The fact that the unit is invariant is equivalent to the diagram

k ⊗A υ⊗id−−−−→ A⊗A id⊗υ←−−−− A⊗ k
↖ µ


 ↗
A

being a diagram of D(k[G]) modules where k has the structure of a trivial D(k[G])
module.

We define the co-unit via ε(a) := η(a, 1k). Then the projective G-invarince of
the metric (iii) becomes the condition on the co-unit in a twisted Frobenius algebra.

We set ∆ := µ†, that is, the adjoint of the multiplication under the non-
degenerate metric η. Then, the invariace of the metric (d) together with the pro-
jective G-invariance (iii) yields the Frobenius equation (3.2).

Theorem 3.16. A G-Frobenius algebra with character χ is precisely a Iχ-twisted
Frobenius algebra object D(k[G])-Mod with the following additional restrictions :

(1) The associated pairing η = ε ◦ µ is non-degenerate.
(2) Denoting the D(k[G]) action induced by the G action ϕ by ρ the following two

axioms hold,

(T) ρ(v−1) = χ−1 for a character χ ∈ Hom(G, k∗)
(S) Using Notation 2.5 let lc denote the left-multiplication by c:c ∈ A:

χhτ(lc ◦ ρ(hgh−1�
h
)) = χg−1τ(ρ(h �

g−1
) ◦ lc), (3.8)

where τ is the F -trace.
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Proof. Given a GFA, it is a unital, associative, commutative algebra object in
D(k[G])-Mod by the above proposition and it also satisfies the additional axioms.
By the Proposition 2.4, we see that any D(k[G])-Mod is G-graded and has an action
of G by automorphisms of G given by φ of Notation 2.5, which act in the prescribed
way. Now by the proof of the proposition above, we have that a unital associative
commutative algebra object satisfies the axioms (a), (b), (c) and (ii). What remains
to be shown is that the multiplication preserves the G-grading, but this follows from
the fact that ∆( k�

e
) =

∑
gh=k g�e ⊗ h�

e
so that if the multiplication is a morphism,

the multiplication is graded since the g�
e

act as projectors. Explicitly,

ρ( k�
e
)(agbh) = µ ◦ (ρ⊗ ρ)(∆( k�

e
))(ag ⊗ ah) = δk,ghagbh.

It is clear that η = ε ◦ µ defines a pairing given a Frobenius algebra object and
as above vice-versa defines ε in the presence of a unit. The invariance of the metric
(d) follows from the Frobenius equation and the structure of the co-unit. The latter
is also equivalent to the projective G-invariance of the metric (iii).

For the equivalence of the projective trace axiom with (S), we recall that the
elements g�

x
act as explained in Notation 2.5. Notice that if c /∈ A[gh] then both

sides are zero. In the same notation with the definition of v−1 given, Eq. (2.10)
condition (T) is just condition (i).

Here (S) and (T) stand for the generators of SL(2,Z) and are a reminder that
these axioms correspond to the invariance of the conformal blocks.a

Dropping the condition (1) we come to the main definition of the paragraph.

Definition 3.17. We define a G-Frobenius algebra object to be a Frobenius algebra
object in the category D(k[G])-Mod which satisfies the axioms (S) and (T).

Remark 3.18. Going beyond the aesthetics and the practicality of the above def-
inition, it is a necessary generalization if we are to deal with the stringy Chow ring
or Grothendieck K-theory of a global quotient stack as in [25], where the natural
metric may be degenerate. See the next paragraph for details.

3.5. The Drinfel’d double as a G-Frobenius algebra

We have seen that any GFA is actually a D(k[G])-module. Now as it happens,
D(k[G]) is itself a D(k[G]) module, but not quite a G-Frobenius algebra for general
G. This is because the G-degree of g�

x
is g and the multiplication is not multiplica-

tive in g but rather in x.
Notice that the elements g�

x
with [g, x] = e form a subalgebra Dβ(k[G])comm of

Dβ(k[G]) which is actually additively isomorphic to
⊕

g∈G k
θg (Z(g)). In the case

that G is Abelian, of course Dβ(k[G])comm = Dβ(k[G]).

aAs someone suggested, (S) could of course also stand for Spur.
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Proposition 3.19. Dβ(k[G])comm is a GFA for the D(k[G]) action given by

ρ( g�
x
)(h�

y
) =

θxhx−1(x, y)
θxhx−1(xyx−1, x)

δg,xyx−1 xhx−1 �
xyx−1

, (3.9)

which means that the G-degree of h�
y

is y.

Proof. This follows from the fact that the each kθg [Z(g)] is actually a Z(g)-FA.
This means, for instance, that it satisfies all the axioms for the Z(g) action per-
taining to the Z(g) alone. The other axioms then follow from the G-equivariance
of the θg or are straightforward. For β = 1, the statement also follows from Propo-
sition 4.10.

Remark 3.20. In the case of D(k[G]), if one uses the grading that the G degree of
g�

x
is x so that the multiplication is indeed G-graded, then twisted commutativity

dictates that ρ(1�
h
)( g�

x
) = hxgx−1h−1 �

hxh−1
. In turn, postulating the compatibility

of this G action with the multiplication requires that [g, x] = e.

Definition 3.21. We call a GFA a free GFA if it is of the form A = kθg [G] ⊗ Ae

for a Frobenius algebra Ae that is a G-module, with the multiplication given by
the diagonal multiplication, the G-degree of g ⊗ a being g and the G-action given
by the conjugation action on the left factor and the postulated G action on Ae.

Remark 3.22. Notice that in this case, we have a second kθg [G] action, given by
multiplication from the left on the factor kθg [G]. This action sends λh : Ag → Ahg.
This is similar to the quantum symmetry considered in [30].

Definition 3.23. Given β ∈ Z3(G, k∗), if A =
⊕

g∈GBg is the direct sum of free
Z(g)-Frobenius algebras Bg = kθg [Z(g)] ⊗ Be, then we define the DPR induced
free algebra IndDPR(A) :=

⊕
k[G]⊗kθg [Z(g)] Bg

∼= Dβ(k[G])⊗Be, where the action
is analogous to Definition 2.10 and the algebra structure is the diagonal algebra
structure.

Remark 3.24. At the moment, we do not see how to induce this algebra in the
non-free case. Geometrically, this amounts to the fact that on the inertia, the auto-
morphisms have to commute so that the double twisted sectors for non-commuting
elements are not accessible. Also in the general case, the double twisted sectors
Ax−1gx,x for x ∈ G are not equidimensional. This is, however, an interesting detail
which should be studied further, but is unfortunately beyond the scope of the
present considerations.

