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We review the relationship of moduli spaces of surfaces to operads and deformations
of algebras. We start by recalling basic facts about operads, examples of them, and
their relations to algebras. In particular, we regard the Arc operad as well as several
suboperads which can be thought of as cacti operads. These play an essential role
in the string topology of Chas and Sullivan. It is recalled that spineless cacti and
cactl homotopy equivalent to the little dises and framed little discs operads featured
prominently in deformation theory. Furthermore, we analyze operations on operads
and use the results to relate the spineless cacti operad to the renormalization Hopf
algebra of Connes and Kreimer. Finally, we give a cell decomposition for spineless
cacti and show that the cellular chains operate on the Hochschild complex of

an associative algebra. This gives a solution to Deligne's conjecture about the
Hochschild complex and furthermore directly relates the Gerstenhaber structures

on the loop space and the Hochschild complex.

1. Introduction

In recent years, there has been a dynamic and vibrant interplay between
physics and mathematics which is now spreading to biology. As a result of
this exchange the ideas around topological and conformal field theory as
well as string theory have found a mathematical manifestation in construc-
tions which use the geometry of moduli spaces to describe deformations of
algebras. In this setting, there are two main questions: which geometries
govern specific deformations; and given specific geometries, what kind of
algebraic objects do they represent? The deformations are usually given in
terms of an expansion in one or more deformation parameters and the co-
efficients of these expansions can be viewed as multilinear functions whose
relations are of particular interest. For their study operads provide the
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right tool being at once an organizing principle, a theoretical framework
and tertium comparationis.

For persons not already inclined towards operads one could say operads
are very much like Steenrod operations in the following sense. They both
have three aspects: 1) There is an algebraic description. Pertaining to the
Steenrod operations this is the fact that they form an algebra. For operads
the counterpart is the definition of an operad in terms of its constituents and
operations. 2) They can be viewed as universal operations, i.e. regarding the
Steenrod algebra as operations on cohomology and for operads considering
the classes of algebras over this operad. 3) There are realization in concrete
models.

In passing from geometry to algebra one usually uses geometric moduli
to produce and describe the structure of deformations. For the physically
inclined one could state that one starts out with an interpretation of Feyn-
man rules. These can usually be translated into a graph theoretical picture
together with a geometrical description such as a stratification of a moduli
space indexed by these graphs. This would be a safe place to start for a
critical mathematician. Appealing once more to physics; the idea of the
path integral, like a usual integral, also encompasses an additivity property
in the domain. This translates to glueing or pasting operations which have
been known in mathematics as operads. Combining these two ingredients
with the idea of strings one is mathematically led to consider operads of
surfaces as we discuss below.

The basic example is that of topological field theory where graphs actu-
ally represent surfaces with labelled boundaries and the glueing operation
is the glueing along the boundaries - this is discussed below in detail. The
relation to string theory is the apparent interpretation that the boundaries
are strings and as they move they sweep out the surface. To make this
interpretation rigorous, one has to introduce orientations and look at the
cobordism category which allows to speak of inputs and outputs. With
these inputs and outputs a surface looks like a thickened Feynman graph.
These surfaces are naturally the geometric part of the picture; the algebra
comes in form of a functor to the category of vector spaces as in Atiyah’s!
version of topological field theory.

Here the geometric fact that any surface can be decomposed into pairs
of pants, cylinders and discs is translated into the fact that on the vector
space there should be an associative commutative multiplication, a non-
degenerate bilinear form and an identity for the multiplication.

Starting with this topological picture one can put more structure on the
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surfaces which will in turn give more operations on the algebraic side. This
leads to deformations or augmentation of the basic structure of an associa-
tive commutative algebra. One can think for instance of surfaces together
with conformal structures. In the algebro—geometric setting one is led in
this case either to consider the open moduli spaces M, , of n—punctured
surfaces of genus zero or their Deligne-Mumford compactification M g 1IN
the latter case, one arrives at Gromov—Witten invariants®’ or quantum co-
homology which is, as the name states, a deformation of the commutative
associative algebra. If one looks at the algebras that are governed by My ,,
then one arrives at so—called gravity algebras or Lie,, in the genus 0 case
which are deformations of Lie algebras. The fact that Lie algebras instead
of commutative algebras appear has a very nice interpretation in terms of
operads, since the operad H,(Mo.) is Koszul dual to H,(Mg»)'®?9 just
as the operads for commutative and Lie algebras are Koszul duals of each
other.

An augmentation can be made by adding for instance G-bundles to
the picture for a finite group G. In this case one arrives at G-equivariant
theories®” which are well suited to study so-called "stringy aspects” of
global quotients such as symmetric products?®. Adding conformal structure
one arrives at the G-equivariant setting of GW-invariants2®. For general
orbifolds the corresponding invariant structures are contained in'3,

Staying on the differential-topological or analytic side one can keep
the boundaries and add punctures for instance. The natural spaces to
study are then Teichmiiller spaces and their moduli space quotients. One
especially promising aspect of this approach is the natural appearance of
graphs in this theory. They arise in the theory of Strebel differentials
as well as in Penner’s work? 4%, More recently another beautiful view
of the topology of movements of strings in terms of operations on loop
spaces has been put forth and developed®24°. This or some aspects of
the theory also have an interpretation in terms of surfaces decorated by
weighted ares which again form an operad, the are operad®?. In the genus
zero case this algebra of string topology is captured by the cacti operad
of Voronov*? which is a suboperad of the arc operad3¥??. The algebraic
structure that appears is that of a Gerstenhaber Batalin—-Vilkovisky algebra
up to homotopy (basically this is an odd Poisson algebra whose bracket is

the odd commutator of a differential that is not a derivation, but a degree
two differential operator; see §4.12 for the definitions). This structure is
closely related to the gravity algebra structure!® as is the space defining

the arc operad to the open moduli space®?.
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For the second type of question — what kind of geometry governs spe-
cific deformations - the following two problems are key examples: deforma-
tion quantization and Deligne’s conjecture about the Hochschild cochain
complex. It has surprisingly turned out that they are closely related32:8,
The solving of the deformation quantization®? was done through geome-
try in terms of integrals over configuration spaces. Deligne’s conjecture,
on the other hand, is directly a question about the geometry governing
deformations. It was realized by Gerstenhaber'® that deformations of the
multiplication of the product in an associative algebra into an associative
star product are governed by the Hochschild complex of this algebra. He
proved that there is a surprising structure, namely that of an odd Poisson
algebra, on the homology level. This structure is actually derived from
the cochain level. Since the operad governing Gerstenhaber algebras is the
homology of a geometric object, that of little discs, it was conceivable that
this correspondence could be lifted to the chain level. This is the con-
tent of Deligne’s conjecture which we prove below. This conjecture has
been proven in various ways3?:48:3950.36 (for a full review see?®) by basi-
cally choosing adequate chain models. The virtue of our approach lies in
its directness and that it also establishes the surprising and intriguing fact
that the Gerstenhaber structure on the loop spaces and the Gerstenhaber
structure on the Hochschild cochains have a common natural interpretation
in terms of surfaces. The formal similarities of the Gerstenhaber structure
on the arc operad or rather of the suboperad of spineless cacti?® with the
Gerstenhaber structure on the Hochschild cochains were first observed by
Gerstenhaber himself and have given rise to our new proof of Deligne’s
conjecture in terms of spineless cacti®® which is reviewed below. In fact,
spineless cacti are homotopy equivalent to the little discs operad and here
is a cell decomposition of the spineless cacti operad indexed by trees which
directly give the operation in the Hochschild cochain complex. Further-
more, the spineless cacti can be thought of as surfaces with weighted arcs
that satisfy certain natural restrictions and as such can be seen as the sub-
structure of moduli space giving rise to the bracket operations. This fits
also well with a path integral description of deformation quantization by®.
On the other hand, cacti and spineless cacti*®*® are the operads which cor-
respond to the “string topology”® and provide the BV and Gerstenhaber
structure, respectively. A realization of the Gerstenhaber structure in this
setting is given by the Goldman bracket®. In another direction, we show
that the top—dimensional cells of the cell decomposition which provides the
solution to Deligne’s conjecture is related to the pre-Lie operad and to the
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renormalization Hopf algebra of Connes and Kreimer!!. It is thus tempting
to view the Arc operad®! as an underlying “string mechanism” for all of
these structures.

The paper is organized as follows:

After fixing some notation in section 2, we introduce and discuss several
types of trees in section 3. Trees are the language in which operads are
most easily spoken about. In the fourth section, we review the notion of an
operad and give many examples of them. These examples include the ones
of functions and trees, which are archetype of operads. We also introduce
all the operads necessary for our discussion of Deligne’s conjecture. Section
5 is devoted to a review of the construction of the Arc operad®® which can
be seen as a combinatorial version of the operad of moduli spaces of genus
g curves with n punctures. In a sense this operad describes hyperbolic field
theory. Besides a direct relation discussed in the same volume by Penner,
abstractly there is a relation due to the BV nature of the operad which
we also review as well as giving a string interpretation for the arc operad.
The section 6 deals with the cacti operads?®??. We show how they are
naturally sub—operads of the arc operad thus relating the arc operad to
the string topology®. In section 7, we give a natural cell decomposition for
spineless cacti which is the basis of our solution of Deligne’s conjecture.
Paragraph 8 is an intermezzo about universal operations for operads, if one
wishes meta-operads. This explains the natural appearance of insertion
operads in terms of foliage operators and leads to the definition of pre-
Lie, Lie and Hopf algebras for operads. In section 9 we give our proof of
Deligne’s conjecture based on our cell model of the little discs operad which
is given by the cellular chain operad of the natural cell decomposition for
the spineless cacti operad or better the chain operad of normalized spineless
cacti. We do this by providing two natural ways of letting these chains
operate on the Hochschild cochains of an associative algebra. The first
operation is of the same type as the operation of the chains of the arc
operad on themselves self and is related to string topology. The second
realization uses the fact that there is a geometric interpretation of the
Hochschild cochains as chains of the spineless cacti operad. This view is
implemented by the foliage operator introduced in the previous section.
Section 10 contains the application of our results of section 8 and 7 to
the operad of pre-Lie algebras. Putting together the previous results we
obtain the renormalization Hopf-algebra of Connes and Kreimer as the
symmetric group coinvariants of the Hopf algebra of an operad of cells.
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The cells are the symmetric top—dimensional cells of our cell decomposition
of spineless cacti suitably shifted. Furthermore section 10 contains a proof
of a generalization of Deligne’s conjecture to operad algebras and mentions
the generalization of it to cyclic cohomology of certain types of algebras.
In the last section §11 we speculate on the A, generalization of our results
as well as on possible relations of the arc formalism to other “gquantum
phenomena” and additional subjects.
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2. Notation

We denote by S,, the permutation group on n letters and by C,, the cyclic
group of order n. Also, let k be a field.

We will tacitly assume that everything is in the super setting, that is
Z/2Z graded. For all formulas, unless otherwise indicated, the standard
rules of sign3® apply.

3. Trees

Trees are a very useful organizational tool when dealing with operads. The
different types of operads we study give rise to different types of trees. In
the following, we introduce the types of trees we will need for our discussion.

Tongring, Nils, and Penner, R. C., eds. Woods Hole Mathematics : Perspectives in Mathematics and Physics. River Edge, NJ, USA: World Scientific Publishing Co., 2004. ProQuest ebrary. Web. 19 September 2015.
Copyright © 2004. World Scientific Publishing Co.. All rights reserved.



139

3.1. General Definitions

Definition 3.1.1. A graph is a one dimensional simplicial-complex. We
call the 0—dimensional simplices vertices and denote them by V(I'). The
1-dimensional simplices are called edges and denoted by E(I').

A tree is an isomorphism class of a connected simply—connected graph.

A rooted tree is a tree with a marked vertex.

We call a rooted tree planted if the root vertex lies on a unique edge.
In this case we call this unique edge the “root edge”.

We usually depict the root by a small square, denote the root vertex by
root(7) € V(1) and the root edge by e.oo () € E(T).

Notice that an edge e of a graph or a tree is gives rise to a set of vertices
d(e) = {vi,v2}. In a tree the set de = {v;,v2} uniquely determines the
edge e. An ordered edge is an edge together with an orientation of that
edge. On a tree to give an orientation to the edge e given by the boundary
vertices {v1,v2} is equivalent to giving an order (vq,v2). If we are dealing
with trees, we will denote the edge corresponding to {vy, va} just by {vi,v2}
and likewise the ordered edge corresponding to (vq,v2) just by (v1,vs).

An edge that has v as a vertex is called an adjacent edge to v.

An edge path on a graph I' is an alternating sequence of vertices and
edges v1,€1,v2, €2,Vs,... with v; € V(I'),e; € E(I'), s.t. d(e;) = {vi, vit1 }-

Definition 3.1.2. Given a tree 7 and an edge e € E(7) one obtains a new
tree by contracting the edge e. We denote this tree by con(r,e).

More formally let e = {v;,v2}, and consider the equivalence relation ~
on the set of vertices which is given by Vw € V{7) : w ~ w and v; ~ v,.
Then con(r,€) is the tree whose vertices are V(7)/ ~ and whose edges are
E(7)\{e}/ ~ where ~' denotes the induced equivalence relation {w;, wz } ~
{wy,wy} if wy ~" w) and wy ~ wh or wo ~ wi and wy ~ wj.

3.2. Structures on Rooted Trees

A rooted tree has a natural orientation, toward the root. In fact, for each
vertex there is a unique shortest edge path to the root and thus for a
rooted tree 7 with root vertex root € V(7) we can define the function
N : V(1) \ {root} — V(7) by the rule that

N (v) = the next vertex on unique path to the root starting at v

This gives each edge {vy,v;} with v = N(v;) the orientation (vy, N(v;)).
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We call the set {{w,v)|lw € N~'(v)} the set of incoming edges of v and
denote it by € (v) and call the edge (v, N(v)) the outgoing edge of v.

Definition 3.2.1. We define the valence of v to be |[v| := |[N~!(v)|. The
set of leaves Vieay of a tree is defined to be the set of vertices which have
valence zero, i.e. a vertex is a leaf if the number of incoming edges is zero.
We also call the outgoing edges of the leaves the leaf edges and denote the
collection of all leaf edges by Ejeas.

CAVEAT: Our |v| is the number of incoming edges, which is the number
of adjacent edges minus one for all edges except the root edge where |v| is
indeed the number of adjacent edges.

Remark 3.2.2. For a rooted tree there is also a bijection which we denote
by out : V(1) \ {root} — E(7). It associates to each vertex except the root
its unique outgoing edge v — (v, N(v)).

Definition 3.2.3. An edge e’ is said to be above e if e lies on the edge
path to the root starting at the vertex of ¢’ which is farther from the root.
The branch corresponding to an edge e is subtree of made out of the all
edges which lie above e (this includes e) and their vertices. We denote the
resulting tree by br(e).

3.3. Planar Trees

Definition 3.3.1. A planar tree is a pair (7,p) of a tree T together with a
so—called pinning p which is a cyclic ordering of each of the sets given by
the adjacent edges to a fixed vertex.

3.4. Structures on Planar Trees

A planar tree can be embedded in the plane in such a way that the induced
cyclic order from the natural orientation of the plane and the cyclic order
of the pinning coincide.

The set of all pinnings of a fixed tree is finite and is a principal homo-
geneous set for the group

S(7) = Xvev(r)Spy
where each factor acts §),| by permutations on the set of cyclic orders of
the edges adjacent to v. This action is given by symmetric group action
permuting the |v| + 1 edges of v modded out by the subgroup of cyclic
permutations which act trivially on the cyclic orders Sy = Sjy141/Cjoj41.

d Penner, R. C., eds. Woods Hole Mathematics : Perspectives in Mathematics and Physics. River Edge, NJ, USA: World Scientific Publishing Co., 2004. ProQuest ebrary. Web. 19 September 2015.

orld Scientific Publishing Co.. All rights reserved.



141

3.5. Planted Planar Trees

Given a rooted planar tree there is a linear order at each vertex except
for the root. This order is given by the cyclic order and designating the
outgoing edge as the smallest element. The root vertex has only a cyclic
order, though.

On a planar planted tree there is a linear order at all of the vertices,
since the root now has only one incoming edge and no outgoing one.

Furthermore, on such a tree there is a path which passes through all the
edges exactly twice -once in each direction- by starting at the root going
along the root edge and at each vertex continuing on the next edge in the
cyclic order and finally terminating in the root vertex. We call this path
the outside path.

By omitting recurring elements this yields a linear order <(™?) starting
with the root edge on the set V(7) I E(7). This order induces an order on
the set of vertices V' (1), on the set of all edges Eg*r), as well as a linear order
for all the vertices incident to the vertex v <4 "’ whose smallest element is
the outgoing edge. We omit the superscript for <) if it is clear from the

context.

3.6. Labelled Trees

Definition 3.6.1. For a finite set S an S labelling for a tree is an injective
map L : § — V(7). An S labelling of a tree yields a decomposition into
disjoint subsets of V(7) = V, I V,, with V; = L(S). For a planted rooted
tree, we demand that the root is not labelled: root € V,,.

An n-labelled tree is a tree labelled by # := {1,...,n}. For such a tree
we call v; := L(i).

A fully labelled tree 7 is a tree such that Vi = V(7).

A leaf labelled tree 7 is a labelled tree in which exactly the leaves are
labelled V| = Vieay.

3.7. Black and White Trees

Definition 3.7.1. A black and white graph (b/w graph) 7 is a graph
together with a function color : V(7) — {0,1}.

We call the set Vi, (7) := color (0) the set of white vertices and call
the set V3(7) := color~!(1) the set of black vertices.

By a bipartite b/w tree we understand a b/w tree whose edges only
connect vertices of different colors.
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An S labelled b/w tree is a b/w tree in which exactly the white vertices
are labelled, i.e. Vi =V, and V,, = V}.

For a rooted tree we call the set of black leaves the tails.

A rooted b/w tree is said to be without tails, if all the leaves are white.

A rooted b/w tree is said to be stable if there are no black vertices of
valence 1.

A rooted b/w tree is said to be fully labelled, if all vertices except for
the root and the tails are white and labelled.

Definition 3.7.2. For a black and white bi—partite tree, we define the set
of white edges E,,(T) to be the edges (v;, N(v;)) with N(v;) € V,, and call
the elements white edges and likewise we define E}y with elements called
black edges, so that there is a partition F(7) = E\y(7) I Ex(7).

Notation 3.7.3. For a planar planted b/w tree, we understand the adjec-
tive bipartite to signify the following attributes: both of the vertices of the
root edge are black, i.e. root and the vertex N ~1(root) is black and the tree
after iteratively contracting tails is bipartite otherwise. By iterative con-
traction of tails, we mean that the operation of contracting the tail edges
is repeated until there are no tail edges left. The root edge is considered to
be a black edge. Also in the presence of tail, all non-white tail edges are
considered to be black.

