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a b s t r a c t

We study topological properties of families of Hamiltonians which may contain de-
generate energy levels aka. band crossings. The primary tool are Chern classes, Berry
phases and slicing by surfaces. To analyse the degenerate locus of possibly higher order
band crossings aka. degeneracies, we add the study of local models. These give more
detailed information including that of the local Chern classes and Berry phases. We
then give global constraints for the topological invariants in a systematic fashion. The
global constraints are more strict when incorporating symmetries such as time reversal
symmetries. We also discuss how the results can be used in the study of deformations.
This theory of local models and global constraints is then applied to examples which
include the Gyroid geometry, which exhibits two Weyl points and two triple crossings
and the honeycomb geometry with its two Dirac points.

© 2020 Elsevier B.V. All rights reserved.

0. Introduction

Starting from considerations of families of Hamiltonians, we give geometric and algebraic methods to study band
intersections including multiple crossings; these methods come from differential topology. Double crossings leading to
Dirac and Weyl points have been at the forefront of the investigations in the past few years. Our methods extend beyond
this, to triple and higher intersections. As an example, we analyse a triple intersection, stemming from a real world
material geometry (the Gyroid), and its deformation explicitly. Fabrication of the material — a nanowire network with
the topology of a double gyroid — is described in [27] and numerical solutions to a wave equation in such a network
in [19].

A family of Hamiltonians is a smooth map H : T → Herm(k) where T is a smooth manifold and Herm(k) is the space
f Hermitian k× k matrices. The smoothness is chosen for convenience, many arguments work on the C2 level and some
ven on the topological level, i.e. for continuous families. Such families arise naturally via Bloch theory in condensed
atter systems in Rd with translational symmetry L ⊂ Rd, given a lattice L ≃ Zd. Using Fourier transform, one obtains a

family of Hamiltonians H(k) parameterised by quasi-momenta k which are elements of the d-dimensional torus T = T d.
We always keep this application in mind, but the methods are general.
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There are two natural geometries associated to a family of Hamiltonians, the Eigenvalue and Eigenbundle geome-
try [17]. The Eigenvalue geometry is the cover of the parameter space by the energy levels. That is the cover X → T
where X ⊂ T × Ck is the subspace whose points are (k, spec(H(k))), where spec(H(k)) = {λ1, . . . , λk} is the set of
igenvalues of H(k). Notice, that since H(k) is Hermitian, the Eigenvalues are real and X ⊂ T × Rk. This geometry was
nalysed in the general case in [16]. To give the Eigenbundle geometry, consider the (generalised) Bloch bundle over
: Bl := T × Ck

→ T . A physical state is a smooth section s of the Bloch bundle and the Hilbert space of states is given
y all smooth sections H = ΓC∞ (T ,Bl), with the inner product induced from the standard Hermitian form on the fibres.
(k) acts on the fibre of Bl over k simply as a matrix H(k) : Ck

→ Ck. This allows for a decomposition into Eigenbundles,
which carries relevant information, since although Bl is trivial, its decomposition into Eigenbundles need not be.

Assume that H(k) has a non-degenerate spectrum for each k ∈ T , then the Bloch bundle decomposes into Eigenlineb-
undles Bl =

⨁k
i=1 Li and each of the line bundles can be non-trivial. The non-triviality is measured by the first Chern

lasses c1(Li) and by the Berry phase, as we review below. In general, H(k) may be degenerate, and this more general
ituation is what we will analyse. This analysis was started in [17] and we now add local models and global aspects, such
s symmetries, e.g. time reversal symmetry (TRS) and global topology to the mix. This yields new global constraints and
llows us in examples to completely characterise the Bloch bundle from local information.
For this analysis, we use Chern classes and thus K -theory. The Chern classes can be computed using the Berry

onnection in the momentum space [6,25]. This brings monopole charges and issues of topological stability into the picture
nd allows us to analyse deformations.
The paper is organised as follows: After introducing the setup and reviewing the background, we present the main

uestions about local models and global constraints. In the second section, we define and analyse local models. The
odels which we will call ‘‘of spin type’’ are especially important. The basic building blocks go back to Berry’s original
xamples [6], and Simon’s [25] interpretation in a convenient formulation. In the third section, we review the slicing
echnique for analysing 3d families and add generalisations. We then introduce a new aspect in Section 4, that is global
onstraints. We show what restrictions they entail, especially in the presence of symmetries. This partially answers a
uestion of Berry, namely the singularities alone usually do not determine the Eigenbundle geometry, but they do yield
estrictions. In the presence of symmetries these may actually be enough to fully determine them. This type of analysis
an also be applied to the case of deformations. This leads to the secondary question of stability. The global constraints
llow for complex topologies such as flux lines etc., but these are again restricted by any remaining symmetries. There
re minimal possible local singularities under deformations.
These are realised in the specific examples that we analyse in Section 5, such as the Gyroid and the honeycomb. The

yroid, the graph Hamiltonian for which has been constructed in [14], is particularly interesting because the spectrum
as both double degeneracies (Weyl points) and triple ones. These were found in a previously in [16] and in a different
ontext, discussed below, in [5]. Here, the new results for the Gyroid are as follows:

(1) We give the local models and local Chern charges for both the double and triple degeneracies.
(2) The local data completely determine the global structure.
(3) The double Weyl points drift apart under deformations.
(4) The triple points are of spin type and have local Chern changes −2, 0, 2.
(5) Under deformations which preserve the time reversal symmetry (TRS), the triple points break up into four double

or Weyl points each. This is the minimal possible dissolution of the triple points preserving TRS.

Work in this direction has been done in [5]. The adiabatic quantum transport in systems with holes threaded by flux
ubes gives rise to families of Hamiltonians. One of them is isomorphic for instance to that of the Gyroid. They consider
lobal constraints, but not local models at all points, to obtain jumps/charges of certain summed Chern classes from the
nalysis of the Weyl-points and symmetry considerations. For the Gyroid, this is not quite enough to fix the all the Chern
harges uniquely as our Lemma 5.2 shows. It states that these constraints will leave one integer parameter. To fix this
arameter, one needs to know that the local model is of spin type — which we explicitly show.

. Setup and background

.1. Eigenbundle geometry

We will follow [17]. As in the introduction consider a family of Hamiltonians H : T → Herm(k) and the trivial rank k
vector bundle πBl : Bl = T × Ck

→ T . Let Tdeg be the degenerate locus, i.e. k ∈ Tdeg if and only if H(k) has degenerate
Eigenvalues. We will call these points critical or degenerate. We will further assume that the components of Tdeg are of
at least codim 1. Let T0 = T \ Tdeg the open complement, that is the locus where H is non-degenerate.

The restriction Bl0 of Bl to T0, πBl0 : Bl0 → T0 then splits as a direct sum of line bundles

Bl0 :=

k⨁
i=1

Li (1)

where Li is the bundle of Eigenvectors of the i—the Eigenvalue. These are well defined by ordering the real Eigenvalues
λ < · · · < λ .
1 k
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This line bundle decomposition can usually not be extended to the degenerate locus, where level crossing, that is
crossing of Eigenvalues happens. For the whole space T , we can only decompose

Bl =
⨁

j

Vj (2)

where the Vj are rank rj vector bundles corresponding to the blocks of Eigenvalues that cross each other. That is globally
λ1 ≤ · · · ≤ λr1 < λr1+1 ≤ · · · ≤ λr1+r2 < . . . , where

∑
j rj = k. Alternatively thinking about H as an operator H : H → H

this means that the Eigenbundles correspond to projectors commuting with H .

