
Lectures on Feynman Categories

Ralph M. Kaufmann

Abstract These are expanded lecture notes from lectures given at the Workshop
on higher structures at MATRIX Melbourne. These notes give an introduction to
Feynman categories and their applications. Feynman categories give a universal
categorical way to encode operations and relations. This includes the aspects of
operad-like theories such as PROPs, modular operads, twisted (modular) operads,
properads, hyperoperads and their colored versions. There is more depth to the
general theory as it applies as well to algebras over operads and an abundance of
other related structures, such as crossed simplicial groups, the augmented simplicial
category or FI-modules. Through decorations and transformations the theory is also
related to the geometry of moduli spaces. Furthermore the morphisms in a Feynman
category give rise to Hopf- and bi-algebras with examples coming from topology,
number theory and quantum field theory. All these aspects are covered.

1 Introduction

1.1 Main Objective

The main aim is to provide a lingua universalis for operations and relations in order
to understand their structure. The main idea is just like what Galois realized for
groups. Namely, one should separate the theoretical structure from the concrete
realizations and representations. What is meant by this is worked out below in the
Warm Up section.

In what we are considering, we even take one more step back, namely we provide
a theoretical structure for theoretical structures. Concretely the theoretical structures
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are encoded by a Feynman category and the representations are realized as functors
from a given Feynman category F to a target category C. It turns out, however, that
to a large extent there are constructions which pass up and down the hierarchy of
theoretical structure vs. representation. In concrete examples, we have a Feynman
category whose representations in C are say algebras. Given a concrete algebra, then
there is a new Feynman category whose functors correspond to representations of
the algebra. Likewise, for operads, one obtains algebras over the operad as functors.

This illustrates the two basic strategies for acquiring new results. The first is that
once we have the definition of a Feynman category, we can either analyze it further
and obtain internal applications to the theory by building several constructions and
getting further higher structures. The second is to apply the found results to concrete
settings by choosing particular representations.

1.1.1 Internal Applications

Each of these will be discussed in the indicated section.

1. Realize universal constructions (e.g. free, push-forward, pull-back, plus con-
struction, decorations); see Sects. 5 and 7.

2. Construct universal transforms (e.g. bar, co-bar) and model category structures;
see Sect. 8.

3. Distill universal operations in order to understand their origin (e.g. Lie brackets,
BV operators, Master Equations); see Sect. 7.

4. Construct secondary objects, (e.g. Lie algebras, Hopf algebras); see Sects. 7
and 10.

1.1.2 Applications

These are mentioned or discussed in the relevant sections and in Sect. 9.

1. Transfer to other areas such as algebraic geometry, algebraic topology, mathe-
matical physics, number theory.

2. Find out information of objects with operations. E.g. Gromov-Witten invariants,
String Topology, etc.

3. Find out where certain algebra structures come from naturally: pre-Lie, BV, etc.
4. Find out origin and meaning of (quantum) Master Equations.
5. Construct moduli spaces and compactifications.
6. Find background for certain types of Hopf algebras.
7. Find formulation for TFTs.
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1.2 References

The lectures are based on the following references.

1. With B. Ward. Feynman categories [33].
2. With J. Lucas. Decorated Feynman categories [30].
3. With B. Ward. and J. Zuniga. The odd origin of Gerstenhaber brackets, Batalin-

Vilkovisky operators and Master Equations [35].
4. With I. Galvez-Carrillo and A. Tonks. Three Hopf algebras and their operadic

and categorical background [14].
5. With C. Berger. Derived Feynman categories and modular geometry [5].

We also give some brief information on works in progress [25] and further
developments [50].

1.3 Organization of the Notes

These notes are organized as follows. We start with a warm up in Sect. 2. This
explains how to understand the concepts mentioned in the introduction. That is, how
to construct the theoretical structures in the basic examples of group representations
and associative algebras. The section also contains a glossary of the terms used in
the following. This makes the text more self-contained. We give the most important
details here, but refrain from the lengthy full fledged definitions, which can be found
in the standard sources.

In Sect. 3, we then give the definition of a Feynman category and provide
the main structure theorems, such as the monadicity theorem and the theorem
establishing push-forward and pull-back. We then further explain the concepts by
expanding the notions and providing details. This is followed by a sequence of
examples. We also give a preview of the examples of operad-like structures that are
discussed in detail in Sect. 4. We end Sect. 3 with a discussion of the connection to
physics and a preview of the various constructions for Feynman categories studied
in later sections.

Section 4 starts by introducing the category of graphs of Borisov–Manin and
the Feynman category G which is a subcategory of it. We provide an analysis
of this category, which is pertinent to the following sections as a blue print
for generalizations and constructions. The usual zoo of operad-like structures is
obtained from G by decorations and restrictions, as we explain. We also connect
the language of Feynman categories to that of operads and operad-like structures.
This is done in great detail for the readers familiar with these concepts. We end
with omnibus theorems for these structures, which allow us to provide all the three
usual ways of introducing these structures (a) via composition along graphs, (b) as
algebras over a triple and (c) by generators and relations.
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Decoration is actually a technical term, which is explained in Sect. 5. This
paragraph also contains a discussion of so-called non-Sigma, aka. planar versions.
We also give the details on how to define the decorations of Sect. 4 as decorations in
the technical sense. We then discuss how with decorations one can obtain the three
formal geometries of Kontsevich and end the section with an outlook of further
applications of this theory.

The details of enrichments are studied in Sect. 6. We start by motivating these
concepts through the concrete consideration of algebras over operads. After this
prelude, we delve into the somewhat involved definitions and constructions. The
central ones are Feynman categories indexed enriched over another Feynman
category, the C and hyp constructions. These are tied together in the fact that
enrichments indexed over F are equivalent to strict symmetric monoidal functors
with source Fhyp. This is the full generalization of the construction of the Feynman
category for algebras over a given operad. Further constructions are the free
monoidal construction F� for which strict symmetric monoidal functors from F� to
C are equivalent to ordinary functors from F. And the nc-construction Fnc for which
the strict symmetric monoidal functors from Fnc to C are equivalent to lax monoidal
functors from F.

Universal operations, transformations andMaster Equations are treated in Sect. 7.
Examples of universal operations are the pre-Lie bracket for operads or the BV
structure for non-connected modular operads. These are also the operations that
appear in Master Equations. We explain that these Master Equations are equations
which appear in the consideration of Feynman transforms. These are similar to bar-
and cobar constructions that are treated as well. We explain that the fact that the
universal operations appear in the Master Equation is not a coincidence, but rather
is a reflection of the construction of the transforms. The definition of the transforms
involves odd versions for the Feynman categories, the construction of which is also
spelled out.

As for algebras, the bar-cobar or the double Feynman transformation are
expected to give resolutions. In order to make these statements precise, one needs
a Quillen model structure. These model structures are discussed in Sect. 8 and we
give the conditions that need to be satisfied in order for the transformations above
to yield a cofibrant replacement. These model structures are on categories of strict
symmetric monoidal functors from the Feynman category into a target category C.
The conditions for C are met for simplicial sets, dg-vector spaces in characteristic
0 and for topological spaces. The latter requires a little extra work. We also give a
W-construction for the topological examples.

The geometric counterpart to some of the algebraic constructions is contained
in Sect. 9. Here we show how the examples relate to various versions of moduli
spaces and how Master Equations correspond to compactifications.

Finally, in Sect. 10 we expound the connection of Feynman categories to Hopf
algebras. Surprisingly, the examples considered in Sect. 3 already yield Hopf
algebras that are fundamental to number theory, topology and physics. These are
the Hopf algebras of Goncharov, Baues and Connes–Kreimer. We give further
generalizations and review the full theory.
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2 Warm Up and Glossary

Here we will discuss how to think about operations and relations in terms of
theoretical structures and their representations by looking at two examples.

2.1 Warm Up I: Categorical Formulation for Representations
of a Group G

Let G the category with one object � and morphism set G. The composition of
morphisms is given by group multiplication f ı g WD fg. This is associative and has
the group identity e as a unit e D id�.

There is more structure though. Since G is a group, we have the extra structure
of inverses. That is every morphism in G is invertible and hence G is a groupoid.
Recall that a category in which every morphism is invertible is called a groupoid.

2.1.1 Representations as Functors

A representation .�;V/ of the group G is equivalent to a functor � from G to the
category of k-vector spacesVectk. Giving the values of the functor on the sole object
and the morphisms provides: �.�/ D V , �.g/ WD �.g/ 2 Aut.V/. Functoriality then
says N�.G/ � Aut.V/ is a subgroup and all the relations for a group representation
hold.

2.1.2 Categorical Formulation of Induction and Restriction

Given a morphism f W H ! G between two groups. There are the restriction and
induction of any representation �: ResGH� and IndGH�. The morphism f induces a
functor f from H to G which sends the unique object to the unique object and
a morphism g to f .g/. In terms of functors restriction simply becomes pull-back
f �.�/ WD � ı f while induction becomes push-forward, f �, for functors. These even
form an adjoint pair.

2.2 Warm Up II: Operations and Relations—Description of
Associative Algebras

An associative algebra in a tensor category .C;˝/ is usually given by the following
data: An object A and one operation: a multiplication� W A˝A ! A which satisfies
the axiom of the associativity equation:

.ab/c D a.bc/
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2.2.1 Encoding

Think of � as a 2-linear map. Let ı1 and ı2 be substitution in the 1st respectively
the 2nd variable. This allows us to rewrite the associativity equation as

.� ı1 �/.a; b; c/ WD �.�.a;b/; c/ D .ab/c D a.bc/ D �.a; �.b; c// WD .� ı2 �/.a; b; c/

The associativity hence becomes

� ı1 � D � ı2 � (1)

as morphisms A ˝ A ˝ A ! A. The advantage of (1) is that it is independent
of elements and of C and merely uses the fact that in multi-linear functions one
can substitute. This allows the realization that associativity is an equation about
iteration.

In order to formalize this, we have to allow all possible iterations. The realization
this description affords is that all iterations of � resulting in an n-linear map are
equal. On elements one usually writes a1 ˝ � � � ˝ an ! a1 : : : an.

In short: for an associative algebra one has one basic operation and the relation
is that all n-fold iterates agree.

2.2.2 Variations

If C is symmetric, one can also consider the permutation action. Using elements the
permutation action gives the opposite multiplication ��.a; b/ D � ı �.a; b/ D ba.

This give a permutation action on the iterates of �. It is a free action and there
are nŠ n-linear morphisms generated by � and the transposition. One can also think
of commutative algebras or unital versions.

2.2.3 Categories and Functors

In order to construct the data, we need to have the object A, its tensor powers and
the multiplication map. Let 1 be the category with one object � and one morphism
id�. We have already seen that the functors from 1 correspond to objects of C. To get
the tensor powers, we let N be the category whose objects are the natural numbers
including 0 with only identity morphisms. This becomes a monoidal category with
the tensor product given by addition m ˝ n D m C n. Strict monoidal functors O
from N ! C are determined by their value on 1. Say O.1/ D A then O.n/ D A˝n.

To model associative algebras, we need a morphisms � W 2 ! 1. A monoidal
functor O will assign a morphism � WD O.�/ W A ˝ A ! A. If we look for
the “smallest monoidal category” that has the same objects as N and contains �
as a morphism, then this is the category sk.Surj</ of order preserving surjections
between the sets n in their natural order. Here we think of n as n D f1; : : : ; ng.
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Indeed any such surjection is an iteration of � . Alternatively, sk.Surj</ can be
constructed from N by adjoining the morphism � to the strict monoidal category
and modding out by the equation analogous to (1)W � ı id ˝ � D � ı � ˝ id.

It is easy to check that functors from sk.Surj</ to C correspond to associative
algebras (aka. monoids) in C. From this we already gained that starting from say
k-algebras, i.e. C D Vectk (the category of k vector spaces), we can go to any other
monoidal category C and have algebra objects there.

2.2.4 Variations

The variation in which we consider the permutation operations is very important.
In the first step, we will need to consider S, which has the same objects as N, but
has additional isomorphisms. Namely Hom.n; n/ D Sn the symmetric group on n
letters. The functors out of S one considers are strict symmetric monoidal functors
O into symmetric monoidal categories C. Again, these are fixed by O.1/ DW A, but
now every O.n/ D A˝n has the Sn action of permuting the tensor factors according
to the commutativity constraints in C.

Adding the morphisms � to S and modding out by the commutativity equations,
leaves the “smallest symmetric monoidal category” that contains the necessary
structure. This is the category of all surjections sk.Surj/ on the sets n. Functors
from this category are commutative algebra objects, since � ı � D � if � is the
transposition.

In order to both have symmetry and not force commutativity, one formally does
not mod out by the commutativity equations. The result is then equivalent to the
category sk.Surjord/ of ordered finite sets with surjections restricted to the sets n.
The objects of Surjord are a finite set S with an order <. The bijections of S with
itself act simply transitively on the orders by push-forward.

The second variation is to add an identity. An identity in a k-algebra A is
described by an element 1A, that is a morphism � W k ! A with �.1k/ D 1A. Coding
this means that we will have to have one more morphism in the source category.
Since k D 1 is the unit of the monoidal structure of Vectk, we see that we need a
morphism u W 0 ! 1. We then need to mod out by the appropriate equations, which
are given by �ı1� D �ı2� D id which translate to � ıu˝ id1 D � ı id1˝u D id1.

2.3 Observations

There is a graphical calculus that goes along with the example above. This is
summarized in Fig. 1. Adding in the orders corresponds to regarding planar corollas.

We have dealt with strict structures and actually skeletal structures in the
examples. This is not preferable for a general theory. Just as it is preferable to work
with all finite dimensional vector spaces in lieu of just considering the collection of
kn with matrices as morphisms.
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e
1 m+n−11 i m 1 n 1

1 n

mecon( ,e) ==oi

Fig. 1 Example of grafting two (planar) corollas. First graft at a leaf and then contract the edge

2.4 Glossary: Key Concepts and Notations

Here is a brief description of key concepts. For more information and full definitions
see e.g. [23, 39].

Groupoid A category in which every morphism is an isomorphism.
As we have seen, every group defines a groupoid. Furthermore for any category

C, the subcategory Iso.C/ which has the same objects as C but only includes the
isomorphisms of C is a groupoid.

Monoidal Category A category C with a functor ˝ W C � C ! C, associativity
constraints and unit constraints. That is an operation on objects .X;Y/ ! X ˝ Y
and on morphisms .� W X ! Y;  W X0 ! Y 0/ ! � ˝  W X ˝ X0 ! Y ˝ Y 0.
Furthermore a unit object 1 with isomorphisms 1 ˝ X ' X ' X ˝ 1 called left and
right unit constraints and associativity constraints, which are isomorphisms aX;Y;Z W
X ˝ .Y ˝ Z/ ! .X ˝ Y/ ˝ Z. These have to satisfy extra conditions called the
pentagon axiom and the triangle equation ensuring the compatibilities. In particular,
it is the content of Mac Lane’s coherence Theorem that due to these axioms any two
ways to iteratively rebracket and add/absorb identities to go from one expression to
another are equal as morphisms.