4. Orbifold Cohomology and K-Theory

In this section, we recall the various stringy functors introduced in [25] and re-
express them in the current framework. First, we recall from [25] that we have the
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following stringy functors for a global quotient (X,G), F ∈ {A∗, H∗,K0,K
top}

as well as isomorphisms Ch : K0(X,G) → A∗(K,G) and Ch : Ktop(X,G) →
H∗(X,G). Then, we also recall the stack versions of these functors and maps for a
suitably nice stack X. In order to simplify things, we will work over Q or extensions
of it. See Remark 4.1.

4.1. General setup — global quotient case

We recall the setup as in the global part of [25]. We simultaneously treat two flavors
of geometry: algebraic and differential. For the latter, we consider a stably almost
complex manifold X with the action of a finite group G such that the stably almost
complex bundle is G equivariant. While for the former, X is taken to be a smooth
projective variety with a G-action.

In both situations for m ∈ G, we denote the fixed point set of m by Xm and let

I(X) = �m∈GX
m (4.1)

be the inertia variety.
We let F be any of the functors H∗,K0, A

∗,Ktop, that is cohomology,
Grothendieck K0, Chow ring or topologicalK-theory with Q coefficients, and define

Fstringy(X,G) := F(I(X)) =
⊕
m∈G

F(Xm) (4.2)

additively.
We furthermore set

EuF (E) =

{
ctop(E) if F = H∗ or A∗ and E is a bundle

λ−1(E∗) if F = K or Ktop.
(4.3)

Notice that on bundles Eu is multiplicative. For general, K-theory elements
we set

EuF ,t(E) =

{
ct(E) if F = H∗ or A∗

λt(E∗) if F = K or Ktop.
(4.4)

4.2. The stringy product

For m ∈ G, we let Xm be the fixed point set of m and for a triple m = (m1,m2,m3)
(or more generally an n-tuple) such that

∏
mi = 1 (where 1 is the identity of G).

We let Xm be the common fixed point set, that is, the set fixed under the subgroup
generated by them.

In this situation, recall the following definitions. Fix m ∈ G, let r = ord(m)
be its order. Furthermore, let Wm,k be the sub-bundle of TX |Xm on which m acts
with character exp(2πik

r ), then

Sm =
⊕

k

k

r
Wm,k. (4.5)

Notice this formula is invariant under stabilization.
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We also wish to point out that using the identification Xm = Xm−1

Sm ⊕ (Sm−1) = NXm/X , (4.6)

where for an embedding X → Y we will use the notation NX/Y for the normal
bundle.

Recall from [25] that in such a situation there is a product on F(X,G) which
is given by

vm1 ∗ vm2 := ěm3∗(e
∗
1(vm1)e

∗
2(vm2)Eu(R(m))), (4.7)

where the obstruction bundle R(m) is defined by

R(m) = Sm1 ⊕ Sm2 ⊕ Sm3 �NXm/X , (4.8)

and the ei : Xmi → X and ě3 : Xm−1
3 → X are the inclusions. Notice, that as it

is written, R(m) only has to be an element of K-theory with rational coefficients,
but is actually indeed represented by a bundle [25].

Remark 4.1. This bundle and hence the multiplication below are actually defined
over Z. The point is that in [25], we identified R(m) as a bundle and true represen-
tation in the representation ring. Since there is no torsion in this ring, the bundle
is identified over Z.

Remark 4.2. The first appearance of a push-pull formula was given in [11] in
terms of a moduli space of maps. The product was for the G invariants, that is,
for the H∗ of the inertia orbifold and is known as Chen–Ruan cohomology. In [19],
the obstruction bundle was given using Galois covers establishing a product for
H∗ on the inertia variety level, i.e. a G-Frobenius algebra as defined in [28, 29],
which is commonly referred to as the Fantechi–Göttsche ring. In [24], we put this
global structure back into a moduli space setting and proved the trace axiom. The
multiplication on the Chow ring A∗ for the inertia stack was defined in [3, 4]. The
representation of the obstruction bundle in terms of the Sm and hence the passing
to the differentiable setting as well as the two flavors of K-theory stem from [25].

The following is the key diagram:

Xm1 Xm2 Xm−1
3

e1 ↖ ↑ e2 ↗ ě3
Xm

(4.9)

Here, we used the notation of [25], where e3 : Xm → Xm3 and i3 : Xm3 → X are
the inclusion, ∨ : I(X)→ I(X) is the involution which sends the component Xm to
Xm−1

using the identity map and ı̌3 = i3◦∨, ě3 = ∨◦e3. This is short-hand notation
for the general notation of the inclusion maps im : Xm → X , ı̌m := im ◦ ∨ = im−1 .

Theorem 4.3. The cases in which F equals H∗ and Ktop yield G-Frobenius alge-
bras. In the cases of A∗ and K0 the stringy functors are still G-Frobenius algebra
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objects. The co-multiplication is given by

∆(Fm3) =
∑

m1,m2 : m−1
1 m−1

2 = m3

(ě1∗ ⊗ ě2∗)∆Xm∗(e∗3(F3)Eu(R(m)), (4.10)

where ∆Xm : Xm → Xm ×Xm is that diagonal map.
The F-traces τ(λcφg, h) := τ(λc ◦ρ( ghg−1�

g
)) give the trace elements which were

part of the definition of pre-Frobenius algebra structures defined in [25].

Proof. The first part about H∗ and Ktop is contained in [25]. For A∗ or K0 the
verification of the Frobenius condition (3.2) is somewhat tedious but straightfor-
ward using analogous arguments as in Proposition 3.7. We will calculate the trace
elements. We fix a, b ∈ G and v[a,b] ∈ A[a,b] and calculate the F-trace τ(λv[a,b]φb, a).
For this, we will need to set up some notation and recall some results from [25].
We will use the following notation analogous to [25], m′ = ([a, b], bab−1, a),
H ′ := 〈[a, b], bab−1〉 ⊂ H := 〈a, b〉. We will also need the commutative diagram

XH j′2−−−−→ XH′

j′1


 
∆′
2

Xa ∆′
1−−−−→ Xbab−1 ×Xa

where j′1 and j′2 are the inclusion morphisms, ∆′
2 is the diagonal map, and ∆′

1 is
the composition

Xa ∆Xa−−−−→ Xa ×Xa φ(b)×∨−−−−−→ Xbab−1 ×Xa−1
.

