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A PROOF OF A CYCLIC VERSION OF DELIGNE’S
CONJECTURE VIA CACTI

Ralph M. Kaufmann

Abstract. We generalize our results on Deligne’s conjecture to prove the statement that

the normalized Hochschild co–chains of a finite–dimensional associative algebra with a
non–degenerate, symmetric, invariant inner product are an algebra over a chain model

of the framed little discs operad which is given by cacti. In particular, in characteristic

zero they are a BV algebra up to homotopy and the Hochschild cohomology of such an
algebra is a BV algebra whose induced bracket coincides with Gerstenhaber’s bracket.

To show this, we use a cellular chain model for the framed little disc operad in terms of

normalized cacti. This model is given by tensoring our chain model for the little discs
operad in terms of spineless cacti with natural chain models for (S1)×n adapted to cacti.

1. Introduction

We prove the following theorem which had been conjectured by D. Tamarkin and
B. Tsygan in [TT]

Main Theorem There is chain model for the framed little discs operad which
acts naturally on the normalized Hochschild cochains of a finite–dimensional unital
associative algebra A with a non–degenerate, symmetric, invariant bi–linear pairing.

The proof which we present below was the first proof of this statement. Our
method is to expand our chain model of the little discs operad [K2], which we gave
in terms of normalized spineless cacti, to a chain model for the framed little discs
operad in terms of normalized cacti. As in [K2], the operation of the cells can be
seen as a discretization of the calculations establishing the structure of a BV algebra
up to homotopy on the chains of the operad Arc of [KLP]. The background is the
theorem [K1], that the operad of framed little discs is equivalent to the operad of cacti.
The Main Theorem can be applied in the situation of string topology [CS1, CS2] to
give operations on the loop homology of a simply connected compact manifold. The
connection to the Arc operad puts the whole picture into the context of Moduli spaces
and string theory (see also [K4, K5]).

In constructing the cell model, we make use of description of cacti in terms of a
bi–crossed product of spineless cacti and an operad built on the monoid S1 [K1]. This
bi–crossed product is also homotopy equivalent to the semi–direct product of these
operads [K1]. For spineless cacti we provided a CW model in terms of normalized
spineless cacti [K2] which lead us to give a natural solution to Deligne’s conjecture.
Now, using the description in terms of the bi–crossed and semi–direct products, we
obtain chain models for the operad of framed little discs, by tensoring the chains of
normalized spineless cacti with the chains for the operad built on the monoid S1.
In order to prove the necessary relations on the chain level one can translate the
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respective relations from the relations in the Arc operad using the method described
in [K1, KLP].

As it turns out, in order to translate the relations and thus to establish the homo-
topy BV structure on the chain level, one needs a refinement of the cell decomposition
on the semi-direct product to be able to accommodate all the operations which were
used in the Arc operad picture. This refinement uses cell decompositions on the S1

factors which are induced by regarding them as the lobe they represent. This leads to
a combinatorial description in terms of planar planted black and white (b/w) bipartite
trees with additional data called spines. In the language of cacti [K1], the additional
data keeps track of the position of the local zeros. On these trees, there are linear
orders at each vertex, which may differ from the induced linear order of the planar
planted trees. This forces us to look at non–rooted trees or equivalently to invert the
orientation of the edges. According to the general calculus for “correlation functions”
defined by trees, to achieve such an inversion one needs to have a non–degenerate
pairing which is symmetric and invariant. This is the assumption we have to make on
our algebra. With this assumption, we can rewrite the action of the cellular chains as
“operadic correlation functions” for decorated trees. In this description the operation
of the chains of the framed little discs operad becomes apparent.

The results and techniques we present below can also be employed in other situa-
tions, on which we comment on at the end of the paper. Notably, one can extend the
framework to obtain an action of cells of a ribbon graph cell decomposition of moduli
space on the E1-term of the spectral sequence computing the homology of the loop
space of a compact simply connected manifold extending the action of the framed
little discs provided by this paper. This leads to string topology like operations of the
cells of moduli space of decorated bordered surfaces on the free loop space extending
the operations of the string PROP or dioperad.

Assumptions We fix a ground field k of arbitrary characteristic. The algebras
we will be considering will be algebras over this ground field. For some results, we
will also fix char(k) = 0, we will indicate when this is necessary. To avoid any
complications, we assume that all the algebras are finite–dimensional. It should be
possible to generalize the results below to the situation where A has a bi-linear pairing
that induces an isomorphism of A with its dual as an A bi–module, e.g. in a graded
situation where all the graded pieces are finite–dimensional.

2. Background

2.1. Graphs. In this section, we formally introduce the graphs and the operations
on graphs which we will use in our analysis of cacti. This is the approach as given
in Appendix B of [K1] in which cacti are characterized as a certain type of ribbon
graph. Namely, a cactus is a marked treelike ribbon graph with a metric.

2.1.1. Graphs. A graph Γ is a tuple (VΓ, FΓ, ıΓ : FΓ → FΓ, ∂Γ : FΓ → VΓ) where
ıΓ is an involution ı2Γ = id without fixed points. We call VΓ the vertices of Γ and
FΓ the flags of Γ. The edges EΓ of Γ are the orbits of the flags under the involution
ıΓ. A directed edge is an edge together with an order of the two flags which define
it. In case there is no risk of confusion, we will drop the subscripts Γ. Notice that
f 7→ (f, ı(f)) gives a bijection between flags and directed edges.
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We also call Fv(Γ) := ∂−1(v) ⊂ FΓ the set of flags of the vertex v and call |Fv(Γ)|
the valence of v and denote it by val(v). We also let E(v) = {{f, ı(f)}|f ∈ Fv} and
call these edges the edges incident to v.

The geometric realization of a graph is given by considering each flag as a half-
edge and gluing the half-edges together using the involution ı. This yields a one-
dimensional CW complex whose realization we call the realization of the graph.

2.1.2. Trees. A graph is connected if its realization is. A graph is a tree if it is
connected and its realization is contractible.

A rooted tree is a pair (τ, v0) where τ is a tree and v0 ∈ Vτ is a distinguished
vertex. In a rooted tree there is a natural orientation for edges, in which the edge
points toward the root. That is we say (f, ı(f)) is naturally oriented if ∂(ı(f)) is on
the unique shortest path from ∂(f) to the root. This means that the set E(v) splits
up into incoming and outgoing edges. Given a vertex v, we let |v| be the number of
incoming edges and call it the arity of v. A vertex v is called a leaf if |v| = 0. Notice
that the root is the only vertex for which |v0| = val(v0). For all other vertices v 6= v0
one has |v| = val(v)− 1.