A monoidal category is called strict if the associativity and unit constraints
are identities. Again, due to Mac Lane, every monoidal category is monoidally
equivalent to a strict monoidal category (see below).

An example is Vectk the category of k-vector spaces with tensor product ˝.
Strictly speaking, the associativity constraint aU;V;W acts on elements as aU;V;W..u˝
v/˝w// D u˝.v˝w/. The unit is k and the unit constraints are k˝U ' U ' U˝k.

Monoidal Functor A (lax) monoidal functor between two monoidal categories C
and D is an ordinary functor F W C ! D together with a morphisms �0 W 1D !
F.1C/ and a family of natural morphisms �2 W F.X/˝D F.Y/ ! F.X ˝C Y/, which
satisfy compatibility with associativity and the unit. A monoidal functor is called
strict if these morphisms are identities and strong if the morphism are isomorphisms.
If the morphisms go the other way around, the functor is called co-monoidal.

Symmetric Monoidal Category A monoidal category C with all the structures
above together with commutativity constraints which are isomorphisms cX;Y W X ˝
Y ! Y ˝ X. These have to satisfy the axioms of the symmetric group, i.e. cY;X ı
cX;Y D id and the braiding for three objects. Furthermore, they are compatible with
the associativity constraints, which is expressed by the so-called hexagon equation.
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For Vectk, the symmetric structure cU;V is given on elements as cU;V .u ˝
v/ D v ˝ u. We can also consider Z-graded vector spaces. In this category, the
commutativity constraint on elements is given by cU;V .u˝v/ D .�1/deg.u/deg.v/v˝u
where deg.u/ is the Z-degree of u.

Symmetric Monoidal Functors A symmetric monoidal functor is a monoidal
functor, for which the �2 commute with the commutativity constraint.

Free Monoidal Categories There are several versions of these depending on
whether one is using strict or non-strict and symmetric versions or non-symmetric
versions.

Let V be a category. A free (strict/symmetric) category on V is a
(strict/symmetric) monoidal categoryV˝ and a functor | W V ! V˝ such that any
functor { W V ! F to a (strict/symmetric) category F factors as

(2)

where {˝ is a (strict/symmetric) monoidal functor.
The free strict monoidal category is given by words in objects ofV and words of

morphisms in V. The free monoidal category is harder to describe. Its objects are
iteratively build up from ˝ and the constraints, see [23], where it is also shown that:

Proposition 2.1 There is a strict monoidal equivalence between the free monoidal
category and the strict free monoidal category.
This allows us some flexibility when we are interested in data given by a category
up to equivalence.

If one includes “symmetric” into the free monoidal category, then one (itera-
tively) adds morphisms to the free categories that are given by the commutativity
constraints. In the strict case, one gets commutative words, but extra morphisms
from the commutativity constraints. As an example, regard the trivial category 1:
1˝;strict D N while 1˝symmetric;strict D S.

Skeleton of a Category A skeleton sk.C/ of a category C is a category that is
equivalent to C, but only has one object in each isomorphism class.

An example is the category of ordered finite sets FinSet and morphisms between
them with the disjoint union as a symmetric monoidal category. A skeleton for this
category is given by the category whose objects are natural numbers, where each
such object n is thought of as the set n D f1; : : : ; ng and all morphisms between
them. This category is known as the (augmented) crossed simplicial group�CS.

Underlying Discrete Category The underlying discrete category of a category C
is the subcategory which has the same objects as C, but retains the identity maps. It
will be denoted by C0. For instance S0 D N.
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Underlying Groupoid of a Category For a category C the underlying groupoid
Iso.C/ is the subcategory of C which has the same objects as C buy only retains all
the isomorphisms in C.

Comma Categories Recall that for two functors { W D ! C and | W E ! C, the
comma category .| # {/ is the category whose objects are triples .X;Y; �/ with
X 2 D, Y 2 E and � 2 HomC.|.X/; {.Y//. A morphism between such � and  is
given by a commutative diagram.

with f 2 HomD.X;X0/; g 2 HomE.Y;Y 0/. We will write .{. f /; {.g// for such
morphisms or simply . f ; g/.

If a functor, say { W V ! F , is fixed we will just write .F # V/, and given
a category G and an object X of G, we denote the respective comma category by
.G # X/. I.e. objects are morphisms � W Y ! X with Y in G and morphisms are
morphisms over X, that is morphisms Y ! Y 0 in G which commute with the base
maps to X. This is sometimes also called the slice category or the category of objects
over X.

3 Feynman Categories

With the examples and definitions of the warm up in mind, we give the definition
of Feynman categories and then discuss several basic examples. The Feynman
categories will give the operations and relations part. The concrete examples of the
structures thus encoded are then given via functors, just like discussed above.

3.1 Definition

3.1.1 Data for a Feynman Category

1. V a groupoid
2. F a symmetric monoidal category
3. { W V ! F a functor.

Let V˝ be the free symmetric category onV and {˝ the functor in (2).
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3.2 Feynman Category

Definition 1 The data of triple F D .V;F ; {/ as above is called a Feynman
category if the following conditions hold.

i. {˝ induces an equivalence of symmetric monoidal categories between V˝ and
Iso.F /.

ii. { and {˝ induce an equivalence of symmetric monoidal categories between
.Iso.F # V//˝ and Iso.F # F / .

iii. For any � 2 V, .F # �/ is essentially small.

Condition (i) is called the isomorphisms condition, (ii) is called the hereditary
condition and (iii) the size condition. The objects of .F # V/ are called one-comma
generators.

3.2.1 Non-symmetric Version

Now let .V;F ; {/ be as above with the exception thatF is only a monoidal category,
V˝ the free monoidal category, and {˝ is the correspondingmorphism of monoidal
groupoids.

Definition 3.1 A non-symmetric triple F D .V;F ; {/ as above is called a non-†
Feynman category if

i. {˝ induces an equivalence of monoidal groupoids betweenV˝ and Iso.F /.
ii. { and {˝ induce an equivalence of monoidal groupoids Iso.F # V/˝ and

Iso.F # F /.
iii. For any object �v inV, .F # �v/ is essentially small.

3.3 Ops and Mods

Definition 2 Fix a symmetric monoidal category C and F D .V;F ; {/ a Feynman
category.

• F -OpsC WD Fun˝.F ;C/ is defined to be the category of strong symmetric
monoidal functors which we will call F -ops in C. An object of the category
will be referred to as an F -op in C.

• V-ModsC WD Fun.V;C/, the set of (ordinary) functors will be called V-mods
in C with elements being called aV-mod in C.

There is an obvious forgetful functor G W Ops ! Mods given by restriction.

Theorem 3.2 The forgetful functor G W Ops ! Mods has a left adjoint F (free
functor) and this adjunction is monadic. This means that the category of the algebras
over the triple T D GF in C are equivalent to the category of F -OpsC.
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Morphisms between Feynman categories are given by strong monoidal func-
tors that preserve the structures. Natural transformations between them give 2-
morphisms. The categories F -OpsC and F -ModsC again are symmetric monoidal
categories, where the symmetric monoidal structure is inherited from C. E.g. the
tensor product is pointwise, .O ˝ O0/.X/ WD O.X/ ˝ O0.X/, and the unit is the
functor 1Ops W F ! C. I.e. the functor that assigns 1C 2 Obj.C/ to any object in
V, and which sends morphisms to the identity morphism. This is a strong monoidal
functor by using the unit constraints.

Theorem 3.3 Feynman categories form a 2-category and it has push-forwards
and pull-backs for Ops. That is, for a morphism of Feynman categories f , both
push-forward f� and pull-back f � are adjoint symmetric monoidal functors f� W
F -OpsC � F 0-OpsC W f �.

3.4 Details

3.4.1 Details on the Definition

The conditions can be expanded and explained as follows.

1. Since V is a groupoid, so is V˝. Condition (i) on the object level says, that
any object X of F is isomorphic to a tensor product of objects coming from V.
X ' N

v2I {.�v/. On the morphisms level it says that all the isomorphisms in
F basically come from V via tensoring basic isomorphisms of V, the commu-
tativity and the associativity constraints. In particular, any two decompositions
of X into

N
v2I {.�v/ and

N
v02I {.�0

v/ there is a bijection ‰ W I $ I0 and an
isomorphism 	v W {.�v/ ! {.�v0/. This implies that for any X there is a unique
length jIj, where I is any index set for a decomposition of X as above, which we
denote by jXj. The monoidal unit 1F has length 0 as the tensor product over the
empty index set.

2. Condition (ii) of the definition of a Feynman category is to be understood as
follows: An object in .F # V/ is a morphism � W X ! {.�/, with � in Obj.V/.
An object in .F # V/˝ is then a formal tensor product of such morphisms, say
�v W Xv ! {.�v/, v 2 I for some index set I. To such a formal tensor product,
the induced functor assigns

N
v2V �v W Nv Xv ! N

v �v , which is a morphisms
in F and hence an object of .F # F /.

The functor is defined in the same fashion on morphisms. Recall that an
isomorphism in a comma category is given by a commutative diagram, in which
the vertical arrows are isomorphisms, the horizontal arrows being source and
target. In our case the equivalence of the categories on the object level says that
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any morphisms � W X ! X0 in F has a “commutative decomposition diagram”
as follows

(3)

which means that when � W X ! X0 and X0 ' N
v2I {.�v/ are fixed there are

Xv 2 F ; and �v 2 Hom.Xv;�v/ s.t. the above diagram commutes.
The morphisms part of the equivalence of categories means the following:

a. For any two such decompositions
N

v2I �v and
N

v02I0 �0
v0 there is a bijection

 W I ! I0 and isomorphisms 	v W Xv ! X0
 .v/ s.t. P

�1
 ıNv 	v ı�v D N

�0
v0

where P is the permutation corresponding to  .
b. These are the only isomorphisms between morphisms.

As it is possible that Xv D 1, the axiom allows to have morphisms 1 ! X0,
which are decomposable as a tensor product of morphisms 1 ! {.�v/. On the
other hand, there can be no morphisms X ! 1 for any object X with jXj � 1. If
1 is the target, the index set I is empty and hence X ' 1, since the tensor product
over the empty set is the monoidal unit.

We set the length of a morphisms to be j�j D jXj � jX0j. This can be positive
or negative in general. In many interesting examples, it is, however, either non-
positive or non-negative.

3. The last condition is a size condition, which ensures that certain colimits over
these comma-categories to cocomplete categories exist.

3.4.2 Details on the Adjoint Free Functor

The free functor F is defined as follows: Given a V-module ˆ, we extend ˆ to all
objects of F by picking a functor | which yields the equivalence ofV˝ and Iso.F /.
Then, if |.X/ D N

v2I �v , we set

ˆ.X/ WD
O

v2I
ˆ.�v/ (4)

Now, for any X 2 F we set

F.ˆ/.X/ D colimIso.F#X/ˆ ı s (5)

where s is the source map in F from HomF ! ObjF and on the right hand side
or (5), we mean the underlying object. These colimits exist due to condition (iii).
For a given morphism X ! Y in F , we get an inducedmorphism of the colimits and
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it is straightforward that this defines a functor. This is actually nothing but the left
Kan extension along the functor {˝ due to (i). What remains to be proven is that this
functor is actually a strong symmetric monoidal functor, that is that f�.O/ W F 0 ! C
is strong symmetric monoidal. This can be shown by using the hereditary condition
(ii).

The fact that f� is itself symmetric monoidal amounts to a direct check as does
the fact that f � and f� are adjoint functors. The fact that f � is symmetric monoidal
is clear.

3.4.3 Details on Monadicity

A triple aka. monad on a category is the categorification of a unital semigroup. I.e.
a triple T on a category C is an endofunctor T W C ! C together with two natural
transformations, � W IdC ! T, where idC is the identity functor and a multiplication
natural transformation � W T ı T ! T, which satisfy the associativity equation � ı
T� D �ı�T as natural transformationsT3 ! T, and the unit equation�ıT� D �ı
�T D idT , where idT is the identity natural transformation of the functor T to itself.

The notation is to be read as follows: � ı T� has the components T.T2.X//
T.�X /!

T2X
�X! TX, where �X W T2X ! TX is the component of �.

An algebra over such a triple is an object X of C and a morphism h W TX ! X
which satisfies the unital algebra equations. h ı Th D h ı �X W T2X ! X and
idX D h ı �X W X ! X.

3.4.4 Details on Morphisms, Push-Forward and Pull-Back

A morphisms of Feynman categories .V;F ; {/ and .V0;F 0; { 0/ is a pair of functors
.v; f / where v 2 Fun.V;V0/ and f 2 Fun˝.F ;F 0/ which commute with the
structural maps {; { 0 and {˝; { 0˝ in the natural fashion. For simplicity, we assume
that this means strict commutation. In general, these should be 2-commuting, see
[33]. Given such a morphisms the functor f � W F 0-OpsC ! F 0-OpsC is simply
given by precomposingO 7! f ı O.

The push-forward is defined to be the left Kan extension LanfO. It has a similar
formula as (5). One could also write fŠ for this push-forward. Thinking geometrically
f� is more appropriate.

We will reserve fŠ for the right Kan extension, which need not exist and need
not preserve strong symmetric monoidality. However, when it does it provides an
extension by 0 and hence a triple of adjoint functors . f�; f �; fŠ/. This situation is
characterized in [50] which also gives a generalization of fŠ and its left adjoint in
those cases where the right Kan extension does not preserve strong symmetry.
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3.5 Examples

3.5.1 Tautological Example

.V;V˝; | /. Due to the universal property of the free symmetric monoidal category,
we haveModsC ' OpsC.

Example If V D G, that is V only has one object, we recover the motivating
example of group theory in the Warm Up. For a functor f W G ! H we have the

functor f˝ and the pair . f ; f˝/ gives a morphism of Feynman categories. Pull-back
becomes restriction and push-forward becomes induction under the equivalence
ModsC ' OpsC.

Given any Feynman category .V;F ; {/ there is always the morphism of Feynman
categories given by { and {˝: .V;V˝; | / ! .V;F ; {/ and the push-forward along
it is the free functor F.

3.5.2 Finite Sets and Surjections: F D Surj, V D 1

An instructive example for the hereditary condition (ii) is the following. As above
let Surj the category of finite sets and surjection with disjoint union q as monoidal
structure and let 1 the trivial category with one object � and one morphism id�.

1˝ is equivalent to the categoryN, where we think n D f1; : : : ; ng D f1gq� � �q
f1g, 1 D {.�/. This identification ensures condition (i): indeed 1˝ ' Iso.Surj/.

Condition (ii) is more interesting. The objects of .F # V) are the surjections
S � {.�/. Now consider an arbitrary morphism of Surj that is a surjection f W
S � T and pick an identification T ' f1; : : : ; ng, where n D jTj. Then we can
decompose the morphism f as follows.