We denote the excess intersection bundle by E ′. Also, we recall that for a triple
product vm1 ∗ vm2 ∗ vm3 , we have a special formula which actually is the reason for
associativity.

Let m = 〈m1,m2,m3,m4 = (m1m2m3)−1〉, and m′ = 〈m1,m2, (m1m2)−1〉
XH′

:= Xm and as usual let ei : XH′ → Xmi be the inclusions and ěi = ∨ ◦ ei,
then we have

vm1 ∗ vm2 ∗ vm3 = ěm4∗
[(∏

e∗i (vmi)Eu(R(m)
)]
,

where R(m) =
⊕
Smi �N(XH).

Let pV : V → pt be the projection to a point. In our case, m =
([a, b], bab−1, a−1, e) and m′ = ([a, b], bab−1, a−1) and H = 〈a, b〉. Let 1V be the
unit in F(V ). Then

∆(1X) =
∑

h

eh∗ ⊗ eh−1∗(e∗h(1X)Eu(R((h, h−1, e))) =
∑

h

(id⊗ ∨)∆Xh(1Xh).

The bi-degree (h, h−1)-part is just given by (id⊗ ∨)∆Xh(1Xh)

τ(φ(b), a) = pX∗[ěm4∗[e
∗
1(v[a,b]∆′

2(∆
′
1(1))Eu(R(m′)))]]

= pXH∗[e
∗
1(v[a,b]j

′
2∗(j

′∗
1 (1Xh)Eu(E ′)Eu(R(m′))))]

= pXH′∗[v[a,b]|XH′ Eu(E ′)j′∗2 (Eu(R(m′)))]
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= pXH′∗[v[a,b]|XH′ Eu(E ′ ⊕ j′∗2 (R(m′)))]

= pXH′∗[v[a,b]|XH′ Eu(TXH ⊕ S[a,b]|XH )], (4.11)

which is the expression of [25]. Here, the last equality follows from the equality of
the bundles E ′ ⊕ j′∗2 (R(m′)) = TXH ⊕ S[a,b]|XH which fittingly was proved in [25,
Theorem 5.5].

The traces τ(λvφb, a) will of course be zero if v is of pure G-degree different
from [a, b].

Proposition 4.4. Given (X,G) and (Y,G), X × Y has a diagonal G action and
Fstringy((X ×Y,G)) = Fstringy((X,G))⊗̂Fstringy((Y,G)) where Fstringy is the global
stringy version of any of the functors F as defined in [25].

Proof. Straightforward by the Künneth formula or relevant versions thereof.

4.3. The stack case

In [25], a version of stringy K-theory or Chow for general stacks was developed as
well. The important thing about the stringy K-theory in this case, which was also
called full orbifold K-theory is that is it usually bigger than the global K-theory.
In particular for a stack X it was defined that Kfull(X) := K(IX) where IX is
the inertia stack. For a global quotient stack, we also defined Ksmall([X/G]) :=
Kglobal(X,G)G. Notice that this is actually presentation independent [25].

In particular for a global quotient, three theories where introduced which are
additively over given C as follows:

Kglobal((X,G)) := K(I(X,G))) ∼=
⊕
g∈G

K(Xg), (4.12)

Kfull([X/G]) := K(I[X/G]) ∼=
⊕
[g]

K([Xg/Z(g)]), (4.13)

Ksmall([X/G]) := Kglobal((X,G))G ∼=
⊕
[g]

K(Xg)Z(g). (4.14)

Here, these are only linear isomorphism and the product is the one given by the
push-pull formula (4.7). Notice they are all different. It is however the case that
Ksmall is a subring of Kfull (see [25]).

4.4. Comparing the different constructions in the case

of a global quotient

As mentioned above for global quotient stacks, we have Ksmall([X/G]) ∼= K(X,G)G

which is isomorphic to A∗ or H∗, but also we have Kfull([X/G]), which is usually
much bigger. Notice that Ksmall(I(X,G), G) and Kfull[(X/G)] are of the same size
but have different multiplications that is they are additively isomorphic, but not
multiplicatively.
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Proposition 4.5. Additively,

Kglobal(I(X,G), G) = K(�x∈G(�g∈GX
g)x (4.15)

=
⊕

g∈G,x∈Z(g)

K(X〈g,x〉) (4.16)

(4.17)

and for
∏
xi = 1, and g : x ∈ Z(g), h : y ∈ Z(h), the multiplication is given by

Fg,x1 ∗ Fh,x2 = ěx3∗(e
∗
x1

(Fg,x1)e
∗
x2

(Fh, x2)R((x1, x2, (x1x2)−1))

= δg,h Fg,x1 ∗g Fg,x2 , (4.18)

where ∗g is the multiplication on Kglobal(Xg, Z(g)), that is, as rings

Kglobal(I(X,G), G) =
⊕
g∈G

Kglobal(Xg, Z(g)). (4.19)

Proof. Notice that if g �= h, then the pull-backs land in different components, so
that the product is zero. In case one pulls back to the same component (Xg)〈x,y〉,
the obstruction bundle is equal to that of Kglobal(Xg, Z(g)), since the respective
maps are given by ei : (Xg)〈x1,x2〉 → (Xg)xi .

Corollary 4.6. Given (X,G) and (Y,G), X × Y has a diagonal G action and
Kglobal(I(X × Y,G), G) = Kglobal(I(X,G), G) ̂̂⊗Kglobal(I(Y,G), G) with the diago-
nal product structure.

Proof. Using the Proposition 4.5 above, Proposition 4.4 and the definition of ̂̂⊗
Kglobal(I(X × Y,G), G) =

⊕
g∈G

Kglobal((X × Y )g, Z(g))

=
⊕
g∈G

Kglobal(Xg, Z(g))⊗̂Kglobal(Y g, Z(g))

= Kglobal(I(X,G), G) ̂̂⊗Kglobal(I(Y,G), G). (4.20)

Corollary 4.7. Denote the set of double conjugacy classes of G × G by C2(G).
Additively,

Ksmall(I(X,G), G) = Kglobal(I(X,G), G)G

=

 ⊕
(g,x)∈G×G,x∈Z(g)

K((Xg)x)

G

=
⊕

[g,x]∈C2(G),x∈Z(g)

K(X〈g,x〉)Z(g,x), (4.21)
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and as rings

Ksmall(I(X,G), G) =
⊕

[g]∈C(G)

Ksmall(Xg, Z(g)). (4.22)

Remark 4.8. On the other hand, we have additively

Kfull([X/G]) =
⊕

[g]∈C(G)

K([Xg/Z(g)])

=
⊕

[g]∈C(G)

KZ(g)(Xg)

=
⊕

[g]∈C(G),[x]∈C(Z(g))

K((Xg)x)Z(g,x)

=
⊕

[g,x]∈C2(G)

K(X〈g,x〉)Z(g,x). (4.23)

Remark 4.9. Both versions above are hence additively isomorphic to the sum
over double twisted sectors. In particular, if G is Abelian, then as vector spaces
both versions above are additively given by the direct sum

⊕
G×G(K(X〈g,x〉))G.