A bi-colored or black and white (b/w) tree is a tree τ together with a map clr : V →
Z/2Z. Such a tree is called bipartite if for all f ∈ Fτ : clr(∂(f)) + clr(∂(ı(f))) = 1,
that is edges are only between black and white vertices. We call the set Vw := clr−1(1)
the white vertices. If (f, ı(f)) is a naturally oriented edge, we call the edge white if
∂(ı(f)) ∈ Vw and denote the set of white edges by Ew. Likewise we call Vb := clr−1(0)
the black vertices and let Eb be the set of black edges, where a naturally oriented
edge (f, ı(f)) is called black if ∂(ı(f)) ∈ Vb.

The black leaves in a rooted black and white tree are called tails. The edges
incident to the tails are called tail edges and are denoted Etail. For tails, we will only
consider those flags of the tail edges which are not incident to the tail vertices and
call them Ftail.

2.1.3. Planar trees and Ribbon graphs. A ribbon graph is a connected graph
whose vertices are of valence at least two together with a cyclic order of the set of
flags of the vertex v for every vertex v.

A graph with a cyclic order of the flags at each vertex gives rise to bijections
Nv : Fv → Fv where Nv(f) is the next flag in the cyclic order. Since F = qFv one
obtains a map N : F → F . The orbits of the map N ◦ ı are called the cycles or the
boundaries of the graph. These sets have the induced cyclic order.

Notice that each boundary can be seen as a cyclic sequence of directed edges.
The directions are as follows. Start with any flag f in the orbit. In the geometric
realization go along this half-edge starting from the vertex ∂(f), continue along the
second half-edge ı(f) until you reach the vertex ∂(ı(f)) then continue starting along
the flag N(ı(f)) and repeat.

A tree with a cyclic order of the flags at each vertex is called planar. A planar tree
has only one cycle c0.

2.2. Planar planted trees. A planted planar tree is a rooted planar tree (τ, v0)
together with a linear order of the set of flags at v0. Such a tree has a linear order of
all flags as follows: Let f be the smallest element of ∂−1(v0), then every flag appears in
c0 and defining the flag f to be the smallest gives a linear order on the set of all flags.
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This linear order induces a linear order on all oriented edges and on all un-oriented
edges, by restricting to the edges in the orientation opposite the natural orientation
i.e. pointing away from the root. We denote the latter by ≺ and its restriction to
E(v) or F (v) by ≺v.

We will equivalently consider planar planted trees as defined above or as a rooted
planar trees whose root vertex has valence one. The bijection in one direction is given
by adding a new root vertex and one new edge such that the induced linear structure
on the old root is the given one. This tree is called the realization of the planar
planted tree. In the other direction the bijection is simply given by contracting the
unique edge incident to the root, but retaining the linear order. In the realization of
a planar planted tree, we call the unique edge incident to the (new) root vroot the
root edge and denote it by eroot and set froot to be the flag of the root edge which is
not incident to the root. Also Eroot = {eroot}, Froot = {froot}.

An angle at a vertex v in a planar tree is a pair of two flags incident to v of which
one is the immediate successor of the other in the cyclic order of Fv. There is a
bijection between angles, flags and edges by associating to an angle its bigger flag and
to the latter the unique edge defined by it.

2.3. The genus of a ribbon graph and its surface. The genus g(Γ) of a ribbon
graph Γ is given by 2g(Γ) + 2 = |VΓ| − |EΓ|+ #cycles.

The surface Σ(Γ) of a ribbon graph Γ is the surface obtained from the realization of
Γ by thickening the edges to ribbons. I.e. replace each 0-simplex v by a closed oriented
disc D(v) and each 1-simplex e by e× I oriented in the standard fashion. Now glue
the boundaries of e× I to the appropriate discs in their cyclic order according to the
orientations. Notice that the genus of Σ(Γ) is g(Γ) and that Γ is naturally embedded
as the spine of this surface.

2.3.1. Treelike and marked ribbon graphs. A ribbon graph together with a
distinguished cycle c0 is called treelike if

i) the graph is of genus 0 and
ii) for all cycles ci 6= c0: if f ∈ ci then ı(f) ∈ c0 and if f ∈ c0 then ı(f) ∈ ci 6= c0.

In other words each edge is traversed exactly once by the cycle c0. Therefore there is
a cyclic order on all (non-directed) edges, namely the cyclic order of c0.

A marked ribbon graph is a ribbon graph together with a map mk : {cycles} → FΓ

satisfying the conditions
i) For every cycle c the directed edge mk(c) belongs to the cycle.
ii) All vertices of valence two are in the image of mk, that is ∀v, val(v) = 2

implies v ∈ Im(∂ ◦mk).
Notice that on a marked treelike ribbon graph there is a linear order on each of

the cycles ci. This order is defined by upgrading the cyclic order to the linear order
≺i in which mk(ci) is the smallest element.

2.3.2. Dual b/w tree of a marked ribbon graph. Given a marked treelike
ribbon graph Γ, we define its dual tree to be the colored graph whose black vertices
are given by VΓ and whose set of white vertices is the set of cycles ci of Γ. The
set of flags at ci are the flags f with f ∈ ci and the set of flags at v are the flags
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{f : f ∈ c0, ∂(f) = v}. The involution is given by ıτ (f) = N(f) if f ∈ c0 and
ıτ (f) = N−1(f) else.

This graph is a tree and is b/w and bipartite by construction. It is also planar,
since the ci and the sets F (v) have a cyclic order and therefore also Fv ∩ c0. It
is furthermore rooted by declaring ∂(mk(c0)) to be the root vertex, and declaring
mk(c0) to be the smallest element makes it into a planted tree.

An equivalent definition is given by defining that there is an edge between a pair
of a black and a white vertex if and only if the vertex corresponding to b is on the
boundary of the cycle ci, i.e. v ∈ ∂(ci) := {∂(f) : f ∈ ci}.

2.3.3. Spineless marked ribbon graphs. A marked treelike ribbon graph is
called spineless, if

i) There is at most one vertex of valence 2. If there is such a vertex v0 then
∂(mk(c0)) = v0.

ii) The induced linear orders on the ci are compatible with that of c0, i.e. f ≺i f
′

if and only if ı(f ′) ≺0 ı(f).