(6)

Notice that both conditions (a) and (b) of Sect. 3.4.1 hold for these diagrams. This is
because the fibers of the morphisms are well defined. Condition (iii) is immediate.
So indeed Surj D .Surj; 1; {/ is a Feynman category.

1-ModsC is just Obj.C/ and Surj-Ops are commutative and associative algebra
objects or monoids in C as discussed in the Warm Up. The commutativity follows
from the fact that if � is the surjection 2 ! 1, as above, and �12 is the permutation of
1 and 2 in 2 D f1; 2g, which is also the commutativity constraint, then � ı �12 D � .

The functor G forgets the algebra structure and the functor F associates to every
object X in C the symmetric tensor algebra of X in C. In general, the commutativity
constraints define what “symmetric tensors” means.
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The monadicity can be read as in the Warm Up. Being an algebra overGF means
that there is one morphism for each symmetric tensor power Aˇn ! A, that on
elements is given by a1 ˇ � � � ˇ an ! a1 : : : an. This is equivalent to defining a
commutative algebra structure.

The length of the morphisms is always non-negative and only isomorphisms have
length 0.

3.5.3 Similar Examples

There are more examples in whichV is trivial and V˝ ' S.
Let F D Inj the category of finite sets and injections. This is a Feynman category

in which all the morphisms have non-positive length, with the isomorphisms being
the only morphisms of length 0. If we regard .F # V/, we see that the injection
i W ; ! {.�/ is a non-isomorphism, where ; D 1 is the monoidal unit with respect
to q. By basic set theory, any other injection can be written as idq� � �qidqi � � �qi
followed by a permutation. This gives the decomposition for axiom (ii). The other
two axioms are straightforward.

Using both injections and surjections, that is F D FinSet, the category of finite
sets and all set maps, we get the Feynman category F inSet D .1;FinSet; {/.

3.5.4 Skeletal Versions: Biased vs. Unbiased

Notice that the skeletal versions of Feynman categories do give different ops,
although the categories Ops are equivalent. This is sometimes distinguished by
calling the skeletal definition biased vs. the general set definition which is called
unbiased. This terminology is prevalent in the graph based examples, see Sects. 3.7
and 4.

3.5.5 FI-modules and Crossed Simplicial Groups, and Free Monoidal
Feynman Category

We can regard the skeletal versions of the F above. For sk.Inj/ the ordinary functors
Fun.sk.Inj/;C/ are exactly the FI-modules of [9]. Similarly, for�CS the augmented
crossed simplicial group, Fun.�CS;C/ are augmented symmetric simplicial sets
in C.

In order to pass to symmetric monoidal functors, that is Ops, one can use a
free monoidal construction F �. This associates to any Feynman category F a new
Feynman category F � for which F �-OpsC is equivalent to the category of functors
(not necessarily monoidal) Fun.F ;C/, see Sect. 6.4.
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3.5.6 Ordered Examples

As in the warm up, we can considerV D 1, but look at ordered finite sets F inSetord
with morphisms being surjections/injections/all set morphisms. In this case the
automorphisms of a set act transitively on all orders. For surjections we obtain not
necessarily commutative algebras in C as ops.

3.6 Units

Adding units corresponds to adding a morphisms u W ; ! {.�/ and the modding
out by the unit constraint � ı id1 ˝ u D id1. An op O will take u to � D O.u/ W 1 !
A D O.1/.

3.7 Graph Examples

3.7.1 Ops

There are many examples based on graphs, which are explained in detail in the next
Sect. 4. Here the graphs we are talking about are not objects of F , but are part of the
underlying structure of the morphisms, which is why they are called ghost graphs.
The maps themselves are morphisms between aggregates (collections) of corollas.
Recall that a corolla is a graph with one vertex and no edges, only tails. These
morphisms come from an ambient category of graphs and morphisms of graphs.
In this way, we obtain several Feynman categories by restricting the morphisms to
those morphisms whose underlying graphs satisfy certain (hereditary) conditions.
The Ops will then yield types of operads or operad like objects. As a preview:

Ops Graph, i.e. underlying ghost graphs are of the form

Operads Rooted trees

Cyclic operads Trees

Modular operads Connected graphs (add genus marking)

PROPs Directed graphs (and input output marking)

NC modular operad Graphs (and genus marking)

Broadhurst-Connes 1-PI graphs

-Kreimer

. . . . . .

Here the last entry is a new class. There are further decorations, which yield the
Hopf algebras appearing in [7], see [30].
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3.7.2 Non-† Feynman Categories: The Augmented Simplicial Category

If we use V D 1 as before, we can see that F D �C yields a Feynman category.
Now the non-symmetricV˝ D N and the analog of Surj and Inj will then be order-
preserving surjections and injections. These are Joyal dual to each other and play a
special role in the Hopf algebra considerations.

Another non-† example comes from planar trees where V are rooted planar
corollas and all morphisms preserve the orders given in the plane. The F -OpsC are
then non-sigma operads. Notice that a skeleton of V is given by corollas, whose in
flags are labelled f1; : : : ; ng in their order and these have no automorphisms.

3.7.3 Dual Notions: Co-operads, etc.

In order to consider dual structure, such as co-operads, one simply considers
F -OpsCop . Of course one can equivalently turn around the variance in the source
and obtain the triple: Fop D .Vop;F op; {op/. Now Vop is still a groupoid and {;˝
still induces an equivalence, but F op will satisfy the dual of (ii). At this stage, we
thus choose not to consider Fop, but it does play a role in other constructions.

3.8 Physics Connection

The name Feynman categorywas chosen with physics in mind.V are the interaction
vertices and the morphisms of F are Feynman graphs. Usually one decorates these
graphs by fields.

In this setup, the categories .F # �/ are the channels in the Smatrix. The external
lines are given by the target of the morphism. The comma/slice category over a given
target is then a categorical version of the S-matrix.

The functors O 2 F -OpsC are then the correlation functions. The constructions
of the Hopf algebras agrees with these identifications and leads to further questions
about identifications of various techniques in quantum field theory to this setup and
vice-versa. What corresponds to algebras and plus construction, functors? Possible
answers could be accessible via Rota–Baxter equations and primitive elements [25].

3.9 Constructions for Feynman Categories

There are several constructions which will be briefly discussed below.

1. Decoration FdecO: this allows to define non-Sigma and dihedral versions. It also
yields all graph decorations needed for the zoo; see Sect. 5.
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2. C construction and its quotient Fhyp: This is used for twisted modular operad and
twisted versions of any of the previous structures; see Sect. 6.

3. The free constructions F�, for which F�-OpsC D Fun.F ;C/, see Sect. 6. Used
for the simplicial category, crossed simplicial groups and FI-algebras.

4. The non-connected construction Fnc, whose F nc-Ops are equivalent to lax
monoidal functors of F , see Sect. 6.

5. The Feynman category of universal operations on F-Ops ; see Sect. 7.
6. Cobar/bar, Feynman transforms in analogy to algebras and (modular) operads;

see Sect. 7.
7. W-construction, which gives a topological cofibrant replacement; see Sect. 8.
8. Bi- and Hopf algebras from Feynman categories; see Sect. 10.

4 Graph Based Examples: Operads and All of the Zoo

In this section, we consider graph based examples of Feynman categories. These
include operads, cyclic operads, modular operads, PROPs, properads, their wheeled
and colored versions, operads with multiplication, operads with A1 multiplications,
etc., see Table 1. They all come from a standard example of a Feynman category
called G via decorations and restrictions [30, 33]. The category G is a subcategory
of the category of graphs of Borisov–Manin [6] and decoration is a technical term
explained in Sect. 5.4.

Caveat Although G is obtained from a category whose objects are graphs, the
objects of the Feynman category are rather boring graphs; they have no edges or
loops. The usual graphs that one is used to in operad theory appear as underlying
(or ghost) graphs of morphisms defined in [33]. These two levels should not be
confused and differentiate our treatment from that of [6].

4.1 The Borisov–Manin Category of Graphs

We start out with a brief recollection of the category of graphs given in [6]

1. A graph 
 is a tuple .F
;V
; @
 ; {
/ of flags F
 , vertices V
 , an incidence
relation @
 W F ! V and an involution { W F�


 , {
2

 D id which exhibits that

either two flags, aka. half-edges are glued to an edge in the case of an orbit of
order 2, or a flag is an unpaired half-edge, aka. a tail if its orbit is of order one.

2. A graph morphism � W 
 ! 
 0 is a triple .�V ; �F; {�/, where �V W V
 ! V
0 is
a surjection on vertices, �F W F
0 ! F
 is an injection and {� W F
 n �F.F
0/�

is a self-pairing ({2� D id and there are no orbits of order 1). This pairs together
flags that “disappeared” from F
 to ghost edges.
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Table 1 List of Feynman categories with conditions and decorations on the graphs, yielding the
zoo of examples

F Feynman category for Condition on ghost graphs Γv and additional decoration

O (Pseudo)-operads Rooted trees

OMay May operads Rooted trees with levels

O:† Non-Sigma operads Planar rooted trees

Omult Operads with mult. B/w rooted trees

C Cyclic operads Trees

C:† Non-Sigma cyclic operads Planar trees

G Unmarked nc modular operads Graphs

Gctd Unmarked modular operads Connected graphs

M Modular operads Connected + genus marking

Mnc; nc Modular operads Genus marking

D Dioperads Connected directed graphs w/o directed

loops or parallel edges

P PROPs Directed graphs w/o directed loops

Pctd Properads Connected directed graphs

w/o directed loops

D� Wheeled dioperads Directed graphs w/o parallel edges

P�;ctd Wheeled properads Connected directed graphs

P� Wheeled props Directed graphs

F1PI 1-PI algebras 1-PI connected graphs

3. These morphisms have to satisfy obvious compatibilities, see [6] or [33]. One of
these is preservation of incidence �V ı @
 ı �F. f 0/ D @
0. f 0/ and ghost edges
are indeed contracted �V.@� .f // D �V@� .{�.f //.

We will call an edge f f ; {. f / ¤ f g with two vertices .@. f / ¤ @.{. f // a simple
edge and an edge with one vertex .@. f / D @.{. f // a simple loop.

As objects, the corollas are of special interest. We will write �S D .S; f�g; @ W
S � f�g; id/ for the corolla with vertex � and flags S. This also explains our
notation for elements ofV in general.

An essential new definition [33] is that of a ghost graph of a morphism.

Definition 4.1 The ghost graph (or underlying graph) of a morphisms � D
.�V ; �

F; {�/ is the graph Γ.�/ D .V
;F
; O{�/, where O{� is the extension of {� to
all of F
 by the identity on F
 n �F.F
0/.

Example 4.2 Typical examples are isomorphisms—which only change the names
of the labels—forming of new edges, contraction of edges and mergers. The latter
are morphismswhich identify vertices. These identifications are kept track of by �V .
Composing the forming of a new edge and then subsequently contracting it, makes
the two flags that form the edge “disappear” in the resulting graph. This is what {�
keeps track of. The “disappeared” flags form a ghost edge and this is the only way
that flags may “disappear”. The ghost graph says that the morphism factors through
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Fig. 2 A composition of morphisms and the respective ghost graphs. The first morphism glues
two flags to an edge, the second contracts an edge. The result is a morphism inAgg

a sequence of edge formations and subsequent contractions, namely those edges in
the ghost graph, see Fig. 2.

Remark 4.3 As can be seen from these examples: The ghost graph does not
determine the morphism. All the information about isomorphisms and almost all
information about mergers is forgotten when passing from a morphism to the
underlying graph.

What the ghost graph does, however, is keep track of are edge/loop contractions
and this can be used to restrict morphisms. Further information is provided by the
connectivity of the ghost graph, especially when mapping to a corolla. In this case,
we see that mergers have non-connected ghost graphs. Likewise, if we know that
there are no mergers, then each component of the ghost graph corresponds to a
vertex v 2 V
0 .

4.1.1 Composition of Ghost Graphs Corresponds to Insertion of Graphs
into Vertices

The operation of inserting a graph Γv into a vertex v of a graph Γ1, is well defined
for a given identification of the tails of Γv with the flags Fv incident to v. The
result is the graph Γv ıv Γ1 whose vertex set is V D VΓ1 n fvg q VΓv , the flags
F D FΓ1 q FΓv n tails.Γv/ with { given by the disjoint union and @ given by the
disjoint union and the identification of Fv with the tails of Γ1.

Consider two composable morphisms and their composition:
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Now let Γi be the associated graphs of �i, i D 0; 1; 2. Decomposing, Y D
qv2VY �v , and decomposing �2 as qv2V�v one can calculate [33] that Γ0 is given by
inserting each of the Γv into the vertices v of Γ�1 D V , which we write as qvΓv ıΓ1.

Γ.�0/ D Γ.�2/ ı Γ.�1/ (7)

where the identification for the composition is given by �F
2 .

4.1.2 Symmetric Monoidal Structure

The category of graphs has a symmetric monoidal structure given by disjoint union.
The unit is the empty graph .;;;; id;; id;/ where id; W ; ! ; is the unique
morphism from the empty set to itself.

4.2 The Feynman Category G D .Crl;Agg; {/

Let Crl be the subgroupoid of corollas with isomorphisms and Agg. Agg the full
subcategory whose objects are aggregates of corollas. An aggregate of corollas is a
graph without any edges {
 D id. Any aggregate of corollas is a (possibly empty)
disjoint union of corollas and vice-versa. Including corollas into the aggregates as
one vertex aggregates gives an inclusion { W Crl ! Agg.

Proposition 4.4 G D .Crl;Agg; {/ is a Feynman category.
In this example the one-comma generators .F # V/ are morphisms from an

aggregate to a simple corolla �v
Proof Looking at the definition of morphisms it follows that Crl˝ ' Iso.Agg/.
Condition (iii) is clear. For condition (ii) let � W 
 ! 
 0. We will write any such
morphism this as a disjoint union of one-comma generators.

For v 2 V
0 define 
v to be the restriction of 
 to the vertices mapping to v.
That is 
v D .V
;v D ��1

V .v/;F
;v D @�1

 .V
;v/; @
;v D id/. We let �v W 
v !

vFv be the restriction of �, where vFv is the corolla with vertex v and its incident
flags Fv D @�1


0 .v/. 
 D .�V jV
;v ; �FjFv ; {� jF
;vn.�F/�1.Fv//. It then follows that 
 D
qv2V0




v; 


0 D qv2V
0
vFv and � D qv2V
0

�v . This yields the decomposition. It is
easy to check conditions (a) and (b).

Notice that forming an edge or a loop is not a morphism in Agg. However the
composition of the two morphisms, forming an edge or a loop and then subsequently
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contracting it is a morphism inAgg, see Fig. 2. One could call this a virtual or ghost
edge contractions. For simplicity we will call these simply edge or loop contractions.

4.2.1 Morphisms in Agg

1. Simple edge contraction. �F is the identity and the complement of the image �F

is given by two flags s; t, which form a unique ghost edge. The two flags are not
adjacent to the same vertex and these two vertices are identified by �V . The ghost
graph is obtained from the source aggregate by adding the edge fs; tg. We will
denote this by sıt.