1.1.1. Charges on the non-degenerate locus
The main topological invariants of the Eigenbundle geometry are the K -theory classes of the line bundles Li, see e.g. [4],

in the K -theory of the non-degenerate locus: [Li] ∈ K (T0), which we call the K-theoretic charges.
To these K -theoretical charges we obtain the more well-known associated Chern classes βi := c1(Li) ∈ H2(T0)

which we will call the cohomological charges, see e.g. [20]. By general theory the total Chern class is given by c(Bl0) =∏
i(1 + βi) ∈ Hev(T0), the even part of the cohomology.
One obtains numerical charges by pairing the cohomology valued Chern classes with homology classes. By means of

hern–Weil theory this is usually implemented by integration of a differential form over a (sub)-manifold of the correct
imension. However, as these charges actually stem from the topological homology/cohomology pairing, which is defined
ver Z, they are integers.

.1.2. Assumption
In order to have this theory available and useable one needs certain ‘‘niceness’’ assumption, namely that Tdeg is

sufficiently nice so that it has a tubular neighbourhood Ndeg whose boundary is a compact oriented manifold, see [17]
or details.1 A particularly nice situation, which is present in some of the examples, but not in general, see [2], is the
ase where the components of Tdeg are such that each component Tc of Tdeg is contained in the interior of a regular
neighbourhood, that is a cell NTc , that is a sub-manifold homoeomorphic to a closed ball of dimension dim(T ), and these
submanifolds do not intersect. In this case T0 is homotopy equivalent to T̄0 = T \ ⨿TcN

int
Tc , where the sum is over the

components of Tdeg and N int
Tc is the open interior of NTc . If T is a compact manifold then so will be T̄0. If T is a compact

manifold, then T̄0 will be a manifold with boundary.
In the case that Tdeg is made up out of a discrete set of points this assumption is satisfied and these submanifolds can

be taken to be balls centred at the degenerate points. For a more general setup see [17]. This assumption is also satisfied
if the components of Tdeg have finitely many contractible components.

Using this assumption, we can equivalently consider the charges for T0 to lie in H∗(T̄0) ≃ H∗(T0) and in K (T̄0) ≃ K (T0).
With this assumption the results we state are not in their most general form, but it relieves us from too much technical
detail. In concrete situations, it is easily checked if the results can be extended.

Remark 1.1. We can also consider the total Chern classes c(Vi) ∈ Hev(T ). If this has useable information depends on the
family. If for instance all bands cross, we only get Bl = V1 which is trivial and hence c(V1) = 1.

Remark 1.2. We have assumed that the Hamiltonians are generically non-degenerate. Technically, it is sufficient to
assume that the ranks of the Eigenbundles are generically constant. In this case, the singular locus is where the rank
jumps up and instead of line bundles over the non-degenerate locus one will have vector bundles Vi and total Chern
classes c(Vi). This is important for the case in which every level is doubly degenerate, such as for instance caused by a
spin symmetry where the Li are replaced with vector bundles Vi of rank 2. We will deal with this case in the future.

Remark 1.3. Notice that the charges are trivial if T0 has vanishing second cohomology (e.g. if T0 is 2-connected). In that
case the Chern classes βi vanish and the line bundles [Li] are trivializable. This is the case in some examples, notably the
honeycomb. Another consequence of this triviality is that the associated points of degeneracy are not topologically stable.
The two-torus or the two-sphere do however have non-vanishing H2 and thus are prime candidates to carry non-trivial
irst Chern classes and hence non-trivial bundles with non-trivial Berry phases.

.1.3. Scalar topological charges
To code this information into measurable numbers, one needs to pair the cohomological charges with homology classes.

n the differentiable setting this corresponds to the integral of the curvature form for any connection over a cycle of the
orrect degree. The set of all such numbers on a set of generators of homology of T0 then determines the cohomological
harges as functions on homology. If we use at least Q coefficients (usually in physics one takes R or C to represent

1 We thank the referee for pointing out that a contractibility assumption for the components would be too strict and is not needed.
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everything by forms and integrals), this in turn completely fixes the line bundles as given by the Chern isomorphism
theorem and the classification theorem for line bundles, see e.g. [12].

For these considerations, it is easier to assume that we are dealing with oriented manifolds. If we furthermore have a
ifferentiable structure, we know that we can evaluate Chern classes by using Chern–Weil theory. E.g. if A is a connection

form for the line bundle, we can represent the first Chern-class by the curvature form Ω = dA +
1
2A ∧ A.

Using other even dimensional homology cycles, we can also extract some information of the corresponding combina-
ions of first Chern classes according to the usual formulae for the full Chern class in terms of (virtual) line bundles; see
.g. [11].

.1.4. Berry phase/connection
Following Berry [6] we can use the connection ABerry provided by adiabatic transport for the line bundles Li. It was

Berry’s insight that this connection is indeed not always trivial and produces the so-called Berry phase as a possible
monodromy. In particular, if C is a closed circuit and |ψ⟩ is a state then adiabatically moving |ψ⟩ around C may introduce
an extra geometric phase eiγ (C). It is important to note that the quantity γ (C) is only defined up to multiples of 2π .

The phase can be computed using the so-called Berry connection and Stokes theorem. For this one considers a surface
whose boundary is C and then computes the integral of the connection over the surface to obtain γ (C), see below for an
example. What is important to point out here, is that the computation does depend on the chosen surface, but only up
to adding multiples of 2π .

Simon [25] noticed that integrating this connection over a closed surface S computes exactly the first Chern class c1(Li)
of the line bundle Li paired with S.

The usual Chern–Weil form for any choice of connection is given by an expression in the curvature for a choice of a
connection [9]. One such choice for a line bundle is the Berry connection. Stokes’ theorem then links the computation
of the Berry phase to the integral of the vector field V given by the curvature form over a bounding surface

∫∫
S VdS =∮

C ABerrydr . This was related [7] to the first Chern class by changing the representation of V using the Bott and Chern
connection and realising that in this form V satisfies 1

2π

∫
S VmdS = c1. These computations are linked to the Chern–Simons

orms Q2l−1 through the fundamental relation that dQ2l−1 = ch2l where ch2l is the degree 2l part of the Chern character [9].
his will be further explored elsewhere.

.2. Geometry of Herm(k)

.2.1. Full family vs. concrete families
Traditionally, the ‘‘generic scenario’’ has been of interest. This is a (generic subset of) the tautological family T =

Herm(k) and H = id : Herm(k) → Herm(k) is simply the identity map. The study of the full family goes back to [22]. As
our analysis deals with general variations, that can be non-generic in the above sense — and sometimes even have to be
due to the presence of extra symmetries — the results about the generic case merely provide expectations which may or
may not hold in the given situation.

The most prominent results on the generic geometry of Herm(k) were already obtained in [22]. Here one can find the
o-dimensions of the strata of degenerate Eigenvalues, basically by a dimension count. A particularly well known fact is
hat generically the locus of degenerate Eigenvalues, that is Eigenvalues of multiplicity > 1, is of codimension 3 [22].
hus 3 is the expected codimension, but in a given variation this may or may not be the actual codimension, and we have
xamples of both types of behaviour. For the real situation one finds generically that the codimension is 2. The analysis
f the geometry of the tautological family was carried further in [3], where a filtration was introduced. Arnold [3] studied
his filtration and that study has been continued in [1]. A newer treatment of the geometry of the space of symmetric
atrices with repeated Eigenvalues can be found in [8], which also contains an interesting connection to random families.