2.3.4. Graphs with a metric. A metric wΓ for a graph is a map EΓ → R>0.
The (global) re-scaling of a metric w by λ is the metric λw : (λw)(e) = λw(e). The
length of a cycle c is the sum of the lengths of its edges length(c) =

∑
f∈c w({f, ı(f)}).

A metric for a treelike ribbon graph is called normalized if the length of each non-
distinguished cycle is 1.

2.3.5. Marked ribbon graphs with metric and maps of circles. For a
marked ribbon graph with a metric, let ci be its cycles, let |ci| be their image in the
realization and let ri be the length of ci. Then there are natural maps φi : S1 → |ci|
which map S1 onto the cycle by starting at the vertex vi := ∂(mk(ci)) and going
around the cycle mapping each point θ ∈ S1 to the point at distance θ

2π ri from vi

along the cycle ci.

2.3.6. Contracting edges. The contraction (V̄Γ, F̄Γ, ı̄, ∂̄) of a graph (VΓ, FΓ, ı, ∂)
with respect to an edge e = {f, ı(f)} is defined as follows. Let ∼ be the equivalence
relation induced by ∂(f) ∼ ∂(ı(f)). Then let V̄Γ := VΓ/ ∼, F̄Γ = FΓ \ {f, ı(f)} and
ı̄ : F̄Γ → F̄Γ, ∂̄ : F̄Γ → V̄Γ be the induced maps.

For a marked ribbon graph, we define the marking of (V̄Γ, F̄Γ, ı̄, ∂̄) to be mk(c̄) =
mk(c) if mk(c) /∈ {f, ı(f)} and mk(c̄) = N ◦ ı(mk(c)) if mk(c) ∈ {f, ı(f)}, viz. the
image of the next flag in the cycle.

2.3.7. Labelling graphs. By a labelling of the edges of a graph Γ by a set S,
we simply mean a map EΓ → S. A labelling of a ribbon graph Γ by a set S is a
map Lab{cycles of Γ} → S, we will write ci := Lab−1(i). By a labelling of a black
and white tree by a set S we mean a map Lab : Ew → S. Again we will write
vi := Lab−1(i).

2.3.8. Planar planted bipartite labelled trees with white leaves. We set
T pp,nt

bp (n) to be the set of planar planted bipartite trees which are labelled from
{1, . . . , n} with white leaves only. To avoid cluttered notation, we also denote the
respective free Abelian group and the k-vector space with basis T pp,nt

bp (n) by the
same name and let T pp,nt

bp be their union respectively direct sum.
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2.4. Cacti.

Definition 2.1. A cactus with n lobes is a {0, 1, . . . , n} labelled marked treelike
ribbon graph with a metric. I.e. The set Cacti(n) is the set of these graphs. Cact(n) ⊂
Cacti(n) is the subset of spineless graphs and its elements are called spineless cacti or
alternatively cacti without spines. Cacti1(n) ⊂ Cacti(n) is the subset of normalized
graphs, called normalized cacti, and finally Cact1(n) = Cact(n) ∩ Cacti1(n) is the set
of normalized spineless cacti.

2.4.1. Cactus terminology. The edges of a cactus are traditionally called arcs
or segments and the cycles of a cactus are traditionally called lobes. The vertices are
sometimes called the marked or special points. Furthermore the distinguished cycle
c0 is called the outside circle or the perimeter and the vertex ∂(mk(c0)) is called the
global zero. And the vertices ∂(mk(ci)), i 6= 0 are called the local zeros. In pictures
these are represented by lines rather than fat dots.

Remark 2.2. It is clear that as sets Cacti(n) = Cact(n) × (S1)×n and Cact(n) =
Cact1(n)× R×n

>0 .
For the first statement one notices for each lobe vi there is a unique lowest inter-

section point b which is the vertex of the outgoing edge of v. Thus there is a canonical
map φ′i : S1 → |ci| which starts at b and goes around the cycle opposite its natural
orientation. So to each cycle we associate (φ′i)

−1(∂(mk(ci))) that is the co-ordinate of
the spine as measured by φ′i. This gives the projection onto the factors (S1)×n. The
projection onto the first factor is given by forgetting the spines, i.e. contracting the
edges mk(ci) if val(∂(mk(ci))) = 2 and changing the marking to the unique marking
which makes the graph spineless.

For the second statement the first projection is given by homogeneously scaling
the weights of the edges of each non-marked cycle so that their lengths are one. The
projection to the factors of R>0 are given by associating to each lobe its length. In
both cases the inverse map is clear.

Definition 2.3. The topological type of a spineless cactus in Cact1(n) is defined to
be its dual b/w tree τ ∈ T pp,nt

bp (n).

Remark 2.4. Notice that the arcs of a cactus correspond to the set Earcs = E(τ) \
({eroot}). This bijection can be defined as follows. To a given e ∈ Earcs, e = {w, b}
with b black and w white, we associate the unique arc between the points correspond-
ing to the black vertices b and b− where b− is the black vertex immediately preceding
b in the cyclic order of v. In other words if e = {f, ı(f)} with f ∈ Fv, let f− be the
flag immediately preceding f in the cyclic order at v, then b− = ∂(ı(f−)). Notice
that if |v| = 0 then and only then f− = f .

Remark 2.5. A spineless cactus is uniquely determined by its topological type and
the lengths of the segments.
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2.5. The CW complex of normalized spineless cacti. We recall from [K2] the
CW complexes K(n). For more details and pictures the reader is referred to [K1, K2].

Remark 2.6. For a normalized spineless cactus the lengths of the arcs have to sum
up to the radius of the lobe and the number of arcs on a given lobe represented by
a white vertex v is val(v) = |v| + 1. Hence the lengths of the arcs lying on the lobe
represented by a vertex v are in 1-1 correspondence with points of the simplex |∆|v||.
The coordinates of |∆|v|| naturally correspond to the arcs of the lobe represented by
v on one hand and on the other hand in the dual b/w graph to the edges incident to
v.

2.5.1. The tree differential in the spineless case. Let τ ∈ T pp,nt
bp . We set

Eangle = E(τ) \ (Eleaf (τ) ∪ {eroot}) and we denote by numE : Eangle → {1, . . . , N}
the bijection which is induced by the linear order ≺(τ,p).