Definition 3.7.4. For a planar planted 7 b/w bi-partite tree we under-
stand by the branch of e = (b, N(b), b € V,(7) to be the planar planted
bi-partite rooted tree which given by the branch of e where the color of
N (b) is changed to black and this black vertex is the root. In the case that
the tree to which e is labelled the branch of e is the tree which is labelled
by the set of labels of its white edges — we stress that this does not include
the root NV(b). If the tree 7 is labelled then the tree br(e) for any e € E(7)
is a labelled tree with the labelling induced by that of . Notice that by
definition the root of br(e} will be unlabelled.

3.8. Notation I

N.B. A tree can have several of the attributes mentioned above; for instance,
we will look at bipartite planar planted rooted trees. To fix the set of
trees, we will consider the following notation. We denote by 7 the set
of all trees and use sub and superscripts to indicate the restrictions. The
superscript r, pp, nt will mean rooted and planar planted, without tails while
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the subscripts b/w, bp, st will mean black and white, bi-partite, and stable,
where bi-partite and stable insinuate that the tree is also b/w. E.g.
Tr The set of all rooted trees
7% The set of planar planted b/w trees
’I;’f The set of planar planted bipartite trees
Furthermore we use the superscripts fl and Il for fully labelled and leaf
labelled trees. E.g.
T The set of all rooted leaf labelled trees
We furthermore use the notation that 7 (n) denotes the n-labelled trees
and adding the sub and superscripts denotes the n-labelled trees of that
particular type conforming with the restrictions above for the labelling.
Likewise 7(S) for a set S are the S labelled trees conforming with the
restrictions above for the labelling. E.g.
’.?E}’:ﬂ(n} The set of planar planted b/w trees with n white vertices

which are labelled by the set {1,...,n}.

3.9. Notation IT

Often we wish to look at the free Abelian groups or free vector spaces
generated by the sets of trees. We could introduce the notation F'ree(7, Z)
and Free(T,k) with suitable super and subscripts, for the free Abelian
groups or vector spaces generated by the appropriate trees. In the case
that there is no risk of confusion, we will just denote these freely generated
objects again by 7 with suitable sub and superscripts to avoid cluttered
notation. If we define a map on the level of trees it induces a map on the
level of free Abelian groups and also on the k vector spaces. Likewise by
tensoring with ¥ a map on the level of free Abelian groups induces a map
on the level of vector spaces. Again we will mostly denote these maps in
the same way.

3.10. Notation IIT

If we will be dealing with operads of trees, we will consider the collection
of the 7(n) with the appropriate sub and superscripts. Again to avoid
cluttered notation when dealing with operads, we also denote the whole
collection of the 7 (n) just by 7 with the appropriate sub and superscripts.

3.11. The Map cppin:T" — T,

There is a map from planted trees to rooted trees given by contracting the
root edge. This map actually is a bijection between planted and rooted
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trees. The inverse map is given by adding one additional vertex which is
designated to be the new root and introducing an edge from the new root
to the old root. We call this map plant.

Also, there is a map pin from the free Abelian group of planted trees to
that of planted planar trees given by.

pin(r)= Y (r.p)

p € Pinnings(r)

Finally there is a map from planted planar trees to planted—planar bi-
partite trees. We call this map bp. It is given as follows. First color all
vertices white except for the root vertex which is colored black, then insert
a black vertex into every edge.

In total we obtain a map

eppin ‘= bpopincplant : T" — T@P

that plants, pins and colors and expands the tree in a bipartite way.

Using the map ecppin, we will view 77 as a subgroup of ’Jﬁ:ﬁ The image
of 77 coincides with the set of invariants of the actions S{7). We will call
such an invariant combination a symmetric tree.

Remark 3.11.1. ’I_‘he inclusion above extends to an inclusion of the free
Abelian group of fully labelled rooted trees to labelled bi-partite planted
planar trees: cppin : T"f!(n) — Tb’f(n}.

3.12. The Map st : T;V — TT

We define a map from the free groups of stable b/w planted planar trees
to the free group of bi-partite b/w planted planar trees in the following
way: First, we set to zero any tree which has black vertices whose valence
is greater than two. Then, we contract all edges which join two black
vertices. And lastly, we insert a black vertex into each edge joining two
white vertices. We call this map st.

Notice that st., preserves the condition of having no tails and induces
a map on the level of labelled trees.

This nomenclature is chosen since this map in a certain precise sense
forgets the trivial A, structure of an associative algebra in which all higher
multiplications are zero.

4. Operads

In this section we briefly review the notion of an operad and give the main
examples of operads for the algebras we will be considering.
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First let us fix a symmetric monoidal category (C,®). We will use fol-
lowing candidates Set, 7 op, Chain, Vecty, — the categories of finite sets with
disjoint union, topological spaces with Cartesian products, the category of
chain complexes of Abelian groups with tensor product over Z and the cat-

egory of chain complexes of vector spaces over a field k together with tensor
product.

Operads have been defined in many places?®. The pure definition seems
at first difficult, but the example below 4.4 is paradigmatic for the defini-
tion, and the uninitiated reader might want to start there. The cognizant
reader, however, might want to skip ahead.

4.1. Operads

Definition 4.1.1. An operad in C is a collection of objects @ := {O(n)
O(n) € C,n > 1} together with an S, action on O(n) and maps

0; : O(m)®O0(n) - O(m +n—1),i € {1,...m} (4.1)

which are associative and S,—-equivariant and an element id € O(1) that
satisfies for all op,, € O(n),1 € {1,...,n}

0;(0pn,id) = oy(id, opn) = opx
i) Associativity: for opi € O(k),op; € O(l) and op}, € O(m)
r =
(opk ©j opyr.) Oiem—10p;) 1< j5<i
(opk o 0py) 05 0P = X 0Pk ©i (0P} ©j—i+1 OPm ) fi<j<i+l
{opk oi—i10p))ojop,  Hitl<]

ii) Equivariance: opm € O(m) and op, € O(n)
~ Im(0pm) 0 0 (0Pn) = Om 0 07(0Pm Og, (i) OPn)
where o, 0; 0. € Sy 4n-1 is the block or iterated permutation
(1,2,...,i—L(@,...,m)i+1...,n)—
on(1,2,...,i—1,00 (1',...,m'),i+1...,n) (4.2)

induces on (1”,...,(m +n — 1)") where
J LEysg=1
(j—i+1) i<j<i+n-1
1—n it+n<jsmitn-—1

= ff

J
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That is the permutation which permutes the j” with 1 < 7 <
i + n — 1 according to o, and then permutes the all of the j”
according to oy, treating the previous j"” as a block in the position
i"i

As an example of a block permutation let’s regard (123) o (12) this is

the permutation
1324 . 1234\ (1234
3241 1324/ \3241

We call the operads in Set, T op, Chain, Vecty combinatorial, topological
operads, chain operads and linear operads, respectively. We also call O(n)
the n—th component of O.

Remark 4.1.2. Both the three different cases for associativity and the
block permutation can be naturally understood in the examples of functions
and trees.

Definition 4.1.3. A morphism of two operads , @’ in the same monoidal
category is a collection of morphisms from O(n) — O’(n) which respect all
the structures, i.e. respect the glueings and are S, equivariant. Such a
morphism is also called an operadic morphism.

A suboperad is an injective morphism of operads. In this case, we call
O a suboperad of O'.

4.2. Induced Operads

As we mentioned before, the categories we are interested in are
Set, Top,Chain and Vect;. Now there is the singular homology functor
H,. : Top — Vecty which given a topological operad yields a linear op-
erad. Using the functor of singular chains C, : Top — Chain gives a map
from topological operads to chain complexes and finally taking homology
H, : Chain — Vecty of a chain complex yields a functor from chain operads
to linear operads.

For the intermediate level, the chain level, there might be other op-
erad structures depending on the choice of model for the chains which is
compatible with the operadic compositions.

Given a CW complex one can try to define an operad structure on the
level of CC, of cellular chains, and given a triangulated space one can
consider the simplicial chains C2. In these cases one has to additionally
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check that the compositions on the chains are indeed (a sum) of chains to
obtain an acceptable model.

There is also a functor of F : Set +— Chain which associates the free
Abelian group to a set, however, usually there are some signs that appear
in geometric situations coming from different orientations. In a given case,
there might also be a candidate of a possible non—trivial differential.

4.3. The Fundamenial FExzamples

There are two fundamental examples which help to explain the notion of
an operad. If one wishes, an operad is the abstraction of the algebraic
properties of these examples. They are the operad of functions and the
operad of leaf labelled trees.

4.4, The Operad of Funciions

Fix a set X and regard Funct(n) := Map(X™"™,X). The S, action is the
action induced by permutation of the variables:

ﬂ'(f]{il:l,. . -mIﬂ) == f{Iﬂ'fl}m A :II-CI'(‘R-})

and the maps o; are defined to be the substitution maps

{fﬂig)[i‘h v 3m+n—1) i f[zh “o -Ei-hg(zh v :-’*—’1;+n-1), Zidny e 93m+n—1}

This map is the following substitution: say f is a function of the vari-
ables z; and g is a function of the variables y; then setting =; = g(y1,...,9yn)
yields

F(®1yme s B )oig(Ws e esn) = T (ZLyer oo Bi 1y G (Y1 oo v Yy Biddy v 5 Tim )
= (foi9)(21,. 1 Zmtn-1)
with
1, 1<j<i—1
zj =S yj—iy1 1<j<i+n-1 (4.3)
Zj-n 1+n<ji<m+n-—1

The S,, equivariance means that when first applying a fixed permutation
or € Sy to the z; and a fixed permutation oy € S,,; to the y; and then
composing, there is a permutation o, of the z; which has the same effect,
ie.
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ﬂ_:l:(f} D ﬂ'y(g} = 0,.(f Oa. (i) g)

The permutation which can be constructed from this condition is in fact
unique and is exactly the block permutation ¢ o; oy for the general case.

The associativity translates to the fact that if one does two substitutions
the order in which the substitutions are performed does not matter. Notice
that this gives the three cases in the general definition. The first and the
third case correspond to the substitutions in which two of the wvariable
T, say z; and z; of the function f are substituted by functions g; and g»
respectively. The first case corresponds to a substitution in which where i <
j and the third to the case ¢ > j. The second case corresponds to a nested
substitution for three functions f, g, h. The two sides of the equation being
either first substituting g into f and then substituting h into the outcome
of this substitution or first substituting h into g and then substituting the
outcome of this substitution into f.

4.5. Rooted Leaf Labelled Trees

Another useful primordial example is that of rooted trees with labelled
leaves T,

The n—th component of this operad are rooted trees with n labelled
leaves. The S, action on the n-th component is given by permuting the
labels.

The operation of grafting defines the compositions. The composition
T 0; 7' is defined to be the rooted tree obtained by grafting the tree 7’ to
the vertex v; of r.

To graft two rooted leaf labelled trees 7 and 7' at the vertex v; of 7
identify the root of 7/ with the vertex v;. The root of the tree is the image
of the root of 7. We label the leaves of the composition analogously to the
example 4.4 in equation (4.3). The S, equivariance then follows naturally.

An example of grafting is as depicted in figure 1.

The condition of associativity which is met can be rephrased as stating,
that the result of several graftings does not depend on the order in which
they are performed. There are two basic situations for associativity which
are depicted in figure 2. They correspond to the first and third case, and
the second case.

Remark 4.5.1. The grafting procedure still makes sense for planar trees
with labelled leaves, by keeping the linear order at the grafted vertex.
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Bimii i \§

Figure 1. Example of grafting two trees

I 11 111 IV

Figure 2. The first type of associativity for gluing is depicted in 1. II shows the result
of either order of gluing. The second type of associativity is depicted in III. The result
of either order of gluing for this case is depicted in IV.

Definition 4.5.2. In the case of planar planted trees, we fix by convention
that for planted planar trees 7 o; 7’ denotes the planted planar tree in which
after the grafting the image of the root edge of 7/ is contracted.

An example of his procedure is as depicted in figure 3.

Definition 4.5.3. In the case of planar planted bi-partite trees, the graft-
ing operation o; for v; a leaf is defined to be the grafting operation for planar
planted trees followed by the contraction of the image of the outgoing edge
of v;.

An example of his procedure is as depicted in figure 4. Notice that at the
moment, since we only defined how to glue for leaves, this is only a partial
operad structure (cf. §4.10.5 ); the full operad structure is explained in §4.7.
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o

Figure 3. Grafting two planted planar trees

@ 0y = con{con( e)e') = ®
L L
| n

Figure 4. Crafting two bi-partite planted planar trees

4.6, Bordered Surfaces and Corollas

We can also consider bordered topological surfaces with or without punc-
tures and genus. Here the space Z(n) is the space of homeomorphism
classes of bordered surfaces (¥,8%) whose boundary is homeomorphic
to the disjoint union of n + 1 circles which are labelled by 0,...,n:
0% ~homeo ut’=ﬂ....,n5§-

The operad structure is defined via glueing of surfaces with boundary
along their boundaries. l.e. £ o; &’ is the surface obtained by glueing the
boundary 0 of £’ to the boundary i of ¥ as depicted in Figure 5. The S,
action is given by permuting the labels, and the labelling after the grafting
is again defined analogously to equation (4.3). This guarantees the S,
equivariance and the associativity.

Another way to graphically encode the same operad is to represent each
surface by a tree which has a root vertex and n labelled leaves. Such a tree
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v

Figure 5. Example of grafting two surfaces

is called a (labelled) corolla.

The operad structure comes from glueing corollas T,7" and then con-
tracting the edge, (root(7'),v;). The §,, action is by permutation the labels
and the labelling of the composition is again defined according to (4.3).

Figure 6. Example of grafting two corollas

In order to make the two pictures meet, we plant the corolla. This
planted corolla then has one internal vertex representing the surface, a
root which represents the boundary 0 and leaves representing the other

boundaries. In this picture, we can view the surface as a thickening of the
(planted) corolla.

4,7. Tree Insertion Operads

Lately, another type of operad of trees has appeared”®’ where the glueings
are not restricted to the leaves. This means that there is a grafting pro-
cedure into inner vertices as well. The natural origin of these operads is
discussed in detail section 8.

We will need the following variant of an insertion operad structure®’. It
is defined on the collection of free Abelian groups 'I;’f (n) that is n-labelled
rooted planar planted bipartite trees. Recall that this means that there are
n white vertices which are labelled from 1 to n.

The description in words is as follows: there are three steps. First
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cut off the branches corresponding to the incoming edges of v;. Notice that
these branches have a linear order according to the linear order of the edges
adjacent to v;. Second graft 7’ as a planar planted tree onto the remainder
of 7 at the vertex v; which is now a leaf. This grafting is in the sense of
bi—partite planar planted trees. Lastly sum over the possibilities to graft
the cut off branches onto the white vertices of the resulting planar tree
which before the grafting belonged to 7’. Since we are dealing with planted
planar trees, the grafting entails a choice of the linear order at the vertices
at which we graft after the grafting. We only sum over those choices in
which the order of the branches given by the linear order at v; is respected
by the grafting procedure. I.e. the branches after grafting appear in the
same order on the grafted tree as they did in 7.

An example of such an insertion is depicted in figure T

To make this definition precise:

Definition 4.7.1. Given 7 € 7'"(m) and 7’ € T/”(n), we define the tree

r

# g = y (TgrP(gr)) € TP (m +n — 1)
(gr:N—Yv;)=Vu(r'),p(gr))

where

(1) gr is a bijection.

(2) Tgr is the tree whose vertices are V(7 o; 7') := (Vo \ {w:}) L (Vi) \
{root(7'), N~ !(root(r’)}) and the following edges: the root edge of
7/ and the outgoing edge of v; are deleted, all edges not incident to v;
or N=(root(1’)) are kept, the edges (w, N ~!(root(r'))) are replaced
by edges (w, N(v;)). The order of the edges at N(v;) is given by
first enumerating the edges incident to N(v;) which came before
the edge (vi, N(v;)), then the edges (w, N(v;)) according to the
order of incidence of (w, N~!(root(7'))) at N~ (root(7') and lastly
the rest of the edges incident to N(v;) which came after the edge
((v;), N(v;)). This is precisely the grafting of 7/ onto the tree 7 with
cutoff branches at v;. Finally the incoming edges of v; are connected
according to gr, i.e. give rise to edges (v, gr(v)) for v € N~ (v;).

(3) p(gr) is a pinning of 7,, and

(4) the 7 on ¥ indicates that the sum is over all compatible pairs of
a bijection gr and a pinning p(gr) that preserve the linear order.
Here compatibility is the following: Let <P{97) be the linear order
induced by the pinning p(gr). We call gr and p(gr) compatible if
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the linear order on the edges 7' as well as for the edges of 7 that
are kept is respected and e; = (v;,v;) < ex = (vk,v;) in 7 implies
that (v;, gr(u)) <PY7) (vg, gr(vg)) in the linear order <P} of 7,,.

4.8. Signs

As discussed later on, if the trees have a geometrical interpretation, in terms
of cells of a complex, then it is necessary to introduce signs
J
o7 = ¥ + (741, P(g7))
(gr:N—1(vi)—=Vw(r")p(gr))

into the concatenations, which are dictated by the orientations of the cells.
One such consistent choice of sign is provided as follows: we order the white
edges of 7 and ¢’ according to the linear order of the respective trees. Now
the white edges of 7o; 7’ are correspond exactly to the union of white edges
of 7 and 7. We now define the sign to be the sign of the shuffle which shuffles
the edges of 7' into their position, i.e. the shuffle from E,(7) I E,(7) to
Ey (71 o; 7') where we regard E,, as ordered. There are also other natural
choices as discussed in §7.7.

Remark 4.8.1. With the above compositions 7,2""™ is a suboperad of 7,77

5 4
3 4 ; 3
5~ 0 3 3 4 3 4
5
2 9 % = & 3¢ @ + L 3 L3 I
1 1 | 1 I 1 1
% ¢ 4 H

Figure 7. Example of the insertion of a bi—partite planted planar tree

4.9. Other Tree Insertion Operads and Compatibilities

There are two tree insertion operads structures already present in the lit-

erature on rooted trees 7™f! 7 and, historically the first, on planar planted
stable b/w trees without tails :?;’;’:;“‘“* .

In the gluing for 77 one omits mention to the order and in the case of
‘I;f,f;”’m one also allows glueing to the images of the black vertices of 7'.
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Also in the first case the basic grafting of trees is used (no contractions)
while in the second case the grafting for planted trees is used, i.e. the image
of the root edge is contracted, but not the outgoing edge of v;.

The signs for the first gluing are all plus” and in the second gluing are
dictated by a chain interpretation®® see also below.

Remark 4.9.1. The operad structure defined above restricted to 7,>>™
is compatible with those of 7™/! and 'J?ﬂ‘_,”'m under the maps cppin and
Stoc.