.3. Effective sphere families

For these and other discussions it is convenient to mod out the k2-real-dimensional vector space Herm(k) by
ranslations and dilatations as shifting (adding constant scalar matrices) or scaling (multiplying by non-zero constants)
he spectrum or scaling it does not change the topology of the situation. Modding out by the translations means that
e can restrict to traceless matrices and modding out by dilatations means that after choosing a basis we can scale the
orresponding vectors to be of norm 1, unless we are dealing with the 0 matrix; see below for the case of 2 × 2 matrices.
he quotient space of the space of non-scalar Hermitian matrices under the simultaneous action, which is naturally
dentified with the co-invariants, is then a k2 − 2-dimensional sphere. This sphere bounds a k2 − 1-dimensional ball
o which the family naturally extends. This has a maximally degenerate point at zero. In general, the Hamiltonians on the
phere can also be degenerate. This sphere then has a filtration by pieces Fp consisting of those points where the first p

igenvalues are equal.
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1.3.1. Herm(2)
In the special case of 2 × 2 Hermitian matrices it is well known that the Pauli matrices

σ0 =

(
1 0
0 1

)
, σx =

(
0 1
1 0

)
, σy =

(
0 −i
i 0

)
, σz =

(
1 0
0 −1

)
orm a basis for the 4-dimensional space of Hermitian matrices. The traceless matrices are spanned by σx, σy, σz and are
f the form

x · σ = xσx + yσy + zσz =

(
z x − iy

x + iy −z

)
, (3)

estricting the 22
− 2 = 2 dimensional sphere, restricts x to lie on S2 ⊂ R3, i.e. x2 + y2 + z2 = 1. This family is entirely

on-degenerate. Notice that this S2 is centred around the zero-matrix and the extension of the family to the 3-ball B3 has
n isolated degenerate point at 0. The ball family is the local model for a doubly degenerate point, aka. Weyl point.

.3.2. Herm(3)
In the case of k = 3 the traceless Hermitian matrices are spanned by the 8 Gell–Mann matrices λi, i = 1, . . . , 8.

Modding out by dilatations, one can restrict to an S7 ⊂ R8. Here the centre of the sphere is again at the origin and is a
3-fold degeneracy. The family has 2-fold degeneracies on the sphere. Progress on the full analysis of the family, especially
on the degenerate part S7deg has been made in [21,24] where this is linked to an S4 which naturally supports second Chern
classes.

1.4. Local models

Locally the behaviour near a particular point is given by the family restricted to a regular neighbourhood, that is locally
the families are described by families on a ball. Thus we define a basic local model to be a germ of a diffeomorphism class
of maps Bn

→ Herm(k), where we identify two classes if one is contained in the other by the restriction to a smaller
ball with the same centre. Two germs are equivalent if they result from each other by conjugation by a unitary linear
transformation.

A local model is the direct sum of basic local models. A basic model is called simple if the Bloch bundle does not split
into a direct sum of subbundles.

1.5. Local charges

For each component Tc of Tdeg, we can consider the sub-manifold ∂NTc . In the examples this is homoeomorphic to a
sphere of dimension dim(T ) − 1 and consider the restriction of Qc to it.

We define the local charge of that component to be

QTc :=

∫
∂NTc

i∗(Qc)

where i : ∂NTc → T is the inclusion.
This is of course only interesting if T is odd dimensional and hence ∂NTc are even dimensional spheres. In the even

dimensional case, that is odd dimension of ∂NTc we can still consider Chern–Simons classes and Berry phases.
The charges are invariant under equivalences and homotopies in the appropriate sense.

1.6. Main questions: Local models and global constraints

This immediately begs the following questions, already raised in Berry’s original article [6].

Question 1.4.

(1) Is it possible to classify the local models?
(2) Is it possible to classify the local charges?
(3) How are these constrained by the geometry of the base/family?
(4) How do points/the degenerate locus behave under deformation?

We will address these questions below. The classification is possible in certain cases. I.e. for instance for k = 2 and an
isolated regular singularity. In this case, it is just the family given in Section 1.3.1.

The first will lead us to consider local models and the latter to introduce global restrictions. The surprising fact is that
sometimes these are enough to determine the spectrum. For positive results see Theorem 4.1.

As to the last question. Indeed the first expectation that the isolated critical points behave like monopoles is not quite

correct, as already Berry noted. First, the Chern charge does not depend on the total spin, see Section 2.2 for details, and
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secondly under general deformations the degenerate locus can split, deform and smear out, see below. What is, however,
true is that the local charges have to be preserved, in the sense that if they split or create singularity loci of higher
dimension, the total local charges in the sense of Section 1.5 have to be preserved. Here one has to take NTc large enough
to contain all the components created when deforming the degenerate locus Tc .

1.7. Deformations and topological stability

Having non-vanishing topological charges produces topological stability. If we perturb the Hamiltonian slightly by
adding a small perturbation term λH1 and continuously vary λ starting at 0, then Tdeg and thus T0 does not move much —
for instance as submanifolds of T × R where we keep the base T constant. This follows for instance from the description
of the Eigenvalue geometry using the characteristic map. The Eigenbundles over T also vary continuously and hence so
do their Chern classes. Since these are defined over Z they are actually locally constant, so that all the non-vanishing
charges, scalar, K-theoretic or cohomological, must be preserved. That is, the total local charges will be preserved on T̄0
as long as we cut away enough, that is make NTc large enough.

However, there is no guarantee that the local charges are ‘‘carried’’ by single points and that the number of these is
preserved. We will give a concrete example, where one triple degenerate point decomposes into four double points.
Likewise points could possibly degenerate into lines. This is however not generic. The opposite phenomenon, i.e.
contraction of a dimension 2 or higher locus to a point is certainly possible. All these deformation have to preserve
the local charges. This is why Weyl points are of interest. If there is a non-trivial charge associated to them, they cannot
decay.

2. Local models

2.1. Local models from the eigenvalue geometry

In [16], we proved that in general the fibres over points of Tdeg have singularities pulled back from the singular locus,
aka. the swallowtail of the Ak−1 singularity, and are classified by types (Ak1 , . . . , Akl ) with

∑
j(kj + 1) = k. In particular,

locally the Eigenvalue geometry is pulled back from the unfolding of the Ak−1 singularity under the so-called characteristic
map Ξ : T → Ck−1 of miniversal unfolding M → Ck−1 of the Ak−1 singularities, see loc cit. These are known due to
Grothendieck [10] to be stratified with the strata corresponding to the possibilities to delete vertices (and the incident
edges), whence the classification. Deformation of the family deforms the map Ξ and with it the crossings and Tdeg which
is the inverse image of the swallowtail under Ξ .

What was not stressed in [16] is that for Hamiltonian families (Ak1 , . . . , Akl ) is actually an ordered set, since then
everything is defined over R. It is ordered by the values of the Eigenvalues as discussed in Section 1.1. We will start with
the lowest Eigenvalue first.

For instance, for the Gyroid, for which k = 4 we found two triple crossings with types (A2, A0) and (A0, A2) and two
double Weyl crossings of type (A1, A1).

2.2. A simple local model for the eigenbundle geometry of an isolated n-fold degeneracy on a 3d base

In particular, there are 3-parameter models for all isolated normal singular crossings of n Eigenvalues, that is isolated
An−1 type singularities. For a double crossing this local model is essentially unique, see Corollary 2.4, for higher crossings
there might be other possible models. These were already explored by Berry [6] and can also be found in [25]. In particular,
they exhibit an isolated point in Tdeg with maximal degeneracy and the degeneracy is lifted to first order in each direction,
which is what is called a ‘‘normal singular’’ in [25].

Generically such local models are expected to appear when T is of dimension 3 as the degenerate locus should be of
codimension 3 and hence consist of isolated points.

Conventions: Fix an integer S and let T = R3. Consider the S-dimensional spin representation of su2 that is given
by the collection of matrices S = (Sx, Sy, Sz) which act on CS and satisfy the usual commutator relations [Sx, Sy] = iSz ,
[Sy, Sz] = iSx, [Sz, Sx] = iSy. The possibly half-integer s is defined via S = 2s+1 and is called the spin of the representation.