Let τ ∈ T pp,nt
bp , e ∈ Eangle, e = {w, b}, with w ∈ Vw and b ∈ Vb. Let e− =

{w, b−} be the edge preceding e in the cyclic order ≺τ
w at w. Then ∂e(τ) is defined

to be the planar tree obtained by collapsing the angle between the edge e and its
predecessor in the cyclic order of w by identifying b with b− and e with e−. Formally
w = vwhite(e), e− =≺τ

w (e), {b−} = ∂(e−) ∩ Vb(τ), V∂e(τ) = V (τ)/(b ∼ b−), E∂e(τ) =
Eτ/(e ∼ e−). The linear order of ∂e(τ) is given by keeping the linear order at all
vertices which are not equal to b̄ where b̄ is the image of b and b−. For b̄ the order
is given by extending the linear order (In(b̄),≺∂e(τ)

b̄
) = (In(b−) q In(b),≺τ

b− q ≺τ
b )

—the usual order on the union of totally ordered sets– to E(b̄) by declaring the image
of e and e− to be the minimal element.

Definition 2.7. We define the operator ∂ on the space T pp,nt
bp to be given by the

following formula: ∂(τ) :=
∑

e∈Eangle
(−1)numE(e)−1∂e(τ).

2.5.2. The Cell Complex.

Definition 2.8. We define T pp,nt
bp (n)k to be the elements of T pp,nt

bp (n) with |Ew| = k.

Definition 2.9. For τ ∈ T pp,nt
bp we define ∆(τ) := ×v∈Vw(τ)∆|v|. We define C(τ) =

|∆(τ)|. Notice that dim(C(τ)) = |Ew(τ)|.
Given ∆(τ) and a vertex x of any of the constituting simplices of ∆(τ) we define

the x-th face of C(τ) to be the subset of |∆(τ)| whose points have the x-th coordinate
equal to zero.

Definition 2.10. We let K(n) be the CW complex whose k-cells are indexed by τ ∈
T pp,nt

bp (n)k with the cell C(τ) = |∆(τ)| and the attaching maps eτ defined as follows.
We identify the x-th face of C(τ) with C(τ ′) where τ ′ = ∂x(τ). This corresponds to
contracting an edge of the cactus if its weight goes to zero (see Remark 2.4) so that
∆(∂τ) is identified with ∂(∆(τ)).

Definition 2.11. We define the topology of Cact1(n) to be that induced by the bijec-
tion with K(n). Via Remark 2.2 this gives a topology to the spaces Cact(n), Cacti(n)
and Cacti1(n).
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2.6. The (quasi)-operad structure.

2.6.1. The operad of cacti. The gluing maps for cacti

(2.1) ◦i : Cacti(n)⊗ Cacti(m) → Cacti(n+m− 1)

are defined on elements (c, c′) 7→ c ◦i c
′ as follows

1) Scaling the weight function w′ of c′ by the length ri

R where ri is the length of
the cycle ci of the cactus c and R is the length of the cycle c0 of c′.

2) Identifying the realization of the cycle c0 of c′ with the cycle ci of c via the
maps φ0(c′) and φi(c), with the orientation on the second S1 reversed, as
usual.

These maps together with the Sn action permuting the labels turn the collection
{Cacti(n)} into an operad Cacti. The collection {Cact(n)} forms the suboperad Cact.

2.6.2. The quasi-operad of normalized cacti. We recall from [K1] that a
quasi-operad is the generalization of a (pseudo)-operad in which the axiom of asso-
ciativity is omitted and the others are kept.

The gluing maps for normalized cacti

(2.2) ◦i : Cacti1(n)⊗ Cacti1(m) → Cacti1(n+m− 1)

are defined on elements (c, c′) 7→ c ◦i c
′ simply by identifying the realization of the

cycle c0 of c′ with the cycle ci of c via the maps φ0(c′) and φi(c) again with the
orientation on the second S1 reversed.

These maps together with the Sn action permuting the labels turn the collec-
tion {Cacti1(n)} into a homotopy associative quasi-operad Cacti1. The collection
{Cact1(n)} forms a homotopy associative quasi-suboperad Cact1 of Cacti1 [K1].

2.7. Relations among cacti.

Theorem 2.12. [K1] Normalized cacti are homotopy equivalent through quasi-operads
to the cacti. The same holds for the (quasi)-suboperads of normalized spineless cacti
and spineless cacti.

Corollary 2.13. [K1] Normalized cacti are quasi-isomorphic as quasi-operads to
cacti and normalized spineless cacti are quasi-isomorphic as quasi-operads to spine-
less cacti. In particular in both cases the homology quasi-operads are operads and are
isomorphic as operads.

2.7.1. Remarks on the bi-crossed product. In this section we recall the con-
struction of the bi-crossed product as it was given in [K1] to which we refer the reader
for more details.

First notice that there is an action of S1 on Cact(n) given by rotating the base point
clockwise (i.e. in the orientation opposite the usual one of c0) around the perimeter.
We denote this action by

ρS1
: S1 × Cact(n) → Cact(n)
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With this action we can define the twisted gluing

◦S1

i : Cact(n)× S1(n)× Cact(m) → Cact(n+m− 1)

(C, θ, C ′) 7→ C ◦ ρS1
(θi, C

′) =: C ◦θi
i C ′(2.3)

Given a cactus without spines C ∈ Cact(n) the orientation reversed perimeter (i.e.
going around the outer circle clockwise i.e. reversing the orientation of the source of
φ0) gives a map ∆C : S1 → (S1)n.

As one goes around the perimeter the map goes around each circle once and thus
the map ∆C is homotopic to the diagonal ∆C(S1) ∼ ∆(S1).

We can use the map ∆C to give an action of S1 and (S1)×n.

(2.4) ρC : S1 × (S1)×n ∆C→ (S1)×n × (S1)×n µn

→ (S1)×n

here µn is the diagonal multiplication in (S1)×n and ◦̄i is the operation which forgets
the i-th factor and shuffles the last m factors to the i-th, . . . , i+m− 1st places. Set

(2.5) ◦C
i : (S1)×n × (S1)×m (id×πi)(∆)×id−→ (S1)×n × S1 × (S1)×m

id×ρC

−→ (S1)×n × (S1)×m ◦̄i−→ (S1)×n+m−1

These maps are to be understood as perturbations of the usual maps

(2.6) ◦i : (S1)×n × (S1)×m (id×πi)(∆)×id−→ (S1)×n × S1 × (S1)×m

id×ρ−→ (S1)×n × (S1)×m ◦̄i−→ (S1)×n+m−1

where now ρ is the diagonal action of S1 on (S1)×n. The maps ◦i and the permutation
action on the factors give the collection {S1(n)} = (S1)×n the structure of an operad.
In fact this is exactly the usual construction of an operad built on a monoid.