In 7.7, signs for the operad are defined by giving a cell interpretation.
The result is that there is an orientation for top—dimensional cells corre-
sponding to a choice of signs which makes eppin into an operadic map and
an orientation of cells which fixes the signs in such a way that st is an

operadic map, see §10.3 and §9.9.

There are topological versions of this type of insertion glueing??34:2% as

explained in §5 and §6.

4.10. Variations of Operads

There are some variations of the structure of operads which we will need.

Remark 4.10.1. One can also consider operads as collections O(n) start-
ing at n = 0.

Definition 4.10.2. If the requirement of having an identity id omitted the
resulting structure is called a non—unital operad. Omitting the §,, action
and the §, equivariance yields the structure of a non-X operad.

It is clear that when considering operads one can consider indexing by
arbitrary sets instead.
We will also need the following weakening of the structure of an operad:

Definition 4.10.3. ?° A quasi-operad is an operad where associativity
need not hold.

Remark 4.10.4. If a quasi—operad in the topological category is homotopy
associative then its homology has the structure of an operad. In certain
cases, like the ones we will consider, the structure of an operad already
exists on the level of a particular chain model.

Definition 4.10.5. Lastly in a partial operad the concatenations need not
all be defined on the whole components O(n), but when they are defined
the axioms hold.
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Definition 4.10.6. A cyclic operad is an operad together with an action
of S;+1 on each O(n) where S,4; acts on the set {0,1,...,n} extending
the action of S, on {1,...,n} and additionally satisfying the following
compatibility. Let * denote the action of the cycle (012...n) € S,.1 then
for a € O(n)

(@on b)* = (=1)2%p* o, o* (4.4)
where we denoted the possible Z/27Z degree of an element a by |a|.

The additional axiom means that the root is not distinguished any more.

Examples are the ¥(n) and the operad of rooted trees with grafting on
leaves and also the operads M, ., My, and Arc (see below). In the operad
2(n) the cyclic nature is inherent since there is no topological distinction
between the boundary components.

An example illustrating the equation (4.4) using leaf labelled trees to-
gether with a labelling of the root by 0 is given in figure 8

-1 n n n+l
n-1
* . = & * » - L
{ 1 n D]'I .] = { I } = 2
‘ m n+m-—1 0 n+m-|
1} 0

n
{ 1

1l n n+l
" * m
( >I< ; “1{1‘%4;] g * o | y, EY'X'
1 m 0
0 0 1 I 1 0 !

D=+ =

Figure 8. An illustration of the equation (4.4)

4.11. Algebras Over Operads

If we take the example 4.4 to be linear functions of a fixed vector space
V' onto itself, we obtain the linear operad Homy with Homy(n) :=
Homyg_15, (V" V)

Definition 4.11.1. An algebra V over a linear operad Q is a vector space
V over k together with an operadic map O — Homy .

The idea of the definition is that each element of O(n) defines a n-ary
multilinear operation on V. The Ur-operation one has in mind is an algebra
multiplication V&2 — V.
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Definition 4.11.2. An algebra over a cyclic operad O is vector space V
together with a symmetric non-degenerate bilinear form (, ) and a map of
operads ¢ : O — Homy s.t.

{Uﬂi ‘i"{opﬂ}(t}la . rvﬂ]} — {Uﬂ'r ¢[Gp:1}(vﬂ'l Uly«viy vﬂ-l)}
for op,, € O(n).

Remark 4.11.3. The concept of an algebra over a cyclic operad illustrates
the idea of a cyclic operad. The prime example being Homy. Now if V
has a non—degenerate bi-linear form then Homy(n) = Vet g V* = yen+l,
This isomorphism makes the action of S,, ;1 perspicuous. Sometimes this is
stated as that S,,+; also permutes the symbol of the funetion.

As an example Frobenius algebras —that is associative, commutative
algebras with a non-degenerate bi-linear pairing, which is invariant with
respect to the pairing (a, bc) = (ab, c)— are algebras over the cyclic operad
¥(n) where the S, action permutes all labels 0,1,...,n.

4.12. Operads Classifying Algebras

More examples of operads come from operads classifying algebras; i.e. op-
erads s.t. each algebra over them is of a certain type —like associative com-
mutative etc— and vice-versa each algebra of the given type is indeed an
algebra over this operad.

4.13. The Operad for Commutative Algebras

The operad COM of associative, commutative algebras over a field k is
given by

Com(n) := k as the trivial S, module

With glueing maps given by the identification k ®x k ~ k.

It is easily seen that this operad coincides with the operad £(n) or that
of corollas if one takes their k-linear span.

For an algebra over this operad the operation for 1 € k = Com(2)
defines a map V®? — V : v; @ vy + v; - v which has to be commutative
since it is Sz invariant. Furthermore, it is associative from glueing two
two—corollas in the two possible different ways to obtain the three-corolla.

The element 1 € k = Com(n) represented by the n—corolla is necessarily
themap V" - Vit @ - @Up Uy » oo v, which is uniquely defined
since the algebra is associative and the multiplication is independent of the
order due to the §,, invariance.
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4.14. The Operad for Associative Algebras
The operad ASSOC of associative algebras over a field k is given by

Assoc(n) := The regular representation of §,,

with glueing maps given by composition of permutations as in the axiom
of 8,, equivariance of 4.1.1.

It is easily seen that this operad coincides with planar corollas.

An algebra over this operad has two multiplications - and -°? coming
from ASSOC(2). The multiplication - is associative and the planar n—
corollas corresponding to the basis element e, of the regular representation
of Sy, represent the maps v; ® - ® vy, = V(1) * -+ - * Vg(n)

This operad is the same as the natural one for planar planted corollas.

4.15. The Operad for Gerstenhaber Algebras

Definition 4.15.1. A Gerstenhaber algebra A is a graded vector space to-
gether with two operations, a graded commutative and associative product
- of degree 0, a bracket { e } of degree 1 (which is a Lie graded bracket on
LA, the suspension of A sometimes also called an odd Lie-bracket) such
that the bracket is odd Poisson for the multiplication -.

More precisely: if we denote the degree of z € A by |z| and by |sz| =
|z| + 1 (the degree of z in £.A), then the following equations hold:

(z-y) = (-)Fly . &
T (yz)=(x-y)z
{zoy} = —(-1)*I¥{y ez}
{zo{yez}} = {{zey}ez}+(—1) ¥ {ye{zez}}
(zoy-2} = {zey}-z+ (-1)"WWy. {zez}.

The penultimate equation is sometimes called odd Jacobi and the last
equation is the odd Poisson property. The idea is that e is of degree 1. We
will actually see later on that e can be interpreted geometrically as a one
dimensional simplex.

Definition 4.15.2. The little discs operad Dy is the operad given by
D;(n) = {configurations of n discs labelled from 1 to n which are em-
bedded into the unit disc of R?} together with the glueing described below

and the §,, action by permuting the labels.
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Let us call the unit disc the outer disc. The glueing o, is defined by scaling
the second configuration by a homothety so that the diameter of the outer
disc coincides with the diameter of the i—th disc of the first configuration
and then glueing in the scaled second configuration into the i-th disc of the
first configuration. This is done by identifying the scaled outer disc of the
second configuration and the i-th disc of the first configuration and erasing
the identified boundary.

G- )

scale to fit

insertion w/ identified border

Figure 9. The composition maps for little discs

The following proposition is well known?4

Proposition 4.15.3. (Cohen)Any Gerstenhaber algebra is an algebra over
the homology of the little discs operad and vice versa.

4.16. The Operad for Batalin—Vilkovisky (BV) Algebras

Definition 4.16.1. A Batalin—Vilkovisky (BV) algebra is an associative
super—commutative algebra A together with an operator A of degree 1
that satisfies
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A% =0
A(abe) = A(ab)c + (=1)1%laA(be) + (=1)1**1¥bA (ac) — A(a)be
—(=1)'elgA(b)c — (—1)!**PlabA(c)
Proposition 4.16.2. For any BV-algebra (A, A) define
{aeb} = (=1)1*A(ab) — (-=1)*I(A(a))b - al (b) (4.5)
Then (A,{#*}) is a Gerstenhaber algebra.
We call a triple (A, { ® }, A) a GBV-algebraif (4, A) isa BV algebra and

“{e}: A® A — A satisfies the equation (4.5)”. By the above proposition
(A, {e}) is a Gerstenhaber algebra.

Definition 4.16.3. The framed little discs operad fDj is the operad given
by fDs(n) := {configurations of n discs labelled from 1 to n which are
embedded into the unit disc of R? together with an orientation (i.e. an
angle # € [0,2n]) of each of the n discs} together with the permutation
action of S, on the labels and the glueing o; which is given by first rotating
the second configuration by the angle 8, then scaling the configuration and
finally inserting it.

Proposition 4.16.4. (Getzler) Any BV algebra is an algebra over the ho-
mology of the framed little discs operad and wvice versa.

4.17. The Pre-Lie Operad

Definition 4.17.1. (Gerstenhaber) A pre-Lie algebra is a graded vector
space V together with a bilinear operation * that satisfies

(zxy)xz—zx(yxz)=(—D¥IE((ex2) %y — 2% (2x7))
Proposition 4.17.2. (Gerstenhaber) Define
{aob}:=axb— (—1)Uel+D(EI+1)p 4 g (4.6)
Then (V,{e}) is an odd Lie algebra.

In the case of no signs the operad which defines pre-Lie algebras is ac-
tually isomorphic to an insertion operad of trees. It is the operad structure
on 774! discussed in 4.7.

Proposition 4.17.3. (Chapoton-Livernet)” Any pre-Lie algebra is an al-
gebra over the operad of labelled rooted trees T™' and vice versa.
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To keep the signs is more tricky, but by using a cell interpreta-
tion in terms of the symmetric top-dimensional cells of spineless cacti
(CCi°P(Cact!))® we are able to identify the operad for graded pre-Lie al-
gebras as an operad of trees see Theorem 10.2.3.

Proposition 4.17.4. Any graded pre-Lie algebra is an algebra over the
operad of rooted trees T™I! with a grading the choice of signs Nat (see 7.7)

and vice versa. More precisely any graded pre-Lie algebra is an algebra
over the operad (CCLP (Cact!))3

Remark 4.17.5. We summed up the results of the previous sections in
the table 4.17

Operad Algebras

COM commutative algebras
ASSOC associative algebras
Trife pre-Lie algebras
(CC:P(Cact!))® graded pre-Lie algebras
H,(little discs) Gerstenhaber algebras
H, (framed little discs) | BV algebras

Remark 4.17.6. It is interesting to point out, that the pre-Lie structure
essentially lives on the chain level, while the Gerstenhaber structure only
lives on the homology level. This is the case, since the relation for the
associator does hold on the chain level, while the derivation properties
involve homotopies.

4.18. Operads of Surfaces with Extra Structure

Starting with the operad of topological surfaces with boundary ¥(n) one can
endow the surfaces with extra structures and then take care to glue these
extra structures. Essentially this means that one studies moduli spaces of
surfaces.

4.19. Operads of Modult Spaces of Curves

(Going over to an algebraic point of view, one replaces boundaries by punc-
tures and considers the following moduli spaces.

Tongring, Nils, and Penner, R. C., eds. Woods Hole Mathematics : Perspectives in Mathematics and Physics. River Edge, NJ, USA: World Scientific Publishing Co., 2004. ProQuest ebrary. Web. 19 September 2015.
Copyright © 2004. World Scientific Publishing Co.. All rights reserved.



161

The Deligne-Mumford compactifications M, ,, of the moduli spaces of
curves of genus ¢ with n marked points form an operad. The glueing is
essentially glueing of two curves at two chosen marked points. If one allows
self- glueing one obtains a so—called modular operad??. The theory of
Gromov-Witten invariants yields the statement that the cohomology of a
smooth variety is an algebra over the modular operad # *{ﬂ-:fgln).

The spaces My, form a suboperad (not modular) and the cohomology
of a smooth variety as an algebra over H.(Mj ,,) is usually called quantum
cohomology.

One can also consider the open moduli spaces M, » and these also form
a modular operad??. The algebras over the suboperad H,(Mj ) are called
gravity algebras. The relationship between H,(Mp ) and H, (Mg ) is that
they are Koszul dual to each other as quadratic operads!®.

4.20. Arc Operads

Staying in the topological realm of surfaces with borders, we will be in-
terested in the extra structure of adding arcs to the surface, which can be

viewed as a version of hyperbolic field theory®* and the next section.

5. The Arc Operad
5.1. The space

There is an operad based on bordered surfaces with arcs projectively
weighted by non-negative real numbers®*, which is an extension of the
bordered surface operad. This operad is called the Arc operad and we will
briefly recall its definition® here.

We fix a surface of genus g with r punctures and n + 1 boundary com-
ponents that are labelled from 0 to n and call it F' = F; . ,. We also fix
a window which is a closed proper subset W; C 8;F, for each boundary
component J; F.,

Definition 5.1.1. An essential arc in F' is an embedded path @ in F' whose
endpoints lie among the windows, where we demand that a is not isotopic
rel endpoints to a path lying in F. Two arcs are said to be parallel if
there is an isotopy between them which fixes each d; — W; pointwise (and
fixes each W; setwise) for 1 = 1,2,...,7. An arc family in F is the isotopy
class of an unordered collection of disjointly embedded essential arcs in F,
no two of which are parallel. Thus, there is a well-defined action of the
pure mapping class group on arc families. Where the pure mapping class
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group PMC = PMC(F) is the group of isotopy classes of all orientation-
preserving homeomorphisms of F* which fix each 9; — W; pointwise (and fix
each W; setwise), foreachi=1,2,...,r

The arc families have a natural partial order which is given by inclusion.
This allows to build a simplicial cell complex whose k skeleton is composed
of simplices indexed by arc families with k+1 arcs. These are attached
to the k-1 skeleton by the face maps given by deleting one arc from the
collection.

Definition 5.1.2. We define Arc’(F) to be the complex obtained in the
above manner and Are(F') to be the topological space obtained as quotient
of Arc/(F') by the action of PMC. We also define DArc(F') := Arc'(F) x
Rso.

We would like to remark that the points of Arc(F') can and should be
thought of as a mapping class group orbit of a projectively weighted (by
positive real numbers) arc family on F' and points of DAre(F') as mapping
class group orbits of weighted (by positive real numbers) arc families.

Any point of Arc(F) lies in the interior of some cell of minimal dimension
or on a vertex of the complex, If the vertex lies inside a cell, then assigning
barycentric coordinates. We can now look at the point as being given
by positive real co-ordinates w; assigned to the arcs which make up the
family; we call the w; weights. If we drop the condition that the sum of
the coordinates is one, then we obtain D Arc(F') by picking the coordinate
on R to be given by the sum and the coordinates on Are(F') to be given
by the normalization. Finally, viewing Are(F') as the quotient of DArc(F)
by the action of R~ scaling all coordinates at the same time, we obtain
projective weights. If it lies on a vertex the point corresponds to a single
arc which we can think of having any non—zero weight.

We will represent such a point by choosing a representative family and
representative weights.

The underlying topological space for the n-th component our operad is
an open subset of | ), ; Are(Fj 1)

Definition 5.1.3. An arc family is said to be exhaustive if for each bound-
ary component &;, for i = 1,2,...,r, there is at least one component arc in
a with its endpoints in the window W,. Likewise, a PMC-orbit of arc fam-
ilies is said to be exhaustive if some (that is, any) representing arc family
is s0. Define the topological spaces

Arcy(n) = {la] € Arc(F, n41) @ @ is exhaustive} (5.1)
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5.2. The Operad Structure alias the Glueing Maps.

The definition of the glueing maps is best and most naturally done in the
setting of partial measured foliations®**. The basic idea however is the
following: First we glue two surfaces in the standard operadic fashion 4.5,
i.e. boundary 0 of the second surface to the boundary of the first surface.
Secondly, we have to give a procedure, how to glue together the bands. To
this end we would like to think of the weighted arcs as bands of width given
by the weights; this can be done by thickening the arcs into a partially
measured foliation - which we view as a collection of bands. Now we
arrange the bands in the window, such that in a neighborhood of the window
the bands looks is depicted in figure 10 IV, In this way, the bands or the
partially measured foliation can equivalently be thought of as a partition
on an interval as depicted in figure 11 L

Now if the sum of the weights of the arcs hitting the two boundary
components of the two surfaces that are to be glued happen to coincide, we
can “splice” the bands according to the largest common refinement of the

two partitions; this is depicted in figure 12 1.

5.3. Several Models for Arcs

To elucidate the role of the windows, we would like to briefly recall®* several
geometric models for the common underlying combinatorics of arc families.

u v w Uy w Uy w uyw

l [ il v

Figure 10. 1. Arcs running to a point on the boundary; II. Arcs running to a point at
infinity; III. Arcs in a window; IV. Bands in a window

For the first such model, let us choose a distinguished point d; € 9;,
fori = 1,2,...,r, and consider the space of all complete finite-area metrics
on F of constant Gauss curvature —1 (so-called “hyperbolic metrics”) so
that each 8 = 0; — {d;} is totally geodesic (so-called “quasi hyperbolic
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metrics” ) on F. To explain this, consider a hyperbolic metric with geodesic
boundary on a once-punctured annulus A and the simple geodesic arc a in
it asymptotic in both directions to the puncture; the induced metric on a
component of 4 — a gives a model for the quasi hyperbolic structure on
F* = F — {d;}] near 8. The first geometric model for an arc family o
in F'is as a set of disjointly embedded geodesics in F'*, each component of
which is asymptotic in both directions to some distinguished point d;; see
part II of figure 10.

In the homotopy class of each d;, there is a unique geodesic 7 C F'*.
Excising from F' — U{8*}] any component which contains a point of 8%,
we obtain a hyperbolic structure on the surface F* € F'* with geodesic
boundary (where in the special case of an annulus, F'* collapses to a circle).
Taking a N F*, we find a collection of geodesic arcs connecting boundary
components (where in the special case of the annulus, we find two points
in the circle).

This is our second geometric model for arc families. We may furthermore
choose a distinguished point p; € 3] and a regular neighborhood U; of p;
in 8¢, forz = 1,2,...,r. Provided p; ¢ o, we may take U; sufficiently
small that U; Na = 0, so the arc V; = 8} — U, forms a natural “window”
containing a N @7. There is then an ambient isotopy of F™* which shrinks
each window V; down to a small arc W; C 87, under which « is transported
to a family of (non-geodesic) arcs with endpoints in the windows W;. In
case p; does lie in o, then let us simply move p; a small amount in the
direction of the natural orientation (as a boundary component of F*) along
g7 and perform the same construction; see part III of figure 10.

This leads to our final geometric model of arc families, namely, the model
we used to define our spaces: arcs in a bounded surface with endpoints in
windows., This third model is in the spirit of train tracks and measured
foliations?* as we shall see and is most convenient for describing the operadic
structure.