Notice that Sz is diagonalisable with Eigenvalues Sm : m = −s,−s + 1, . . . , s − 1, s where m is integer or half-integer
depending on whether S is odd or even. Consider the family of traceless Hamiltonians

H(x) := x · S = xSx + ySy + zSz (4)

on R3. This is rotationally symmetric and has only one critical point at 0. It is totally degenerate, that is all 2s + 1 bands
cross. Thus on T0 = R3

\ {0} the family has no critical points and the line bundles Lm,m = −s, . . . , s corresponding
to the Eigenvalues above are well defined over all of T0. If we restrict the family to the homotopic family S2 ⊂ T0, we
get K-theoretic, cohomological, and numerical Chern charges. Once an orientation is chosen, these all carry the same
information since the choice of orientation establishes an isomorphism H2(S2) ≃ Z and the reduced K -theory of S2 is also
identified with Z. One can calculate [6,25] that the Chern charges are∫

S2
c1(Lm) = 2m

Note that this is independent of the value of S. Here the orientation is the usual orientation of S2 ⊂ R3.
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Notice that a reversal of orientation will change the isomorphism sending 1 to −1 and hence flip the sign.
Moreover, according to Berry [6], the Berry phase for the bundle Lm along a closed circuit C is proportional to the

olid angle subtended over a surface S which has C as a boundary. More precisely,

γm(C) = m
∫∫

S
dΩ (5)

where dΩ is the solid angle two-form sin(θ )dφdθ . It is important that
∫
S dΩ depends on the choice of D and is only well

defined up to a change of 4π . In case that C is the equator counterclockwise and D is the upper hemisphere, (5) becomes

γm(C) = m2π (6)

In the case of spin 1
2 this will be ±π . In the 3-band system for spin 1, this will take values −2π, 0, 2π depending on m.

Choosing the lower hemisphere would result in a difference of m4π = 2πc1(m) which is always an integer mod 2π .
It is important to note that ‘‘spin’’ here refers to the particular type of Hamiltonian and does not have to coincide with

physical spin.

2.3. Spin-type models and their charges

Definition 2.1. We say that an isolated point k0 ∈ Tdeg is of spin type (s1, . . . , sl), if it is of singularity type (A2s1 , . . . , A2sl )
and there is a linear isomorphism Lφj for each Akj singularity in the Eigenvalues to first order perturbation theory
Pj[H(k0 + x) − H(k0)]Pj = ajxid + Lφj (x) · S + O(x2) where aj is a vector, S = (Sx, Sy, Sz) is a spin sj representation of
su(2) and Pj is the projector onto the degenerate Eigenspace of the 2sj + 1 fold crossing.

This definition is a bit technical, but practical. Examples for the Gyroid, see below for details, are points of spin type
(0, 1), (1, 0) and ( 12 ,

1
2 ) where 3 of 4 bands cross, or 2 and 2 bands cross.

If we subtracted the trace to be in the case of traceless matrices, then we get a nice equivalent homotopy characteri-
sation.

Theorem 2.2. An isolated point k0 ∈ Tdeg for a 3-dimensional family is of spin type (s1, . . . , sl) if and only if the local
odel of H − Tr(H) at k0 is homotopic, through a homotopy of families with only one isolated critical point, to a direct sum of
amiltonians of the corresponding spin Hamiltonians of the form of Section 2.2. That is, there is a regular closed neighbourhood
of k0 and diffeomorphisms φj : V → B3 such that on V : H(k)− Tr(H(k)) is homotopic to φ1(k) · Ss1 ⊕ · · · ⊕ φl(k) · Ssl via a

homotopy of families only degenerate at 0.

roof. If there are such a diffeomorphisms and a homotopy then expanding PjH(φj(k))Pj to first order, we see that we
ave a family homotopic to spin type where Lφj is equal to the Jacobian of φj.
If the point k0 is of spin type, consider the first order perturbation theory as above. Now using a unitary transform U

o diagonalise H(k0) we have that U†H(k0 + x)U = tr(H(k0 + x)) + H̃ where H̃ = U†
[H(k0) − trH(k0)]U + H̃1(x) + O(x2)

ith H̃1(x) a traceless matrix and
⨁k

j=1 PjH̃1(x)Pj =
⨁k

j=1 Lφj (x)Sj where Pj is the projector onto the degenerate Eigenspace
orresponding to the degenerate Eigenvalues λj. We can now homotope unwanted terms away in three steps. First we
omotope any higher order terms by scaling them to zero. Since to leading order the spin Hamiltonians resolve the
egeneracies choosing a small enough neighbourhood, this can be done through families only degenerate at 0. Second,
e can homotope away the traceless diagonal term U†

[H(k0)− trH(k0)]U by restricting the family to a neighbourhood of
ize ϵ < 1

2
max(|λi−λk|)

max|si|
. The homotopy is simply given by (1− t)U†

[H(k0)− trH(k0)]U+ H̃1. Since we are in a neighbourhood
f radius less than ϵ, the Eigenvalues will not cross during the homotopy and 0 will remain the only non-degenerate point.
n the last step we homotope away all unwanted coefficients of the matrix H̃1 outside the blocks corresponding to the
rojections. This can be done by the homotopy (1− t)[H̃1 −

⨁k
j=1 PjH̃1(x)Pj] +

⨁k
j=1 PjH̃1(x)Pj, since the degeneracies are

esolved to first order by restricting to a smaller neighbourhood if necessary. □

orollary 2.3. If k0 is an isolated point of Tdeg of spin type (s1, . . . , sl), then the local charge of Lm where m = −sj, . . . , sj
orresponding to the given summand j is sign(φj)2m where sign(φj) is the sign of the determinant of Lφj .

The sign sign(det(Lφj )) is independent of m and will be called the chirality.

roof. Since the homotopy preserves the non-degeneracy on the S2 boundary of the ball and the Chern classes are
omotopy invariant, we have that c1(L̃m) = c1(L∗

φj
(Lm)) = L∗

φj
c1(Lm) = sign(det(Lφj ))2m where L̃m corresponds to the

ine bundle of H(k) and Lm is the line bundle of Section 2.2. The last equation comes from the fact that the degree of the
orphism Lφj is given by the sign of the determinant, that is +1 if Lφj is orientation preserving on the ambient R3 and
1 if it is orientation reversing. □
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As a corollary, we obtain a result which can be found in [25]:

Corollary 2.4. In particular, in the case of a double crossing, that is a singularity of the type A1 without any additional
assumption, PH̃1P is a traceless 2 × 2 matrix and hence PH̃1P is always of the form Lφj (x)S and hence of spin type. If the

+ 1-th and nth band cross then the local charges are sign(det(Lφj )).

The following corollary is also very useful.

orollary 2.5. If H(k) is of spin-type (s1, . . . , sl) at k0, then −H(k) is of spin-type (sl, . . . , s1) with the opposite chirality.

roof. The jth Eigenvalue of −H is the l− jth Eigenvalue of Pj[−H(k0 +x)− (−H(k0))]Pj = −Pl−j[H(k0 +x)−H(k0)]Pl−j =

ax + −Lφ(x) · S + O(x2) and the chirality is sign(det(−Lφj )) = −sign(det(Lφj )). □

.3.1. Berry phases in 2d
The above calculations can also be truncated to 2d, that is 2d subfamilies in the 3d family x·S. We say that a 2d isolated

ingular point in Tdeg is of spin type (s1, . . . , sk) if to first order deformation theory the local family is a 2d subfamily of
3d subfamily of spin type (s1, . . . , sk).
The intersection of an embedded 2d subfamily with a Dirac point (i.e. it contains (0, 0, 0)), with a small S2 around

0, 0, 0) will be a non-empty closed curve and the monodromy is given by (6).
A common type is the equatorial subfamily z = 0 that is xSx +ySy. We define the chirality analogously as sign(det(Lφj ))

here now Lφj is a 2 × 2 matrix.

emma 2.6. For an equatorial subfamily the value of γ (C) defined by the upper hemispheres is given by γ (C) = ±2πm, that
s (6), with the additional sign given by the chirality. □

emark 2.7. Notice that the sign of γ (C) depends on the choice of the upper hemisphere as spanning surface, cf.
ection 1.1.4. The physical Berry phase does not depend on this. It is however interesting to see the different chiralities
hat appear in one family, e.g. that of graphene, cf. Section 5.2.