2. Simple loop contraction. As above, but the two flags of the ghost edge are
adjacent to the same vertex. That is both �V and �F are identities. This is called
a simple loop contraction. We will denote this by ıst.

3. Simple merger. This is a merger in which �V only identifies two vertices v and
w. �F is an isomorphism. Its degree is 0 and the weight is 1. The ghost graph is
simply the source graph. We will denote this by vˇw.

4. Isomorphism. This is a relabelling preserving the incidence conditions. Here �V
and �F are bijections. The ghost graph is the original graph.

Typical examples of such morphisms are shown in Fig. 3.
Actually any morphism is a composition of such morphisms [33]. The relations

between these types of morphisms are spelled out below. In order to make things
canonical, we will call a morphism pure � W 
 ! 
 0, if �F D id when restricted
to its image, and the vertices of 
 0 are the fibers of �V , that is �V.v/ D fw 2
V
 j�V.w/ D �V .v/g. With this terminology any morphism decomposes as

� D 	 ı �m ı �c (8)

were �c is a pure contraction, �m is a pure merger, and 	 is an isomorphism.

s

t

s t
st

s t

v w
v
w

Fig. 3 The three basic morphisms in G: an edge contraction (top), a loop contraction (left), and a
merger (right). In the morphism, we give the ghost graph and label it by the standard notation. The
shaded region is for illustration only, to indicate the merger
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4.2.2 Ghost Graphs forAgg

In the case of morphism in Agg, we can say more about the morphisms that have a
fixed underlying ghost graph. First, the source of a morphism� has the same vertices
and flags as its ghost graph Γ.�/ and is hence completely determined. If the ghost
graph is connected, then up to isomorphism the target is the vertex obtained from Γ
by contracting all edges. If Γ.�/ is not connected, one needs the information of �V
to obtain the target up to isomorphism. This is due to possible vertex mergers that
are not recorded by the connected components of Γ. This information is encoded in
a decomposition Γ D qv2VΓv . The Γv D Γ.�v/ are the ghost graphs of one-comma
generators of the decomposition � D qv�v .

Stated in another fashion: in the decomposition (8), Γ.�/ fixes �c, the decompo-
sition Γ.�/ D qvΓv fixes �m.

4.2.3 Relations

All relations among morphisms in G are homogeneous in both weight and degree.
We will not go into the details here, since they follow directly from the description
in the appendix of [33]. There are the following types.

1. Isomorphisms. Isomorphisms commute with any � in the following sense. For
any � and any isomorphism 	 there are unique �0 and 	 0 with Γ.� ı 	/ D Γ.�0/
such that

� ı 	 D 	 0 ı �0 (9)

2. Simple edge/loop contractions. All edge contractions commute in the following
sense: If two edges do not form a cycle, then the simple edge contractions
commute on the nose

sıt s0ıt0 D s0ıt0 sıt (10)

The same is true if one is a simple loop contraction and the other a simple edge
contraction:

sıtıs0t0 D ıs0t0 sıt (11)

If there are two edges forming a cycle, this means that

sıtıs0t0 D s0ıt0ıst (12)

This is pictorially represented in Fig. 4.
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Fig. 4 Squares representing commuting edge contractions and commuting mergers. The ghost
graphs are shown. The shaded region is for illustrative purposes only, to indicate the merger

3. Simple mergers. Mergers commute amongst themselves

vˇw v0ˇw0 D v0ˇw0 vˇw (13)

If f@.s/; @.t/g ¤ fv;wg then

sıt vˇw D vˇw sıt; ıst vˇw D vˇwıst (14)

If @.s/ D v and @.t/ D w then for a simple edge contraction, we have the
following relation

sıt D ıst vˇw (15)

This is pictorially represented in Fig. 5.

Fig. 5 A triangle representing commutation between edge contraction and a merger followed by a
loop contraction. The ghost graphs are shown. The shaded region is for illustrative purposes only,
to indicate the merger
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4.3 Examples Based on G: Morphisms Have Underlying
Graphs

We are now ready to present the zoo of operad-like structures in a structured way
using the Feynman category G. The different Feynman categories will be obtained
by decoration and restriction. Restriction often involves the underlying ghost
graphs—to be precise, the underlying ghost graphs of the one-comma generators.
What one needs to check is that any such restriction is stable under composition
and the decorations compose, whence the term hereditary. For this it suffices to
check compositions X ! Y ! {.�/. In other words, verify that qvΓv ı Γ satisfies
a given restriction whenever Γ and the Γv are composable ghost graphs of one-
comma generators satisfying this restriction. Likewise, one also has to define how
the decorations compose and check that this gives an associative composition. The
usual way is to induce the decoration on qvΓv ı Γ whenever the decorations on
Γ and the Γv are given. This can be done in the following cases (Table 1) in a
straightforward fashion, see [33] for details. For readers unfamiliar with some of
these structures, the table may serve as a definition. We will discuss decorations,
such as roots or directions in a more general fashion in Sect. 5. For instance all these
examples have colored versions by decorating the flags with colors.

We will say that F is a Feynman category for a structure X if F -OpsC are the
X-structures in C. E.g. O is the Feynman category for operads means that O-OpsC
is the category of operads in C.

New examples can also be constructed in this fashion. The first is the 1-PI (one
particle irreducible) condition. A graph is 1PI if it is connected furthermore even
after remains connected after cutting any one edge the graph. There are more new
examples of this type coming from quantum field theory and number theory, like
the ones used in [7], see [14].

4.3.1 Push-Forwards and Pull-Backs: Non-connected Versions

There are obvious inclusion maps and forgetful maps between these categories. E.g.
C ! M, which assigns g D 0 to each vertex. Here pull-back is the restriction and
push-forward is the modular envelope. Looking atO ! P, the root being “out”, the
push-forward is the PROP generated by and operad and the restriction is the operad
contained in a PROP. An examples that has been described by hand [28] is the PROP
obtained from a modular operad. For this there is the morphism P ! M, which
forgets the directions and adds genus 0 to the vertices. Another is the inclusion
M ! Mnc which under push-forward gives the non-connected versions used for
moduli spaces in [21, 35, 47].

Analogously there is an inclusion F ! Fnc for any of the candidates F with
connected graphs, where Fnc allows non-connected graphs of the same type. Even
more generally for and F there is such a non-connected version Fnc whose category
Ops is equivalent to lax monoidal functors from F, see Sect. 6.5.
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4.4 Details

4.4.1 Operad-Lingo and Notation: Composition Along Graphs, Self
Gluing, Non-self Gluing and Horizontal Composition

Let us unravel the data involved in an O 2 F -Ops. Given a one-comma generator
� W X D qi�Si ! �T we get a morphisms O.�/ W O.X/ D N

i O.�Si/ ! O.�T/.
Here X D s.�/ is also the set of vertices of Γ.�/. If � D �c it is completely
determined by its ghost graph and for pure contractions to corollas, which have
connected ghost graphs, we can set O.Γ.�// WD O.�/. This yields usual operad-
like notations as follows. Define O.S/ WD O.�S/. Then one can use the abbreviated
notation

O.Γ/ WD O.Γ.�// W
O

O.Si/ ! O.T/

for the composition “along any connected graph Γ”.
For a simple edge contraction sıt W �S ˝ �T ! �.Sns/q.Tnt/ we get the standard

non-self gluing pseudo operad compositions O.S/ ˝ O.T/ ! .S n s/ q .T n t/,
which is often denoted by sıt as well. In a similar manner, one obtains the May
operations � for a rooted tree whose internal edges are all incident to the root. A
simple loop contraction ıs;s0 W �S ! �Snfs;sg becomes the self gluing operation
O.S/ ! O.S n fs; s0g/; again by abuse of notation simply denoted ıs;s0 .

If ˇ W �S q �T ! �SqT is a simple merger then in the usual PROP notation this
becomes the horizontal compositionO.S/˝O.T/ ! O.SqT/ usually also denoted
by ˇ.

Finally there are the isomorphisms. These are already incorporated into the V-
Mods structure and not mentioned as structure operations in the operad-lingo. They
are pushed into the underlying notion of S-module, orV-Mods in general, on which
operads are built. Thus by using (8) we can write anyO.�/ in the usual operad-lingo.
The downside is that we have to make this decomposition first.

4.4.2 Biased and Unbiased Versions

Sending S ! �S provides an equivalence fromF inSet to Crl. We see that a skeleton
of Crl is given by S. Choosing V D S, the V-Mods become S-modules. Here
usually one identifies n with f0; 1; : : : ; ng with 0 indexing the root if there is one
present.

If we fix Iso.F / D V˝ with V D S, we obtain the biased notions of operads,
etc., that is objects O.n/ with extra operations. Using V D F inSet, we get O.S/
with extra operations indexed by flags.

If there is an extra decoration, then this is part of V and the set of vertices
becomes bigger. An example is the genus marking in the modular operad case, so
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that we get O.n; g/ or O.n;m/ for Props, where n are the incoming flags and m are
the outgoing flags in the biased version andO.S; g/ andO.S;T/ in the unbiased one.

For instance, in the directed case a typical element of V is �S;T where S are the
in-flags and T are the out flags. Hence one obtains O.S;T/ as for PROPs. Similarly
if there is a genus marking a typical element is �S;g and hence in operad-lingo, we
get O.S; g/.

Variations If one is dealing with roots, often one uses the sets nC D f0; : : : ; ng
with the 0 being the label of the root. An isomorphism must fix the roots, so that
Aut.�nC

/ D Sn. For operads, we then have the translation ıi WD iı0. In cyclic and
modular operads, one commonly writes O..n// for O..n � 1/C/ when using cyclic
or modular operads, but does not insist that the maps are pointed, i.e. that the label
0 is preserved, so that Aut..n// D Sn.

4.4.3 A Special Case: PROP(erad)s vs. Di-operads and Wheeled Versions

PROPs and properads are a special case. Here the generators are not only the single
edge contraction, but all multiparallel edge contractions. In the graphs, parallel
edges in the same direction are allowed. These cannot be factored into single edge
constructions, so that there are generators ıkv;w which simultaneously contract k
ghost edges of (necessarily) the same orientation between v and w.

Allowing only the single edge contractions, one arrives at di-operads. Allowing
wheels also allows to factor a multi-edge contraction and a single edge contraction
followed by single loop contractions.

4.4.4 Identities, Multiplications, etc. as Morphisms and Decorations

We will briefly describe how to incorporate these operations. Say, we want to add a
“unit” as to get the Feynman category for unital operads. Recall that for and operad
O a unit is an element � W 1C ! O.1/ which satisfies u ı1 a D a D a ıi u.

Since 1C D O.1F /, we adjoint a morphisms u W ; ! �1C
to the Feynman

category for operadsO with source the empty graph. This can be graphically noted
by putting a u on a binary vertex of a ghost tree, whenever we want to use the
morphism u, as illustrated in Fig. 6. This does not yet constitute putting in a unit,
but rather asking for the data of an element inO.1/. This is actually what is needed in
the case of the Hopf algebra of Connes and Kreimer [14], see also Sect. 10. In order
to get a unit, we have to quotient by the relation given above. The simplest graphical

Fig. 6 Graphically adding a
morphism as marked binary
vertex of the ghost graph

u or (u)
empty

graph
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way to do this is to remove all the vertices u from the graph. Technically this is given
by an equivalence relation. If one does this, one can create a new “degenerate graph”
consisting of a lone flag, which represents any tree whose vertices are all marked by
u. This explains the notation of e.g. [41].

In this fashion, one sees that one gets an isomorphism of Feynman categories
between the Feynman category for unital May operads and that for unital operads,
see [33] for details.

Similarly, for multiplications one needs an extra morphism � W 1C ! O.2/.
Consequently, one adjoins a morphism ; ! �2C

. In the graphical version, the
(ghost) graphs will now have a possible decoration on 3-valent vertices by �. This
just gives a multiplication, one can then quotient out by the associativity equation.
This amounts to graphs with black and white vertices, where black indicates an
iteration of �. Here associativity induces an equivalence relation, which allows to
contract all edges of any subtree of vertices marked solely by�. A similar procedure
adds the �n for A1 multiplications as black vertices of arity n, see e.g. [26, 32, 33].

Furthermore all these kinds of extra morphisms can be collected and turned into
a decoration in the technical sense. This is detailed in [33].

4.5 Omnibus Theorems

For any of these, we have a general triple of graphs T D GF. We immediately
obtain a general theorem for all of the zoo and all new species of this kind; see
also, Sect. 5. These give the usual three ways of describing these objects (a) via
composition along graphs, (b) as algebras over a triple or (c) via generators and
relations for the morphisms.

Theorem 4.5 The biased and unbiasedOpsC are equivalent. Moreover the F -OpsC
are equivalent to algebras over the relevant triple of graphs.

Notice the usual triples of graph, see e.g. [43], match up exactly with the triples
above, when one considers the ghost graphs and their composition. Moreover, the
whole semi-simplicial structure of iterating the endofunctors, cf. [19, 43], coincides
as demonstrated in [33].

Theorem 4.6 Generators and relations description. All the examples have a gener-
ator and relations description. The generators always contain the isomorphisms, the
edge contractions sıt. If non-connected graphs are allowed, the morphisms include
the mergers ˇv;w and if loops are allowed, then they contain the loop contractions.
In the presence of decorations, these are restricted to respect the decorations (cf.
Sect. 5). The relations are the ones given above.

If one adds additional morphisms with relations, these are be included in the list.
This can be formalized using Feynman categories indexed over another Feynman
category, see [33].
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Example For instance, when adding units, the morphism u is a generator and the
relations with u are the unit relations. This way, one can, for example, get the
Feynman category for unital cyclic operads in all three definitions.

Remark 4.7 In the PROP(erad) case, which is special, the generators are not only
the simple edge contraction, but multi-edge contractions, see Sect. 4.4.3.

5 Decorating Feynman Categories FdecO

Decorations can be made into a technical definition. The details for this section
are in [30]. The basic idea is that one can decorate a Feynman category by using
elements of F -Ops. The reason this works is that in order to define a composition,
one has to give a composition for the decorations, but this is precisely the data of an
O 2 F -Ops. These decorations actually decorate the elements of V. In the graph
example above, this means that one can decorate vertices and flags.

5.1 Main Theorems

The main constructive theorem is the following.

Theorem 5.1 Given an O 2 F -Ops, then there is a Feynman category
FdecO which is indexed over F . It objects are pairs .X; dec 2 O.X// and
HomFdecO..X; dec/; .X

0; dec0// is the set of � W X ! X0, s.t. O.�/ W dec ! dec0.

Remark 5.2 This theorem also works in the enriched setting, where one considers
enrichment over C, confer Sect. 6. This construction works directly for Cartesian C,
and with modifications it also works for the non-Cartesian case.

Example 5.3 All planar structures: Non-sigma operads, cyclic non-Sigma operads,
non-Sigma modular operads. Here O is Assoc, CycAssoc, ModCycAssoc. These
are actually all obtained by functoriality, see below. This recovers e.g. that the
modular envelope of CycAssoc factors through non-Sigma modular operads [42].