In this picture there is also then a unique orientation-preserving
mapping3*

¢ ; 95(a) — S (5.2)

which maps the (class of the) first point of 9;(a) in the orientation of the
window W; to 0 € S!, contracts the parts of the boundary outside the
window and not hit by the bands, and maps the boundary points which
are part of the bands to S* according to the normalized partial measure on
the bands, which in our rudimentary discussion is just given by the weight
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and the normalizations means that the total weight is one. If we do not
normalize, the map will take us to a circle of radius given by the total
weight.

5.4, Pictorial Representations of Arc Families

As explained before, there are several ways in which to imagine weighted
arc families near the boundary. They are illustrated in figure 10. It is
also convenient to view arcs near a boundary component as coalesced into
a single wide band by collapsing to a point each interval in the window
complementary to the bands; this interval model is illustrated in figure 11,
part L. It is also sometimes convenient to further take the image under the
maps 5.2 to produce the circle model as is depicted in figure 11, part IL.

1 11

Figure 11. 1. Bands ending on an interval; 1I. Bands ending on a circle

5.5. Glueing Weighted Arc Families.

Given two weighted arc families (') in F],, ., and (8') in Ff ., so that
wi(Gi(a’)) = po(o(B’)), for some 1 < i < m, we shall next make choices to
define a weighted arc family in F;ﬂ;,m L, as follows.

First of all, let dy,0:1,...,0m denote the boundary components of
F} i1, let 85,0y, .., 0, denote the boundary components of Fj; .., and
fix some index 1 < 1 < m. Each boundary component inherits an orienta-
tion in the standard manner from the orientations of the surfaces, and we
may choose any orientation-preserving homeomorphisms £ : 8; — S' and
n : 8y — S! each of which maps the initial point of the respective win-
dow to the base-point 0 € S!'. Glueing together 8; and 8} by identifying
z € S' with y € S* if £(z) = n(y) produces a space X homeomorphic to
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Fylh men» Where the two curves 8; and &) are thus identified to a single
separating curve in X. There is no natural choice of homeomorphism of

X with FJfE ., but there are canonical inclusions j : F§, ., — X and

k:Fp ., —X.
We enumerate the boundary components of X in the order

! I
3‘01 511"*151'-—1:- 118:21*"5n15i+11ai+21*“3m

and re-index letting 8;, for j = 0,1,...,m 4+ n — 1, denote the boundary
components of X in this order. Likewise, first enumerate the punctures
of Fj .1 in order and then those of F} , , to determine an enumeration
of those of X, if any. Let us choose an orientation-preserving homeomor-
phism H : X — F,7y . which preserves the labelling of the boundary
components as well as those of the punctures, if any.

In order to define the required weighted arc family, consider the partial
measured foliations G in F; ., ; and H in F} , ., corresponding respectively
to (a') and (4’). By our assumption that pu;(8;(a')) = pe(G(F')), we may
produce a corresponding partial measured foliation  in X by identifying
the points = € 9;(¢') and y € G(F') if c,'t.:“}(m) = ¢ (y). The resulting
partial measured foliation F may have simple closed curve leaves which we
must simply discard to produce yet another partial measured foliation JF'
in X. The leaves of F' thus run between boundary components of X and
therefore, as in the previous section, decompose into a collection of bands
B; of some widths w;, for i = 1,2,...1. Choose a leaf of 7' in each such
band B; and associate to it the weight w; given by the width of B; to
determine a weighted arc family (4’) in X which is evidently exhaustive.
Let (7') = H(&) denote the image in F, [} . under H of this weighted
arc family.

It is a fact that this is well defined also on PMC orbits®4,

Definition 5.5.1. Given (o] € Arcl(m) and [8] € Arc}(n) and an index
1 < i < m, let us choose respective deprojectivizations (a’) and (') and
write the weights

w(a') = (ug, U1, ..., Um),

w(ﬁ’) . (’UD, Ulyooo 1”1*1}*

Po = z Ui,

{beB:abNBy #0}

p= Y

{a€0:8and; %0}

Define
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where in each sum the weights are taken with multiplicity, e.g., if a has
both endpoints at dy, then there are two corresponding terms in pp.
Since both arc families are exhaustive, p; # 0 # pp, and we may re-scale

pow(a') = (poug, Pott1, - - Polm),
Piw(ﬁr] e (piuﬂﬁ Pil1y.. -, Pi“n}:

so that the O'P entry of p;w(8') agrees with the i*! entry of pow(a’).
Thus, we may apply the composition of 5.5 to the re-scaled arc families
to produce a corresponding weighted arc family (v’) in F;L‘i

projective class is denoted [y] € Areji} (m+n —1). We let

@] o; [8] = [,

in order to define the composition

mins Whose

s+t

o; : Areg(m) X Arc(n) — Arcg iy,

(m+n-1), foranyi=1,2,...,m.

5.6. A Pictorial Representation of the Glueing

A graphical representation of the glueing can be found in figure 12, where
we present the glueing in three of the different models.

| pid U |{ N! [ l
i LI /\
3 t—q 59 5 ps q

8 |

1 1 Il

Figure 12. The glueing: 1. in the interval picture, Il. in the windows with bands picture
and III. in the arcs running to a marked point version.

Definition 5.6.1. For each n > 0, let Arc.,(n) = Arcd(n) (where the “cp”
stands for compact planar), and furthermore, define Arc(n) of the union
over all Areg(n), which we give the direct limit topology as g,s — oo.

Theorem 5.6.2. The compositions o; of Definition 5.5.1 imbue the collec-
tion of spaces Arc(n) with the structure of a topological operad under the
natural S, —action on labels on the boundary components. The operad has
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a unit 1 € Arc(l) given by the class of an arc in the cylinder meeting both
boundary components, and the operad is cyclic for the natural Sn+1-—action
permuting the labels of the boundary components. Furthermore the spaces
Arce, form a cyclic suboperad.

5.7. The Deprojectivized Spaces D.Arc

For the following it is convenient to introduce deprojectivized arc families.
This amounts to adding a factor R-p for the overall scale.

Let DAre(n) = Are(n) x Rsg be the space of weighted arc families; it
is clear that D Are(n) is homotopy equivalent to Arc(n).

As the definition 5.5.1 of gluing was obtained by lifting to weighted arc
families and then projecting back, we can promote the compositions to the
level of the spaces D Arc(n). This endows the spaces D Are(n) with a struc-
ture of a cyclic operad as well. Moreover, by construction the two operadic
structures are compatible. This type of composition can be compared to
the composition of loops, where such a rescaling is also inherent. In our
case, however, the scaling is performed on both sides which renders the
operad cyclic.

In this context, the total weight at a given boundary component given
by the sum of the individual weights w; of incident arcs makes sense, and
thus the map 5.2 can be naturally viewed as map to a circle of radius ), w;.

5.8. Notation

We denote the operad on the collection of spaces

Are(n) by Arc and the operad on the collection of spaces DArc(n) by
DArec. By an “Arc algebra”, we mean an algebra over the homology operad
of Arc. Likewise, Arccp, and DArc., are comprised of the spaces Arc.p(n)
and DArc.,(n) respectively, and an “Arc,, algebra” is an algebra over the
homology of Arce,

5.9. Suboperads and PROPS

There are several natural suboperads for the arc operad, given by imposing
certain conditions on the arcs.

For example, one may specify a symmetric (n + 1)-by-(n + 1) matrix
A™) ag well as an (n + 1)-vector R(™ of zeroes and ones over Z/27Z and
consider the subspace of Are(F; ., ;) where arcs are allowed to run between

boundary components 7 and j if and only if AE;’) # 0 and are required to
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meet the boundary component k if and only if RE"'} # 0. For instance, the
case of interest for cacti corresponds to A™ the matrix whose entries are
all one, and R™ the vector whose entries are also all one.

For a class of examples of PROPS (the generalization of operads with
arbitrary inputs and outputs®?), consider a partition of {0,1,...n} = I{™U
O™ into “inputs” and “outputs”, where AE?] = 1 if and only if {i, j}NI(™
and {i,5} N O™ are each singletons, and R™ is the vector whose entries
are all one.

This are the PROPS or di-operads which are of interest in string topol-
ogy. In words these are the arc families in which the boundaries can be
and are partitioned into incoming and outgoing in such a way that there
are only arcs running between incoming and outgoing boundaries.

Definition 5.9.1. The trees suboperad is defined for arc families in sur-
faces with ¢ = s = 0 in the notation explained above by the allowed
incidence matrix A™ whose non—zero entries are ag; = 1 = a;o, for
i =1,...,n, and required incidence relations R whose entries are all
equal to one.

This is a suboperad of Are.p, and it has a representation in terms of
labelled trees??.

Dropping the requirement that ¢ = s = 0, we obtain a suboperad of
Are called the rooted graphs or Chinese trees suboperad.

5.10. Linearity Condition

We say that an element of the (Chinese) trees suboperad satisfies the Lin-
earity Condition if the linear orders match, i.e., the bands hitting each
boundary component in their linear order are a subchain of all the bands
in their linear order derived from the 0-th boundary.

It is straightforward to check that this condition is stable under com-
position.

We call the suboperad of elements satisfying the Linearity Condition of
the (Chinese) trees operad the (Chinese) linear trees operad.

The following proposition®* clarifies the role of this condition.

Proposition 5.10.1. The suboperad generated by (Chinese) linear trees
and Arcep(1) inside Arc coincides with (eyclic Chinese) trees, where cyelic
Chinese trees are those arc families in Chinese trees in which the cyclic
orders match.

Tongring, Nils, and Penner, R. C., eds. Woods Hole Mathematics : Perspectives in Mathematics and Physics. River Edge, NJ, USA: World Scientific Publishing Co., 2004. ProQuest ebrary. Web. 19 September 2015.
Copyright © 2004. World Scientific Publishing Co.. All rights reserved.



170

5.11. String Interpretation

One way that one can view the Arc operad is as tracing n closed strings as
they move, split and recombine to form one loop. If one traces fixed base
points of the strings and keeps track of the length of the strings that the
closed strings may break into, one arrives exactly at the arc picture. Here
one arc of weight w or better band of width w depicts the movement of a
piece of string of length w. Starting with n strings that may move, break
and recombine to become one string, one obtains the trees suboperad.

If the strings have in this way swept over a genus zero surface (with
no punctures) this information is enough to recover the surface, since one
only needs to know the number of boundary components. If there is non-
trivial topology, however, this information may not be enough, but one
can consider all graphs of the traces of the base point on a given fixed
topological surface. This is what the arc operad does, cf. Figure 13.

If one wishes to see n strings move and recombine into m strings one
arrives at the notion of the props discussed above. This corresponds to
having a kind of Morse function for the surface which gives the state of
the strings at a given time. In this view, the singular level sets are the
important ingredients and a careful analysis of this picture leads to the
Cacti and the considerations relevant to string topology®.

On the other hand, from the point of view of closed string field theory®!
there is actually no big distinction of incoming and outgoing circles in the
sense of our prop definitions, as strings may also annihilate.

Thus even in genus zero, we do not need to restrict to the trees in the
arc operad, but see all of Arc., and of course in general all of Are. The
depiction of a pair of pants according to closed string field theory is not a
ficure eight as before, but a theta shape, as indicated in figure 13 and figure
28. This type of shape has recently also played a role in the geometry of
the so—called stringor bundles*®.

5.12. Relation to Moduli Spaces

In this section, we would like to very briefly digress on the relation of the
spaces Arc(F) and the Arc operad to moduli spaces, due to Penner??43.
Assume that r £ 0 (and allow both cases s = 0 or s > 0). Enumerate
the (smooth) boundary components of F' as @;, where ¢ = 1,...,r and
set & = U{0;}]. Let Hyp(F) be the space of all hyperbolic metrics with
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I o

Figure 13. Movements of strings combining 1 and breaking, annihilating and combining
II

geodesic boundary on F. Define the moduli space to be
M = M(F) = [Hyp(F)(]] 8:))/ ~
1

where ~ is the equivalence relation generated by push-forward of metric
under orientation- preserving diffeomorphism

Je(D,(&)1) = (f(T), £(&:)1)

where I' — f,(I") is the usual push-forward of metric on Hyp(F).

Now let M{F')/R~q denote the quotient of the moduli space of the bor-
dered surface F' by the action of R~¢ by homothety on the tuple of hyper-
bolic lengths of the geodesic boundary components. Denote by Areg(g,r)®
the space of quasi-filling arc families, which means that complementary
regions are either a polygon or a once punctured polygon.

Notice that for ¢ = s = r = 0 Arey(0,0)? = Arcy, and in general
Arcy(g,r)° C Arcy ..

Theorem 5.12.1. ** For any bordered surface F # FQq, Arcy(F) is
proper homotopy equivalent to M(F')/R+o.

Furthermore, each of M(F)/Rs¢ and Arcg(F) admit natural (5')"-
actions (moving distinguished points in the boundaries for the former and
"twisting” arc families around the boundary components for the latter);
the proper homotopy equivalence in the Theorem above is in fact a map of
(S51)"—spaces.

There is also an interpretation in terms of ribbon graphs and Strebel
differentials, see §6.15,

It is astonishing that in the case of genus zero with no punctures, there
is another relationship on the algebraic level. It was shown by Getzler!”
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that the homology operad of the spaces My ,, yields the notion of a gravity
or L algebra. The corresponding cohomology classes are also present
in our Arc picture through the BV structure discussed below, since this
structure allows to define the higher brackets!” as well. Actually there are
good candidates for arc families leading to these brackets which we will
discuss elsewhere?®.

In a sense, what the Arc operad does is to replace the conformal field
theory given by the operads H,(M, ,) by its hyperbolic counterpart. The
benefit, as always when dealing with hyperbolic aspects of moduli theory,
the formulas become discrete and all spaces tend to have a PL-structure
which makes everything very manageable.

The BV structure below legitimizes this point of view, since it is what
one would expect from the non-compactified moduli. These are in turn
related to the operad constituted by the Deligne-Mumford compactified
spaces by Koszul duality for quadratic operads.

It is also interesting that the cell decomposition of trees we present in
§7.6.5 is also related to Strebel differentials via the indexing set of trees6.

5.13. Are Families and their Induced Operations.

The points in Arc.,(1) are parameterized by the circle, which is identified
with [0, 1], where 0 is identified to 1. To describe a parameterized family
of weighted arcs, we shall specify weights that depend upon the parameter
s € [0,1]. Thus, by taking s € [0, 1] figure 14 describes a cycle § € C;(1)
that spans Hj(Arcep(1)).

I 1

Figure 14. 1. The identity and II. the arc family § vielding the BV operator

As stated above, there is an operation associated to the family §. For
instance, if Fy is any arc family F; : ky — Arcep, 0F) is the family param-
eterized by I x k; — Arc., with the map given by the picture by inserting
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F} into the position 1. By definition,
A=-4§¢eCi(l).

In C.(2) we have the basic families depicted in figure 15 which in turn
yield operations on C,.

n
Ol ®

The dot product The star b (a,b)

Figure 15. The binary operations

To fix the signs, we fix the parameterizations we will use for the glued
tfamilies as follows: say the families F}, F; are parameterized by F; : k) —
Arcep and Fy : ky — Areg, and I = [0,1]. Then Fj - F; is the family
parameterized by k; x ky — Arc., as defined by figure 15 (i.e., the arc
family £ inserted in boundary a and the arc family I3 inserted in boundary
b).

Interchanging labels 1 and 2 and using * as a chain homotopy as in
figure 16 yields the commutativity of - up to chain homotopy

d(Fy « ) = (-D)AIRIE, . F—F Ry (5.3)

Notice that the product - is associative up to chain homotopy.
Likewise F} * F; is defined to be the operation given by the second family
of figure 15 with s € 1 = [0, 1] parameterized over k; x I X kg — Arc.p.
By interchanging the labels, we can produce a cycle {F}, F3} as shown

in figure 16 where now the whole family is parameterized by k1 x I X ka —
Arcep.

{Fi, B3} == F « Fy — (=1)(AFN(REDE o B

Remark 5.13.1. We have defined the following elements in C,:
6 and & = —éd in Ci(1);
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a*b

(lat+1)(Ibl+1)
—{=1) b*a

Figure 16. The definition of the Gerstenhaber bracket

- in Cp(2), which is commutative and associative up to a boundary.
#and {—,—} in C1(2) withd(*) =7-— and {—, =} = % — T*.
Note that 4, and {—, —} are cycles, whereas * is not.

5.14. The BV Operator

The operation corresponding to the arc family § is easily seen to square to
zero in homology. It is therefore a differential and a natural candidate for
a derivation or a higher order differential operator. It is easily checked that
it is not a derivation, but it is a BV operator.

Proposition 5.14.1. The operator A satisfies the relation of a BV oper-
ator up to chain homotopy.
A*~ D
A(abe) ~ A(ab)e + (—1)1aA(be) + (—1)*"pA (ac) — A(a)be
—(—1)1®aA(b)e - (-1)Ie+BlgpA(e) (5.4)
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Thus, any Arc algebra and any Arc., algebra is a BV algebra.

Lemma 5.14.2,
§(a, b,c) ~ (—1)Uel+Dlpsiq ) + 6(a,b)e — 8(a)be (5.5)

Proof. The proof is contained in figure 17. Let a : ko, — Arcep, b ky —
Arcep and ¢ : k. — Arcep, be arc families then the two parameter family
filling the square is parameterized over I x I x k; X ky X k.. This family
gives us the desired chain homotopy. O

Given arc families a : kg — Arcep, b: ky — Arcep and ¢ : k. — Arcey,
we define the two parameter family defined by the figure 18 where the fami-
lies in the rectangles are the depicted two parameter families parameterized
over I x I x k, x ky x k. and the triangle is not filled, but rather its boundary
is the operation é(abc).

From the diagram we get the chain homotopy consisting of three, and
respectively twelve, terms.

Remark 5.14.3. The fact that the chain operads of Arc and as we show
below Cact(i) or Cact*(i) all possess the structure of a G(BV) algebra up
to homotopy means that for any algebra V' over them the algebra as well as
Homy have the structure of G(BV). If one is in the situation that one can
lift the algebra to the chain level, then the G(BV) will exist on the chain
level up to homotopy.

Remark 5.14.4. We would like to point out that the symbol e in the
standard super notation of odd Lie-brackets {a ® b}, which is assigned to
have an intrinsic degree of 1, corresponds geometrically in our situation to
the one-dimensional interval I.

5.15. The Associator

It is instructive to do the calculation in the arc family picture with the
operadic notation. For the glueing % o; * we obtain the elements in Cy(2)
presented in figure 19 to which we apply the homotopy of changing the
weight on the boundary 3 from 2 to 1 while keeping everything else fixed.
We call this normalization.