. Topological charges and slicing

To obtain effective global constraints, we recall the technique of slicing, cf. e.g. [17]. The idea is that we can evaluate
he first Chern class of a line bundle with a connection on a 2-dimensional submanifold by pulling back, i.e. restricting, the
ine bundle to the surface and integrating the pulled-back curvature form of the connection over the surface. Explicitly,
f Σ is an oriented compact surface and i : Σ → T0 is an embedding, then

QΣ,i :=

∫
Σ

i∗c1(Li) = ⟨c1(Li), i∗([Σ])⟩ (7)

here ⟨ , ⟩ is the standard pairing between cohomology and homology. Notice that by the results of Thom [26] all second
omology classes are of this type, even over Z and hence representing all cohomology classes in this way, the numerical
harges QΣ,i fix the cohomological charge.

.1. 3-dimensional torus models

For concreteness and with the applications in mind, we will now recall the case where T = T 3 and restrict the charges
o those coming from c1; for a more general discussion, see [17]. We represent T 3 as the cube [0, 2π ]

3 with periodic
oundary conditions 0 ∼ 2π . In particular, we will write −t for 2π − t . We can then consider the embedding of T 2 into
3 at ‘‘height t ’’. That is, the slicing with respect to the z coordinate is defined by

φt (θ1, θ2) = (θ1, θ2, t) (8)

nd the other two coordinate slicings are defined analogously.
Given a family H : T 3

→ Herm(k) we obtain the functions

χi(t) :=

∫
T2
φ∗

t c1(Li), i = 1 · · · k (9)

or all t such that φt (T 2) ⊂ T0, that is, it does not contain any degenerate points.
We now assume that Tdeg is regular, that is its components are finitely many contractible sub-manifolds. This notion is

ess restrictive than the one used in [17]. This implies that the coordinate projections of Tdeg are finitely many points and
ntervals in each S1. We will also assume that they are in generic position with respect to an identification T 3

≃ S1×S1×S1.
his means that all their coordinate projections πk : T 3

→ S1, j = 1, 2, 3 for any two components are non-intersecting.

e can always obtain generic position by using a diffeomorphism homotopic to the identity.
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Notice that in this situation, the slicing only gives a finite set of numbers for each Eigenbundle, since the integral
over the Chern-class is invariant under homotopy and hence the χi are locally constant and constant in the components
S1 \ πk(Tdeg).

In this case the following generalisation of [17, Theorem 3.13] applies:

Theorem 3.1. For a smooth variation with base T 3 and regular Tdeg, which we may assume to be in generic position,
the functions obtained from the slicing method corresponding to all three coordinate projections completely determine the
K-theoretic charges and hence the line bundles Li up to isomorphism.

Proof. The main ingredient in the proof was a CW complex obtained by a grid given choosing points in the components
of the S1 \ πk(Tdeg). In this grid, each 3-cell contains one component of the degenerate locus. Since this is contractible,
in computing the homology, we are reduced to the case of [17, Theorem 3.13]. In particular contracting all the 3-cells to
their boundary, we obtain a CW model for T0 and the theorem follows as in [17]. □

3.2. Jumps and local charges

The locus of discontinuity for each function is a closed set consisting of isolated points and intervals. For each
component Tc ∈ Tdeg we define the jump at Tc as follows. If πk(Tc) is a critical interval Ic = [t1c , t

2
c ] then we set

ji(Tc) = χi(t2c + ϵ) − χi(t1c − ϵ) (10)

If Tc is an isolated point and tc = πk(Tc), then t1c = t2c = tc and we set

ji(tc) := ji(Tc) = χi(tc + ϵ) − χi(tc − ϵ) for small ϵ. (11)

Remark 3.2. The significance of these jumps is as follows: For this, consider a regular neighbourhood NTC of Tc and choose
ϵ/2 be such that πk(N)Tc ⊂ (t1c −ϵ/2, t2c +ϵ/2), where πk is the projection under consideration. Let S2Tc be a boundary part
of this neighbourhood which is diffeomorphic to a sphere and let BTc be the open part which is diffeomorphic to the ball
inside of the sphere. Now consider the 3-manifold Tslice between two slices, that is e.g. {(φ1, φ2, t) : t ∈ [t−ϵ, t+ϵ]}∩T\BTc .
Then since Chern forms are closed: 0 =

∫
Tslice

dc1(Li) = −
∫
S2Tc

c1(Li) +
∫
T2 φ

∗

t2c +ϵ
c1(Li) −

∫
T2 φ

∗

t1c −ϵ
c1(Li) by Stokes and

hence ji(Tc) = χi(t2c + ϵ) − χi(t1c + ϵ) =
∫
S2Tc

c1(Li). In other words the jumps equal the local charges. Thus, if we know the
local models, we have the information about the local charges and hence in the slicing method, we know the jumps.

Remark 3.3. If a slice φt cuts Tdeg in isolated points, we can use Berry phase analysis. If one knows for instance we
have equatorial 2d singularities, one can determine the chiralities and Berry phases around these points. This provides an
alternative approach for the analysis.

4. Global constraints

Fix a system with base T 3 and a slicing in generic position with respect to the projection πk : T 3
→ S1. Let t ∈ S1 be

the slicing parameter and πk(Tdeg) = Sdeg ⊂ S1 be the locus of points such that φt : T 2
→ T 3 hits the critical locus Tcrit .

4.1. Global constraints for the slicing charges

Theorem 4.1 (Part 1). The periodic functions χi defined in Eq. (9) satisfy the following:

(1) They are locally constant on S1 \ Sdeg, moreover they are stepfunctions with integer values.
(2)

∑k
1 χi ≡ 0.

(3) For every component Tc of Tdeg:
∑k

1 ji(Tc) = 0
(4)

∑
Tc∈Tdeg

ji(Tc) = 0, where Tc runs over the isolated critical points and a choice of point for each of the critical intervals.
(5) The jumps at an isolated double crossing are given by ji(tc) = ±σ (the sign is determined by Corollary 2.4) and the

jumps at a multiple crossing of local type x · L are given by jm(tc) = ±m (according to Section 2.2).

roof. The first statement is straightforward, the second follows from the fact that the
⨁

i Li is a trivial line bundle and
mplies (3). The fourth statement is the periodicity of the functions χ and the last statement follows by Stokes for a small
phere around the isolated critical point. □

orollary 4.2. On T 3 for k = 2 there are no families with a single regular critical (aka. Weyl) point. If Tdeg only has regular
solated points, such points appear in pairs with opposite chirality.

roof. If there was only one regular critical point then there would only be one jump by ±1 for the functions χi, i = 1, 2
nd this would violate (3). In order to obtain 0 as the total jump, one has to have as many jumps up as down, which
roves the second statement. □
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4.2. Global constraints from time reversal symmetry

One says that H : T → Hermk(k) has a time reversal symmetry (TRS) if there is a pair consisting of an involution τ
on T and an anti-unitary operator Θ for which Θ2

= ±1 such that ΘH(k)Θ∗
= H(τ (k)), see [23,28]. As an anti-unitary

perator there is a decomposition Θ = CU where C is conjugation and U is unitary.
Typical examples are T = T n, τ (k) = −k, Θ = C , Θ2

= 1 and

H̄(k) = H(−k)

ince H is Hermitian the pull back w.r.t. τ will be the identity on the Eigenvalue cover, in other words, as is well-known,
he full spectrum will be symmetric with respect to the involution, i.e. {λi(t)} = {λi(−t)}. For the Eigenbundle geometry
he symmetry implies that τ ∗(Li) = L̄i is the complex conjugate bundle, and hence has the negative Chern class of Li.