Theorem 2.14. [K1] The operad of cacti is the bi–crossed product of the operad Cact
of spineless cacti with the operad S1 based on S1. Furthermore this bi–crossed product
is homotopic to the semi–direct product of the operad of cacti without spines with the
circle group S1.

(2.7) Cacti ∼= Cact ./ S1 ' Cacto S1

The multiplication in the bi-crossed product is given by

(2.8) (C, θ) ◦i (C ′, θ′) = (C ◦θi
i C ′, θ ◦C′

i θ′)

The multiplication in the semi-direct product is given by

(2.9) (C, θ) ◦i (C ′, θ′) = (C ◦θi
i C ′, θ ◦i θ

′)

Also, normalized cacti are homotopy equivalent to cacti which are homotopy equivalent
to the bi-crossed product of normalized cacti with S1 and the semi-direct product with
S1, where all equivalences are as quasi-operads

(2.10) Cacti1 ∼ Cacti ∼= Cact ./ S1 ∼ Cact1 ./ S1 ∼ Cact1 o S1
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Remark 2.15. The proof of the first statement is given by verifying that the two
operad structures coincide. For the second statement one notices that the homotopy
diagonal is homotopy equivalent to the usual one and that one can find homotopies to
the diagonal which continuously depend on the cactus. The third statement follows
from contracting the factors Rn

>0 and using Theorem 2.12.

Corollary 2.16. The homology operad of Cacti is the semi-direct product of Cacti
and the homology of the operad S1 built on the monoid S1.

2.8. Relation to (framed) little discs.

Theorem 2.17. [K1] The operad Cact is equivalent to the little discs operad and the
operad Cacti is equivalent to the framed little discs operad.

The latter result was first claimed by Voronov in [Vor].

3. A CW decomposition for Cacti1 and a chain model for the framed little
discs

Definition 3.1. A Z/2Z decoration for a black and white bipartite tree is a map
dec± : Vw → Z/2Z.

Proposition 3.2. The quasi–operad of normalized cacti Cacti1 has a CW–decom-
position which is given by cells indexed by planar planted bi–partite trees with a Z/2Z
decoration. The k cells are indexed by trees with k − i white edges and i vertices
marked by 1.

Moreover cellular chains are a chain model for the framed little discs operad and
form an operad. This operad is isomorphic to the semi–direct product of the chain
model of the little discs operad given by CC∗(Cact) of [K2] and the cellular chains of
the operad built on the monoid S1.

Proof. For the CW decomposition we note that as spaces Cacti1(n) = Cact1(n) ×
(S1)×n see Remark 2.2. Now viewing S1 = [0, 1]/0 ∼ 1 as a 1-cell together with
the 0-cell given by 0 ∈ S1 the first part of the proposition follows immediately, by
viewing the decoration by 1 as indicating the presence of the 1-cell of S1 for that
labelled component in the product of cells.

To show that the cellular chains indeed form an operad, we use the fact that the
bi–crossed product is homotopy equivalent to the semi–direct product in such a way,
that the action of a cell S1 in the bi–crossed product is homotopic to the diagonal
action. This is just the observation that the diagonal and the diagonal defined by a
cactus are homotopic. Since a semi-direct product of a monoid with an operad is an
operad the statement follows. Alternatively one could just remark, that there is also
an obvious functorial map induced by the diagonal for these cells.

The chains are a chain model for the framed little discs operad since Cacti1(n)
and Cacti(n) are homotopy equivalent and the latter is equivalent to the framed little
discs operad. �
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Although the above chain model is the one one would expect to use for framed little
discs, it does not have enough cells for our purposes. In order to translate the proofs
in the arc complex given in [KLP] into statements about the Hochschild complex, we
will need a slightly finer cell structure than the one above. After having used the
larger structure one can reduce to the cell model with less cells as they are obviously
equivalent.

Definition 3.3. A spine decoration dec′ for a planted planar bi–partite tree is a
Z/2Z decoration together with the marking of one angle at each vertex labelled by
one and a flag at each vertex labelled by zero. We call the set of such trees which are
n-labelled by T pp,nt,dec′

bp (n) and again use this notation as well for the free Abelian

group and the k vector space generated by these sets. We let T pp,nt,dec′

bp be their union
respectively direct sum. In pictures we show the angle marking as a line emanating
from the vertex which lies between the marked edges and an edge marking by a line
through the respective edge. For an example see Figure 1 VI. We sometimes omit the
edge marking if the marked edge is the outgoing edge, e.g. in Figure 2.

The realization τ̂ of a planar planted bi–partite tree τ with a spine decoration is the
realization of τ as a planar planted tree (the root is fixed to be black) together with
one additional edge inserted into each marked angle connecting to a new vertex. We
call the set of these edges spine edges and denote them by Espine. Likewise set Vspine

to be the set of new vertices called the spine vertices which are defined to be black.
The spine edges are then white edges. Like for tails, we will only consider the flags
of Espine, which are not incident to the spine vertices. We call the set of these flags
Fspine. Notice that this tree is the dual tree of a cactus with an explicit marking of the
flagsmk(ci). Given a cactus, we call its dual tree with explicit markings its topological
type. If τ had tails, we will split the set of tails of the realization into spines and free
tails which are the images of the original tails. Etails(τ̂) = Eftails(τ̂)qEspine(τ̂) and
likewise for the respective flags.

A spine decoration induces a new linear order on the flags incident to the white
vertices of its realization. This order ≺′v is given by the cyclic order at v and declaring
the smallest element to be the spine flag in case dec±(v) = 1 and the marked flag in
case dec±(v) = 0. This gives a canonical identification of F≺′v : Fv → {0, . . . , |v|}.

Proposition 3.4. The spaces Cacti1(n) of the quasi–operad of normalized cacti Cacti1
have CW–decompositions K ′(n) whose cells are indexed by spine decorated planar
planted bi–partite trees (τ, dec′) ∈ T pp,nt,dec′

bp corresponding to the topological type of
the cacti. The k cells are indexed by n-labelled trees with k − i white edges and i
markings by 1.