Unravelling the definitions for the normalized version yields figure 20,
where in the different cases the glueing of the bands is shown in figure 21.
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(lad+ 1)1bd
—={=1) b&{a)

= = 8(a)be
>

b (a,b)c

(il 116l
-(-1) bgac)

e
rd

8 (a.b.ch

Figure 17. The basic chain homotopy responsible for BV

The glueing # o9 * in arc families is simpler and yields the glueing de-
picted in figure 22 to which we apply a normalizing homotopy — by chang-
ing the weights on the bands emanating from boundary 1 from the pair
(25,2(1—s)) to (s,1— s) using pointwise the homotopy (*t2s, Lt (1 - 5))
for t € [0,1]:

Combining figures 20 and 22 while keeping in mind the parameteriza-
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"l,\

\

Figure 18. The homotopy BV equation
o
RS

Figure 19. The first iterated glueing of »

tions we can read off the pre-Lie relation:
Fy« (Fp « F3) — (Fy « Fy) x F3 ~
(_1)(|Ftl+1](|Fz1+1]{F2 x (FL « F3) — (Fy+ Fy) x F3)  (5.6)
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Figure 21. The different cases of glueing the bands

which shows that the associator is symmetric in the first two variables and
thus following Gerstenhaber [G] we obtain:

Corollary 5.15.1. {Fi, F»} satisfies the odd Jacobi identity.
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Figure 22. The other iteration of *

6. Species of Cacti and their Relations to other Operads
6.1. Configurations of Loops and their Graphs

There are several species of cacti®® to which we refer the reader for details.
We briefly recall the main definitions here. In words, the cacti operad which
was introduced by Voronov*® has as its n-th component defined in con-
nected, planar tree-like configurations of parameterized loops (of possibly
different circumference), together with a marked point on the configuration.
The spineless cacti®® are the suboperad where the zero of the parametriza-
tion corresponds to the lowest intersection point. There are also normalized
versions of these configurations?® where the circumference of each loop is
fixed to be one.

To give a more precise definition we need the following definitions.

We denote the standard cirele of radius r by S} = {(z,y) C R? :
2% + 9 = r?).

Definition 6.1.1. A configuration of n parameterized loops is a collec-
tion (l1,...,ln) of n orientation preserving continuous injections —called
loops— [; - .‘.'3',1.i — R? considered up to isotopy. Where the isotopy is re-
quired to fix the incidence conditions, that is if ! : .S',Et_ x I are the isotopies
and hi(p) = li(p) = 1;(¢) = hi(q) then for all t: hi(p) = hl(q) and vice-
versa if hi(p) = Li(p) # l;(g) = h)(q) then for all t: hi(p) # hi(g). A
pointed configuration is a configuration together with a marked component
l; and marked point on this component * € S} .

Definition 6.1.2. For a configuration of n parameterized loops, with only
finitely many intersection points, we can define a bipartite b/w graph as
follows: There is one white vertex for each loop and one black vertex for
each intersection point. We join a white vertex and a black vertex by an
edge, if the intersection point corresponding to the black vertex lies on the
loop corresponding to the white vertex. We call this black and white graph
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the graph of the configuration. We also endow each vertex with the cyclic
order coming from the orientation in the plane.

For a pointed configuration, we include one more black vertex for the
marked point and a second black vertex, the root and draw edges from the
vertex for the marked point to each white vertex of components the marked
point lies on. We also endow the vertex for the marked point by the linear
order given by the cyclic order induced from the plane and the choice of the
smallest element being the root edge followed by the edge for the marked
component.

6.2. Cacti and Spineless Cacti

Definition 6.2.1. The cacti operad which was introduced by Voronov?®’
has as its n—th component pointed configurations of n parameterized loops
whose image is connected and whose graph is a tree. The space Cact(n) is
endowed with the action of §,, by permuting the labels.

Definition 6.2.2. Notice that the tree (graph) of a cactus is actually a
bi-partite planar planted tree without tails which thus has a linear order
on all of the vertices. We choose to plant the tree to reflect the linear order
at the root.

We will allow ourselves to talk about the image of a cactus in R? by
picking a representative (l1,...,In) and considering |J, (S} ) keeping in
mind that this is only defined up to isotopy.

The loops, and also the inside of these loops, are sometimes called lobes
— again the above remark applies.

Definition 6.2.3. Given a cactus (I1,...,l,) whose loops have radii r;
there is a surjective orientation preserving map from '5';]&=z - U I(S}),
whose only multiple points are the intersection points of the loop. This map
is defined as follows. Start at the marked point (the global zero) and go
around the marked loop counterclockwise; if a double point is hit continue
on the next loop to the right (i.e. the next in the cyclic order) and continue
in this manner until one returns to the marked point. We will call this map
the “outside circle” and sometimes refer to the marked point as the “global
zero” , since it is the image of 0 € S}.

6.3. Glueing for Cacti

We define the following operations
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0; : Cacti(n) x Cacti(m) — Cacti(ln + m — 1) (6.1)

by the following procedure: given two cacti without spines we re-
parameterize the outside circle of the second cactus to have length r; which
is the length of the i-th circle of the first cactus. Then glue in the second
cactus by identifying the outside circle of the second cactus with the i-th
circle of the first cactus.

Proposition 6.3.1. The glueings above together with the Sn action on
Cacti(n) by permuting the labels imbue the collection Cacti of the Cacti(n)
with the structure of aen operad. Endowing the spaces Cacti(n) with the
topology as subspaces of DAre, see below, turns the operad Cacti into an
operad of topological spaces.

Definition 6.3.2. The spineless variety of cacti is obtained by postulating
that the local zeros defined by the parameterizations of the loops coincide
with the first intersection point of the perimeter with a loop (sometimes
called a “lobe”) of the cactus. Here the first intersection point is the point
given by the black vertex which lies on the outgoing edge of the white vertex
representing the parameterized loop under consideration. This suboperad
inherits the permutation action of S;, on the labels.

Proposition 6.3.3. The symmeiric group actions permuting the label to-
gether with the restriction of the glueing for Cacti

o; : Cact{n) x Cact(m) — Cact(n + m — 1) (6.2)

makes Cact into a topological operad which is a suboperad of Cacti.

6.4. The Chord Diagram and Planar Planted Tree of a
Cactus

There is another representation of a cactus. If one regards the outside
loop, then this can be viewed as a collection of points on an S! with an
identification of these points, plus a marked point corresponding to the
global zero. We can represent this identification scheme by drawing one
chord for each two points being identified as the beginning and end of a
circle. This chord diagram comes equipped with a decoration of its arcs
by their length or alternatively can be thought of as embedded in R2. To
obtain a cactus from such a diagram, one simply has to collapse the chords.
This type of chord diagram of the outside circle is explicit in the embedding
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of cacti into the arc operad where the perimeter is indeed the outside circle,
as explained below. The local zeros will then be extra points on the outside
circle, which coincide with the beginnings of the chords in the spineless
case. There is a special case for the chord diagram which is given if there is
a closed cycle of chords. This happens only if three or more lobes intersect
at the global zero. Here one can delete the first chord, if so desired. It does
play a role however in the completed chord diagram?®® which parameterizes
the fiber of the map forgetting the n-th lobe?®®.

This kind of representation is reminiscent of Kontsevich’s formal-
ism of chord diagrams? as well as the shuffle algebras and diagrams of
Goncharov?3. We wish to point out that although the multiplication is
similar to Kontsevich's and also could be interpreted as cutting the circle
at the global zero resp. the local zero, it is not quite the same. However,
the exact relationship and the co-product deserve further study.

Lastly, we can recover a planar tree as the dual tree of the chord diagram.
This is the dual tree on the surface with boundary the outside circle, i.e. one
vertex for each chamber inside the circle and an edge for chambers separated
by a chord. This planar tree is the tree obtained from the tree describing
the cactus by contracting all black edges. The special case corresponds
again to the case where three or more lobes intersect at the global zero. If
one chooses to keep the whole cycle of chords the dual tree the rooted tree
which is obtained by contracting the root edge of the planted tree. If one
also removes the first chord in the cycle, then the tree is the rooted tree
which is obtained by contracting the root edge of the planted tree and the
next edge which appears in the outside path.

A representation of a cactus without spines in all possible ways including
its image in the Arc operad can be found in figure 23.

6.5. Normalized Cacti and Normalized Spineless Cacti

Definition 6.5.1. The spaces Cacti'(n) are the subspaces of Cacti(n) with
the restriction that all the radii of the lobes are fixed to one. The elements
are called normalized spineless cacti.

6.6. Gluing for Normalized Cacti
We define the following operations

0; : Cacti'(n) x Cacti' (m) — Cacti'(n +m — 1) (6.3)
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| I

v v

Figure 23. 1. A cactus without spines; II Its planted planar bi—partite tree; 111 Its dual
tree; IV Its chord diagram; V Its image in Are

by the following procedure: given two normalized cacti we reparameter-
ize the i—th component circle of the first cactus to have length m and glue
in the second cactus by identifying the outside circle of the second cactus
with the i-th circle of the first cactus. Here we match the global zero of
the second cactus to the local zero of the i-th lobe,

These glueings do not endow the normalized spineless cacti with the
structure of an operad, but with the slightly weaker structure of a quasi-
operad defined in Definition 4.10.3.

Theorem 6.6.1. ?° The glueings above together with the S, action on
Cacti' (n) by permuting the labels imbue the collection of Cacti'(n) with
the structure of a quasi-operad.
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Furthermore the quasi-operad of normalized cacti is homotopy associa-
twwe. It 1s homotopic as a quasi—operad to the operad of cacti and is quasi-

tsomorphic to the operad of cacti. I.e. the homology operads of normalized
cacti and cacti are isomorphic.

Definition 6.6.2. The spaces Cact'(n) are the subspaces of Cact(n) with
the restriction that all the radii of the lobes are fixed to one. The elements
are called normalized spineless cacti.

Theorem 6.6.3. ?° The symmetric group actions permuting the label to-
gether with the restriction of the glueing for Cacti?

o; : Cact!(n) x Cact'(m) — Cact'(n +m — 1) (6.4)

makes Cact! into a gquasi-operad which is a quasi—suboperad of Cacti'.

Furthermore the quasi—operad of normalized spineless cacti is homotopy
assoctative. It is homotopic as a quasi-operad to the operad of spineless
cacti and is quasi—isomorphic to the operad of spineless cacti. I.e. the ho-
mology operads of normalized cacti and cacti are isomorphic.

6.7. Scaling of a Cactus and Projective Cacti

Cacti and spineless cacti both come with a universal scaling operation of
R~ which simultaneously scales all radii by the same factor A € R..
This action is a free action and the glueing descends to the quotient by
this action. We sometimes call these operads projective cacti or spineless
projective cacti.

6.8. Left, Right and Symmetric Cacti Operads

For the glueing above one has three basic possibilities to scale in order to
make the size of the outer loop of the cactus that is to be inserted match
the size of the lobe into which the insertion should be made.

(1) Scale down the cactus which is to be inserted. This is the original
version — we call it the right scaling version.

(2) Scale up the cactus into which will be inserted. We call it the left
scaling version.

(3) Scale both cacti. The one which is to be inserted by the size of the
lobe into which it will be inserted and the cactus into which the
insertion is going to be taking place by the size of the outer loop
of the cactus which will be inserted. We call this it the symmetric
scaling version.
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All of these versions are of course homotopy equivalent and in the quo-
tient operad of Cacti by overall scalings, the projective cacti Cacti/Rsp
they all descend to the same glueing.

The advantages of the different versions are that version (1) is the origi-
nal one and inspired by the rescaling of loops, i.e. the size of the outer loop
of the first cactus is constant. Version (2) has the advantage that cacti
whose lobes have integer sizes are a suboperad. We will use this later on.
And version (3), the symmetric version, is the one we also used in D Arc and
as shown below, in this version there is an embedding of the cacti operad
into the cyclic operad D.Arec.

6.9. Cacti as a Suboperad of D Arc

In the following sections we will show how to realize our species of cacti
naturally as suboperads of D.Arc. This has the advantage of making their
topology transparent.

6.10. Framing of a Cactus

We will give a map of cacti into Arc called a framing. First notice that a
cactus can be decomposed by the initial point and the intersection points
and the local zeros into a sequence of arcs following the natural orientation
given by the data. These arcs are labelled by their lengths as parts of
1;(S;.). To frame a given cactus, draw a pointed circle around it and run
an arc from each arc of the cactus to the outside circle respecting the linear
order given by the outside loop, i.e. starting with the initial arc of the cactus
as the first arc emanating from the outside circle in its orientation. Label
each such arc by the parameter associated to the arc of the cactus.

We can think of attaching wide bands to the arc of the cactus. The
widths of the bands are just the lengths of the arcs to which they are
attached. Using these bands we identify the outside circle with the cir-
cumference of the cactus. Notice that this “outside” circle appears in the
glueing formalism for cacti.

The marked points on the inside boundaries correspond to the local
zeros of the inside circles viz. lobes of the cactus.

Two examples of this procedure are provided in figure 24.

Remark 6.10.1. If one frames a spineless cactus, then the image is in the
linear trees.
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©ee

Figure 24. Framings of cacti

6.11. The Loop of an Arc Famaly

Given a surface with arcs we can forget some of the structure and in this
way either produce a collection of loops or one loop which is given by using
the arcs as an equivalence relation.

6.12. The Boundary Circles

Given an exhaustive weighted arc family (a) in the surface F', we can
consider the measure-preserving maps

& : i) — Sk (6.5)

where S} is a circle of radius r and m; = p*(8;(e)) is the total weight of
the arc family at the i—th boundary. Combining these maps, we obtain

&:0(e) - [] S, (6.6)

Choosing a measure on dF as in §1 to identify d(a) with OF, we finally
obtain a map

circ : 0F — H S,ﬁti (6.7)
i
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Notice that the image of the initial points of the bands give well-defined
base-points 0 € S}, for each i.

6.13. The Equivalence Relations Induced by Arcs

On the set d(a) there is a natural reflexive and symmetric relation given
by p ~¢o q if p and ¢ are on the same leaf of the partial measured foliation.

Definition 6.13.1.
Let ~ be the equivalence relation on [], .S',‘m_ generated by ~q. In other
words p ~ ¢ if there are leaves [;, for j = 1,...m, so that p € (9(l1)),q €

&(8(ln)) and €(8(1;)) N&(8(Lj+1)) # 0.

Remark 6.13.2. It is clear that neither the image of cire —which will de-

note by circ((a))— as a collection of parameterized circles nor the relation
~ depends upon the choice of measure on 9F.

Definition 6.13.3. Given a deprojectivized arc family (a) € DArc, we
define Loop((a)) = cire((a))/ ~ and denote the projection map = :
cire((a)) — Loop((a)).

Furthermore, we define two maps taking values in the monoidal category
of pointed spaces:

T

int((c)) = [_l(ﬂrf“}( (@), m(*:)) (6.8)
ext({a)) = (H(C(n}(ﬂo(&')}}ﬂ(*ﬂ)) (6.9)

and call them the internal and external loops of (@) in Loop((a)). We
denote the space with induced topology given by the collection of images
Loop((a)) of all (a) € DAre(n) by Loop(n).

Notice that there are n + 1 marked points on Loop((a)) for (a) €
DArc(n).

Examples of loops of an arc family are depicted in figures 25-27. In
figure 27 I the image of the boundary 1 runs along the outside circle and
then around the inside circle. The same holds for the boundary 3 in figure
27 II. In both 27 I and II, the outside circle and its base-point are in bold.

Remark 6.13.4. There are two types of intersection points for pairs of
loops. The first are those coming from the interiors of the bands; these
points are double points and occur along entire intervals. The second type
of multiple point arises from the boundaries of the bands via the transitive
closure; they can have any multiplicity, but are isolated.
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Figure 25, An arc family whose loop is a cactus

b s
fo’o’o

Figure 26. An arc family whose loop is a cactus without spines

6.14. From Loops to Arcs

If the underlying surface of an arc family satisfies ¢ = s = 0, then its Loop
together with the parameterizations uniquely determines the arc family. In
other words, the map frame is a section of Loop.

Definition 6.14.1. A configuration of circles is the image of a surjection
;i i P .5‘,1“ — L of metric spaces such that each point of L lies in the
image of at least two components and the intersections of the images of
more than two components are isolated. Let Config{n) be the space of all
such configurations of n + 1 circles with the natural topology. We call a
configuration of circles planar, if L can be embedded in the plane with the
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all ® are to be identified
I1
Figure 27. Loops of arc families not yielding cacti: I. genus 0 case; I1. genus 2 with one

puncture.

natural orientation for all images S} : 7 # 0 coinciding with the induced
orientation and the opposite orientation for S§. We call the space of planar
configurations of n + 1 circles Config,(n).

Proposition 6.14.2. The map Loop : DArc(n) — Configy(n) is surjec-
tive.

Definition-Proposition 6.14.3. The deprojectivized arc families such that
T|s(a) (@) = Loop((a}) constitute a suboperad of Arec. We call this sub-
operad Loop.

Proposition 6.14.4. If (o) € Loop then Loop((a)) is a cactus. Further-
more, the operad Loop is identical to the operad of Chinese trees.

Using the symmetric scaling version of cacti (see 6.8), we obtain:

Theorem 6.14.5. The framing of a cactus is a section of Loop and is
thus an embedding. This embedding identifies (normalized and/or spine-
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less) cacti as (normalized and/or linear) trees.

L
Wi

(spineless) cacti ~——— DArc
frame

':rl |~

(spineless) cacti/Rso ZiTame,  Arc

S
wLoop

where wLoop is defined by choosing any lift.

By inspection of the diagrams for the Gerstenhaber relations we see that
up to homotopy all are defined in the image of Cact and the BV structure
can be defined in the image of Cacti.

Thus we have:

Corollary 6.14.6. ?®. The chains of Cact carry the structure of a Ger-
stenhaber algebra up to homotopy. The chains of Cacti carry the structure
of a GBV algebra up to homotopy.

Remark 6.14.7. Actually, up to homotopy all the structures can be ob-
tained using normalized cacti, see below §7.

6.15. Configurations, Loops and Ribbon Graphs

Although we did not use the notation of ribbon graphs, it is easy to see
that our configurations are essentially ribbon graphs with marked points on
some cycles. For this discussion it is easier to restrict to Arcy and s = 0
(no punctures). In this case the graph we obtain from loop is the dual
graph on the surface, which is a ribbon graph. Also on each cycle there is

a marked point and a parametrization. In this description it is also easy to
see that for s = 0 Arcy is homotopy equivalent to the decorated moduli

space by using Strebel differentials.