4.5. The second and third appearance of the Drinfel’d double

Before going on to the twisting, it will be instructive to work out the two theories
on the simplest example [pt/G]. For both Kfull([pt/G]) and Kglobal(I(X,G), G), we
find the Drinfel’d double, be it in different guises.

Proposition 4.10. Kglobal(I(pt, G), G) = D(k[G])comm.

Proof. By Proposition 4.5

Kglobal(I(pt, G), G) =
⊕
g∈G

k[Z(g)] =
⊕

g∈G,z∈Z(g)

k1g,x, (4.24)

where we have chosen 1x,g for the bi-degree (g, x) part. Note, all the obstruc-
tion bundles vanish, since all the normal bundles vanish and the multiplication is
given by

1g,x1h,y = exy∗(e∗x(1g,x)e∗y(1h,y)) = δg,h1xy,g (4.25)

so the multiplication is just that of k[Z(g)].

Corollary 4.11. SinceKglobal(I(pt, G), G) is a sum of free Z(g) Frobenius algebras
as needed in Definition 3.23 so we can DPR induce to obtain D(k[G]).

Corollary 4.12. As groupoid algebras, the G-module Kglobal(I(pt, G), G) is Morita
equivalent to D(k[G]).
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Proof. If we consider the G action, we see that it permutes the sectors in a given
conjugacy class. The G-action on a module is completely determined via DPR
induction. In the groupoid language, (I(pt, G), G) is the disjoint union of groupoids
[pt/Z(g)] and the G-action adds the morphisms ∗g h→ ∗hgh−1 where ∗g denotes the
different objects of the groupoid. This is now Morita equivalent to the loop groupoid
of [pt/G] and hence the result follows.

See [35] for similar considerations.

Theorem 4.13. Kfull([pt/G]) ∼= Rep(D(k[G])).

Remark 4.14. We were informed by C. Teleman, that a similar formula at least
additively for the case of [pt/G] can be deduced from the work of Freed–Hopkins–
Teleman [20, 21].

Notation 4.15. In order to do the calculations, we will use the standard nota-
tion [13, 14, 17]. Let Ag be a system of representatives of conjugacy classes in
C(G), which we will consider to be indexed by A. Furthermore, let α be an irre-
ducible representation of Z(Ag), then we get an irreducible representation πA

α of
D(k[G]) by using DPR induction.

Proof of Theorem 4.13. For this, we notice that the inertia stack I[pt/G] =∐
[g]∈C(G)[pt/Z(g)] and hence

Kfull([pt/G]) =
⊕

[g]∈C(G)

K([pt/Z(g)]) =
⊕

[g]∈C(G)

KZ(g)(pt) =
⊕

[g]∈C(G)

Rep(Z(g)).

The product is given by

α[Ag] ∗ β[Bg]

=
∑

m1∈[Ag],m2∈[Bg]

|Z(m1m2)|
|G| IndZ(〈m〉)

Z(〈m−1
3 〉)(ResZ(〈m〉)

Z(〈m1〉)(αm1)⊗ ResZ(〈m〉)
Z(〈m2〉)(βm2)).

(4.26)

Notice that each Rep(H) has a non-degenerate pairing which is essentially given
by the trace:

η(ρ1, ρ2) :=
1
|H |

∑
h∈H

tr(ρ1(h))tr(ρ∗2(h)),

and with this pairing, there is an sesquilinar isomorphism of the Frobenius algebras
(KG(pt), χ) and (Rep(G), η). What we mean by this is that we can compute the
structure constants of the multiplication for a fixed basis of irreducible representa-
tions using either metric.

Furthermore, Frobenius reciprocity holds for a subgroup H ⊂ K
ηK(IndK

H(ρ1), ρ2) = ηH(ρ1,ResKH(ρ2)).
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Hence, we obtain

η(α[Ag] ∗ β[Bg], ν[Cg])

=
∑

[m1, m2, m3]

m1 ∈ [Ag], m2 ∈ [Bg],

m3 ∈ [Cg],
Q

mi=1

ηZ(〈m3〉)
(
IndZ(〈m〉)

Z(〈m−1
3 〉)

(
ResZ(〈m〉)

Z(〈m1〉)(αm1)

⊗ResZ(〈m〉)
Z(〈m2〉)(βm2)

)
, νm3

)
=

∑
[m1, m2, m3]

m1 ∈ [Ag], m2 ∈ [Bg],

m3 ∈ [Cg],
Q

mi=1

ηZ(〈m〉)
(
ResZ(〈m〉)

Z(〈m1〉)(αm1)

⊗ResZ(〈m〉)
Z(〈m2〉)(βm2),ResZ(〈m〉)

Z(〈m3〉)(νm3)
)

=
∑

[m1, m2, m3]

m1 ∈ [Ag], m2 ∈ [Bg],

m3 ∈ [Cg],
Q

mi=1
h ∈ Z(g1, g2)

1
|Z(m2,m2)| tr(αm1(h))tr(βm2(h))tr(ν∗m3

(h))

=
1
|G|

∑
m1 ∈ [Ag], m2 ∈ [Bg],

m3 ∈ [Cg],
Q

mi=1
h ∈ Z(g1, g2)

tr(αm1(h))tr(βm2(h))tr(ν∗m3
(h)), (4.27)

for the three-point functions, which agrees with the three-point functions in the case
of the Drinfel’d double calculated in [17]. The two-point functions then also coincide,
since we can take one representation to be identity, viz. the trivial representation
on the identity sector.

5. Twisting

In this section, we will be concerned with twisting of the above structures. This can
actually be done on three levels in two different but equivalent fashions. For the
twisting, we can concern ourselves as above with (X,G) and (I(X,G), G), where
we will consider twisting Kglobal(X,G),Kglobal(I(X,G), G) and Kfull([X/G]). The
first two are of course isomorphic to the global orbifold Chow ring or Cohomology
ring.

5.1. Geometric twisting: Gerbe twisting

In this subsection, we give a geometric interpretation of the twistings in terms of
gerbes.