τ ∗c1(Li) = c1(τ ∗Li) = c1(L̄i) = −c1(Li) (12)

.2.1. Example: Global constraints in the 3d torus case
This allows us to add to Theorem 4.1.

heorem 4.1 (Part 2). If H : T 3
→ Herm(k) has TRS given as above and Tdeg is regular and in generic position then:

(6) χi(t) = −χi(−t).
(7) The jumps at t = 0, π must be in 2Z. Hence, if the local model is the spin model, the spin has to be integer. Furthermore

the jumps are symmetric that is they go from −
1
2 ji(0), respectively −

1
2 ji(π ), to

1
2 ji(0), respectively −

1
2 ji(π ). In particular,

if the jump is 0, then χi is 0 as well in a neighbourhood of 0, respectively π .

roof. First notice that τ maps the slice at t to the slice at −t . Now we can compute:

χi(t) =

∫
T2
φ∗

t (c1(Li)) =

∫
T2
τ ∗φ∗

−t (c1(Li)) =

∫
T2
φ∗

−t (τ
∗c1(Li)) =∫

T2
φ∗

−t (−c1(Li)) = −χi(−t)

where we used Eq. (12). By (5 = 6) χi(−ϵ) = −χi(ϵ)i and as π ≡ −π mod 2π , χi(π − ϵ) = −χi(π + ϵ) hence
ji(0) = χ (ϵ) − χi(−ϵ) = 2χi(ϵ) ∈ 2Z and ji(π ) = χi(π + ϵ) − χi(π − ϵ) = 2χi(π + ϵ). □

Corollary 4.3. On a 3d torus family with time reversal symmetry:

(1) One may not have a Weyl point with a coordinate 0 or π . If there is a degenerate point with these coordinates, each
degeneracy must be at least 3. Furthermore, if the singularity is of the type of Section 2.2, then it must be of integer spin.

(2) For any singularity at t there is a singularity with the same jump at −t: ji(tc) = ji(−tc).
(3) The jumps satisfy

∑
0<tc<π 2ji(tc) + ji(0) + ji(π ) = 0.

(4) If there is a singularity with local model of spin type, in the fibre over tc then there is the same local model in the fibre
of −tc .

Proof. So we see that if there is a degenerate point with coordinate 0 or π it has to be at least a triple intersection.
Furthermore, we have ji(−tc) = χi(−tc + ϵ) − χi(−tc − ϵ) = −χi(tc − ϵ) + χi(tc + ϵ) = j(tc). This proves (2), and (3) then
ollows from (1) and (2).

For (4) we assume that there is a local model H(k0 + x) − H(k0) = x · σ = xSx + ySy + zSz at k0 = (t1, t2, tc) then
(−k0 + x) − H(−k0) = H̄(k0 − x) − H̄(k0) = −x · σ̄ = −(xSx − ySy + zSz), where for the last line we have used the
eeman basis for the representation in which Sx, Sz have real coefficients and Sy is purely imaginary. In the general case
he complex conjugation adds an orientation reversal for σ and together with the sign of x → −x the total sign change
s positive. This is consistent with (2). □

For 2d families, we obtain the following version of (4)

orollary 4.4. For a family on T 2 that has TRS k → −k and Θ = C, if there is an equatorial Dirac point at k0, then there is
n equatorial Dirac point of opposite chirality at −k0.

roof. By the same computation as above, we find that if H(k0 + x) − H(k0) = xSx + ySy then H(−k0 + x) − H(−k0) =

(xSx − ySy) = −xSx + ySy and hence the chirality changes as now the sign of x → −x is (−1)2 = 1. □
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Fig. 1. Graphs with spanning trees and root A. The petal graphs Pn , with n loops, the digraphs Dn with n + 1 edges, and the graph G.

5. Specific examples

Although our arguments so far have been totally general, a particular application we had in mind is the application
to the different quantum wire networks given by the honeycomb lattice and the lattices corresponding to the P, D and G
periodic minimal surfaces as discussed in [14–16,18]. In this setup one starts with a periodic graph and a periodic Harper
Hamiltonian and then constructs a family of Hamiltonians from it using Bloch theory. The latter can be encoded into a
finite effective graph which has extra structures of a root and a spanning tree. We will give the effective graphs and the
corresponding Hamiltonians and refer to the papers above for details.

Note that in this setup, there is a possibility to incorporate a magnetic field which makes the geometry non-
commutative. This will be addressed in further research.

5.1. Graph examples

The examples we considered are given by the effective graphs in Fig. 1. The dimension d of the family is the number
of non-spanning tree edges or the first Betti number of the graph. The family is defined on T d and takes values in Herm(k)
where k is the number of vertices. The Hamiltonians are:

(Pn) H(k1, . . . , kn) =
∑n

l=1(e
ikl + e−ikl )

(Dn) H(k1, . . . , kn) =

(
0 1 +

∑n
l=1 e

ikl

1 +
∑n

l=1 e
−ikl 0

)

(G) H(k1, k2, k3) =

⎛⎜⎝0 1 1 1
1 0 eik1 e−ik2

1 e−ik1 0 eik3
1 eik2 e−ik3 0

⎞⎟⎠
The 1’s correspond to the spanning tree edges. All of these examples have TRS: H(−k) = H̄(k). They correspond to the
ollowing lattices.

(1) P2 corresponds to the square lattice.
(2) P3 corresponds to the so-called primitive surface geometry.
(3) Pn in general is the geometry of a Bravais lattice.
(4) D2 corresponds to the honeycomb geometry (2d) which is the geometry of graphene.
(5) D3 which corresponds to the so-called diamond surface (3d).
(6) G corresponds to the Gyroid geometry.

The interesting three-dimensional cases from the point of view of the Eigenbundle geometry are the 3d cases D3 and
, since P3 has trivial Eigenbundle geometry as do all the Pn, where the Bloch bundle is just a trivial line bundle. In all the
xamples, the Bloch bundle does not split into subbundles as all levels cross (or in the Pn case there is only one level).

.2. The honeycomb lattice (D2)

This is a two dimensional family on T 2. Tdeg are the two points (ρ3, ρ̄3), (ρ̄3, ρ3), ρ = ei
2π
3 at which there are the well

known Dirac points of graphene. The local structure is well known and is given linearly by the two-dimensional restriction
z = 0 of Section 1.3.1. Here the transformation matrix of the restricted version of Corollary 2.4 is −1 at (ρ3, ρ̄3) and +1
at (ρ̄3, ρ3) (see Appendix). This allows to compute the Berry phase according to Eq. (5). Notice that the two Dirac points
have opposite chirality as dictated by Corollary 4.4.

As H2(T ) = 0 all the Chern charges vanish and the two Dirac points are in general not topologically stable.
0
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5.3. The diamond (D3)

As computed in [15], Tdeg is given by the three circles on T 3 given by the equations φi = π, φj ≡ φk +π mod 2π with
{i, j, k} = {1, 2, 3}. The singularities are double crossings of type A1 but Tdeg is not discrete and not contractible, hence
not a regular case. Also, Tdeg is not smooth. There are singular points (π, π, 0), (π, 0, π ) and (0, π, π ) where the three
circles touch. One can show that T0 = T 3

\ Tdeg contracts onto a 1-dimensional CW-complex and hence has H2(T0) = 0.
Thus there are no non-vanishing topological charges associated to this geometry and no stability. Furthermore there is no
slicing as any slice will hit Tdeg. Choosing a tubular neighbourhood of the smooth part of Tdeg, we can define a function
of Berry phases. For this, one fixes a point in the smooth part of Tdeg and then chooses normal directions in the induced
orientation. Then the family restricted to the two normal directions will be a restriction of the family Section 1.3.1 and
like in the honeycomb case, computing the determinant of the matrix will yield the value of the Berry phase. By TRS
symmetry for each point k in the smooth part of Tdeg there is the opposite point −k in the smooth part of Tdeg with
opposite chirality.