6.16. Comments on an Action on Loop Spaces

Given a manifold M we can consider its loop space LM . Using the config-
uration we have maps

Loopxid

Arc(n)x LM™ "= Config(n)x LM™ «— Lo fis(m) pr & LM (6.10)
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where LEofi9(m)) M are continuous maps of the images L of the config-
urations into M, i.e., such a map takes a configuration p : [[. S,,, — L
and produces a continuous f : L — M; the maps ¢,e are given by
i(f) = (p: 11, 8L, = L, f(p(SL,), ., f(p(SY,.))) and e(f) = £(p(SL,))

One would like apply a Pontrjagin-Thom construction'®*? so that the
maps ¢ and e would in turn induce maps on the level of homology

“H,(Arc(n)) ® Hy(LM™) ~ H,(DAre(n)) ® H.(LM™) 2%
H.(Config(n)) ® H (LM™) 5 H,(LCoM9™) My & H (LMY (6.11)

where ' is the “Umkehr” map.
If we restrict ourselves to this subspace for which the validity of the
argument above has been established® %196 we obtain

Proposition 6.16.1. The homology of the loop space of a compact mani-
fold is an algebra over the suboperad of quasi-filling Chinese trees.

6.17. Remarks

(1) This also holds for the appropriate PROP or di-operad setting, in
which the arcs only run from distinguished inputs to outputs.

(2) It is clear that one desideratum is the extension of this result to all
of Arcyg.

(3) The first example of an operation of composing loops which are not
cacti would be given by the Loop of the pair of pants with three arcs
as depicted in Figure 28. This kind of composition first appeared
in the considerations of closed string field theory.

(4) If the image of Loop is not connected, then the information is par-
tially lost. This can be refined however by using a prop version of
our operad.

(5) Factoring the operation of Arc through Loop has the effect that
the internal topological structure is forgotten; thus, the torus with
two boundary components has the same effect as the cylinder, for
instance. This amounts to a certain stabilization.

7. Little Discs, Spineless Cacti and the Cellular Chains of
Normalized Spineless Cacti

One motivation for studying spineless cacti is that they give a well adapted
chain model for the little discs operad. In fact, we will show below how the
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Figure 28. 1. The Loop of a symmetric pair of pants; II. A closed string field theory
picture of a pair of pants

chains of spineless cacti operate naturally on the Hochschild complex of an
associative algebra using the chain decomposition of this section.

7.1. Cacti as Semi—Direct Products of Normalized Cacti

In this paragraph we will make the relationship between cacti and nor-
malized cacti explicit using the notion of semi-direct product of quasi-
operads®®. Since we will be dealing with one explicit example of this struc-
ture only, where all the relevant operations are explicitly defined??, we will
not review the general constructions here. We include this section to show
that the normalized cacti are indeed associative up to homotopy. We will
also use this description of normalized cacti to obtain the operadic structure
on its cell decomposition in §7

7.2. The Scaling Operad
We define the scaling operad R ¢ to be given by the spaces R~o(n) := RZ,

with the permutation action by S,, and the following products

Ty T4
(Th“' 1Tn) Oy {Ti1 "*7T:-n} = (T‘lm+ e Ti—1, El'r;t* " 5"}%'?1:1117"51*1:' -*T*Jr'le-;l

where R =Y _\" | ri. It is straightforward to check that this indeed defines
an operad.

7.3. The Perturbed Composilions
We define the perturbed compositions
-::F':"“ : Cacti’(n) X Rsolm) x Cacti'(m) — Cacti'(n+m—1) (7.1)

via the following procedure: Given (c,7,c") we first scale ¢’ according to
7, i.e. scale the j—th lobe of ¢’ by the j—th entry r; of ¥ for all lobes. Then
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we scale the i—th lobe of the cactus c by R = Zj- r; and glue in the scaled
cactus. Finally we scale all the lobes of the composed cactus back to one.
We also use the analogous perturbed compositions for Cact®.

7.4. The Perturbed Multiplications in Terms of an Action

We can also describe, slightly more technically, the above compositions
in the following form. Fix an element 7 := (ry,...,mn) € RY, and set
R = ), r; and a normalized cactus ¢ with n lnbes. Denote by 7(c) the
cactus where each lobe has been scaled according to 7, i.e. the j—th lobe by
the j—th entry of 7. Now consider the chord diagram of the cactus v(c). It
defines an action on S via

1 tf-',;: n
p: St e Sk i sk 3.8 (7:2)

Where conty acts on Sk in the following way. Identify the pointed S} with
the pointed outside circle of the chord diagram of 7(¢). Now mntract the
arcs belonging to the i—th lobe homogeneously with a scaling factor X i

Using this map on the i-lobe of a normalized (spineless) cactus which
we think of as an §' with base point given by the local zero together with
marked points, where the marked points are the intersection points, we
obtain maps

pi : Cact'(n) x R-o(m) x Cact' (m) — Cact'(n)
p; : Cacti’ (n) x Rso(m) x Cacti' (m) — Cacti'(n) (7.3)

What this action effectively does is move the lobes and if applicable the
root. of the cactus ¢ which are attached to the i—-th lobe according to the
cactus 7(¢') in a manner that depends continuously on # and ¢'.

With this action we can write the perturbed multiplication as

u?““ . Cacti'(n) X Rso(m) x Cacti'(m)

axux8 Cactil (n) x Rso(m) x Cacti'(m) x Cacti'(m)

X Cactit (n) x Cacti*(m) =5 Cacti'(n+m —1) (7.4)
Theorem 7.4.1. The operad of spineless cacti is isomorphic to the operad
gwen by the semi-direct product of their normalized version with the scaling
operad. The latter is homotopic through quasi—operad maps to the direct
product as quasi-operads. The same statements hold true for cacti.
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Cact = R x Cact! ~ Cact! x Ry
Cacti = R~o % Cacti’® ~ Cacti’ x Rso (7.5)

as operads where the operadic compositions are given by

(F,¢) 0i (7, &) = (Foi 7, C o] ) (7.6)
From this description we obtain several useful corollaries.

Corollary 7.4.2. The gquasi—operads of normalized cacti and normalized
spineless cacti are homotopy associative and thus their homology quasi-
operads are actually operads.

Corollary 7.4.3. The quasi—operads of normalized cacti and normalized
spineless cacti are weakly homotopy equivalent to cacti respectively spineless
cact.

Furthermore the quasi—operads of normalized cacti and normalized
spineless cacti are homotopy equivalent to cacti respectively spineless cacti

as quasi—operads.
And lastly:

Corollary 7.4.4. Normalized cacti and normalized spineless cacti are
quasi—isomorphic to cacti respectively spineless cacti. Ie. there homology
operads are isomorphic.

7.5. Cact(i) and the (Framed) Little Discs Operad

We would like to collect the following facts.

Theorem 7.5.1. 2° The operad Cact is (weakly) homotopy equivalent to
the little discs operad.

We proved this fact?® by using the recognition principle of
Fiedorowicz!®. The A structure is given by the so—called spineless corolla
cacti, whose defining property is that all base points coincide. They corre-
spond to are families of genus zero with no punctures and exactly one arc
from boundary i to boundary 0. The braid structure is shown to hold by
using the diagram for the associator. Finally the contractibility of the uni-
versal cover follows from the fact that by contracting the n + 1-st lobe of a
cactus with n+ 1 lobes Cact(n + 1) is homotopy equivalent to the universal
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fibration over spineless cacti with n lobes whose fiber over a cactus is the
image of that cactus.

Theorem 7.5.2. **%° The operad Cacti is (weakly) homotopy equivalent
to the framed little discs operad.

We also introduced the notion of semi-direct and bi—crossed products for
quasi-operads®? which are the suitable generalization of the same notions
for groups. With this notion the relationship between cacti and spineless
cacti can be formulated precisely.

Theorem 7.5.3. 2° The operad of cacti is the bi—crossed product of the
operad of spineless cacti with the operad S' based on S and furthermore
this bi—crossed product is homotopic lo the semi—direct product of the operad
of cacti without spines with the circle group S* which is homotopy equivalent
as quasi-operads to the semi-direct product.

Cacti 2 Cact a4 St ~ Cact 1 §* (7.7)
This fact that should be compared the fact

Theorem 7.5.4. *7 The framed little discs operad is the semi—direct prod-
uct of the little dises with S*.

For any monoid, there is a notion of an associated operad?”?°. In

this case the semi-direct product of quasi-operads?® actually yields and
operad?”:29,

Remark 7.5.5. This theorem®” together with Theorem 7.5.3 and Theorem
7.5.1 imply Voronov’s Theorem.

7.6. A Cell Decomposition for Spineless Cactli

Recall that the spaces Cact!(n) are the subspaces of Cact(n) with the re-
striction that all the radii of the lobes are fixed to one.
This space inherits the obvious action by S, of permuting the labels.

Definition 7.6.1. The topological type of a spineless normalized cactus
in Cact'(n) is defined to be the tree 7 € T;’:f‘“t (n) which is its b/w graph
together with the labelling induced from the labels of the cactus and the

linear order induced on the edges, by the embedding into the plane and the
position of the root.
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Definition T 6.2. We define 7,7”"™ (n)* to be the elements of Z,7"™ (n)
with |Ey| =

Let A" denote the standard n-simplex.
Definition 7.6.3. For T € T)”™" we define

A(T) := Xyep, )AL (7.8)
Notice that dim(|A(7)]) = |E.(7)|.

Theorem 7.6.4. The space Cact'(n) is a CW compler whose k-cells are
indezed by T € TP ﬂ"!{'.'1}3“ with the cell C(1) ~ |A(7)|. Moreover the map

7 C(1) 15 a mup of differential operads and it identifies Tb’;p’m{n)k with
CCy(Cact!(n)), where CCy are the dimension k cellular chains.

Proof. Given an element in Cact!, we can view it as given by its topolog-
ical type and a labelling of the arcs of its underlying arc family with the
condition that the sum of all labels at each boundary is one. The number
of incident arcs at each boundary 1 is |v;| and the condition of the weights
summing to one translates to the weights being in |AlVil|, Vice versa given
an element on the right hand side, the summand determines the topological
type and it is obvious that any tree in 7,7F ™ can be realized. Then the
barycentric coordinates in the standard orientation define weights to the
arcs in their fixed orientation of incidence. We orient the cells |A(7)| in the
natural orientation induced from the linear order on the white edges. This
makes the glueing well defined which can, for instance, be seen from the
definition of the arc complex. O

Keeping track of the homotopies which are explicitly given in §7.1, it is
evident that CC,(Cact!(n)) is indeed a chain operad. From our previous
analysis about the structure of Cact as a semi-direct product see §7.1 we
thus obtain:

Theorem 7.6.5. The glueings induced from the glueings of spineless nor-
malized cacti make the collection CC.(Cact!(n)) into a chain operad. And
since Cact,Cact' and D, are all homotopy equivalent CC, (cact!), is a model
for the chains of the little discs operad.

Remark 7.6.6. If one would like a topological operad in the background,
one can choose any chain model Chain(R-) for the scaling operad, then
use the mixed chains for Cact i.e. CC,(Cact') ® Chain(Rp). It follows

r, R. C., eds. Woods Hole Mathema t : Perspectives in Mathematics and Physics. River Edge, NJ, USA: World Scientific Publishing Co., 2004. ProQuest ebrary. Web. 19 September 2015.

2004W IdS entific Publishin ng Co.. All rights reserved.



197

that the inclusion of the cellular chains of Cact! into the mixed chains is an
inclusion of operads up to homotopy.

Finally, given an operation of the CC.(Cact') we can let the mixed
chains of Cact act by letting the mixed chains of bidegree (n,0) act as the
component of Cact' and sending all the others to zero.

7.7. Orientations of Chains

To fix the generators and thereby the signs for the chain operad we have
several choices, each of which is natural and has appeared in the literature.

To fix a generator g(r) of CC.(Cact') corresponding to the cell indexed
by T € 'I;ff’“t(n] we need to specify an orientation for it, i.e. a parame-
terizations or equivalently an order of the white edges of the tree the arc
family it represents, i.e. a parameterizations or .

The first orientation which we call Natf is the orientation given by the
natural orientation of the arc family or equivalently the natural orientation
for a planar planted tree. l.e. fixing the order of the white edges to be the
one given by the embedding in the plane.

We will also consider the orientation Op which is the enumeration of the
white edges which is obtained by starting with the incoming edges of the
white vertex labelled one, in the natural orientation of that vertex, then
continuing with the incoming white edges into the vertex two, etc. until the
last label is reached.

Lastly, for top—dimensional cells, we will consider the orientation of the
edges induced by the labels, which we call Lab. It is obtained from Nat as

follows: for T € T}fﬁ:{;“l’f !let ¢ € S, be the permutation which permutes

the vertices v1,...,v, to their natural order induced by the order <(7).
Then let the enumeration of E,, be o(Nat), where the action of o on E,,
is given by the correspondence out and the correspondence between black
and white edges via (v, N(v)) — (N(v), N%(v)) for top dimensional cells.

To compare with the literature it is also useful to introduce the orien-
tations Nat, Lab, and Op which are the reversed orientation of Nat, Lab
and Op, i.e. reading them from right to left.

7.8. The Differential on TEP™

There is a natural differential on 7,0” "™ which it inherits from its interpre-
tation as CC,(Cact) see below.

Recall that for a planted planar tree there is a linear order on all edges
and therefore a linear order on all subsets of edges.
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Definition 7.8.1. Let 7 € I.f‘"*+ We set Egngte = E(7) \ (Eleas(7) U
{€root}) and we denote by numpg : Egngie — {1,..., N} the bijection which
is induced by the linear order <(™P),

Definition 7.8.2. Let 7 € T;’;p’ﬂt, e € Eangle, € = {w,b}, with w € V,,
and b € V. Let e~ = {w, b—} be edge preceding e in the cyclic order <™%
at w. Then 8.(r) is defined to be the tree with the vertex b and edge of e
deleted and the other edges adjacent to b transplanted to the vertex of the
next edge keeping their order of w.r.t <7 intact. As a planar picture, one
can think of collapsing the angle between the edge e and its predecessor in
the cyclic order of w.

Definition 7.8.3. We define the operator d on the space 7,”” "™ t0 be given
by the following formulas

or)i= Y (-1)mmE=1g,(r) (7.9)

EEEnﬂglz

Figure 29. The collapsing of an angle.

Denote by 7.7 ™ (n)* the elements of Ty, ™ (n) with k white edges.

Proposition 7.8.4. The map 8 : T27™ (n)* — TP™ (n)*=1 is a differen-
tial for T, ™ and turns ‘Tf;p'“" into a differential operad.

Proof. The fact that 8 reduces the number of white edges by one is clear.
The fact that 8 = 0 follows from a straightforward calculation. Collapsing
two angels in one order contributes negatively with respect to the other
order. The compatibility of the multiplications o; is also straightforward.
All these properties will also follow from the chain interpretation of the
trees in §7. ]
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Theorem 7.8.5. For the choice of orientation Nat and the induced operad
structure o; the map 7 — g(7) where g(7) is the generator corresponding to
C(7) fized in 7.7 is a map of differential operads and it identifies Tb;” ™ (n)k
with CCx(Cact!(n)), where CCy are the dimension k cellular chains.

The analogous statement holds true when passing to operads indexed by
sets for both Cact end Tpp‘”t

7.9. The Operadic Action of Tb’;,"*“t

A natural way to let ’i‘;f*m act on a complex (O, 4d) is given by building a
mixed complex by identifying the white edges of a tree with elements from
Cact! and the vertices with elements from O.

First we notice that if we are dealing with planted planar trees, we have
the total linear order < on the set of vertices and edges. For an action of
the operad 777"™ on a graded space O = 3~ O(n), we will consider maps

p: ?;’;’,‘”*“*(k} ®0(n) ® -+ ® O(nx) — O(m) (7.10)
TRHA® - Qfirrr(/i® - ®fk) (7.11)

Actually, 7(f, ® --- ® fx) will be zero unless |vi| =n; and m =Y n; — k
In the graded case, we have to fix the order of the tensor product on
the Lh.s. of the expression (7.11). We do this by using <" to give tensor
product the natural operadic order (i.e. O(i) inserted into the vertex v;.
Let NV := {V(7) I Eu(7)}| and let num : {V(r) I E(T)}| — {1,...,N}
be the bijection which is induced by <7. We fix L, to be a “Shifted” line

i.e. a free generated by an element of degree one. Now set

$ o {o(nj) if num=1(i) = v

(7.12)
L if num~1(i) is & white edge

We then define the order on tensor product on the l.h.s. of the expression
(7.11) to be given by

W=W® - Wy

Another way would be to include the sign which is necessary to permute
the Lh.s. of 7.11 into W into the operation p.

7.10. The Action of the Symmetric Group

The action of the symmetric group is induced by permuting the labels

and permuting the elements of O respectively. This induces a sign by
permutation on W,
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Remark 7.10.1. This treatment of the signs is essential if one is dealing
with operads and wishes to obtain equivariance with respect to the sym-
metric group actions. In general the symmetric group action on the endo-
morphism operads will not produce the right signs needed in the description
of the iterations of the universal concatenation o of §8. In particular this
is the case for Gerstenhaber's product on the Hochschild cochains. The
above modification however leads to an agreement of sings for the action of
the symmetric group for the subcomplex of the Hochschild complex gener-
ated by products and the brace operations, see below §7.9 and §9. Another
approach is given by viewing the operations not as endomorphisms of the
Hochschild cochains but rather maps of the Hochschild cochains twisted by
tensoring with copies of the line L;%® and §9. If one is not concerned with
the action of the symmetric group, then one can forgo this step.

7.11. The Action of Chain(Arc) on Itself and String
Topology

A good example of the type of action described above is the action of the
chains of the Arc operad on themselves®*. For the homotopy Gerstenhaber
structure we need an action of CC,(Cact') on any choice of chain model
for Arc or any of the suboperads which are stable under the linear trees
suboperad. The action p is just given by the glueing in Are.

We get agreement with the signs of the operation on .Arc which agree
with those of string topology®, if we denote the action of 7; as *°? and 77 as
-, see §5.13 for the operations and figure 31 for the definitions of the trees.

For the homotopy GBV structure we should consider the chains
CC.(Cacti') and again any choice of chain model for Arc or any of the
suboperads which are stable under the action of the trees suboperad.

8. Structures on Operads and Meta—Operads

Before going into the statement and proof of Deligne’s conjecture, we would
like to digress once more on operads. This helps to explain some choices of
signs and explains the naturality of the construction of insertion operads
which gives a special role to spineless cacti as their topological incarnation
as well as to Arc as a natural generalization.

This analysis also enables us to relate spineless cacti to the renormaliza-
tion Hopf algebra of Connes and Kreimer!!. In particular for a given linear
operad or operad which affords a direct sum, we defined a Hopf algebra3C,
The symmetric group coinvariants of the Hopf algebra of the suboperad
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of symmetric top-dimensional cells of the normalized spineless cacti are
exactly the Hopf algebra of Connes and Kreimer.

Given any operad there are certain universal operations, i.e. maps of
the operad to itself. We will first ignore possible signs and comment on
them later on.