Assumption. We will only consider global quotients (X,G) and gerbes equivari-
antly pulled back from a point. This means in particular that we can think of 0-,
1-, and 2-gerbes as elements in Z1,2,3(G, k∗). These gerbes are necessarily flat.
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Remark 5.1. It is well-known that there is a transgression of an n-gerbe on a
stack X to an (n− 1) gerbe on its inertia IX.

5.2. Line bundle twisting

Given a line bundle LY on Y , there are basically two “twists” we can do. One
in K-theory and one in cohomology, which are as follows. For cohomology, we
can consider cohomology with coefficients in the line bundle H∗(Y,LY ) and in
K-theory, we have an endomorphism

K(Y ) ∼→ K(Y ),F �→ F ⊗LY . (5.1)

We will use the notation K(Y )L to denote the twisted side.

Remark 5.2. One way to view this is that the line bundles L are gauge degrees
of freedom.

If we can choose a global section s of L , then we get an isomorphism

H∗(Y, k)→ H∗(Y,L ); v �→ v · s. (5.2)

Given line bundles L ,L ′ and L ′′ on Y and an isomorphism µ : L ⊗L ′ → L ′′,
we get the following multiplicative maps:

H∗(Y,L )⊗H∗(Y,L ′) ∪→ H∗(Y,L ⊗L ′)
µ∗→ H∗(Y,L ′′),

K(Y )L ⊗K(Y )L ′ → K(Y )L⊗L ′ → KL ′′(Y ),

(F ⊗L )⊗ (F ′ ⊗L ′) �→ F ⊗ F ′ ⊗ (L ⊗L ′)→ F ⊗F ′ ⊗L ′′. (5.3)

Remark 5.3. If Y has a G action and the line bundles are equivariant line bundles,
then the maps above carry over to the G-equivariant case.

Caveat. Equation (5.2) in the G-equivariant setting is only an isomorphism on the
level of vector spaces. If the bundle L is trivial but the G-module structure is given
by a character χ, then the G-module structure will be twisted by χ upon tensoring
with L .

5.3. 0-Gerbe twisting: Ramond twist

By definition, a 0-gerbe is nothing but a line bundle on the stack and if we are
dealing with a global quotient (X,G), using the assumption above, we get a trivial
line bundle L on X , which is equivariant, but not necessarily equivariantly trivial.

If we fix a trivialization of the line bundle, viz. choose a global section v. This
induces an isomorphism

µ : L ⊗L → L ; v ⊗ v �→ v. (5.4)
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The equivariance of this line bundle is expressed by isomorphisms

g∗(L ) ∼= L ; v �→ χ(g)v; χ ∈ Z1(G, k∗) = Hom(G, k∗). (5.5)

In terms of the twisting using µ, we can twist as described in the paragraph
above. In this case, the G-action will be twisted by the character χ as will be
the metric. This will “destroy” the properties of a pure G-Frobenius algebra (for
instance, axiom T will cease to hold), but we will almost end up with a G-Frobenius
algebra which is twisted by the character χ. This will indeed be the case, if we had
started out with a χ−1 twisted Ramond model [28, 29]. In the current A-model
setting, we will always have invariant metrics and strict self-invariance (axiom (T)).
This type of twist is, however, very important in the B-model setting as it is not
guaranteed that the objects have invariant pairings and self-invariance [28, 29, 31].
Hence we can view the 0-gerbe twisting as a twisting to the Ramond model and
hence as a spectral flow [12, 28, 29, 31].

5.4. 1-Gerbe twisting: Discrete torsion

This twisting has been investigated the most and goes under the name of discrete
torsion. We shall disentangle the definitions so as to show that the resulting alge-
braic structure is that of [30]. This exposition owes a lot to [34, 23].

A 1-Gerbe G on (X,G) which is equivariantly pulled back from a point is given
by fixing the (a) isomorphism Lg : g∗(G ) ∼→ G which are in turn given by line
bundles Lg and (b) isomorphisms ψ(g, h) : Lg ⊗Lh → Lgh which are associative.

Notice since the gerbe is trivial on X , so are the line bundles. In order to go
on, we also choose sections sg of Lg. Then, in this basis, the morphisms ψ(g, h) are
given by their matrix entry α(g, h) ∈ Z2(G, k∗). Notice that a different choice of
sections changes α by a co-boundary.

Remark 5.4. Notice that the line bundles Lg|Xg are actually Z(g) equivariant line
bundles. Furthermore, fixing the sections sg we see that the isomorphisms are given
by the characters εg(h) = α(g, h)/α(h, g) which are the famous discrete torsion
co-cycles (see e.g. [30] for a full list of references). Furthermore, ε(g, h) := εg(h)
is even a bi-character when restricted to commuting elements (see e.g. [30]). This
means that as Z(m1) ∩ Z(m2) modules Lm1 ⊗Lm2 |Xm ∼= Lm1m2 |Xm .

5.4.1. Cohomology

We can now set H G (X,G) :=
⊕
H∗(Xg,Lg|Xg). For the multiplication, we can

use the standard push-pull mechanism in a slightly modified version: for vmi ∈
H∗(Xmi ,Lmi|Xmi)

vm1 ∗G vm2 := ěm3∗(ψ∗(m1,m2)Xm [e∗1(vm1)e
∗
2(vm2)]Eu(R(m))). (5.6)

Notice that the result indeed lies in H∗(Xm1m2 ,Lm1m2 |Xm1m2 ) due to the projec-
tion formula.
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Given the section sg, we get isomorphism of the λg : H∗(Xg,Lg|Xg ) ∼→ H∗(Xg)
additively and this induces a new twisted multiplication on A :=

⊕
H∗(Xg) via

vm1 ∗α vm2

:= λ−1
m1m2

◦ ěm3∗(ψ∗(m1,m2)|Xm [e∗1(λm1(vm1))e
∗
2(λm1(vm2))]Eu(R(m)))

= α(m1,m2) vm1 ∗ vm2 . (5.7)

That is the algebraic twist of [30] and Sec. 5.7 above.
Of course, we could have alternatively discussed the Chow ring A∗ in the

same way.

5.4.2. K-theory I: Twisted multiplication

In the case of K-theory using the standard formalism, we will obtain morphisms

K(Xm1)Lm1 |Xm1 ⊗K(Xm2)Lm2 |Xm2 → K(Xm1m2)Lm1m2 |Xm1m2 . (5.8)

Considering the direct sum of twisted K-theories

KG
global(X,G) :=

⊕
m∈G

K(Xm)⊗Lm, (5.9)

we hence obtain a multiplication using the push-pull formalism of Eq. (4.7) analo-
gously to the above.