Theorem 5.4 (Functoriality in F and O) Given a morphism of Feynman cate-
gories f W F ! F0 and a morphisms 	 W O ! P. There are commutative squares
which are natural in O

(16)
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On the categories of monoidal functors to C, we get the induced diagram of adjoint
functors.

(17)

5.2 Terminal Objects and Minimal Extensions

Theorem 5.5 If T is a terminal object for F -Ops and forget W FdecO ! F is the
forgetful functor, then forget�.T / is a terminal object for FdecO-Ops. We have that
forget�forget�.T / D O.

Definition 5.6 We call a morphism of Feynman categories i W F ! F0 a
minimal extension over C if F-OpsC has a terminal/trivial functor T and i�T is
a terminal/trivial functor in F0-OpsC.

Example 5.7 There are two examples that appear naturally. The first is CycCom and
ModCycCom for C ! M and the second is the decorated version forget�.CycAssoc/
and iO�.forget�.CycAssoc//.

Proposition 5.8 If f W F ! F0 is a minimal extension over C, then fO W FdecO !
F0
decf�.O/ is as well. This condition has more recently been further analyzed and has

been identified as part of a factorization system in [4].

5.3 Example

5.3.1 Markl’s Non-† Modular (See Also [31])

(18)

1. The commutative square exists simply by Theorem 5.4.
2. On the left side, if �C is final for C and hence forget�.�C/ D �C is final for C:†.

The pushforward forget�.�C/ D CycAssoc.
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3. On the right side, if �M is final for M and hence forget�.�M/ D �M is final for
M:†. The pushforward forget�.�M/ D ModAssoc.

4. The inclusion i is a minimal extension. This is a fact explained by basic topology.
Namely gluing together polygons in their orientation by gluing edges pairwise
yields all closed oriented surfaces, see e.g. [46].

5. Hence iCycAssoc is also a minimal extension. which explains why indeed the
pushforward of the terminal op is up to that point still terminal. It also reflects
the fact that not gluing all edges pairwise, but preserving orientation, does yield
all surfaces with boundary.

5.4 Examples on G with Extra Decorations, Non-sigma,
Colored Versions, etc.

We now give the details on how to understand the decorations in Sect. 4 as
decorations in the technical sense. Decoration and restriction allows to generate the
whole zoo and even new species. Examples of the needed decorations are listed in
Table 2.

5.4.1 Flag Labelling, Colors, Direction and Roots as a Decoration

Recall that �S is the one vertex graph with flags labelled by S and these are the
objects ofV D Crl forG. For any set X introduce the followingG-op: X.�S/ D XS.
The compositions are simply given by restricting to the target flags.

If the decoration is by d W F� ! X then d.f / D d.{�.f //. Then a natural
subcategory Fdir

decX of GdecX is given by the wide subcategory, whose morphisms

Table 2 List of decorated Feynman categories with decorating O and possible restriction

FdecO Feynman category for Decorating O Restriction

Fdir Directed version Z=2Z set Edges contain one input

and one output flag

Frooted Root Z=2Z set Vertices have one output flag

Fgenus Genus marked N

Fc�col Colored version c Set Edges contain flags

of same color

O:† Non-sigma-operads Assoc

C:† Non-Sigma-cyclic operads CycAssoc

M:† Non-sigma-modular ModAssoc

Cdihed Dihedral Dihed

Mdihed Dihedral modular ModDihed

F stands for an example based on G in the list or more generally indexed over G (see [33])
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additionally satisfy that only flags marked by elements x and Nx are glued and then
contracted; viz {� only pairs flags of marked x with edges marked by Nx. That is the
underlying ghost graph has edges whose two flags are labelled accordingly. In the
notation of graphs: X. f / D {�. f /.

If X is pointed by x0, there is the subcategory of GdecX whose objects are those
generated by �S with exactly one flag labelled by x0 and where the restriction on
graphs is that for the underlying graph additionally, each edge has one flag labelled
by x0.

Now if X D Z=2Z D f0; 1g with the involution N0 D 1, we can call 0 “out” and 1
“in”. As a result, we obtain the category of directed graphsGdecZ=2Z . Furthermore, if
0 is the distinguished element, we get the rooted version. This explains the relevant
examples Table 2.

More generally, in quantum field theory the involution sends a field to its anti-
field and this is what decorates the lines or propagators in a Feynman graph.

5.4.2 Genus Decoration

Let N be the G-op which on objects of V has constant value the natural numbers
N.�S/ D N0. On morphisms N is defined to behave like the genus marking. That
is for � W X ! �S, we define N.�/ W N.X/ D N0

jXj ! N0 D N.�S/ as

the concatenation N0
jXj

P

! N0
C N�.�/! N0 where N�.�/ equals one minus the Euler

characteristic of the graph underlying �. If this graph is connected this is just first
Betti number also sometimes called the genus. This coincides with the description in
[33, Appendix A]. Hence, if F is a subcategory ofG, then the genus marked version
is just FdecN. Examples are listed in Table 2.

5.4.3 Assoc-Decorated, aka. Non-Sigma, aka. Non-planar

Likewise, we can regard the cyclic associative operad, CycAssoc. The pull back
of CycAssoc under forget W O ! C is the associative operad Assoc. Now
OdecAssoc D O:† is the Feynman category for non-Sigma operads. Indeed, the
elements of Assoc.�s/ are the linear orders on S, which means that we are dealing
with planar corollas as objects. Likewise, for the morphisms the condition that
�.aX/ D aY means that the trees are also planar. The story for cyclic operads is
similar CdecCycAssoc D C:†.

Things are more interesting in the modular case. In this case, we have
ModAssoc WD i�.CycAssoc/ as a possible decoration and we get the decorated
Feynman categoryM:† WD MdecModAssoc.. Indeed using this decoration, we recover
the definition of [42] of non-sigma modular operads, which is the special case of
a brane-labelled c/o system, with trivial closed part and only one brane color [31,
Appendix A.6]; see also [34], the appendix of [29] and [42] for details about the
correspondence between stable or almost ribbon graphs and surfaces.
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Here we can understand these constructions in a more general framework. First,
the diagram considered in [42] is exactly a diagram of Theorem 5.4. Then the
fact that the non-Sigma modular envelope of CycAssoc is terminal is obvious from
Theorem 5.5 and Proposition 5.8. The key observations are that the terminal object
of C:† pushed forward is indeed CycAssoc and that ModAssoc is the pushforward
of the terminal object of M:†. Notice CycAssoc is not a modular operad, so it is
not a valid decoration for M. This is reflected in the treatments of [31, 42]. We see
that we do get a planar aka. non-Sigma version by pushing forward Assoc.

5.5 Kontsevich’s Three Geometries

In this framework, one can also understand Kontsevich’s three geometries [37] as
follows.

5.5.1 Com, or Trivially Decorated

The operad CycCom, the operad for cyclic commutative algebras, is the termi-
nal/trivial object in C-Ops. Thus by Theorem 5.5, we have that OdecCom D O. The
analogous statement holds for C. Indeed, there is a forgetful functorO ! C and the
pull-back of CycCom is Com and hence CdecCycCom D C. Finally using the inclusion
i W C ! M means that the modular envelope i�.Com/ is a modular operad. Tracing
around the trivially decorated diagram, we see that this is again a terminal/trivial
operad. Indeed this is the content of Proposition 5.8.

5.5.2 Lie, etc. or Graph Complexes

For this we actually need the enriched version.
One of the most interesting generalizations is that of Lie or in general of

Kontsevich graph complexes. Here notice that Assoc;Com and Lie are all three
cyclic operads, so that they all can be used to decorate the Feynman category for
cyclic operads. For Lie it is important that we can also work over k-Vect. Thus,
answering a question of Willwacher (Private communication), indeed there is a
Feynman category for the Lie case.

To go to the case of graph complexes, one needs to first shift to the odd situation
and then take colimits as described in detail in [33], see especially section 6.9 of
loc. cit.
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5.6 Further Applications

Further forthcoming applications will be

1. Infinity versions of the Assoc, Com and Lie and their transformations.
2. New decorated interpretation of moduli space operations generalizing those of

[27, 28].
3. The new Stolz–Teichner–Dwyer setup for twisted field theories.
4. Kontsevich’s graph complexes.
5. Actions of the Grothendieck–Teichmüller group.

6 Enrichment, Algebras, Odd Versions and Further
Constructions

6.1 Enriched Versions, Plus Construction, and Algebras over
F-Ops: Overview and Examples

There are several reasons why one would like to consider enriched versions of
Feynman categories. They are necessary to define the transforms and resolutions.
Here it is necessary to introduce signs or anti-commuting morphisms. They are
also natural from an algebra over operads point of view. We will start with this
construction.

6.1.1 The Feynman Category for an Algebra over an Operad

Recall that an algebra over an operad O in C is an object A and a morphism of
operads � W O ! End.A/. For this to make sense, one assumes that C is closed
monoidal. Then End.A/.n/ D Hom.A˝n;A/. One can simply think of C D Vect or
Set. Substitutions then give the operad structure.

Algebras as Natural Transformations Generally, given a reference target F-op
E, then for another O 2 F -OpsC we define an O-algebra relative to E as a natural
transformation of functors � W O ! E.

Indeed, for instance in the operad case with E D End, we obtain �.n/ W O.n/ !
Hom.A˝n;A/ which commute with compositions.

Algebras over Operads as Functors We will start with the operad case. Given a
May operad O, we will construct a Feynman category FO whose ops are algebras
over O. The data we have to encode are A 2 C and �.n/ W O.n/ ! Hom.A˝n;A/.
Now if we take VO D 1 and Iso.FO/ D S, then we see that a strict symmetric
monoidal functor � W S ! C will send n to A˝n and the 	 2 Aut.n/ D Sn to the
permutations of the factors of A˝n.
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We now add more morphisms. A morphisms from � W n ! 1 will be sent
to a morphism �.�/ W Hom.A˝n;A/. Thus, we set the one-comma generators as
O.n/ DW HomFO.n; 1/. This fixes data of the �.n/ is and vice-versa. Notice that
when adding in these morphisms, O.n/ is—and has to be—an Sn-module to fix the
pre-composition with the isomorphisms Aut.n/.

Here we assume that we can also work with enriched categories. In particular,
we need to be enriched over C if O is an operad in C, see details below.

With these one-comma generators, due to condition (ii), we get that
HomFO.n;m/ D N

.n1;:::;nm/WP niDn O.n1/ ˝ � � � ˝ O.nm/. Here
L

is the colimit,
which we assume to exist. There is more data. In order to compose HomFO.m; 1/˝
HomFO.n;m/ ! HomFO.n; 1/, we need morphisms

�n1;:::;nk W O.m/˝ O.n1/˝ � � � ˝ O.nm/ ! O.n/ n D
X

ni (19)

These have to be compatible with the isomorphisms. This data is the composition
of a May operad and vice-versa defines a category structure on FO.

This category has a special structure, namely that

HomFO.n;m/ D
M

�Wn�m

O.�/ where O.�/ D
O

i2m
O. f�1.i// (20)

Caveats In order to obtain a Feynman category, we will need to define what an
enriched Feynman category over C is. This is straightforward if C is Cartesian. In
the non-Cartesian case, we have to be a bit more careful, see below. There we will
see that the isomorphism condition will dictate that O.1/ has only 1, that is a copy
of 1C corresponding to id as the “invertible element”. Also, the relevant notion is
that of a Feynman category indexed enriched over another Feynman category. In our
example, we are indexed enriched over a skeleton of Surj.

Clearing these up leads to the theorem:

Theorem 6.1 The category of Feynman categories enriched over E indexed over
Surj is equivalent to the category of operads (with the only iso in O.1/ being the
identity) in E with the correspondence given by O.n/ D Hom.n; 1/. The Ops are
now algebras over the underlying operad.

Remark 6.2 We can also deal with algebras over operads which have isomorphisms
inO.1/ by enlargingV. For this one needs a splitting O.1/ D O.1/iso˚ NO.1/, where
no element of NO.1/ is invertible and O.1/iso D L

g2G 1C for an index group G is
the free algebra on G. Then we enlarge V by letting 1 have isomorphisms G. The
construction is then analogous to the one above and that ofK-algebras [19]. Another
way is to use lax monoidal functors, see [33].
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6.1.2 General Situation for Algebras: Plus Construction

There is a “+” construction, not unlike that for polynomialmonads [2], that produces
a new Feynman category out of an old one. Inverting morphisms stemming from
isomorphisms one obtains Fhyp and there is a further reduction to an equivalent
category Fhyp;rd. Details will be provided below.

The main theorem is that enrichments of F are in 1-1 correspondence with Fhyp-
Ops.

Example 6.3 Mhyp D Fhyper, the Feynman category for hyper-operads as defined by
Getzler and Kapranov [19], whence the name. SurjC D FMayoperads, F

hyp;rd
surj D O0,

the category for operads whose O.1/, has only (multiples of) id as an invertible
element. FC

triv D Surj, Fhyp;rd
triv D Ftriv.

Definition 6.4 Let F be a Feynman category and Fhyp;rd its reduced hyper category,
O an Fhyp;rd-op and DO the corresponding enrichment functor. Then we define an
O-algebra to be a FDO-op.

6.1.3 Odd Feynman Categories over Graphs

In the case of underlying graphs for morphisms, odd usually means that edges
get degree 1, that is we use a Kozsul sign with that degree. In particular, in these
discussions, one is augmented overAb, the category of Abelian groups. Then there
is an indexed enriched version of the Feynman categories. In order to write this
down, one needs an ordered presentation.

For graphs this amounts to adding signs in the relations Sect. 4.2.3. In particular,
the following quadratic relations become anti-commutative:

sıt s0ıt0 D � s0ıt0 sıt (21)

sıtıs0t0 D � ıs0t0 sıt (22)

sıtıs0t0 D � s0ıt0ıst (23)

Since (15) is not quadratic and hence the degree of a merger must be 0 and the
relation does not get a sign

sıt D ıst vˇw (24)

Consequently, the following quadratic relations also remain without sign

vˇw v0 ˇw0 D v0ˇw0 vˇw (25)

sıt vˇw D vˇw sıt (26)

ıst vˇw D vˇwıst (27)
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Isomorphisms also naturally have degree 0 and hence there is no change in the
relevant relation:

� ı 	 D �	 0 ı �0 (28)

6.1.4 Orders and Orientations

In order to pictorially represent this, one can add decorations. This is very similar
to the construction of ordered and oriented simplices, see e.g. [46]. The first step is
to give an order on all the edges of the ghost graph. The second step is to define
orientations as orbits under even permutations. Finally one can impose the relation
that two opposite orientations differ by a sign. Algebraically, one also uses the
determinant line on the edges [19]. It is only at this last step that the enrichment is
needed. Furthermore one can push this last step into the functor, that is only regard
functors to Abelian C that take different change of orientations to sign changes.
These constructions are discussed in detail in [33].