Moreover cellular chains of the complex above are a chain model for the framed
little discs operad and form an operad.

Proof. The decomposition is almost as in the preceding proposition except that in
the product Cact1(n)× (S1)×n we decompose each factor S1 as indicated by the lobe
it presents. I.e. for the S1 associated to the n–th lobe we chose the 0–cells to be
corresponding to the marked points and 1–cells corresponding to the arcs with gluing
given by attaching the 1–cells to the 0–cells representing the endpoints of the arcs.



912 RALPH M. KAUFMANN

(E.g. 4 0-cells and 4 1-cells for the lobe 1 in Figure 1 VIa). In terms of trees, the arcs
correspond to the angles and thus we take a marking of an arc to be the inclusion
of the corresponding 1-cell in the tensor product of the cell complexes. Likewise the
edges correspond to the marked points and we take a marking of an edge to be the
inclusion of the corresponding 0-cell in the tensor product of the cell complexes.

For the operadic properties, we remark that moving the spine along an arc and
then gluing, which is what is parameterized by marking an angle on the lobe i of c
when calculating c ◦i c

′, has the effect of moving the base point of c′ along a complete
sequence of arcs until it coincides with a marked point in the composition of the two
cacti. This is one side of the bi-crossed product. The effect on the local zeros of c′

of the movement of the base point is to move them corresponding to structure maps
of the bi-crossed product above. The local zeros thus move through a full arc if the
global zero passes through the arc on which they lie. Therefore the ◦i product of two
cells results in sums of cells. Marking an arc of c′ obviously gives rise to a sum of
cells. Alternatively, one can again just remark that there is a functorial map for the
diagonal for this cell model, since there is such a map on the first factor by [K2] and
its existence is obvious on the second factor.

The associativity follows from the associativity of cacti. Let C(τ), τ ∈ T pp,nt,dec′

bp (n)
be the cells in the CW-complex and Ċ(τ) their interior. Then P (τ) = Ċ(τ)×Rn

>0, τ ∈
T pp,nt,dec′

bp give a pseudo-cell decomposition Cacti(n) = qτP (τ). It is easy to see that
Im(P (τ)◦iP (τ ′)) = qkP (τk) for some τk and ◦i is a bijection onto its image. Let ◦comb

i

be the quasi-operad structure pulled back from K ′ to T pp,nt,dec′

bp and ◦+
i be the op-

erad structure pulled back from the pseudo-cell decomposition of Cacti to T pp,nt,dec′

bp .
Then these two operad structures coincide over Z/2Z thus yielding associativity up
to signs. The signs are just given by shuffles, c.f. §4.6, and are associative as well. �

Remark 3.5. Pulling back the operadic compositions, the differential and the grading
yields a dg-operad structure on T pp,nt,dec′

bp which is isomorphic to that of

CC∗(Cacti1) :=
⊕

n

CC∗(K ′(n))

.
The operation is briefly as follows: given two trees τ, τ ′ ∈ T pp,nt,dec′

bp the product
is τ ◦comb

i τ ′ =
∑
±τk where the τk are the trees obtained by the following procedure.

Delete vi to obtain an ordered collection of trees (τ c
l ,≺′v) then graft these trees to τ ′

keeping their order by first identifying the spine edge or marked edge of vi with the
root edge of τ ′ and then grafting the rest of the branches to τ ′ so that their original
order is compatible with that of τ ′. Lastly contract the image of the root edge of τ ′

and declare the image of the root of τ to be the new root. The sign is as explained in
4.6. Due to the isomorphism between CC∗(Cacti1) and T pp,nt,dec′

bp we will drop the
superscript comb.

3.1. The GBV structure. The picture for the GBV structure is essentially that
of [KLP] and goes back to [CS1]. It appears here in another guise, however, since we
are now dealing with cells in CC∗(Cacti1).
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Figure 2. The decomposition of the BV operator

First notice that there is a product on the chain level induced by the spineless
cactus given by the rooted tree τn depicted in Figure 1. Explicitly: a · b 7→ γ(τ b

2 ; a, b)
where γ is the usual operadic composition. This product gives CC∗(Cacti1) the
structure of an associative algebra with unit. Moreover the product is commutative
up to homotopy. The homotopy is given by the usual operation which is induced by
γ(τ1; a, b). This also induces a bracket which is Gerstenhaber up to homotopy. This
can be seen by translating the statements from [KLP, K2], but it also follows from
the BV description of the bracket below (Figure 4).

To give the BV structure, let O′ be the tree with one white vertex, no additional
black edges, no free tails and a spine. Notice that the operation δ induced by a 7→
γ(O′, a) on CC∗(Cacti1) breaks up on products of chains as follows, see Figure 2

δ(ab) ∼ δ(a, b) + (−1)|a||b|δ(b, a)

δ(abc) ∼ δ(a, b, c) + (−1)|a|(|b|+|c|)δ(b, c, a)

+(−1)|c|(|a|+|b|)δ(c, a, b)(3.1)

δ(a1a2 · · · an) ∼
n−1∑
i=0

(−1)σ(ci,a)δ(aci(1), . . . , aci(n))(3.2)

where c is the cyclic permutation and σ(ci, a) is the sign of the cyclic permutations
of the graded elements ai.

Lemma 3.6.

(3.3) δ(a, b, c) ∼ (−1)(|a|+1)|b|bδ(a, c) + δ(a, b)c− δ(a)bc

Proof. The proof is contained in Figure 3.

Proposition 3.7. The chains CC∗(Cacti1) are a GBV algebra up to homotopy. That
is there is a bracket and a BV operator that satisfy the usual equations up to homotopy.
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Figure 3. The basic chain homotopy responsible for BV

Taking coefficients in k when k is of characteristic zero, the homology of Cacti hence
becomes a GBV algebra.