By choosing sections, we again get a twisted version of the multiplication

Fm1 ∗α Fm2 = α(m1,m2)Fm1 ∗ Fm2 , (5.10)

where a different choice of sections results in a change of α by a co-boundary.

Remark 5.5. There are several aspects, though not all, of the considerations above
which have been previously discussed and also there have been related discussions
which we would like to address briefly:

• It was shown in [5] that the additive α twisted K-theory of (X,G) as defined
via projective representations is given by Kα ∼= ⊕

[g](K(Xg) ⊗ Lg)Z(g) where
Lg was considered as a G module via the discrete torsion co-cycle ε(g, h) =
α(g, h)/α(h, g) for [g, h] = e. There is no obvious multiplicative structure on this
space as remarked in [5], but the formalism above does give it a multiplicative
structure.
• We would also like to note that in [32], an additive theory for a gerbe twist was

constructed and it was shown that in the case of a global quotient with a gerbe
pulled back from a point the gerbe twisted K-theory and the Adem–Ruan twisted
theory as cited above coincide.
• Our geometric twisting above coincides with the algebraic twisting of GFAs con-

sidered in [30, 25] — see Sec. 5.7 below. Hence, the formula above and the Chen
character of [25] answer the question of Thaddeus [34] about the relation of the
two types of possible twists by line bundles in Cohomology versus K-theory.
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5.4.3. K-theory II: Twisted K-theory

Another standard thing to do with a flat gerbe, that is a 2-cocycle θ ∈ H2(Y, k∗) is
to regard the twisted K-theory Kθ(Y ). In our case of a global orbifold, given α as
above we will study the twisted equivariant K-theory Kα

G(X) which by definition
is the twisted K-theory of the stack Kα([X/G]).

In this interpretation, one cannot see any type of multiplication. It is basically
the same problem as in the case of a 0-gerbe. The natural product goes from
Kα(Y )⊗Kβ(Y )→ Kαβ(Y ). We will get back to this in the 2-gerbe twisting.

5.4.4. Twisted group ring

It is again useful to look at the details in the case of (pt, G). Here Kα([pt/G]) =
Repα(G) that is the ring of projective representation with cocycle α.

On the other hand, the global orbifoldK-theory with an α twist Kα
small(pt, G) =

kα[G] and the G invariants by the conjugation action are isomorphic to
Repα(G) [26].

Here, the multiplication is the one in kα[G] which is just the one of k[G] twisted
by α.

5.5. 2-Gerbe twisting

Finally, we wish to discuss twisting by a gerbe of the type β ∈ Z3(G, k∗). This type
of gerbe is also the one we used to twist the Drinfel’d double and indeed there is a
connection.

We can transgress the equivariant 2-gerbe to an equivariant 1-gerbe G on IX

and actually even to a 1-gerbe over (I(X,G), G). Here the gerbe is characterized by
a set of line bundles, which provide the isomorphisms Lg,x : x∗(G |Xg ) ∼→ G |Xx−1gx

together with associativity isomorphisms θg(x, y) : Lg,x ⊗ Lh,y → Lg,xy if g =
x−1gx.

The condition of coming from a 2-gerbe expresses itself in a constraint on the
θg. In particular, it means (see e.g. [35]) the θg are given by Eq. (2.3).

5.5.1. 2-Gerbe twisted K-theory I: Twisting on Kglobal((I(X,G), G))

Now, we are in a situation in which we can twist.
First of all, there is a näıve twisting on Kglobal((I(X,G), G) by the various θg

transgressed from β; see Sec. 5.7.2 below where we give a more detailed description
of this type of twist. In the case of (pt, G) with G Abelian, this yields a geometric
incarnation of Dβ(k[G]). In the general group case, we get a Morita equivalent
subalgebra just as in the untwisted case.

5.5.2. 2-Gerbe twisted K-theory II: Twisting on Kfull([X/G])

More importantly, however, there is a twisting for the full K-theory.
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Definition 5.6. Given β ∈ Z3(G, (k∗), we define the twisted full K-theory
Kβ

full([X/G]) using the co-product and the obstruction, that is, the multiplication
which is induced by

Fg ·Fh := e3∗(e∗1(Fg)⊗γ e∗2(Fh)⊗ObsK(g, h)). (5.11)

See [25] for details on how this global formula relates to the inertia stack setting.
Here, we use the co-product in Dβ(k[G]) which is given by γ defined above by

Eq. (2.5) to define the action of Z(g, h) on the tensored bundle. This means that
if for x ∈ Z(g, h) φx : x∗(Fg)→ Fg and ψx : x∗(Fh)→ Fh are the isomorphisms
given by the equivariant data, then the isomorphism of x∗(e∗1(Fg) ⊗γ e∗2(Fh)) ∼=
e∗1(Fg) ⊗γ e∗2(Fh) is chosen to be γx(g, h)φx|Xg,h ⊗ ψx|Xg,h where γ is defined by
Eq. (2.5).

Remark 5.7. For an interesting, different and independent approach, we refer the
reader to [6]. Here, the authors consider a twist which is on the full K-theory of
the inertia stack Kfull(IX) and does not seem to use a co-product structure. The
latter is key to the braided associativity.

5.6. Case of a point

Restricting to a point, we obtain the analog of Theorem 4.13:

Theorem 5.8. Kβ
full([X/G])β ∼= Dβ(k[G]).

Proof. Analogous to Theorem 4.13, using the calculations of [17, 14, 13].

Remark 5.9. Here, we see that we essentially get the [14] realization of the 2D
calculation of [13], which is astonishing and inspiring. Using this insight, we can
also understand why the twist already works on the level of the global quotient
stack itself. The point is that applying the full stringy K-theory functor already
entails moving to the inertial stack. This can be interpreted as moving to the loop
space and hence evaluating the correlation functions on σ × S1, viz. the procedure
described in [14]. This explains why the (1 + 1)-dimensional theory has the flavor
of a (2 + 1)-dimensional theory.

Remark 5.10. This theorem is mathematically astonishing in the sense that the
resulting structure is neither commutative nor associative in general. We will get
an essentially non-associative algebra unless β ≡ 1. But it is of course associative
and commutative in the sense of braided monoidal categories. We hope that we
have motivated the appearance of braided monoidal categories already through
the definition of Frobenius traces and objects. Moreover, if one reads for instance
Moore and Seiberg’s work on classical and quantum field theory, one sees that the
fusion ring is actually not expected to be associative and commutative. However,
the fusion and braiding operators satisfy pentagon and hexagon relations. Only the
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dimensions of the intertwiners lead to such an algebra on the nose. In case of the
objects themselves, one should actually expect that one has to go to the braided
picture.