6.1.5 Graph Examples

A list of examples is given in Table 3.

6.1.6 Suspension vs. Odd

In operad-lingo, one can suspend operads, etc. On the Feynman category side this
corresponds to certain twists. I.e. there is a twist † and a † twisted Feynman
category F† such that O 2 F -OpsC iff the suspension †O 2 F†-OpsC. For general

Table 3 List of Feynman categories with conditions and decorations on the graphs

F Feynman category for Condition on graphs C additional decoration

Codd Odd cyclic operads Trees C orientation of set of edges

Modd K-modular Connected C orientation on set of edges

C genus marking

Mnc;odd nc K-modular Orientation on set of edges

C genus marking

D�odd Odd wheeled dioperads Directed graphs w/o parallel edges

C orientations of edges

P�;ctd;odd Odd wheeled properads Connected directed graphs w/o parallel edges

C orientation of set of edges

P�;odd Odd wheeled props Directed graphs w/o parallel edges

C orientation of set of edges
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twistings of this type see Sect. 6.2.3. These are equivalent to the odd version if we
are in the directed case and there is a bijection between vertices and out flags,
see [35]. Even in the directed case, as explained in [35]. the odd versions are
actually more natural and yield the correct degrees in the Hochschild complex and
correct signs and Master Equations, see Sect. 7 below. A well known example for
unexpected, but correct, signs is the Gerstenhaber bracket. It is odd Poisson.

In the same vein for the bar/cobar and Feynman transforms, it is not the
suspended structures that are pertinent, but the odd structures, see Sect. 7.

6.1.7 Examples

1. Operads are very special, in the respect that their Feynman category is equivalent
to the one for their odd version.

2. The odd cyclic operads are equivalent to anti-cyclic operads.
3. For modular operads the suspended version is not equivalent to the odd versions

a.k.a. K-modular operads. The difference is given by the twist H1.Γ.�//.

6.2 Enriched Versions: Details

We can consider Feynman categories and target categories enriched over another
monoidal category, such as T op, Ab or dgVect. Note that there are two cases.
Either the enrichment is Cartesian, then we simply have to replace the free
(symmetric) monoidal category by the enriched version. There is also a more
categorical version of the definition with a condition going back to [16]. For that
definition one simply replaces all limits by indexed limits. Or, the enrichment is
not Cartesian, then we will replace the groupoid condition by an indexing just like
above.

6.2.1 Cartesian Case: Categorical Version

In [33] we proved that in the non-enriched case we can equivalently replace (ii)
by (ii0).

(ii0) The pull-back of presheaves {˝^W ŒF op; Set ! ŒV˝op; Set restricted to
representable presheaves is monoidal.

This then yields a definition in the Cartesian case if one replaces (iii) by the
appropriate indexed limit condition.
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6.2.2 Non-Cartesian Case Indexed Enrichment

In the non-Cartesian case, the notion of groupoid ceases to make sense. The first
option is to drop the groupoid condition and simply ask that the inclusion {˝ is
essentially surjective. This is possible and called a weak Feynman category, which
is very close to the notion of a pattern and explains that notion in more down to earth
terms. This is, however, not adequate for the bar/cobar and Feynman transforms or
the twists.

The better notion is that of a Feynman category enriched over E, indexed over
another Feynman category F. The idea is that the Feynman category FO for algebras
over an operad O is a Feynman category enriched over C indexed over Surj. The
precise definition goes via enrichment functors, which are 2-functors.

In general, we will call the enrichment category E. This is a monoidal category
and hence can be thought of as a 2-category with one object, which we denote by
E. Here the 1-morphisms of E are the objects of E with the composition being ˝,
the monoidal structure of E. The 2-morphisms are then the 2-morphisms of E, their
horizontal composition being ˝ and their vertical composition being ı. Also, we
can consider any category F to be a 2-category with the two morphisms generated
by triangles of composable morphisms.

Definition 6.5 Let F be a Feynman category. An enrichment functor is a lax 2-
functorD W F ! E with the following properties

1. D is strict on compositions with isomorphisms.
2. D.	/ D 1E for any isomorphism.
3. D is monoidal, that is D.� ˝F  / D D.�/˝E D. /

Given a monoidal category F considered as a 2-category and lax 2-functorD to
E as above, we define an enriched monoidal category FD as follows. The objects of
FD are those of F . The morphisms are given as

HomFD.X;Y/ WD
M

�2HomF .X;Y/

D.�/ (29)

The composition is given by

HomFD.X;Y/˝ HomFD. Y;Z/ (30)

D
M

�2HomF .X;Y/

D.�/˝
M

 2HomF . Y;Z/

D. / (31)

'
M

.�; /2HomF .X;Y/�HomF . Y;Z/

D.�/˝ D. / (32)

L
D.ı/�!

M

�2HomF .X;Z/

D.�/ D HomFD.X;Z/ (33)
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The image lies in the components � D  ı�. Using this construction onV, pulling
back D via {, we obtain VD D VE, the freely enriched V. The functor { then is
naturally upgraded to an enriched functor {E W VD ! FD.

Definition 6.6 Let F be a Feynman category and let D be an enrichment functor.
We call FD WD .VE;FD; {E/ a Feynman category enriched over E indexed byD.

Theorem 6.7 FD is a weak Feynman category. The forgetful functor from FD-Ops
to VE-Mods has a left adjoint and more generally push-forwards among indexed
enriched Feynman categories exist. Finally there is an equivalence of categories
between algebras over the triple (aka. monad) GF and FD-Ops.

Example 6.8 The freely enriched Feynman category. The functor D is simply the
identity. This is the triple FE WD .VE;FE; {E/ where F D .V;F ; {/ is a Feynman
category and the subscript E means free enrichment.

Theorem 6.9 The indexed enriched (over E) Feynman category structures on
a given FC F are in 1-1 correspondence with Fhyp-Ops and these are in 1-1
correspondence with enrichment functors.

Example 6.10 (Twisted (Modular) Operads) Looking at F D M, we recover the
notion of twisted modular operad. There is a twist for each hyper-operad D. We
have the Feynman categoryMD. The triple then corresponds toMD in the notation
of [19]. What we add is the descriptions (a) and (c) mentioned in paragraph 1.3, that
is via compositions along graphs and generators and relations. Here the graphs are
actually decorated on the set of edges according to (29). To see this one decomposes
� into simple edge or loop contractions as defined in Sect. 4.

Example 6.11 Algebras over operads. In this case F D Surj and Fhyp;rd D O0. An
operad O 2 O0-OpsC then gives an enrichment functor DO of Surj. In particular
DO.n � 1/ D O.n/ as in Sect. 6.1.1.

6.2.3 Coboundaries andV-twists

Coboundaries in the sense of [19] are generalized toV-twists. Let LWV ! Pic.E/,
that is the full subcategory of ˝-invertible elements of E. A twist of a Feynman
category indexed byD byL is given by setting the new twist-system to beDL.�/ D
L.t.�//�1 ˝ D.�/˝ L.s.�//.

The suspension functor s is such a coboundary twist, see [19, 35]. Here L D s
with s.�.n�1/C/ D †2�nsignn in dgVect for cyclic operads, or s.�nC

/ D †1�nsignn
for operads, or in general s.�.n�1/C/ D †�2.g�1/Cnsignn where † is the suspension
and signn is the sign representation, see [35] for a detailed explanation.
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6.2.4 Odd Versions and Shifts

Given a well-behaved presentation of a Feynman category (generators+relations for
the morphisms) we can define an odd version which is enriched overAb by giving
a twist. To obtain the odd versions, we use D.�/ D det.Edges.Γ.�//. In the cyclic
case, an example are anti-cyclic operads and the theory of modular operads this
twist is called K. It is not a coboundary in general. Rather up to the suspension
coboundary and the shift coboundary, this twist is a twist by H1.Γ/ in the modular
case, see [19, 35] for details.

6.3 Feynman Level Category FC, Hyper Category Fhyp and Its
Reduction Fhyp;rd

6.3.1 Feynman Level Category FC

Given a Feynman category F, and a choice of basis for it, we will define its Feynman
level category FC D .VC;F C; {C/ as follows. The underlying objects of F C are
the morphisms of F . The morphisms of F C are given as follows: given � and  ,
consider their decompositions

(34)

where we have dropped the { from the notation, 	; O	; � and O� are given by the choice
of basis and the partition Iv of the index set for X and I0

v0 for the index set of Y is
given by the decomposition of the morphism.

A morphism from � to  is a two level partition of I W .Iv0/v02I0 , and partitions of
Iv0 W .I1v0 : : : ; I

kv0

v0 / such that if we set � i
v0 WD N

v2Ii
v0

�v then  v0 D �k
v0 ı � � � ı �1v0 .

To compose two morphisms f W� !  and gW ! �, given by partitions of
I W .Iv0/v02I0 and of the Iv0 W .I1

v0 : : : ; I
kv0

v0 / respectively of I0 W .I0
v00/v002I00 and the

Iv00 W .I01
v00 : : : ; I

0kv00

v00 /, where I00 is the index set in the decomposition of �, we set the
compositions to be the partitions of I W .Iv00/v002I00 where Iv00 is the set partitioned by
.Iv0/

v02I0j
v00
;jD1;:::;kv00

. That is, we replace each morphism v0 by the chain �v
0

1 ı� � �ı�v0

k .

Morphisms alternatively correspond to rooted forests of level trees thought of as
flow charts, see Fig. 7. Here the vertices are decorated by the �v and the composition
along the rooted forest is  . There is exactly one tree �v0 per v0 2 I0 in the forest
and accordingly the composition along that tree is  0

v .
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22

φ

Fig. 7 The level forest picture for morphisms in FC. Indicated is a morphism from � ' N
v �v

to ‰ ' N
i‰i

Technically, the vertices are the v 2 I. The flags are the union qv qw2Iv �w q
qv2I�v with the value of @ on �w being v if w 2 Iv and v on �v for v 2 I. The
orientation at each vertex is given by the target being out. The involution { is given
by matching source and target objects of the various �v . The level structure of each
tree is given by the partition Iv0 . The composition is the composition of rooted trees
by gluing trees at all vertices—that is we blow up the vertex marked by  v0 into the
tree �v0 .

6.3.2 FC-Ops

After passing to the equivalent strict Feynman category, an elementD in F C-Ops is
a symmetric monoidal functor that has values on each morphismD.�/ D N

D.�v/
and has compositionmapsD.�0˝�/ ! D.�1/ for each decomposition�1 D �ı�0.
Further decomposing � D N

�v where the decomposition is according to the target
of �0, we obtain morphisms

D.�0/˝
O

v

D.�v/ ! D.�1/ (35)

It is enough to specify these functors for �1 2 .F # V/ and then check
associativity for triples.

Example 6.12 If we start from the tautological Feynman category on the trivial
categoryF D .1; 1˝; {/ then FC is the Feynman categorySur of surjections. Indeed
the possible trees are all linear, that is only have 2-valent vertices, and there is
only one decoration. Such a rooted tree is specified by its total length n and the
permutation which gives the bijection of its vertices with the set ni. Looking at
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a forest of these trees we see that we have the natural numbers as objects with
morphisms being surjections.

Example 6.13 We also have SurC D OMay, which is the Feynman category for
May operads. Indeed the basic maps (35) are precisely the composition maps � . To
be precise, these are May operads without units.

6.3.3 Feynman Hyper Category Fhyp

There is a “reduced” version of FC which is central to our theory of enrichment.
This is the universal Feynman category through which any functor D factors if it
satisfies the following restriction: D.	/ ' 1 for any isomorphism 	 where 1 is the
unit of the target category C.

For this, we invert the morphisms corresponding to composing with isomor-
phisms, see [33] for details.

6.3.4 F hyp-Ops

An elementD 2 F hyp-Ops corresponds to the data of functors from Iso.F # F / !
C together with morphisms (35) which are associative and satisfy the condition that
all the following diagrams commutes:

(36)

see [33] for details.

Example 6.14 The paradigmatic examples are hyper-operads in the sense of [19].
Here F D M and Fhyp is the Feynman category for hyper-operads.

6.3.5 A Reduced Version Fhyp;rd

One may define Fhyp;rd, a Feynman subcategory of Fhyp which is equivalent to it
by letting F hyp;rd and Vhyp;rd be the respective subcategories whose objects are
morphisms that do not contains isomorphisms in their decomposition. In view of
the isomorphisms ; ! 	 this is clearly an equivalent subcategory. In particular, the
respective categories of Ops andMods are equivalent.

The morphisms are described by rooted forests of trees whose vertices are
decorated by the �v as above—none of which is an isomorphism—, with the
additional decoration of an isomorphism per edge and tail. Alternatively, one can
think of the decoration as a black 2-valent vertex. Indeed, using maps from ; ! 	 ,
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we can introduce as many isomorphisms as we wish. These give rise to 2-valent
vertices, which we mark black. All other vertices remain labeled by �v . If there are
sequences of such black vertices, the corresponding morphism is isomorphic to the
morphism resulting from composing the given sequence of these isomorphisms.

Example 6.15 For Fhyp;rd
surj D O0, the Feynman category whose morphisms are trees

with at least trivalent vertices (or identities) and whose Ops are operads whose
O.1/ D 1. Indeed the basic non-isomorphismmorphisms are the surjections n ! 1,
which we can think of as rooted corollas. Since for any two singleton sets there is a
unique isomorphism between them, we can suppress the black vertices in the edges.
The remaining information is that of the tails, which is exactly the map �F in the
morphism of graphs.

Example 6.16 For the trivial Feynman category, we obtain back the trivial Feynman
category as the reduced hyper category, since the trees all collapse to a tree with one
black vertex.

6.4 Free Monoidal Construction F �

Sometimes it is convenient to construct a new Feynman category from a given one
whose vertices are the objects of F . Formally, we set F� D .V˝;F �; {˝/ where
F � is the free monoidal category on F and we denote the “outer” free monoidal
structure by �. This is again a Feynman category. There is a functor � W F � ! F
which sends �iXi 7! N

i Xi and by definition HomF�.X D �iXi;Y D �iYi/ DN
i HomF .Xi;Yi/. The only way that the index sets can differ, without the Hom-

sets being empty, is if some of the factors are 1 2 F �. Thus the one-comma
generators are simply the elements of HomF .X;Y/. Using this identification one
obtains: Iso.F�/ ' Iso.F /� ' .V˝/�. The factorization and size axiom follow
readily from this description.

Proposition 6.17 F �-OpsC is equivalent to the category of functors (not necessar-
ily monoidal) Fun.F ;C/.

Example 6.18 Examples are FI modules and (crossed) simplicial objects for the
free monoidal Feynman categories for FI and �C where for the latter one uses the
non-symmetric version.

6.5 NC-construction

For any Feynman category one can define its nc (non-connected) version. It plays
a crucial role in physics and mathematics and manifests itself through the BV
equation [35]. Namely, for the operator � in the case of modular operads to
become a differential, one needs a multiplication. This, on the graph level, is given
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by disjoint union for the one-comma generators. This amounts to dropping the
condition of connectedness. Astonishingly this works in full generality for any
Feynman category.