Proof. The BV structure follows from the Lemma 3.6 via the calculation:

δ(abc) ∼ δ(a, b, c) + (−1)|a|(|b|+|c|)δ(b, c, a) + (−1)|c|(|a|+|b|)δ(c, b, a)

∼ (−1)(|a|+1)|b|bδ(a, c) + δ(a, b)c− δ(a)bc+ (−1)|a|aδ(b, c)

+(−1)|a||b|δ(b, a)c− (−1)|a|aδ(b)c+ (−1)(|a|+|b|)|c|aδ(b, c)

+(−1)|b|(|a|+1|)+|a||c|bδ(c, a)− (−1)|a|+|b|abδ(c)

∼ δ(ab)c+ (−1)|a|aδ(bc) + (−1)|a+1||b|bδ(ac)− δ(a)bc

−(−1)|a|aδ(b)c− (−1)|a|+|b|abδ(c)(3.4)

Figure 4 contains the homotopy relating the BV operator to the bracket. �

4. The action

4.1. Assumption. Now we fix A to be a finite–dimensional associative algebra with
unit 1 together with an inner product η : A ⊗ A → k which is non-degenerate and
both i) invariant: η(ab, c) = η(a, bc) and ii) symmetric: η(a, b) = η(b, a). Such an
algebra is called a Frobenius algebra.

We will use CH to stand for Hochschild cochains CHn(A,A) := Hom(A⊗n, A).
Actually, it would be enough to have a non-degenerate inner-product η on A '

CH0(A,A) for which i) holds on HH0(A,A), that is up to homotopy for A. The
condition ii) will then hold automatically up to homotopy since CH0(A,A) is com-
mutative up to homotopy [G].

If one wishes to furthermore relax the other conditions “up to homotopy”, one
can fix that η needs to be non-degenerate only on HH0(A,A) and only require that
HH0(A,A) has to be finite–dimensional. In this case, the operadic operations defined
below will give operations f : A⊗n → HH0(A,A) and will thus give actions only up
to homotopy. This is enough to get the BV structure on CH∗(A,A), but not quite
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Figure 4. The compatibility of the BV operator and the bracket

enough to lift the action to the chain level. We are currently working on such a
construction in formal geometry and defer the reader to this upcoming work.

4.2. Notation. Let (ei) be a basis for A and let C := eiη
ij ⊗ ej be the Casimir

element, i.e. ηij is the inverse to ηij = η(ei, ej).
With the help of the non–degenerate bilinear form, we identify

(4.1) CHn(A,A) = Hom(A⊗n, A) ∼= A⊗A∗⊗n ∼= A∗⊗n+1

We would like to stress the order of the tensor products we choose. This is the order
from right to left, which works in such a way that one does not need to permute
tensor factors in order to contract.

If f ∈ Hom(A⊗n, A), we denote by f̃ its image inA∗⊗n+1, explicitly f̃(a0, . . . , an) =
η(a0, f(a1, . . . , an)).

With the help of (4.1) we can pull back the Connes’ operators b and B (see e.g.
[L]) on the spaces A⊗n to their duals and to Hom(A⊗n, A).

Also let t : A⊗n → A⊗n be the operator given by performing a cyclic permutation
(a1, . . . , an) 7→ (−1)n−1(an, a1, . . . an−1) and N := 1 + t+ · · ·+ tn−1 : A⊗n → A⊗n.

It is easy to check that the operator induced by b is exactly the Hochschild differ-
ential; we will denote this operator by ∂. We write ∆ for the operator induced by B.
It follows that ∆2 = 0 and ∆∂ + ∂∆ = 0.

4.3. Assumption. To make the formulas simpler we will restrict to normalized
Hochschild cochains CH

n
(A,A) which are the f ∈ CHn(A,A) which vanish when

evaluated on any tensor containing 1 ∈ A as a tensor factor (see e.g. [L]). On the
normalized chains the operator ∆ is explicitly defined as follows: for f ∈ CHn

(A,A)

(4.2) η(a0, (∆f)(a1, . . . an−1)) := η(1, f ◦N(a0, . . . an))
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4.4. Correlators from decorated trees. We will use the notation of tensor prod-
ucts indexed by arbitrary sets, see e.g. [D]. For a linearly ordered set I denote by⋃

I ai the product of the ai in the order dictated by I.

Definition 4.1. Let τ be the realization of a spine decorated planted planar b/w
tree, v ∈ Vw, and f ∈ CH |v|

(A,A). We define Y (v, f) : AFv(τ) → k by

Y (v, f)(
⊗

i∈Fv(τ)

ai) := η(aF−1
≺′v

(0), f(aF−1
≺′v

(1) ⊗ · · · ⊗ aF−1
≺′v

(|v|)))

Set Vb−int := Vb(τ) \ (Vtail ∪ {vroot} ∪ Vspine). For v ∈ Vb−int we define Y (v) :=
AFv(τ) → k by

Y (v)(
⊕

i∈Fv(τ)

ai) = η(1,
⋃

i∈Fv

ai)

Definition 4.2. Let τ be the realization of a planar planted b/w tree with n free
tails and k labels and fi ∈ CH

ni(A,A). For such a tree there is a canonical iden-
tification {vroot} ∪ Vftail → {0, 1, . . . , |Vftail|} which is given by sending vroot to 0
and enumerating the tails in the linear order induced by the planted planar tree. Set
Eint(τ) := E(τ) \ (Etail ∪ Eroot ∪ Espine) and for (a0, . . . , an) ∈ A⊗({vroot}∪Vftail) set

(4.3) Y (τ)(f1, . . . , fk)(a0, . . . , an) := ⊗
v∈Vw(τ)

Y (v, fLab(v))
⊗

v∈Vb−int

Yv

(
⊗

i∈Fftail(τ)∪{Froot}

ai)(
⊗

j∈Fspine

1)⊗ C⊗Eint(τ)


In other words, decorate the root flag by a0, the free tail flags by a1, . . . , an, the

spines by 1 and the edges by C and then contract tensors according to the decoration
at the white vertices while using the product at the black vertices.

Definition 4.3. We extend the definition above by

(4.4) Y (τ)(f1, . . . , fk)(a0, . . . , an) = 0 if |vLab−1(i)| 6= ni =: |fi|

4.5. The foliage operator. Let F be the foliage operator of [K2] applied to trees.
This means that F (τ) is the formal sum over all trees obtained from τ by gluing an
arbitrary number of free tails to the white vertices. The extra edges are called free
tail edges Eftail and the extra vertices Vftail are defined to be black and are called
free tail vertices.