8.1, The Universal Concatenations

(Given any operad, we have the structure maps
0; : O(m)®0(n) - O(m +n—1)

and the concatenations of these, which can be described by their flow charts.
These are given by 7 € T;f,fl;f ‘. More precisely given k elements opy €
O(n«), we can concatenate them with the o; to produce a tree flow chart
where the inputs are the leaves and tails and the inner vertices are labelled
by the operations opg, where the a vertex v labelled by opy necessarily has

valenée ng. The number of leaves and the degrees n — i of the op; satisfy
the condition

wt(T) = Z lv| = Z”f = #leaves + #finner vertices = #tleaves + k (8.1)
o

Notice, we might have white leaves, which allows one to consider operads
also with a 0 component such as CH?* see below.

So let 7 € mﬁ{k} and let n; : 4 € 1,...k := |v;| then there is an
operation

o(7)(O(n1) @ - - @ O(n)) — O(m) (8:2)

by labelling the vertex v; by opn, € O(n;).

Notice that, we used the linear order on a planted planar tree in order
to associate the functions to the non—leaf vertices.

In general lifting the restriction on the n;, we define the operations o(7)
to be zero of |v;| # n.

The above considerations give rise to a partial non—% operad operation
of 'IE:,’:;I * which can be made into an operation of the operad Tﬁf ' by using
S,, equivariance. The partial concatenations o; insert a tree with k—tails
into the vertex v; if |v;| = k, by connecting the incoming edges of v; to the
tail vertices in the linear order at v; and contracting the tail edges.

Definition 8.1.1. We will fix that for O in Set the direct sum which we
again denote by O is given by the free Abelian group generated by @ which
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we consider to be graded by the arity of the operations op € O minus one.
If the operad O is in Chain we can take the direct sum of the components
as Z-modules. In the case of an operad O in the category Vect; we consider
its direct sum to be the direct sum over k of its components. In all these
cases, we call O the direct sum and say O affords a direct sum and write
O =@, cnOp(n). In all these cases we can consider O to be graded by N
with the degree of Op(n) being n — 1.

Remark 8.1.2. The above definition allows one to can make sense, formal
linear combinations of operad elements with coefficients +1. We could
extend the use of the expression to afford a direct sum to mean that, the
category which the operad is defined allows one to construct direct sums
which are Z modules.

If we consider an operad which affords a direct sum and let O be its
direct sum then we obtain an operadic map.

72/ — Hom(0,0)

In this sense one can say that ‘IE;’:;JE ! is the universal concatenation

partial-operad.

8.2. The pre—-Lie Structure of an Operad

In an operad which affords direct sums, one can define the analog of the o
product and the iterated brace operation (cf. 1%2%), see above.

Definition 8.2.1. Given any operad © in Set, Chain or Vecty, we define
the following map

Om)®@0n) - 0m+n-1) (8.3)

m
0pm ® 0pn — Y _(-1)4= 1 Dop,, o; 0p, (8.4)

i=1

This extends to a map
0: 00 -0 (8.5)

which we call the ¢ product.
We call the map which is obtained from in the same fashion as o, but
with the omission of the signs (—1)(:~V("+1) the ungraded o product.
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Following Gerstenhaber’s calculation'®1? (essentially using associativ-
ity), we immediately have the following proposition

Proposition 8.2.2. The product o defines on O := @, O(n) the struc-
ture of a graded pre-Lie algebra. Omitting the sign (—1)0—D(n+1) 4n the
sum yields the structure of a non—graded pre-Lie algebra.

We do not rewrite the proof here, but in graphical notation the proof
follows from figure 30 below.

Without signs this notation is related to the one that can be found for
rooted trees’, for the case with signs see §7.7 and §9.8.

8.3. The Insertion Operad

The interesting property of the operation o is that it effectively removes
the dependence on the number of inputs of the factors.

Given an operad in Chain we can also define other operations similar to
o which are in natural correspondence with 77P, In fact these operations
all appear in the iterations of o, They are given by inserting the operations
into each other according to the scheme of the tree and then distributing
tails so that the equation (8.1) is satisfied. Examples of this are given in
figure 30. Here the first tree yields the operation f; o f3, i.e the insertion
(at every place) of fs into f;. Iterating this insertion we obtain expression
IT which shows that inserting f3 into f; o fo gives rise to three topological
types: inserting fs in front of fo, into fo and behind f;. In the opposite
iteration one just inserts f; o f3 into f; which gives a linear insertion of f»
into f; and fi3 into fo. From the figure (up to signs) one can read off the
symmetry in the entries 2 and 3 of the associator.

[ II III

Figure 30. I fio f2 IL (fio f2) o f3 and IIL. f1 o (f20 f3)

We will not care about signs at the moment, they follow from §7.7 of
from 9.8.
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8.4, Notation

There are some standard trees, which are essential in our study, these are
the n—tail tree /,,, the white n-leaf tree 7,,, and the black n-leaf tree 72, as
shown in figure 31

| ] [
| I1 II1
Figure 31. I The n-tail tree l,;, II. The white n—leaf tree 7, 1Il. The black n—leaf tree

7t

Essentially, if we would not like to a priori specify the number of leaves,
i.e. inputs and degrees of the operations, we have to consider trees with all
possible decorations by leaves. For this we need foliation operators in the
botanical sense. To avoid confusion with the mathematical term “foliation”,
we choose to abuse the English language and call these operations “foliage”
operators.

Recall that there is an operation of ?f:,’:;f " on homogeneous elements of
O of the right degree. We extend this operation to all of O by extending
linearly and setting to zero expressions which do not satisfy degree condition
that opx € O(|vk])

Definition 8.4.1. Let I, be the tree in 77 with one white vertex la-
belled by v and n tails as depicted in figure 31. The foliage operator

F ‘I;’:',fft‘”i — TPP i defined by the following equation

b/w
F(r) = Z b 00T

nel

Notice that the right hand side is infinite, but since ‘3’;’;’;“ is graded by say
the number of leaves, and F(7) is finite for a fixed number of black leaves
the definition does not pose any problems. Furthermore, one could let F
take values in %ﬁﬂ [[t]] where t keeps track of the number of tails which
would make the grading explicit.
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Also notice that F : TPP™ — TP and F - ‘I;ﬁ;“"” — mﬂ_

Recall that there is an operation of T}f,‘:_f ! on homogeneous elements of
O of the right degree. We extend this operation to all of O by extending
linearly and setting to zero expressions which do not satisfy degree count,
i.e. satisfy the equation (8.1).

Given 7 in 'IIE;""J '(n), we can then define the operation

or(f1® - ® fu) = F(7)(f1 ®- B fn)

Notice that, although F(r) is an infinite linear combination, for given
fi,..-, fn the expression on the right hand side is finite.
The following is almost automatic.

Theorem 8.4.2. Any chain operad which affords a direct sum is an algebra
over the operad TPP = ’T”p Flith the insertion product,

In fact, following Remark 8.4.3, we are forced to look at the insertion
product.

Remark 8.4.3. Thinking about F as a formal power—series, e.g. in
mﬂ[[t]], we can define a product * by the formula

F(r) o F(m) := F(my * T2) (8.6)

Now, if the * is thought of as operadic, i.e. 71 ¥ 79 = (%, 71, 72), then by
linearity and associativity, we know how to define (7, t,,...,t,) for any
7€ T" C TPP, fixing the operations of the pre-Lie operad.

8.5. The Hopf Algebra of an Operad

We have seen in 8.2 that any operad that affords a direct sum gives rise to
a pre-Lie algebra. Now the defining property for a pre—Lie algebra is that
the commutator of its product gives a Lie or in the graded case an odd Lie
algebra.

Definition 8.5.1. Given an operad @, which affords a direct sum, we
define its pre-Lie algebra PL(O) to be the pre-Lie algebra (O, o), its Lie
algebra L(O) to be the Lie algebra (O, [ |Jusing the Lie bracket [a,b] :=
aob = boa, its Gerstenhaber algebra G(() to be the Gerstenhaber algebra
(O,{ }) where { } is defined as usual via {a, b} := a*xb—(—1)al+1){bl+1)p,
a. Lastly the Hopf algebra of an operad H(Q) is defined to be U*(L(O)),
i.e. the dual of universal enveloping algebra of its Lie algebra.
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9. Spineless Cacti as a Natural Solution to Deligne’s
Conjecture

9.1. The Hochschild Complez, its Gerstenhaber Siructure
and Deligne’s Conjecture

Let A be an associative algebra over a field k. We define CH*(A, A) :=
P ,>o Hom(A%9, 4)
There are two natural operations
CH™(A,A)®@ CH"(A,A) - CH™"" (A A) (9.1)
U:CH"(A,A)®@ CH™(A,A) - CH™T™(A, A) (9.2)

where the first morphism is as in 4.4 , ie. for f € CHP(A,A) and g €
CHI(A, A).

foig(zy,.. *:1’P+q—1} = flz1,..., Ti-1,9(x4, . . - si’—'i+q—1):i‘i+m eroy Tptg—1)

and the second is given by the multiplication

flay...,am)Ug(by,....bn) = flar...,am)g(b1,- .. ,bn)

9.2. The Differential on CH*

The Hochschild complex also has a differential which is also derived from

the algebra structure.
Given f € CH™(A, A) then

a(f)(u‘li 3 aan—l—l) = ﬂ-lf{ﬂg,, - ':a‘ﬂ--l—l) -_— f(ﬂ'la'21 . aun-|—1)+
4 (-1 f(ar,. ., GnBnr1) + (1) T2 f (a1, . .4 Bn)an41

Definition 9.2.1. The Hochschild complex is the complex (CH*, 8), its co-
homology is called the Hochschild cohomology and denoted by HH*(A, A).

9.3. The Gerstenhaber Structure

Gerstenhaber!® introduced the o operations: for f € CHP(A, A) and g €
CHY(A,A)

p

fogi=) (—1)-Lletlfo g

i=1

and defined the bracket
{feg}:=fog— (-)FDH g0y
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and showed that this is indeed induces what is now called a Gerstenhaber
bracket, i.e. odd Poisson for U, on HH*( A, A).

9.4. Deligne’s Conjecture

Since HH*(A, A) has the structure of a Gerstenhaber algebra one knows
from general theory that thereby H H*(A, A) is an algebra over the homol-
ogy operad of the little discs operad.

The question of Deligne was: Can one lift the action of the homology of
the little discs operad to the chain respectively cochain level? Or in other
words: is there a chain model for the little discs operad that operated on
the Hochschild cochains which reduces to the usual action on the homol-
ogy/cohomology level?

This question has an affirmative answer in many ways by picking a
suitable chain model for the little discs operad3?4%:3%959 A review of these
constructions is also available’®. We will provide a new and in a sense
natural and minimal positive answer to this question, by giving an operation
of CC,(Cact') on the Hochschild cochains.

There is a certain minimal set of operations necessary for the proof
of such a statement which is given by iterations of the operations U and
o;. These are, as we argue below in bijective correspondence with trees
in ‘If:f'“t, our model for the chains of the little discs operad CC,(Cact!),
has chains which are exactly indexed by these trees. Furthermore, the top
dimensional cells which control the bracket are the universal concatenation
operad. And lastly we will show that the differential of deleting arcs can
be seen as a topological version of the Hochschild differential. This makes
our new solution natural and minimal.

9.5. The Operation of CC,(Cact') on Homcy

For O = Homcpg, we define the map p of ed. 7.11, to be given by
the operadic extension of the maps which send the tree 7, to the non-
intersecting brace operations i.e. for homogeneous f, g; of degrees |f| and

lgils N = |fl+ 2 lg:l —n
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f{gli"*!gﬂ}{mll”*rmﬂ) = Z =+
Lt oty i [
15+ |g;] < 1541
S s SN S T | OO 5 Y ) (SRS - 0, -1 . SO OSN3
(9.3)

where the sign of the shuffle of the g; and z; which is determined by con-
sidering the shifted degrees, i.e. the z; to have degree 1 and the g; to have
degree |g;| + 1.

Notice that f{g} = f o g. Brace operations have first been considered
by Getzler!?,

In order to make signs match with those of Gerstenhaber!®, we will have
to consider the opposite orientation for Wie. W= Wy @ ---® W;. To
implement this change of sign we define sign'¥ (7) to be the sign obtained
by passing from W to W. This basically means that in the orientation of W
one would regard the operation 0°?, U°? on the Hochschild complex, where
fo%g=(=1)PatPtigo f and fUP g:= (~1)PigU f.

The action of the tree T, is given by:

f® Le, @1 @+ ® Le,, @ gn (_I)Sig“w(ﬂf{ﬂlv f :Hn} (9.4)

The action of 772 is given by
Q@ ®gn o (1) (g u...Ug,

The operadic extension means that we read the tree as a flow chart at
each black vertex |v| the operation Tltl is performed and at each white vertex
the operation 7y, is performed. The S, action is given by permutations
and indeed induces the right signs on the Hochschild complex as seen by
straightforward calculation.

For the operadic composition in CC,(Cact!) we choose o with the ori-
entation Nat.

The following is now straightforward:

Proposition 9.5.1. The above procedure makes CH*(A, A) into a non-%
algebra over CC,(Cact!).

9.6. Signs for the Braces

It well known!®33:2% that the set of concatenations of multiplications and
brace operations form a suboperad of the endomorphism operad of the
Hochschild complex we will call it Brace.
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The generators of this suboperad are in 1-1 correspondence with ele-
ments of ‘Ib";"‘“‘. Such a tree represents a flow chart. The functions to
be acted upon are to be inserted into the white vertices. A black vertex
signifies the multiplication of the incoming entities, while a white vertex
represents the brace operation of the elements attached to that vertex out-
side the brace and incoming elements inside the brace.

Notice that in the flow chart of an expression of the type f{(g1), (g2
gs - ga{h1, h2})} the symbols “{” and “,” correspond to the white edges.

Proposition 9.6.1. The association of a flow chart is a non-X operadic
isomorphism between Brace and 7,7" "™ of operads with a differential.

Definition 9.6.2. We define an action of the symmetric group on Brace,
by considering the symbols “{” and “,” to be each of degree one.

The following propositions follow from straightforward computation®°.

Proposition 9.6.3. With the above action of the symmelric group on
Brace the isomorphism of 9.6.1 is an isomorphism of operads.

Proposition 9.6.4. The above procedure gives an operation of CC, (Cact')
on CH*(A, A) and an operadic isomorphisms of Brace and CC,(Cact!).

9.7. The Differential

If we denote the differential on CC,(Cact') as 9 and the differential of
CH as § then the action of CC,(Cact') on Homey commutes with the
differential. On the space W there is a natural differential oy = d + 4.
The calculations for the chains of the arc operad3® and the straightforward
generalization to action of 7, yield the following proposition.

Proposition 9.7.1.
po(Ow)=dop (9.5)

9.8. Another Approach to Signs and Actions

Another way to fix the signs for the symmetric group actions on the
Hochschild complex3® is achieved by tensoring with one dimensional spaces
L and Ly of degrees —1 and —2 and their duals L] and L3. S Also it is
useful to deal with operads indexed by arbitrary sets. For a graded vector
space A and an indexing set I one®® defines

C = C*(A; A) = ®rHom(A®, A) ® (L} ® L1)®!
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where the sum is taken over all non-empty complectly ordered finite sets,
and Hom is the internal Hom in the tensor category Vectz of Z-graded
vector spaces (with Koszul rule of signs). The Gerstenhaber bracket is a
map then a map from C® C — C ® (L3 ® L)*. Since we will not be in
the Ay setting, we can omit the reference to the lines L.

9.9. A Second Approach to the Operation of CC,.(Cact')

Another way to make CC.(Cact') or 'I?;”*"* act is by using the foliage
operator. This approach®® stresses the fact that a function f € CHY(A, A)
is naturally depicted by 7,. Notice for instance the compatibility of the
differentials.

9.10. Natural Operations on CH™* and their Tree Depiction

Given elements of the Hochschild cochain complex there are two types of
natural operations which are defined for them. Suppose f; is a homoge-
neous element, then it is given by a function f: A®" — A. So treating the
cochains as function, we have the operation of insertion, as in 4.4. The sec-
ond type of operation comes from the fact that A is an associative algebra;
therefore, for each collection fi,..., f, € CH*(A, A) we have the n! ways
of multiplying them together.

We will encode the concatenation of these operations into a black and
white bipartite tree as follows: Suppose that we would like to build a
cochain by using insertion and multiplication on the homogeneous cochains
fi,. .-, fn- First we represent each function f; as a white vertex with | f;| in-
puts and one output with the cyclic order according to the inputs 1,...,{fi
of the function. For each insertion of a function into a function we put a
black vertex of valence having as input edge the output of the function to
be inserted and as an output edge the input of the function into which the
insertion is being made. For a multiplication of £ > 2 functions we put
a black vertex whose inputs are the functions which are to be multiplied
in the order of their multiplication. Finally we add tails to the tree by
putting a black vertex at each input edge which has not yet been given a
black vertex, and we decorate the tails by variables a,,...as according to
their order in the total order of the vertices of the rooted planted planar
tree. 1t is clear that this determines a black and white bipartite tree.

A rooted planted planar bipartite black and white tree whose tails are
all black and decorated by variables ay,...as and whose white vertices are
labelled by homogeneous elements f, € CH!V|(A, A) determines an element

Tongring, Nils, and Penner, R. C., eds. Woods Hole Mathematics : Perspectives in Mathematics and Physics. River Edge, NJ, USA: World Scientific Publishing Co., 2004. ProQuest ebrary. Web. 19 September 2015.
Copyright © 2004. World Scientific Publishing Co.. All rights reserved.



211

in CH?(A, A) by using the tree as a "flow chart”, i.e. inserting for each
black vertex of valence one and multiplying for each black vertex of higher
valence. Notice that, since the algebra is associative, given an ordered set
of elements there is a unique multiplication.

Remark 9.10.1. The possible ways to compose & homogeneous elements
of CH*(A, A) using insertion and cup product are bijectively enumerated
by black and white bipartite planar rooted planted trees with tails and %
white vertices labelled by k functions whose degree is equal to the valence
of the vertex.

We will fix A and use the short hand notation CH := CH*(A, A). For
an element f € CH, we write f'@ for its homogeneous component of degree
d.

If we would like to consider non-homogeneous elements, then given a
tree we can only use the homogeneous components of the elements of CH
with the right degree. This leads to:

Definition 9.10.2. For 7 € 7;%(n) and fi,...,fn € CH we let

7(f1,..., fn) be the operation ﬂbta,med in the ahnve fashion by decorat-

ing the vertex v; with label ¢ with the homogeneous component of fi“"""'”.
vil}

Notice that the result is zero if any of the homogeneous components f;*l
vanish.

Remark 9.10.3. Up to the signs which are discussed below this gives an
operation of CC,(Cact) on the Hochschild complex.

9.11. The Operation of T’ ig

Definition 9.11.1. Foratree7 € 7,°" ™(n) with n white vertices we define
a map op(r) € Hom(CH®", CH) = ’Hﬂmcg{n} by

ﬂp{T){fl'r seny fﬂ::l T ﬂ:ﬂj{?{inSfF{T), {fh SR rfﬂ)}

here ¢ns inserts the function f; into the label i and the signs are discussed
in §7.7 and §9.8.