The singular points of Tdeg are more complicated and will be the subject of further study.

5.4. The gyroid (G)

For the gyroid the degenerate locus Tdeg is of real codimension 3 and consists of 4 points, (0, 0, 0), (π, π, π ), ( π2 ,
π
2 ,

π
2 )

and ( 3π2 ,
3π
2 ,

3π
2 ), as found in [16] and, in a different context, in [5]. The first two singular points correspond to (A0, A2)

and (A2, A0) singularities and the second two correspond to an (A1, A1) singularity, as calculated analytically in [16]. The
latter furnish double Weyl points, i.e. two two-band crossings, while the former yield three-band crossings.

Now Tdeg is the set of the four points above and T0 = T 3
\ Tdeg contracts onto a 2-dim CW complex with non-trivial

second homology [17] and Theorem 3.1 applies. All the charges are topologically stable.
The relevant numerics to compute the functions χi were carried out in [13]. As expected the A1 singularities yield

jumps by ±1, and the A2 points yield jumps by −2, 0, 2 for the three bands that cross. This leads to the conjecture that
the latter points are also of spin type, which we now verify.

Namely, we add the local model description for all of these points and then show that one can use global constraints
to completely describe the Eigenbundle geometry. A discussion of the behaviour of the A2 points under perturbations
preserving some of the symmetry is given below. The prima vista astonishing fact is that each of them splits into four A1
points in compliance with the jumps given above.

5.4.1. Extra symmetry
The Gyroid exhibits an extra symmetry given by H(k + (π, π, π )) = U†(−H(k))U with U = diag(−1, 1, 1, 1). This

means that the spectrum or Eigenvalue cover is invariant under simultaneously translating by (π, π, π ) and flipping the
sign of all Eigenvalues. We see that if there is degeneracy at k there is the same type of degeneracy at k+(π, π, π ). Indeed
this is true for the degeneracies listed above. Moreover by Corollary 2.3, if the degeneracy is of spin type (s1, . . . , sl) at k,
it is of spin type (sl, . . . , s1) at k + (π, π, π ) with opposite chirality. This adds information on the chirality of the double
crossings. Also, if (as we show) the (A2, A0) singularity at zero is of spin type (0, 1) then necessarily we have that the
(A0, A2) singularity at (π, π, π ) is of spin type (1, 0) with opposite chirality.

5.4.2. Local models
For the two points (A1, A1), we know that the local models are given by the usual double crossing x ·σ for spin 1

2 . That
is they are of spin type ( 12 ,

1
2 ), but the chirality remains to be determined. For the A2 singularity there could be a choice

f local models. Using perturbation theory, we computed the local models. The result is:

roposition 5.1. The local models for the Gyroid are as follows.

(1) The point (0, 0, 0) is of spin type (1, 0) with the chirality 1.
(2) The point (π, π, π ) is of spin type (0, 1) with chirality −1.
(3) The point ( π2 ,

π
2 ,

π
2 ) is of spin type ( 12 ,

1
2 ) with chirality (−1, 1).

(4) The point ( 3π2 ,
3π
2 ,

3π
2 ) is of spin type ( 12 ,

1
2 ) with chirality (−1, 1).

roof. The computation for the point (0, 0, 0) is done in detail in Appendix. The extra symmetry then implies the result
or the point (π, π, π ). The computation for the chirality of the point ( π2 ,

π
2 ,

π
2 ) is also in Appendix. It fixes the chirality

f ( 3π2 ,
3π
2 ,

3π
2 ). Alternatively the chiralities of the double crossings follow from the global analysis below. □

A schematic version is given in Fig. 2. From this one can read off the entire functions χi using the arguments of
Lemma 5.2. The results are in Fig. 3. As a preview, we discuss the highest level χ4. Since there is no jump at 0, we
have that χ4 = 0 in the intervals adjacent to zero. At π/2, χ4 jumps up by one, as the chirality of the top Weyl point is
positive. At π it jumps down by two, since the spin 1 chirality is −1 and the top band then jumps by −2. At 3π/2, χ4
umps up by one again, to yield a net jump of 0.
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d

Fig. 2. Schematic of the singularities for the z slicing. Single lines are of type A0 , i.e. no crossing. Crosses indicate A1 Weyl points. These are spin
/2. The A2 triple crossings are of spin 1 type. The chiralities are indicated by arrows. ↑ means +1 and ↓ means −1 chirality. The axes are the

slicing parameter t and the energy E. The latter is only schematic, to indicate the relative positions of the level.

Fig. 3. Values of the functions χi and graphs.

5.4.3. Global analysis
Since the Gyroid has time reversal symmetry, only one of the chiralities needs to be computed. In fact, knowing the

degeneracies are of spin type and their location, the functions χi are determined up to an overall change of sign. This is
fixed by one chirality. The fact that the triple crossings are indeed of spin type is a separate proof, however.

Let t0c = 0, t1c = π/2, t2c = π, t3c = 3π/2 be the critical slice parameters. Pick intermediate parameters 0 = t0c < t1 <
t1c < · · · < t4 < 2π . We may choose t4 = −t1, t3 = −t2.

To illustrate the power of Theorem 4.1, we give the details.

Lemma 5.2. Due to TRS and the extra symmetry, the chiralities of the ( 12 ,
1
2 ) spin type points are fixed by the chirality of one

f the double crossings. Given this chirality, χ1 and χ4 and χ2, χ3 are fixed up to a parameter.
Adding that one of the triple crossings is of spin type, it follows that the other is of spin type as well. The spin type has to

e spin 1 and assuming that it is of spin 1, all the functions χi and chiralities are fixed by fixing one of the chiralities of either
ne of the spin-1 triple crossings or one of the spin- 12 double crossings.

roof. The family is time reversal invariant, so that χi(t1) = −χi(t4) and χi(t2) = −χi(t3). Thus it suffices to know the
i(tk) for i = 1, 2, 4; k = 1, 2 to know the whole step functions χi. The function χ3 can be computed by Theorem 4.1(2).
Assume that j1(π/2) = 1 then by TRS j1(3π/2) = 1 and by the extra symmetry j4(3π/2) = 1, which in turn means by

RS means that j4(π/2) = 1. We could have equally started with any one of these four chiralities. This fixes the following
ata.

χ1(t2) − χ1(t1) = j1(π/2) = +1 χ1(t4) − χ1(t3) = j1(3π/2) = +1
χ2(t2) − χ2(t1) = j2(π/2) = −1 χ2(t4) − χ2(t3) = j2(3π/2) = −1
χ3(t2) − χ3(t1) = j3(π/2) = −1 χ3(t4) − χ3(t3) = j3(3π/2) = −1
χ (t ) − χ (t ) = j (π/2) = +1 χ (t ) − χ (t ) = j (3π/2) = +1
4 2 4 1 4 4 4 4 3 4
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We also know that j4(0) = j1(π ) = 0, since the respective Eigenvalues are not degenerate at these points and hence
y Theorem 4.1 Part II, it follows that χ4(t1) = χ4(t4) = χ1(t2) = χ1(t3) = 0. Thus we know the full functions χ1, χ4. We
lso know that j1(0) = −2 and j4(π ) = −2. Hence if either of the A2 singularity at 0 is of spin type, it is of spin type 1 and
he other has to be of spin type 1 as well due to the extra symmetry. The chirality is also fixed to be +1 at (0, 0, 0) and
1 at (π, π, π ). Furthermore assuming spin type, we see that j2(0) = j3(0) = 0 and again the full functions are fixed. The
xtra condition of j3(0) = j2(π ) = 2 is then automatically satisfied. Knowing the chirality of one of the A2 singularities
ixes the jumps at 0 and π and hence the chirality of the double crossings via Theorem 4.1(2) and TRS symmetry.