Let F D .V;F ; {/, then we set Fnc D .V˝;F nc; {˝/ where F nc has objects
F �, the free monoidal product. We however add more morphisms. The one-
comma generators will be HomF nc.X;Y/ WD HomF .�.X/;Y/, where for X D
�i2IXi, �.X/ D N

i2I Xi. This means that for Y D �j2JYj, HomF .X;Y/ �
HomF .�.X/; �.Y//, includes only those morphisms for which there is a partition

Ij; j 2 J of I such that the morphism factors through
N

j2J Zj where Zj
	j! N

k2Ij Xk

is an isomorphism. That is  D N
j2J �j ı	j with �j W Zj ! Yj. Notice that there is a

map of “disjoint union” or “exterior multiplication” given by� W X1�X2 ! X1˝X2
via id ˝ id.

Example 6.19 The terminology “non-connected” has its origin in the graph exam-
ples. Examples can be found in [35], where also a box-picture for graphs is
presented. The connection is that morphisms in F nc have an underlying graph that
is disconnected and the connected components are those of the underlying F .

Proposition 6.20 ([33]) There is an equivalence of categories between F nc-OpsC
and symmetric lax monoidal functors Funlax ˝.F ;C/.

Using lax-monoidal functors, is also a way to deal with algebras over operads
whose O.1/ has isomorphisms.

7 Universal Operations, Transforms and Master Equations

7.1 Universal Operations

7.1.1 Universal Operations for Operads, etc.

A well known result in operad theory is that for an operad O there is an odd Lie
bracket defined on

L
O.n/ [15]. This actually descends to coinvariants

L
O.n/Sn

[24]. For anti-cyclic operads there is again an odd Lie bracket on the coinvariantsL
O..n//Sn with lifts to the smaller coinvariants w.r.t. the cyclic groups Cn,

namely on
L

n O..n//Cn [35]. Similarly there are operations � on
L

O..n; g//Sn
for modular operads [1, 35]. Here we show that these operations can be understood
purely from the Feynman category and we can explain why exactly these operations
turn up in the Master Equations.

7.1.2 Cocompletion

Let OF be the cocompletion of F . This is monoidal with the monoidal structure given
by the Day convolution ~. If C is cocomplete then O 2 Ops factors:
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Theorem 7.1 Let 1 WD colimV| ı { 2 OF and let FV the symmetric monoidal
subcategory generated by 1. Then FV WD .FV;1; {V/ is a Feynman category. (This
gives an underlying operad of universal operations).

If E is Abelian, we say FV is weakly generated by morphisms � 2 ˆ if the
summands of the components Œ�Xj;i generate the morphisms of FV. Here different
summands are indexed by different isomorphism classes of morphisms.

7.1.3 Example: Operads

O the Feynman category for operads, C D dgVect.
Then OO.1/ D L

n O.n/Sn and the Feynman category is (weakly) generated by
ı WD Œ

P ıi. (This is a two-line calculation). This gives rise to the Lie bracket by
using the anti-commutator. It lifts to the non-Sigma case along the forgetfulO:† !
O and gives the pre-Lie structure on

L
n O.n/, which goes back to [15]. In [24] it

was shown that the pre-Lie structure descends to the coinvariants. In [35] it is argued
that the pre-Lie structure lives naturally on the coinvariants and lifts to the invariants.

In general these kinds of lifts are possible if there is a non-Sigma version.

7.1.4 Example: Odd/Anti-cyclic Operad

The universal operations are (weakly) generated by a Lie bracket. Œ ;  WD Œ
P

st ıst,
(see [35]). This actually lifts to cyclic coinvariants (non-sigma cyclic operads) that
is along the map Codd;pl ! Codd. Here we also see that one cannot expect a further
lift, since the planar version for Codd still has a non discreteV.

7.1.5 The Three Geometries of Kontsevich

The endomorphism operad End.V/ for a symplectic vector space is anti-cyclic. Any
tensor product: .O ˝ P/.n/ WD O.n/˝ P.n/ with O a cyclic operad and P an anti-
cyclic operad is anti-cyclic and hence has the odd Lie bracket discussed above.

Fix Vn n-dim symplectic Vn ! VnC1. For each n get Lie algebras

1. Comm ˝ End.Vn/

2. Lie ˝ End.Vn/

3. Assoc ˝ End.Vn/

Taking the limit as n ! 1 one obtains the formal geometries of [10, 37].
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Table 4 Here FV and Fnt
V are given as FO for the operad O, the composition as discussed being

insertion

F Feynman cat for F;FV,F
nt
V Weak gen. subcat.

O Operads Rooted trees Fpre-Lie

Oodd Odd operads Rooted trees + orientation Odd pre-Lie

of set of edges

O:† Non-Sigma operads Planar rooted trees All ıi operations

Omult Operads with mult. B/w rooted trees Pre-Lie + mult.

C Cyclic operads Trees Com. mult.

Codd Odd cyclic operads Trees + orientation Odd Lie

of set of edges

Modd K-Modular Connected + orientation Odd dg Lie

on set of edges

Mnc;odd nc K-modular Orientation on set of edges BV

D Dioperads Connected directed graphs w/o Lie-admissible

directed loops or parallel edges

The former is for the type of graph with unlabelled tails and the latter for the version with no tails

Our construction is more general and works for any anti-cyclic operad. For
instance another family of Lie algebras can be obtained as follows, [35]. Let
Vn be a vector space with a symmetric non-degenerate form. End.V/ is a cyclic
operad. Since the PreLie operad is anti-cyclic [8], for each n we get a Lie algebra
PreLie ˝ End.V/. It is not known what geometry we get when we take the limit as
n ! 1.

7.1.6 Further Examples

For further examples, see Table 4.

7.2 Transforms and Master Equations

There are three transforms we will consider: the bar-, the cobar transform and the
Feynman transform aka. dual transform.

7.2.1 Motivating Example: Algebras

If A is an associative algebra, then the bar transform is the dg-coalgebra given by the
free coalgebra BA D T†�1 NA together with co-differential from algebra structure.
The usual notation for an element in BA is a0ja1j : : : jan.
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Likewise let C be an associative co-algebra. The co-bar transform is the dg-
algebra�C WD Freealg.†�1 NC/ together with a differential coming from co-algebra
structure. The bar-cobar transform�BA is a resolution of A.

For the Feynman transform consider A a finite-dimensional algebra or graded
algebra with finite dimensional pieces and let LA be its dual co-algebra. Then the
dual or Feynman transform of A is FA WD � LA + differential from multiplication.
Now, the double Feynman transform FFA a resolution.

7.2.2 Transforms

These transforms take O 2 F -OpsC and transform it to an op for the odd version
of the Feynman category Fodd either in Cop or C. All these are free constructions,
which, however, also have the extra structure of an additional (co)differential. Thus
the resulting Feynman category is actually enriched over chain complexes and one
can start out there as well. Furthermore, for the (co)differential to work, we have
to have signs. These are exactly what is provided by the odd versions. In order to
be able to define the transforms, one has to fix an odd version Fodd of F, just as
in Sect. 6.1.3. This is analogous to the suspension in the usual bar transforms. In
fact, the following is more natural, see [33, 35]. The degree is 1 for each bar and in
the graph case the edges get degree 1; see Fig. 8. We can generalize the construction
of Fodd to so-called well-presented Feynman categories, see below and [33]. In this
case, we can define the transformations for elements of Ops.

The Feynman transform is of particular interest. Since the construction is free,
any V 2 Mods will yield an op. On the other hand, this need not be compatible
with the dg structure. It turns out that it is, if it satisfies a Master Equation.

The transforms are of interest in themselves, but one common application is that
the bar-cobar transform as well as the double Feynman transform give a “free”
resolution. In general, of course, “free” means co-fibrant. For this kind of statement
one needs a Quillen model structure, which is provided in Sect. 8.

a

b

c

a

b

c

a|b|c

Fig. 8 The sign mnemonics for the bar construction, traditional version with the symbols j of
degree 1, the equivalent linear tree with edges of degree 1, and a more general graph with edges of
degree 1. Notice that in the linear case there is a natural order of edges, this ceases to be the case
for more general graphs
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Remark 7.2 As before one can ask the question of how much of the structure of
these transforms can be pulled back to the Feynman category side. The answer is:
“Pretty much all of it”. We shall not discuss this here, but it can be found in [33].

7.2.3 Presentations

In order to define the transforms, we have to give what is called an ordered
presentation [33]. Rather then giving the technical conditions, we will consider the
graph case and show these structures in this case.

7.2.4 Basic ExampleG

In G the presentation comes from the following set of morphismsˆ

1. There are four types of basic morphisms: Isomorphisms, simple edge contrac-
tions, simple loop contractions and simple mergers. Call this set ˆ.

2. These morphisms generate all one-comma generators upon iteration. Further-
more, isomorphisms act transitively on the other classes. The relations on the
generators are given by commutative diagrams.

3. The relations are quadratic for edge contractions as are the relations involving
isomorphisms. Finally there is a non-homogenous relation coming from a simple
merger and a loop contraction being equal to an edge contraction.

4. We can therefore assign degrees as 0 for isomorphisms and mergers, 1 for edge or
loop contractions and split ˆ as ˆ0 qˆ1. This gives a degree to any morphism.

Up to isomorphism any morphism of degree n can be written in nŠ ways up to
morphisms of degree 0. These are the enumerations of the edges of the ghost graph.

There is also a standard order in which isomorphisms come before mergerswhich
come before edge contractions as in (8). This gives an ordered presentation.

In general, an ordered presentation is a set of generatorsˆ and extra data such as
the subsets ˆ0 and ˆ1; we refer to [33] for details.

7.2.5 Differential

Given a dˆ1 D P
Œ�12ˆ1=� �1ı defines an endomorphism on the Abelian group

generated by the isomorphism classes morphisms. The non-defined terms are set to
zero.ˆ1 is called resolving if this is a differential.

In the graph case, this amounts to the fact that for any composition of edge
contractions �e ı �e0 , there is precisely another pair of edge contractions �e00 ı �e000

which contracts the edges in the opposite order.
This differential will induce differentials for the transforms, which we call by the

same name. We again refer to [33] for details.
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7.2.6 Setup

F be a Feynman category enriched over Ab and with an ordered presentation
and let Fodd be its corresponding odd version. Furthermore let ˆ1 be a resolving
subset of one-comma generators and let C be an additive category, i.e. satisfying
the analogous conditions above. In order to give the definition, we need a bit of
preparation. Since V is a groupoid, we have that V ' Vop. Thus, given a functor
ˆ W V ! C, using the equivalence we get a functor fromVop to C which we denote
byˆop. Since the bar/cobar/Feynman transform adds a differential, the natural target
category from F -Ops is not C, but complexes in C, which we denote by Kom.C/.
Thus any O may have an internal differential dO.

7.2.7 The Bar Construction

This is the functor

BWF -OpsKom.C/ ! F odd-OpsKom.Cop/

B.O/ WD {Fodd �.{�F.O//op

together with the differential dOop C dˆ1 .

7.2.8 The Cobar Construction

This is the functor

�WF odd-OpsKom.Cop/ ! F -OpsKom.C/

�.O/ WD {F �.{�Fodd.O//op

together with the co-differential dOop C dˆ1 .

7.2.9 Feynman Transform

Assume there is a duality equivalence _WC ! Cop. The Feynman transform is a pair
of functors, both denoted FT,

FTWF -OpsKom.C/ � F odd-OpsKom.C/WFT
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defined by

FT.O/ WD
(

_ ı B.O/ if O 2 F -OpsKom.C/
_ ı�.O/ if O 2 F odd-OpsKom.C/

Proposition 7.3 The bar and cobar construction form an adjunction.

�W F odd-OpsKom.Cop/ � F -OpsKom.C/ WB

The quadratic relations in the graph examples are a feature that can be general-
ized to the notion of cubical Feynman categories. The name reflects the fact that
in the graph example the nŠ ways to decompose a morphism whose ghost graph is
connected and has n edges into simple edge contractions correspond to the edge
paths of In going from .0; : : : ; 0/ to .1; : : : ; 1/. Each edge flip in the path represent
one of the quadratic relations and furthermore the Sn action on the coordinates is
transitive on the paths, with transposition acting as edge flips.

This is a convenient generality in which to proceed.

Theorem 7.4 Let F be a cubical Feynman category and O 2 F -OpsKom.C/. Then
the counit�B.O/ ! O of the above adjunction is a levelwise quasi-isomorphism.

Remark 7.5 In the case of C D dgVect, the Feynman transform can be intertwined
with the aforementioned push-forward and pull-back operations to produce new
operations on the categories F -OpsC. A lifting (up to homotopy) of these new
operations to C D Vect is given in [50]. In particular this result shows how the
Feynman transform of a push-forward (resp. pull-back) may be calculated as the
push-forward (resp. pull-back) of a Feynman Transform. One could thus assert that
the study of the Feynman transform belongs to the realm of Feynman categories as
a whole and not just to the representations of a particular Feynman category.

7.3 Master Equations

In [35], we identified the common background of Master Equations that had
appeared throughout the literature for operad-like objects and extended them to all
graphs examples. An even more extensive theorem for Feynman categories can also
be given.

The Feynman transform is quasi-free. An algebra over FO is dg—if and only if it
satisfies the relevant Master Equation. First, we have the tabular theorem from [35]
for the usual suspects.

Theorem 7.6 ([1, 35, 44, 45]) Let O 2 F -OpsC and P 2 F odd-OpsC for an F
represented in Table 5. Then there is a bijective correspondence:

Hom.FT.P/;O/ Š ME.limV.P ˝ O//
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Table 5 Collection of Master Equations for operad-type examples

Name of F -OpsC Algebraic structure of FO Master Equation (ME)

Operad [17] Odd pre-Lie d.�/C � ı � D 0

Cyclic operad [18] Odd Lie d.�/C 1
2
Œ�;� D 0

Modular operad [19] Odd Lie +� d.�/C 1
2
Œ�;�C�.�/ D 0

Properad [49] Odd pre-Lie d.�/C � ı � D 0

Wheeled properad [44] Odd pre-Lie + � d.�/C � ı � C�.�/ D 0

Wheeled prop [35] dgBV d.�/C 1
2
Œ�;�C�.�/ D 0

Here ME is the set of solutions of the appropriate Master Equation set up in each
instance.

With Feynman categories this tabular theorem can be compactly written and
generalized. The first step is the realization that the differential specifies a natural
operation, in the above sense, for each arity n. Furthermore, in the Master Equation
there is one term form each generator of ˆ1 up to isomorphism. This is immediate
from comparing Table 5 with Table 4. The natural operation which lives on a space
associated to an Q 2 F -Ops is denoted ‰Q;n and is formally defined as follows:

Definition 7.7 For a Feynman category F admitting the Feynman transform and for
Q 2 F -OpsC we define the formal Master Equation of F with respect to Q to be the
completed cochain ‰Q WD Q

‰Q;n. If there is an N such that ‰Q;n D 0 for n > N,
then we define the Master Equation of F with respect to Q to be the finite sum:

dQ C
X

n

‰Q;n D 0

We say ˛ 2 limV.Q/ is a solution to the Master Equation if dQ.˛/ CP
n‰Q;n.˛

˝n/ D 0, and we denote the set of such solutions asME.limV.Q//.
Here the first term is the internal differential and the term for n D 1 is the differential
corresponding to dˆ1 , where ˆ

1 is the subset of odd generators.