5.6.1. Verlinde algebra

We can get an associative algebra by introducing a basis of irreducible represen-
tations Vi, i ∈ I and using the dimensions of the intertwiners as the structure
coefficients. That is, if Vi⊗Vj =

⊕
k V

k
ij ⊗Vk, where V k

ij is the space of intertwiners
or multiplicity, set ckij = dim(V k

ij). Then, the Verlinde ring is just k[vi, i ∈ I] where
the vi are now formal variables with the multiplication vivj =

∑
k c

k
ijvk.

5.7. Algebraic twisting

In this section, we give a purely algebraic version of the twistings. This allows us
among other things to connect the 1-gerbe twistings to the discrete torsion twistings
used in [30, 25].

5.7.1. Algebraic twisting I: Discrete torsion

We briefly recall the twisting by discrete torsion in the G-Frobenius algebra case.
In [30], we defined the twisting of G-Frobenius algebras via

A� Aα := A⊗̂kα[G]. (5.12)

This provides an action of the group Z2(G, k∗) on the set of GFAs. Notice that two
twists Aα and Aβ are isomorphic if and only if [α] = [β] ∈ H2(G, k∗). It is clear
that this extends to G-Frobenius algebra objects.

Proposition 5.11. The algebraic twist and the geometric twist coincide, that is
for α ∈ Z2(G, k∗)

(Fstringy(X,G))α = Fα
stringy(X,G). (5.13)

Proof. Straightforward from the definition and Sec. 5.4.

5.7.2. Algebraic twisting II: Twisting on I(X,G) and the second appearance
of the twisted Drinfel’d double

Notice that by Proposition 4.5 Kglobal(I(G,X), G) splits as a direct sum of rings
indexed by g ∈ G, each of which is a Z(g)-Frobenius algebra. If G is Abelian, then
all the Z(g) = G. It is hence possible to twist each G-Frobenius algebra separately
by a discrete torsion θg ∈ Z2(G, k∗). In the non-Abelian case, the twists cannot be
chosen arbitrarily, since they have to be compatible with the G action that acts
by double conjugation. This means that one has the free choice of a twist for each



May 4, 2009 15:38 WSPC/133-IJM 00543

652 R. M. Kaufmann & D. Pham

conjugacy class [g], that is, co-cycles θg ∈ Z2(Z(g), k∗), such that θg and x∗(θxgx−1)
are cohomologous for all x ∈ X .

In this situation, we can also ask that the θg be even more coherent, that is, that
they stem from a β ∈ Z3(G, k∗)). In this case, we basically obtain an identification
of Kglobal(I(pt, G), G) with the Drinfel’d double.

Definition-Proposition 5.12. For β ∈ Z3(G, k∗)

Kβ
global(I(X,G), G) :=

⊕
g∈G

K
θg

global(X
g, Z(G)) (5.14)

=
⊕
g∈G

Kglobal(Xg, Z(G))⊗̂kθg [Z(g)] (5.15)

= Kglobal(I(X,G), G) ̂̂⊗Dβ(k[G]). (5.16)

Proof. The proposition part is Eq. (5.16). In view of Proposition 5.11, this fol-
lows from the fact that the components (g, x) of Kglobal are only non-empty if
x ∈ Z(g). The restriction to the corresponding subspace of Dβ(k[G]) is given by⊕

g k
θg [Z(G)].

Corollary 5.13. There is an action of Z3(G, k∗) on Kglobal(I(X,G), G) obtained

by tensoring with ̂̂⊗Dβ(k[G]).

Proof. Directly from the above and Lemma 2.13.

We can thus twist Kglobal(I(X,G), G) via the procedure above and hence have
a completely analogous story to the twists of Kglobal(X,G) by discrete torsion
analyzed in [30], but now one gerbe level higher.

If Kglobal(I(X,G), G) is free in the sense that all the Z(g)-Frobenius algebras
are free, we can further DPR algebra induce as discussed in Sec. 3.5.

Theorem 5.14. We have the following identifications :(
Kβ

global(I(pt, G), G)
)

= Dβ(k[G])comm (5.17)

and

IndDPR

(
Kβ

global(I(pt,G),G)
)

= Dβ(k[G]). (5.18)

Proof. Straightforward computation.

5.7.3. Algebraic twisting III

In contrast to the previous twistings, the full orbifold K-theory twisting cannot just
be reduced to an algebraic twisting. This can only be done additively in general. In
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the trival G-action case however, the twists by β ∈ Z3(G, k∗) again have a purely
algebraic description.

Proposition 5.15. Given a global quotient stack X = [X/G] and a class β ∈
Z3(G, k∗), we have additively

Kβ
full(X) :=

⊕
[g]

Kθg [Xg/Z(g)] (5.19)

=
⊕

g

(Kglobal((Xg, Z(g)))⊗̂k[Z(g)])Zg

(5.20)

but the multiplication is the one defined by Eq. (5.11).

Proof. This follows from the fact that additively KH(Y ) ∼= Kglobal((Y,H))H .

5.7.4. Trivial action case

In the case of a trivial G-action, the multiplication becomes particularly trans-
parent.

Theorem 5.16. Let X = [X/G], where X has a trivial G action, then

Kβ
full(X) ∼=

⊕
[g]

K(X)⊗ Repθg(Z(g)) (5.21)

∼= K(X)⊗ Rep((Dβ(k[G]))), (5.22)

where in the last line the algebra structure is the tensor product and in the second
line we have the following multiplication:

Fg ⊗ ρ ∗Fh ⊗ ρ′ := Fg ∗Fh ⊗ ρ ∗ ρ′, (5.23)

where Fg ∗Fh = Fg⊗Fh ∈ K(X) and ρ∗ρ′ is induced by ResD
β(k[G])

Z(gh) (IndDPR(ρ)⊗
IndDPR(ρ′)) using the braided structure of Dβ(k[G]) and Theorem 2.7.

Proof. First we calculate using that for a trivial action all Xg = X :

Kβ
full(X) =

⊕
[g]

Kθg [Xg/Z(g)] (5.24)

∼=
⊕
[g]

K
θg

Z(g)(X) (5.25)

∼=
⊕
[g]

K(X)⊗ Repθg(Z(g)) (5.26)

∼= K(X)⊗
⊕
[g]

Repθg(Z(g)) (5.27)

∼= K(X)⊗ Rep((Dβ(k[G]))), (5.28)
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where the second line is by Grothendieck, the third line follows from e.g. [5,
Lemma 7.3] and the fourth line uses Theorem 2.7.