On the other hand, if we do not assume that one of the A2 singularities is of spin type, we can still use Theorem 4.1(3)
nd (4) to obtain the equations: j2(0) + j2(π ) = 2, j3(0) + j3(π ) = 2, j2(0) + j3(0) = 2, j2(π ) + j3(π ) = 0. We can then
urther reduce to one parameter, say j3(0) = m ∈ 2Z, then j3(π ) = j2(0) = 2 − m and j2(π ) = m. These automatically
atisfy Theorem 4.1(2).
Changing the chirality flips all signs in the argument. □

roposition 5.3. The functions χi for the Gyroid and the slicing φt : (θ1, θ2) = (θ1, θ2, t) are given by the table in Fig. 3 .

roof. By the Lemma all we need to know if one of the chiralities of Proposition 5.1. □

Also note that the singularity in the fibre over (π/2, π/2, π/2) gives rise to another singularity in the fibre at
−π/2,−π/2,−π/2) by both TRS and the extra symmetry. This forces another singularity somewhere else as the
ollowing computation shows.

.5. Deformation under symmetry

If we deform the Hamiltonian in the system above to resolve the triple crossing into normal double crossing
ingularities, but keep the time reversal symmetry, we know:

(1) There will be no singularities at t = 0, π as these would have to be at least triple crossings.
(2) Isolated double crossings will appear pairwise. For every double crossing at π − t that appears in a small

neighbourhood of π there will be a corresponding double crossing at π + t with opposite jumps.
(3) If all the double crossings are between t∗2 and t∗3 = −t∗2 , then the total jumps between t∗2 and t∗3 are by 2, 0,−2.
(4) For χi to jump by two, the corresponding Eigenvalue will have to cross two times with the same sign.
(5) If χi jumps by 1 at some point, by time reversal symmetry, it jumps a second time by 1.

Looking at these constraints, we see that the minimal resolution will have to have 4 double crossings and this is borne
ut by the numerics [13]. More precisely, if band 4 crosses with 3 and has a jump of −1 at t∗2 < π − s1 < π then due to
ime reversal symmetry they will cross again at π + s1 with another jump of −1 and thus have a net jump of −2 for the
and 4 from t∗2 to t∗3 as needed. Likewise, if the bands 2 and 3 cross at t∗2 < π − s2 < π with a jump of band 2 by 1 in
he Chern number, then there will be a second crossing with the same jump at π + s2 and these two will add up to a net
ump by 2 for band 2. There is no further crossing needed as the band 3 will have a total jump of 2 − 2 = 0.

What is not determined is if s1 ≥ s2 or s1 ≤ s2. In fact the order of s1 and s2 may well be different for different
eformations; equality is not generic.
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ppendix. Calculations

In this appendix, we give some of the calculations.



R.M. Kaufmann, S. Khlebnikov and B. Wehefritz–Kaufmann / Journal of Geometry and Physics 158 (2020) 103892 15

a

A.1. Honeycomb/graphene

We expand(
0 1 + eik1 + eik2

1 + e−ik1 + e−ik2 0

)
at k0 = ( 2π3 ,−

2π
3 ) and obtain

H(k0 + x) =

(
0 0
0 0

)
+

(
0 −

√
3(x−y)−i(x+y)

2

−

√
3(x−y)+i(x+y)

2 0

)
+ O(x2)

Comparing with (3) and keeping in mind that S =
1
2σ, we can read off the transformation a = −

√
3(x − y), b = x + y

which has negative determinant and chirality. This is indeed equatorial Dirac, since the diagonal entries are 0.
Expanding at k0 = (− 2π

3 ,
2π
3 ) yields

H(k0 + x) =

(
0 0
0 0

)
+

(
0

√
3(x−y)−i(x+y)

2√
3(x−y)+i(x+y)

2 0

)
+ O(x2)

nd the transformation a =
√
3(x − y), b = x + y which has positive determinant and chirality.

A.2. Gyroid

A.2.1. Triple crossings
We compute that the A2 singularity at (0, 0, 0) for the Gyroid is of spin 1 type and has positive chirality.
To compute the local model we used first order perturbation theory and expanded H near k0 = (0, 0, 0) as H(k0+x) =

H(k0) + H1(x) + O(x2). This yields

H(0, 0, 0) =

⎛⎜⎝0 1 1 1
1 0 1 1
1 1 0 1
1 1 1 0

⎞⎟⎠ H1(x) =

⎛⎜⎝0 0 0 0
0 0 ix −iy
0 −ix 0 iz
0 iy −iz 0

⎞⎟⎠
Since there is a triple degeneracy for the Eigenvalue −1, we have to transform to a unitary basis to do the projection. The
transformation matrix to diagonal form diag(3,−1,−1,−1) of H(0, 0, 0) is

U =

⎛⎜⎜⎜⎜⎜⎝
1
2

1
√
2

0 1
2

1
2 −

1
√
2

0 1
2

1
2 0 1

√
2

−
1
2

1
2 0 −

1
√
2

−
1
2

⎞⎟⎟⎟⎟⎟⎠
We then have the projection to the −1 Eigenspace PU†H1(x)UP where P = diag(0, 1, 1, 1). The resulting block of the
matrix acting in the subspace with eigenvalue −1 is⎛⎜⎜⎝

0 −
i
2 (x + y) i

2
√
2
(x − y)

i
2 (x + y) 0 −

i
2
√
2
(x + y + 2x)

−
i

2
√
2
(x − y) i

2
√
2
(x + y + 2x) 0

⎞⎟⎟⎠
Setting a =

1
2
√
2
(x + y + 2z) =

1
2
√
2
(x − y), c =

1
2 (x + y) the matrix takes the form

i

( 0 −a b
a 0 −c

−b c 0

)
= aiLx + biLy + ciLz = (a, b, c) · S̃

where Lx, ly, Lz are the standard generators for so(3) and S̃ is the corresponding spin representation. This is not in the
standard form, but for the chirality, we only need to determine the sign of the transformation T : (x, y, z) → (a, b, c)

sign(det(T )) = sign(

⏐⏐⏐⏐⏐⏐⏐⏐
1

2
√
2

1
2
√
2

1
2

1
2
√
2

−
1

2
√
2

0
1
2

1
2 0

⏐⏐⏐⏐⏐⏐⏐⏐) = sign(
1
4
) = +1
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A.2.2. Weyl points
At the point (π/2, π/2, π/2) the matrices are

H(
π

2
,
π

2
,
π

2
) =

⎛⎜⎝0 1 1 1
1 0 i −i
1 −i 0 i
1 i −i 0

⎞⎟⎠ H1(x) =

⎛⎜⎝0 0 0 0
0 0 −x −y
0 x 0 −z
0 y z 0

⎞⎟⎠
he transformation matrix is

U =

⎛⎜⎜⎜⎜⎜⎝
1
6 (−3 − i

√
3) −

1
√
6

1
6 (3 − i

√
3) 1

√
6

1
6 (3i +

√
3) −

i
√
6

1
6 (−3i +

√
3) i

√
6

0 1
√
2

0 1
√
2

1
√
3

i
√
6

1
√
3

−
i

√
6

⎞⎟⎟⎟⎟⎟⎠
his yields the following 2 × 2 matrices for the Eigenspaces −

√
3.(

−
y
3

−
√
3x−

√
3y−2

√
3z+i(3x+y)

6
√
2

−
√
3x−

√
3y−2

√
3z−i(3x+y)

6
√
2

)

For the transformation a =
−x−y−2z

√
6

, b =
3x+y
3
√
2
, c = −

2y
3 this becomes 1

2

(
c a − ib

a + ib c

)
= aSx+bSy+cSz which yields

he chirality −1. For Eigenspace
√
3 the 2 × 2 matrix is the complex conjugate of the matrix above and the transformation

s accordingly a =
−x−y−2z

√
6

, b = −
3x+y
3
√
2
, c = −

2y
3 which yields the opposite chirality 1.
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