Theorem 7.8 Let O 2 F -OpsC and P 2 F odd-OpsC for an F admitting a Feynman
transform and Master Equation. Then there is a bijective correspondence:

Hom.FT.P/;O/ Š ME.limV.P ˝ O//

8 Model Structures, Resolutions and the W-constructions

In this section we discuss Quillen model structures for F -OpsC. It turns out that
these model structures can be defined if C satisfies certain conditions and if this is
the case work for all F, e.g. all the previous examples.
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8.1 Model Structure

Theorem 8.1 Let F be a Feynman category and let C be a cofibrantly generated
model category and a closed symmetric monoidal category having the following
additional properties:

1. All objects of C are small.
2. C has a symmetric monoidal fibrant replacement functor.
3. C has ˝-coherent path objects for fibrant objects.

Then F -OpsC is a model category where a morphism �WO ! Q of F -ops is a weak
equivalence (resp. fibration) if and only if �WO.v/ ! Q.v/ is a weak equivalence
(resp. fibration) in C for every v 2 V.

8.1.1 Examples

1. Simplicial sets. (Straight from Theorem 8.1)
2. dgVectk for char.k/ D 0 (Straight from Theorem 8.1)
3. Top (More work, see below.)

8.1.2 Remark

Condition (i) is not satisfied for Top and so we can not directly apply the theorem.
In [33] this point was first cleared up by following [13] and using the fact that all
objects in Top are small with respect to topological inclusions.

Theorem 8.2 Let C be the category of topological spaces with the Quillen model
structure. The category F -OpsC has the structure of a cofibrantly generated model
category in which the forgetful functor to V-SeqC creates fibrations and weak
equivalences.

8.2 Quillen Adjunctions from Morphisms of Feynman
Categories

8.2.1 Adjunction fromMorphisms

We assume C is a closed symmetric monoidal and model category satisfying the
assumptions of Theorem 8.1. Let E and F be Feynman categories and let ˛WE ! F
be a morphism between them. This morphism induces an adjunction

˛�WE-OpsC � F -OpsCW˛�
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where ˛�.A/ WD Aı˛ is the right adjoint and ˛�.B/ WD Lan˛.B/ is the left adjoint.

Lemma 8.3 Suppose ˛R restricted to VF-ModsC ! VE-ModsC preserves fibra-
tions and acyclic fibrations, then the adjunction .˛L; ˛R/ is a Quillen adjunction.

8.3 Example

1. Recall that C and M denote the Feynman categories whose ops are cyclic and
modular operads, respectively, and that there is a morphism iWC ! M by
including �S as genus zero �S;0.

2. This morphism induces an adjunction between cyclic and modular operads

i�WC-OpsC � M-OpsCW i�

and the left adjoint is called the modular envelope of the cyclic operad.
3. The fact that the morphism of Feynman categories is inclusion means that iR

restricted to the underlyingV-modules is given by forgetting, and since fibrations
and weak equivalences are levelwise, iR restricted to the underlyingV-modules
will preserve fibrations and weak equivalences.

4. Thus by the Lemma above this adjunction is a Quillen adjunction.

8.4 Cofibrant Replacement

Theorem 8.4 The Feynman transform of a non-negatively graded dg F -op is
cofibrant.

The double Feynman transform of a non-negatively graded dg F -op in a
quadratic Feynman category is a cofibrant replacement.

8.5 W-construction

8.5.1 Setup

In this section we start with a quadratic Feynman category F.

8.5.2 The Category w.F; Y/, for Y 2 F

Objects The objects are the set
`

n Cn.X;Y/ � Œ0; 1n, where Cn.X;Y/ are chains
of morphisms from X to Y with n degree � 1 maps modulo contraction of
isomorphisms.



430 R.M. Kaufmann

An object in w.F;Y/ will be represented (uniquely up to contraction of isomor-
phisms) by a diagram

X
t1�!
f1

X1
t2�!
f2

X2 ! � � � ! Xn�1
tn�!
fn

Y

where each morphism is of positive degree and where t1; : : : ; tn represents a point
in Œ0; 1n. These numbers will be called weights. Note that in this labeling scheme
isomorphisms are always unweighted.

Morphisms

1. Levelwise commuting isomorphisms which fix Y, i.e.:

2. Simultaneous Sn action.

3. Truncation of 0 weights: morphisms of the form .X1
0! X2 ! � � � ! Y/ 7!

.X2 ! � � � ! Y/.

4. Decomposition of identical weights: morphisms of the form .� � � ! Xi
t!

XiC2 ! : : : / 7! .� � � ! Xi
t! XiC1

t! XiC2 ! : : : / for each (composition
preserving) decomposition of a morphism of degree � 2 into two morphisms
each of degree � 1.

Definition 8.5 Let P 2 F -OpsTop. For Y 2 ob.F / we define

W.P/. Y/ WD colimw.F;Y/P ı s.�/

Theorem 8.6 Let F be a simple Feynman category and let P 2 F -OpsTop be �-
cofibrant. Then W.P/ is a cofibrant replacement for P with respect to the above
model structure on F -OpsTop.

Here “simple” is a technical condition satisfied by all graph examples.

9 Geometry

9.1 Moduli Space Geometry

Although many of the examples up to now have been algebraic or combinatorial in
nature, there are very important and deep links to the geometry of moduli spaces.
We will discuss these briefly.
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9.1.1 Modular Operads

The typical topological example for modular operads are the Deligne–Mumford
compactifications NMgn of Riemann’s moduli space of curves of genus g with n
marked points.

These give rise to chain and homology operads. An important application comes
from enumerative geometry. Gromov–Witten invariants make H�.V/ an algebra
over H�. NMg;n/ [40].

9.1.2 Odd Modular

As explained in [35], the canonical geometry for odd modular operads is given by
NMKSV which are real blowups of NMgn along the boundary divisors [36].
On the topological level one has 1-parameter gluings parameterized by S1. Taking

the full S1 family on chains or homology gives us the structure of an odd modular
operad. That is the gluing operations have degree 1 and in the dual graph, the edges
have degree 1.

9.2 Master Equation and Compactifications

Going back to Sen and Zwiebach [48], a viable string field theory action S is a
solution of the quantumMaster Equation. Rephrasing this one can say “The Master
Equation drives the compactification”, which is one of the mantras of [35].

In particular, the constructions of [36] and [21] give the correct compactification.

9.3 W-construction

In [5] we will prove the fact that the derived modular envelope defined via
the W-construction of the cyclic associative operads is the Kontsevich/Penner
compactificationMcomb

g;n .
We will also give an A1 version of this theorem and a 2-categorical realization

that gives our construction of string topology and Hochschild operations from
Moduli Spaces [27, 28] via the Feynman transform.

10 Bi- and Hopf Algebras

We will give a brief overview of the constructions of [14].
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10.1 Overview

Consider a non-Sigma Feynman category B D Hom.Mor.F /;Z/ .

Product Assume that F is strict monoidal, that is F is strict monoidal, then ˝ is
an associative unital product on B with unit id1F .

Coproduct Assume that F decomposition finite, i.e. that the sum below is finite.
Set

�.�/ D
X

.�0;�1/W�D�1ı�0
�0 ˝ �1 (37)

and �.�/ D 1 if � D idX and 0 else.

Theorem 10.1 ([14]) B together with the structures above is a bi-algebra. Under
certain mild assumptions, a canonical quotient is a Hopf algebra.

Remark 10.2 Now, it is not true that any strict monoidal category with finite
decomposition yields a bi-algebra. Also, if F is a Feynman category, then Fop,
although not necessarily a Feynman category, does yield a bi-algebra.

10.1.1 Examples

The Hopf algebras of Goncharov for multi-zeta values [20] can be obtained in this
way starting with the Joyal dual of the surjections in the augmented simplicial
category. In short, this Hopf algebra structures follows from the fact that simplices
form an operad. In a similar fashion, but using a graded version, we recover a Hopf
algebra of Baues that he defined for double loop spaces [3]. We can also recover
the non-commutative Connes–Kreimer Hopf algebra of planar rooted trees, see e.g.
[12] in this way.

Remark 10.3 This coproduct for any finite decomposition category appeared in [38]
and was picked up later in [22]. We realized with hindsight that the co-product
we first constructed on indecomposables, as suggested to us by Dirk Kreimer, is
equivalent to this coproduct.

10.1.2 Symmetric Version

There is a version for symmetric Feynman categories, but the constructions are more
involved. In this fashion, we can reproduce Connes–Kreimer’s Hopf algebra. There
is a threefold hierarchy. A bialgebra version, a commutative Hopf algebra version
and an “amputated” version, which is actually the algebra considered in [11]. A
similar story holds for the graph versions and in general.
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10.2 Details: Non-commutative Version

We use non-symmetric Feynman categories whose underlying tensor structure is
only monoidal (not symmetric).V˝ is the free monoidal category.

Lemma 10.4 (Key Lemma) The bi-algebra equation holds due to the hereditary
condition (ii).
The proof is a careful check of the diagrams that appear in the bialgebra equation.

For � ı � the sum is over diagrams of the type

(38)

whereˆ D ˆ1 ıˆ0.
When considering .�˝ �/ ı �23 ı .�˝�/ the diagrams are of the type

(39)

where � D �1 ı �0 and  D  1 ı 0. In general, there is no reason for there to be a
bijection of such diagrams, but there is for non-symmetric Feynman categories.

For simplicity, we assume that F is skeletal.

10.3 Hopf Quotient

Even after quotienting out by the isomorphisms, the bi-algebra is usually not
connected. The main obstruction is that there are many identities and that there
are still automorphisms. The main point is that in the skeletal case:

�.idX/ D
X

	2Aut.X/
	 ˝ 	�1 (40)

where here and in the following we assume that if 	 has a one-sided inverse then it
is invertible. This is the case in all examples.
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10.3.1 Almost Connected Feynman Categories

In the skeletal version, consider the ideal generated by C D jAut.X/jŒidX �
jAut.Y/jŒidY  � B, this is closed under �, but not quite a co-ideal. Rescaling �
by 1

jAut.X/j , H D B=C becomes a bi-algebra. We call F almost connected if H is
connected.

Theorem 10.5 For the almost connected version H is a connected bi-algebra and
hence a Hopf-algebra.

10.4 Symmetric/Commutative Version

In the case of a symmetric Feynman category, the bi-algebra equation does not hold
anymore, due to the fact that Aut.X/ ˝ Aut.Y/ � Aut.X ˝ Y/ may be a proper
subgroup due to the commutativity constraints. The typical example is S where
Aut.n/ � Aut.m/ D Sn � Sm while Aut.n C m/ D SnCm. In order to rectify this,
one considers the co-invariants. Since commutativity constraints are isomorphisms
the resulting algebra structure is commutative.

Let Biso the quotient by the ideal defined by the equivalence relation generated
by isomorphism. That is f � g if there are isomorphisms 	; 	 0 such that f D 	 ı
g ı 	 0. This ideal is again closed under co-product. As above one can modify the
co-unit to obtain a bialgebra structure on Biso. Now the ideal generated by C D
hjAut.X/jŒidX�jAut.Y/jŒidY  is a co-ideal andH D B=C becomes a bi-algebra. We
call F almost connected if H is connected.

The main theorem is

Theorem 10.6 If F is almost connected, the coinvariants Biso are a commutative
Hopf algebra.

This allows one to construct Hopf algebras with external legs in the graph
examples. It also explains why the Connes–Kreimer examples are commutative.

10.4.1 Amputated Version

In order to forget the leg structure, aka. amputation, one needs a semi-cosimplicial
structure, i.e. one must be able to forget external legs coherently. This is always
possible by deleting flags in the graph cases. Then there is a colimit, in which all the
external legs can be forgotten. Again, one obtains a Hopf algebra. The example par
excellence is of course, Connes–Kreimer’s Hopf algebra without external legs (e.g.
the original version).
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10.5 Restriction and Generalization of Special Case:
Co-operad with Multiplication

In a sense the above examples were free. One can look at a more general setting
where this is not the case. This is possible in the simple cases of enriched Feynman
categories overSurj. Here the morphisms are operads, andB has the dual co-operad
structure for the one-comma generators. The tensor product ˝ makes B have the
structure of a free algebra over the one-comma generators O.n/ with the co-operad
structure being distributive or multiplicative over ˝. Now one can generalize to a
general co-operad structure with multiplication.

10.5.1 Coproduct for a Cooperad with Multiplication

Theorem 10.7 ([14]) Let LO be a co-operad with compatible associative multipli-
cation. � W LO.n/˝ LO.m/ ! LO.n C m/ in an Abelian symmetric monoidal category
with unit 1. Then B WD L

n
LO.n/ is a (non-unital, non-co-unital) bialgebra, with

multiplication � and comultiplication� given by .I ˝ �/ L� :

(41)

10.5.2 Free Cooperad with Multiplication on a Cooperad

The guiding example is:

LOnc.n/ D
M

k

M

.n1;:::;nk/WP niDn

LO.n1/˝ � � � ˝ LO.nk/

Multiplication is given by � D ˝. This structure coincides with one of the
constructions of a non-connected operad in [35].

The example is the one that is relevant for the three Hopf algebras of Baues,
Goncharov and Connes–Kreimer. It also shows how a cooperad with multiplications
generalizes an enrichment of Fsurj.

This is most apparent in Connes–Kreimer, where the Hopf algebra is not actually
on rooted trees, but rather on forests. The extension of the co-product to a forest is
tacitly given by the bi-algebra equations.
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In the symmetric case, one has to further induce the natural .Sn1 � � � � � Snk / o Sk
action to an Sn action for each summand. The coinvariants constitutingBiso are then
the symmetric products LO.n1/Sn1 ˇ � � � ˇ LO.nk/Snk .

The following is the list of motivating examples:

Hopf algebras (co)operads Feynman category

HGont Inj�;� D Surj� FSurj

HCK Leaf labelled trees FSurj;O

HCK;graphs Graphs Fgraphs

HBaues Injgr�;� FSurj;odd

10.5.3 Grading/Filtration, the q Deformation and Infinitesimal Version

We will only make very short remarks, the details are in [14].
The length of an object in the Feynman category setting is replaced by a depth

filtration. The algebras are then deformations of their associated graded, see [14]. In
the amputated version one has to be more careful with the grading.

Co-operad with multiplication Operad degree � depth

Amputated version Co-radical degree C depth

Taking a slightly different quotient, one can get a non-unital, co-unital bi-algebra
and a q-filtration. Sending q ! 1 recoversH .
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