Now, for the multiplicative structure, we notice that since the inclusions ei

are all the identity, on the factors of K(X) the multiplication boils down to the
tensor product, whereas the product on the representations rings goes through
the induction process and uses the co-cycle γ. This of course is nothing but the
description in terms of Dβ(k[G]).

5.8. Alternative description using modules

Theorem 5.16 above can nicely be seen in the module language.

5.8.1. Equivariant K-theory in the module language

We first recall the setup of G-equivariant K-theory in terms of modules. See [1, 7]:
KG(X) ∼= Bproj.,fin.gen.-mod where B is C∞(X)�G with the multiplication (a, g) ·
(a′, g′) = (ag(a′), gg′) and the modules are projective finitely generated.

In order to twist with a 1-gerbe α ∈ Z2(G, k∗) following Atiyah–Segal, we give
a new multiplication on B via

(a, g) · (a′, g′) = (ag(a′), α(g, g′)gg′). (5.29)

We call the resulting ring Bα. Now the twisted K-theory is given by the projective
finitely generated Bα-modules.

The naive tensor structure which sends the α twisted K-theory times the β

twisted K-theory to the αβ twisted K-theory uses the A module structure induced
by the multiplication map A⊗A→ A and the co-product ∆ : k[G]→ k[G]⊗ k[G]
given by ∆(g) = g ⊗ g.

Remark 5.17. In the algebraic category, we can use OX instead of C∞(X).

5.8.2. Remarks on the 2-gerbe twisted case

For the 2-gerbe β twisted K-theory, we can describe the K-theory additively as
follows. Let Ag = C∞(Xg), let the θg be defined via Eq. (2.3) and we define
B

θg
g = Ag � Z(g) with the multiplication as in Eq. (5.29). Set B =

⊕
[g]B

θg
g , then

additively Kβ
full([X/G]) ∼= Bproj.,fin.gen.-mod.

To describe the multiplicative structure, we would have to define a co-product on
B which incorporates the G-grading, the obstruction and the twisting. This should
also be possible for a general stack or groupoid and a 2-gerbe. The full analysis is
beyond the scope of the present considerations, but we plan to return to this in the
future.

In the special case of a trivial G action, the construction has can be made fully
explicit.
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5.8.3. Trivial G-action

In the trivial G action case, like the case [pt/G], there are no obstructions and
we can give a full description of the theory in module terms: Let A = C∞(X) and
assumeX has a trivialG action then C∞(I(X,G)) =

⊕
g∈GA. Now although the G

action on X is trivial, it is not trivial on I(X,G), since it permutes the components.
It is easy to check that in the trivial G action case, the algebra is

B =
⊕
[g]∈G

C∞(X) � k[Z(g)] ∼Morita A⊗D(k[G]), (5.30)

where the product structure on the K-theory is given via the co-multiplication of
D(k[G]).

Similarly, twisting with β we obtain the following.

Proposition 5.18.

Bβ ∼Morita A⊗Dβ(k[G]),

and the product structure on the K-theory of projective finitely generated Bβ-
modules is given via the co-multiplication of Dβ(k[G]).

By considering the braided category projective finitely generated Bβ modules,
we hence obtain a generalization of the Theorem of [pt/G] to the case of a trivial
G-action which is analogous to Theorem 5.16.
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[19] B. Fantechi and L. Göttsche, Orbifold cohomology for global quotients, Duke Math.
J. 117 (2003) 197–227.

[20] D. S. Freed, M. J. Hopkins and C. Teleman, Twisted K-theory and loop group
representations, preprint, math.AT/0312155.

[21] D. S. Freed, M. J. Hopkins and C. Teleman, Loop Groups and Twisted K-Theory II,
preprint, math.AT/0511232

[22] D. S. Freed and F. Quinn, Chern–Simons theory with finite gauge group, Com-
mun. Math. Phys. 156(3) (1993) 435–472.

[23] N. Hitchin, Lectures on special Lagrangian submanifolds, in Winter School on Mirror
Symmetry, Vector Bundles and Lagrangian Submanifolds (Cambridge, MA, 1999),
AMS/IP Studies in Advanced Mathematics, Vol. 23 (American Mathematical Society,
Providence, RI, 2001), pp. 151–182.

[24] T. Jarvis, R. Kaufmann and T. Kimura, Pointed admissible G-covers and G-
equivariant cohomological field theories, Compositio Math. 141 (2005) 926–978.

[25] T. Jarvis, R. Kaufmann and T. Kimura, Stringy K-theory and the Chern character,
Inv. Math. 168 (2007) 23–81.

[26] G. Karpilovsky, Projective Representations of Finite Groups (Dekker, 1985).
[27] C. Kassel, Quantum Groups, Graduate Texts in Mathematics, Vol. 155 (Springer-

Verlag, New York, 1995).
[28] R. M. Kaufmann, Orbifold Frobenius algebras, cobordisms, and monodromies, in,

Orbifolds in Mathematics and Physics, eds. A. Adem, J. Morava, and Y. Ruan, Con-
temporary Mathematics, Vol. 310 (American Mathematical Society, Providence, RI,
2002), pp. 135–162.

[29] R. M. Kaufmann, Orbifolding Frobenius algebras, Int. J. Math. 14 (2003) 573–619.
[30] R. M. Kaufmann, The algebra of discrete torsion, J. Algebra 282 (2004) 232–259.
[31] R. M. Kaufmann, Singularities with symmetries, orbifold Frobenius algebras and mir-

ror symmetry, in Gromov-Witten Theory of Spin Curves and Orbifolds, Contempo-
rary Mathematics, Vol. 403 (American Mathematical Society, Providence, RI, 2006),
pp. 67–116.



May 4, 2009 15:38 WSPC/133-IJM 00543

The Drinfel’d Double and Twisting in Stringy Orbifold Theory 657

[32] E. Lupercio and B. Uribe, Gerbes over orbifolds and twisted K-theory, Commun.
Math. Phys. 245(3) (2004) 449–489.

[33] G. Moore and N. Seiberg, Classical and quantum conformal field theory, Commun.
Math. Phys. 123(2) (1989) 177–254.

[34] M. Thaddeus, to be published in Lectures Notes in Mathematics (Springer, forth-
coming).

[35] S. Willerton, The twisted Drinfeld double of a finite group via gerbes and finite
groupoids, preprint, arXiv:math/0503266v1.