Proposition 9.11.2. The Hochschild cochains are an algebra over T,'F oy

9.12. The Differential

Again the differentials are compatible. This can be checked by a straight-
forward calculation, see §10.6 below. It is also implicit in the work of
Kontsevich and Soibelman®®.
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Notice that in the tree formalism a black edge is inserted upon dif-
ferentiating, while in Are an arc is erased which in Caet corresponds to
contracting an arc. Both these operations reduce the number of parame-
ters by one. Of course omission of a parameter and insertion of a degree
one space amounts to the same signs.

Remark 9.12.1. The considerations of this section naturally lead to brace
operations in far more general setting. 'This is explained in detail in §10.5

9.13. A Solution Of Deligne’s Congecture from Spineless
Cactz

In this section, we sum up the rather technical results of the previous ones.

9.14. The Action

Using the cell decomposition 7.6.4 and the interpretation of CC,(Cact')
as ’J’E;p‘”t, CC,(Cact!) acts naturally on the Hochschild complex, with the
signs being fixed by one of the schemes above.

9.15. Deligne’s Congecture

Notice that we have proven that Cact is homotopy equivalent to the little
discs operad?? as well as to Cact? (see Corollary 7.5.1) and hence the cellular
chains of Cact! give us a model of D(2).

From our previous analysis:

Theorem 9.15.1. Deligne’s conjecture is true for the chain model of the
little discs operad provided by CC.(Cact') and moreover CH*(A, A) is even
a dg-algebra over CC,(Cact').

Remark 9.15.2. This operad of spineless cacti and its cellular chains thus
give a simple minimal topological description of the Gerstenhaber structure
of the Hochschild complex.

Remark 9.15.3. As mentioned in §7.6.6 choosing a chain model
Chain(Cact) of Cact by fixing a chain model for the scaling operad, we
can let Chain(Cact) by sending all cells of Chain(Cact) which are not the
product of a cell of CC,(Cact') and a zero dimensional cell of RZ to zero
and letting the cells of CC,(Cact') times a zero dimensional cell of RZ i.e.
cells of the type A(T) x pt act via .
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Remark 9.15.4. As noticed before, the fact that the chain operads of Cact
and Cact' possess the structure of a Gerstenhaber algebra up to homotaopy,
means that this structure exists also on Homc - (4,4) up to homotopy and
on Hom 4 on the nose - the latter being Gerstenhaber’s original theorem!®,
It is interesting to note that our homotopies can be seen as a natural geo-

metric depiction of the homotopies Gerstenhaber used.

10. The Relation of Cact to Connes—Kreimer’s Hopf
Algebra and Generalizations

10.1. Connes—Kreimer’s Hopf Algebra as the Hopf Algebra
of an Operad

Connes and Kreimer'! defined a Hopf algebra based in order to explain
the procedure of renormalization in terms of the antipode of this Hopf
algebra. This Hopf algebra was described directly, but also as the dual
to the universal enveloping algebra of certain Lie algebra which is the Lie
algebra associated to the free pre-Lie algebra in one generato’r.

Definition 10.1.1. By the S, coinvariants of an operad which affords a
direct sum, we mean P, .5(O(n))s,. Here €D is the shorthand notation
explained in §8.1.1.

In our notation we can rephrase the results'®'? about this Hopf algebra
as

Proposition 10.1.2. The renormalization Hopf algebra of Connes and
Kreimer Hog is the Hopf algebra of S, coinvariants of H(T™/") which
agrees with the S, coinvariants of H(PI).

For the reader unfamiliar with this particular Hopf algebra this can also
be a definition.

10.2. The Top Dimensional Cells of Spineless Cacti and
the Pre—Lie Operad

We denote the top-dimensional cells of C'C),(Cact(n)) by CCL?(n). These
cells again form an operad and they are indexed by trees with black vertices
of valence one (recall that means one input). Furthermore, the symmetric
combinations of these cells which are the image of 77! under the embed-
ding cppin form an sub—operad.

From our previous description, one obtains®®
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Lemma 10.2.1. In the orientation Lab for the top-dimensional cells for
T € TTi(n), 7' TH1(m)

cppin(T) o4 cppin(T’') = Leppin(T o; ')

Definition 10.2.2. Let GPI be the quadratic operad in the category Vectz
obtained as the quotient of free operad F generated by the regular repre-
sentation of §; by the quadratic relations defining a graded pre-Lie algebra,
i.e, the quotient of F' by the ideal R generated by the graded S3 submodule
generated by the relation r = (x1 *22) * x3 —x1 * (zg *33) — (=1)=2l1=1l ({2
ITy) * g9 — Xy * (x3 * T2)). Where F and R are considered to be graded by
given the degree n — 1 to F(n).

Theorem 10.2.3. The operad CC P(n)% ® k is isomorphic to the operad
GPl for graded pre-Lie algebras. Furthermore the shifted operad (CCYP @
L®Fw)S(n) @ k is isomorphic to the operad Pl defining pre-Lie algebras.

Here we have used the notation of tensor products indexed by arbitrary
sets!? and used the “shifted line” L which a the free object generated by
an element

Proof. In view of Lemma 10.2.1 and the definition of the map cppin the
second statement follows from the operadic isomorphism of 7! and the
pre—Lie operad PIl?. This also proves the first statement up to signs. The
matching of the signs is guaranteed by the shift. The fact that the rela-
tion r holds and generates the respective ideal is explicitly verified in the
presentation of Gerstenhaber structure on the chains of the arc operad®ino

Remark 10.2.4. These statements also hold over Z. Thus, from now on
we will omit the explicit tensoring with k.

As an immediate consequence, we obtain:

Corollary 10.2.5. The direct sum of an operad which affords a direct is an
algebra over the symmetric top dimensional chains of the little disc operad
of the chain model provided CC.(Cact') as well as over the shifted chains
(CCP)> @ LOEw.

of degree -1. Recall that E,, is the set of white edges.

Corollary 10.2.6. The pre-Lie algebra of S, coinvariants ((CC/?P ®
L®Ew)S(n))g, is isomorphic to the free pre-Lie algebra in one generator.

d Penner, R. C., eds. Woods Hole Mathematics : Perspectives in Mathematics and Physics. River Edge, NJ, USA: World Scientific Publishing Co., 2004. ProQuest ebrary. Web. 19 September 2015.

orld Scientific Publishing Co.. All rights reserved.



215

Likewise the graded pre-Lie algebra of S, coinvariants (CCLP)S(n))s.,
is 1somorphic to the graded free pre-Lie algebra in one generator

Proof. The first statement follows from the references”!! and thus so does
the second up to signs. These are guaranteed to agree by the shifting
procedure and Theorem 10.2.3. O

10.3. A Cell Interpretation of Hok

As shown in Theorem 10.2.3 there is cell and thus a topological interpre-
tation of the pre-Lie operad and the graded inside Cact' and thus inside
the Arc operad. In this interpretation Hog is also the Hopf algebra of the
coinvariants of the shifted chain operad CCL°"(Cact)® ® L&Fw,

Corollary 10.3.1. Hck is equal the Hopf algebra of S,, coinvariants of
the sub—operad of top-dimensional symmetric combinations of shifted cells
CCYP(Cact!)® @ LeEw of the shifted cellular chain operad of normalized
spineless cacti CC.(Cact!) @ LOF=,

It is interesting to note that also the G and BV structures® are inside
the symmetric (graded symmetric) combinations.

10.4. Comments on Operads and Heo g

We have shown that any operad is an algebra over the operad 7"/! in a
natural way and thus the Hopf algebra Hc i naturally appears in any con-
text involving operads, such as Deligne’s conjecture. We have furthermore
shown that there is a topological incarnation of the insertion product, which
is based on surfaces, In this setting, we have constructed a chain represen-
tation of the algebra Hcog. This links the algebra Hex and its underlying
bracket for instance to string topology.

Remark 10.4.1. We expect to obtain other interesting examples of such
Hopf algebras by considering other tree operads.

10.5. Operad Algebras and a Generalized Deligne
Conjecture

Definition 10.5.1. We define an operad algebra to be an operad O which
affords a direct sum together with an element U € O(2) which is associative,
i.e. define aUb to be (—1)I*/(U oy a)ojay1( b then (aUb)Uc=aU(bUc),
recall that |a| =n —1if a € O(n).
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Definition 10.5.2. We formulate the generalized Deligne conjecture as the
statement that the direct sum of any operad algebra which affords a direct
sum is an algebra over the chains of the little discs operad in the sense that
there is a map of differential operads of CC,(Cact’) action as specified in
§7.9.

Definition 10.5.3. For f € O(m),g; € O(n;), we define the generalized
brace operations

f{gl'.! IR :;Q'n} o Z :I:{ -3 ((f‘:'hgl)ﬂizgz)ﬂia* B ]ﬂiﬂgn

1<i1 < Kin Sma
ij+19; +1] <ij4a
(10.1)

where the sign is defined to be the same one as in equation (9.3)

Lemma 10.5.4. There is an operadic action of Tb’;”‘"* of any operad alge-
bra.

Proof. We can view the bipartite tree as a flow chart. For the white
vertices, we use the brace operations above and for black vertex with n
incoming edges, we use the operation of applying U n — 1 times. Notice
that the order in which we perform these operations does not matter, since
we took U to be associative. O

Definition-Proposition 10.5.5. Generalizing Gerstenhaber’s'® definition to
an operad algebra, we define a differential on the direct sum by df =
fou—(=1)VlUof.

Proof. The fact that this is a differential follows from the calculations of
Gerstenhaber!t, O

10.6. Differential on Trees with Tails

Definition 10.6.1. For a tree 7 with tails in T;’;P and vertex v € Vi \{vroot }
we define 7% to be the b/w tree obtained by adding a black vertex b+ and
an edge et := {b+,v}, if [v| # 0 and if |v| = 0, the tree obtained by adding
two vertices b+ and by; and two edges e+ = {b},v} and ey = {bs, v} to
T
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We call a linear order <’ on 7,/ compatible with the order < on 7 if a)

e+ <’ ey, if applicable and b) the order induced on 7 by <’ by contracting
et and ey (if applicable) coincides with <. We define E,,_;n; to be the
white internal edges, i.e. white edges which are not leaves and set Ey_gngle :
E(7) \ Eyw—int. For a linear order <’ on 7,/

Etgﬂ{‘{r} = (—1) [{EIEEEh—unyte :—'ﬂ“‘:#U}I

and set

Oulr) = ),  sign(<)(z}, <)

compatible<’

we recall, that tail edges are considered to be black. Finally we define

Br):= 3 &) (10.2)

vE Vﬁ\‘[’"raat}

Remark 10.6.2. There is again a tree depiction for the operations of in-
sertion an cup product. This is analogous to tree picture explained in
9.10 where we now replace functions by elements of the operad. The tree
differential then describes the insertion of the new edges at all angles cor-
responding to the black vertices which amounts to inserting a U product.
Using this interpretation and the tree notation for the known calculations
16.25 it is straightforward to check that the tree differential (10.2) defined
above agrees with the differential induced by the differential on the operad,
which we defined in 10.5.5. Our differential also agrees with differential
induced by the differential of Kontsevich and Soibelman?®® via st..

Theorem 10.6.3. The generalized Deligne conjecture holds.

Proof. By the preceding Lemma 10.5.4, we have an operadic action of
Ty™ and thus an action of the chains CC.(Cact') which is a chain model
for the little discs operad. The compatibility of the differentials follows
directly from their definitions by a straightforward calculation as remarked
above. O

10.7. A Cyclic Version of Deligne’s Conjecture

We have shown that spineless cacti naturally act on the Hochschild coho-
mology of an associative algebra thereby providing a solution to Deligne’s

conjecture. Recently®! we have generalize this fact to an action of a cell
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model of cacti on the Hochschild cohomology of an associative algebra which
is isomorphic as a bi-algebra to its dual. This means that there is a BV
structure on the Hochschild cochains up to hamotopy and a BV structure
inducing the Gerstenhaber structure on the Hochschild cohomology of such
an algebra.

Our treatment is again of a more general nature. It is easy to abstract
from it to a general setup of cyclic operad algebras.

11. Outlook and Speculations

11.1. Operation on the Hochschild Complex of an Ao
algebra

There is a natural action of '};ﬁ”*”t on CH*(A, A)%6 was constructed which
allows to solve Deligne’s conjecture. Here the black vertices stand for the
higher multiplications u, of the Ao structure. The solution was then es-
tablished by constructing a quasi-isomorphism of the free operad of M
onto the operad of the Fulton-MacPherson compactification of the config-
urations of B2, This beautiful construction is however indirect, as one has
to invert the quasi-isomorphism and furthermore the map to the Fulton-
MacPherson compactification is rather involved and has considerably many

choices. We would hope to find a direct interpretation of 7.J7*""™.

11.2. A Putative Cell Decomposition

In our situation an A, version of Deligne’s could be established, if we had
a cellular decomposition of a suitable version of Cact (e.g. CactS where
this is the space of cacti whose lobes have radius not greater than 24%v))
such that the cells are indexed by ?;’:,i;ﬂt*m and are given by

cell(T) := H Clyp X H K|y (11.1)
ve Vi ve Ve
where C),| is the [v|-dimensional cyclohedron and Kj, is the |vu|-
dimensional Stasheff polytope or associahedron®’.
Let Cell (Tﬂi’;‘”'“‘] be the CW complex glued from the cells cell(7) using
the natural differential § for the cyclohedra and associahedra and let d be
the tree differential®®. It is then straightforward to show that:

Proposition 11.2.1. The differential O and & agree on
CC.(Cell(TT"™))
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This leads us to the conjecture

Conjecture 11.2.2. There is a suitable suboperad of Cact which is quasi-
isomorphic to Cact and whose cell decomposition is given by eq. (11.1).

11.3. Truncation of Simplices and Stasheff Polytopes

A good candidate for the space for which the cell decomposition should be
possible is the space Cact= of restricted cacti.

It is straightforward to see that this space is indeed a suboperad.

To find the cell decomposition, we should have a special realization
of cyclohedra and associahedra. In particular, we need a realization of
an n associahedron in the hyperplane > . z; = 2"~! ¢ R"! and the n
cyclohedron in R?#7 1!,

The corners for the Associahedron K, should be given by n tuples
indexed by a binary tree and should be 27 (¥} which are the weights
obtained by using the homotopy associative operation - on D.Are using the
bracketing given by a binary tree and reading off the total weights on the
boundaries 9;(F").

For n = 2 this is the point (1, 1) for n = 3 one can take the interval on
the line through (1,1,2) and (2,1, 1). For n = 4 the corners of the pentagon
should be (1,1,2,4), (2,1,1,4), (2,2,2,2), (4,1,1,2) and (4,2,1,1).

The cyclohedra should come from blowing up the n dimensional sim-
plex A™ which corresponds to the 7,, so that the tree boundary for the
cyclohedra coincides with the geometric boundary of the operad.

Conjecture 11.3.1. We conjecture that there is a truncation of simplices
with the above corners that ytelds the above realizations of associahedra and
cyclohedra.

This has been checked for low dimensions, but we currently lack a gen-
eral scheme. One step in this direction would be the construction of an
explicit map of the compactification of the configuration space of n points
on S! with one point fixed at the origin to the n-th cyclohedron.

11.4. Relations to the Fulton-MacPherson
Compactification

Finally, we expect a relation of spineless Cacti or the Arc operad to the
Fulton-MacPherson compactification of the configuration space of points in
R?. The idea is to use a variant of polar coordinates and then to keep track
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of the collision speeds in the width of the bands. A thorough analysis of this
fact should result in a positive answer to a conjecture made by Kontsevich
and Soibelman®®. This will be elaborated on elsewhere.

11.5. Actions of Arc

Denote by Arcg the suboperad of Arce of surfaces without punctures whose
image under Loop is a graph whose genus and number of cycles coincides
with the genus of the surface and the number of its boundary components.

We also expect that Arcy operates on CH*(A, A), for an algebra A
together with a non—degenerate invariant as a cyclic operad. This has two

steps, first the non—trees and second higher genus. The operation of Cacti
has recently been established?!.

Conjecture 11.5.1. We conjecture that a suttable chain model of Arcu
acts on CH*.

For the action of loop spaces there are several conjectures.

Conjecture 11.5.2. We conjecture that of Arcy acts on LM, the loop
space of a compact manifold M.

If we consider all of Are then we can obtain the surfaces whose loop
has the wrong genus or number of cycles as images of the stabilization with
respect to the genus operator®*. The map Loop is not sensitive to this
stabilization and thus if there is an action of Arc which factors through
the map Loop, then one is essentially dealing with the stabilized moduli
space. We consider the suboperad Arc® of Are given by surfaces without
punctures whose Loop is connected.

The above considerations and the fact that the sequences®® have an
interpretation in terms of loops of arc families on higher genus surfaces
leads us to conjecture:

Conjecture 11.5.3. We conjecture that if the Arc® operad acts on M
by a map that factors through Loop then M has the homotopy type of an
infinite loop space. In particular the stabilization of Arc® has the homotopy
type of an infinite loop space.

In this conjecture, we can probably replace Arc® by the sub-operad of

Chinese trees?*.

Lastly,
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Conjecture 11.5.4. We conjecture that the Arc operad will act on LM by
a combinatorial Gromov—Witten type setup.

This we understand as follows. If we wish to concatenate loops in the
free loop space LM that do not intersect, we have to be able to move
the loops into the a position in which they do. Regarding the image of a
surfaces with arcs in M whose boundaries 1,...,n are exactly the loops to
be multiplied will give us a way to move and multiply them into the loop 0.
The versions of the discussed Props yield straightforward generalizations.

With a suitable version of mapping spaces and (virtual) fundamental
classes one could hope to construct combinatorial invariants, pulling back
families of loops and integrating over the moduli space.

11.6. Rankin-Cohen Brackets

Recently'? it was discovered that the Rankin—Cohen brackets can be real-
ized inside the foliation Hopf Algebra introduced by Connes and Moscovici.
Since these brackets have a conjectured form in terms of naturally grown
trees and due to the relationship of Arc to moduli spaces we formulate:

Conjecture 11.6.1. We conjecture that Rankin Cohen brackets are also
realizable on Cact.

11.7. Open Ends and Questions

It still remains to find out the exact relationship of cacti to chord diagrams,
the dihedral algebra?® and polylogarithms and higher zeta values. For the
latter the clarification of the relationship to configuration spaces and cacti
should be key as well as the relationship to moduli spaces.

We wish to conclude by remarking that the new feature of the Chinese
tree operad is that the chord diagrams*? are no longer planar. Cutting at
zero, we obtain not only rainbow diagrams as for genus zero, but (for) high
enough genus any trivalent diagram of the types depicted in figure 32 which
are known from high energy physics and knot theory? and are making their
appearance in biology in the form of folding problems for RNA.
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