Using the trees defined in Figure 1 this corresponds to the formal sum F (τ) :=∑
n ln ◦v τ where the operadic composition is the one for b/w trees which are not

necessarily bi-partite (see [K2]). In our current setup we should first form F̃ (τ) :=∑
n τn ◦v τ and then delete the images of all leaf edges together with their white

vertices of the τn to obtain F (τ).
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4.6. Signs. The best way to fix signs of course is to work with tensors indexed by
edges like in [K2, KS]. For this one fixes a free object L (free Z-module or k-vector
space) generated by one element of degree ±1 and calculates signs using L⊗Ew(τ)

before applying the foliage operator while using L⊗Eweight after applying the foliage
operator, where Eweight = Ew ∪ Eroot ∪ Eftail ∪ Espine.

Explicitly, we fix the signs to be given as follows. For any tree τ ′ in the linear
combination above, we take the sign of τ ′ to be the sign of the permutation which
permutes the set Eweight in the order induced by ≺ to the order where at each vertex
one first has the root if applicable, then all non–tail edges, then all the free tails, and
if there is a spine edge, the spine.

The explicit signs above coincide with usual signs [L] for the operations and the
operators b and B and also coincide with the signs of [G] for the ◦i and hence for
the brace operations [Ge, Kad, GV]. The signs for the operations corresponding to
operations on the Hochschild side are fixed by declaring the symbols “,” and “{” to
have degree one.

Definition 4.4. For τ ∈ T pp,nt,dec′

bp let τ̂ be its realization. We define the operation
of τ on CH(A,A) by

(4.5) η(a0, τ(f1, . . . , fn)(a1, . . . , aN )) := Y (F (τ̂))(f1, . . . , fn)(a0, . . . , aN )

Notice that due to Definition 4.3 the right hand side is finite.

4.7. Examples. We will first regard the tree O′ with one white vertex, no additional
black edges, no free tails and a spine, see Figure 1. For a function f ∈ CHn

we obtain:

Y (F (O′))(f)(a0, . . . , an−1) = η(1, f(a0, . . . an−1)

+ (−1)n−1f(an−1, a0, . . . , an−2) + . . . ) = η(a0,∆(f)(a1, . . . , an−1))

Let τ ′n,i be the tree of Figure 1. Then the operation corresponds to

Y (F (τ ′n,i))(f ; g1, . . . , gn)(a0, . . . , aN ) = η(1, f{′gi+1, . . . , gn, g1, . . . , gi}(a(2), a0, a(1)))

where N = |f |+
∑
|gi| − n− 1 and we used the short hand notation

f{′gj+1, . . . , gn, g1, . . . , gj}(a(2), a0, a(1)) =
∑

±f(ak+1, . . . , aij+1−1,

gj+1(aij+1 , . . . , aij+1+|gj+1|), . . . , ain−1, gn(ain , . . . , ain+|gn|), . . . , aN , a0,

a1, . . . , ai1−1, g1(ai1 , . . . , ai1+|g1|), . . . , aij−1, gj(aij , . . . , aij+|gj |), . . . , ak)

where the sum runs over 1 ≤ i1 ≤ · · · ≤ ij ≤ · · · ≤ k ≤ · · · ≤ ij+1 ≤ · · · ≤ in ≤ N :
il + |gl| ≤ il+1, ij + |gj | ≤ k and the signs are as explained above.

Theorem 4.5 (The cyclic Deligne conjecture). The Hochschild cochains of a finite-
dimensional associative algebra with a non–degenerate, symmetric, invariant, bilinear
form are an algebra over the chains of the framed little discs operad. This operation
is compatible with the differentials.

Proof. We will use the cellular chains CC∗(Cacti1) as a model for the chains of the
framed little discs operad. It is clear that 4.4 defines an action. On the Hochschild
side, the ◦i operations are substitutions of the type fi = ψ(g1, . . . , gn). For the chains
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CC∗(Cacti1) the τ ◦i τ
′ operations are the pull-back via the foliage operator of all

possible substitutions of elements of F (τ), τ ∈ CC∗(Cacti1) into the position i of
F (τ ′). The action Y then projects onto the substitution fi = ψ(g1, . . . , gn) so that
the action is operadic. Explicitly the substitution t ◦s

i t
′ for planted planar bi-partite

trees with a decoration dec′ and additional free tails is given as follows: Say the
number of tails of t′ coincides with |F (vi)|. In this case replace the vertex vi of t, its
edges and the black vertices corresponding to the edges with the tree t′ matching the
flags of vi with the tails of t′ by first matching the root edge with the marked flag of vi

and then using the linear order. Lastly contract the image of the root flag. Otherwise
set t ◦s

i t
′ = 0. With this definition it is easy to see that F (τ ◦ τ ′) = F (τ) ◦s

i F (τ ′).
The compatibility of the Hochschild differential with the differential of the cell com-

plex follows from the relevant statements for τn and τ b
n, which are straightforward but

lengthy calculations (see e.g. [K2, G]), together with the calculations above §4.7 which
are easily modified to show that (∂O′)(f) = ∆(∂(f)) and that (∂τ ′n,i)(f, g1, . . . , gn) =
(∂τ ′n,i)(f, g1, . . . , gn)±(τ ′n,i)(∂f, g1, . . . , gn)+

∑
i±(τ ′n,i)(f, g1, . . . , ∂(gi), . . . , gn) via an

even more lengthy but still straightforward calculation. This then verifies the claim
in view of the compatibility of the differentials and the respective operad structures.

Alternatively, in view of the operation of the foliage operator, the compatibilities
follow from a straightforward translation of trees with tails into operations on the
Hochschild complex. The compatibility of the differential then follows from the almost
identical definition of the differential for trees with tails of [K2] and that in the
Hochschild complex as ∂(f) = f ◦ ∪ − (−1)|f || ∪ ◦f . �

Corollary 4.6. The normalized Hochschild cochains of an algebra as above are a
GBV algebra up to homotopy in the sense of Proposition 3.7.

This could of course have been checked directly without recourse to the operation
of a chain model, but we do not know of any source for this result. It also seems to
be difficult to guess the right homotopies as Gerstenhaber did in the non-cyclic case
[G]. The content of the next corollary was expected [C], but we again could not find
a source for it.

Corollary 4.7. Over a field of characteristic zero, the Hochschild cohomology of an
algebra as above is a BV algebra, such that the induced bracket is the Gerstenhaber
bracket.

Lastly, since our second version of cellular chains of Proposition 3.4 are a subdi-
vision of the cell decomposition of Proposition 3.2, we can also use the latter cell
decomposition.

Corollary 4.8. The normalized Hochschild cochains of an algebra as above are an
algebra over the semi–direct product over a chain model of the little discs operad and
a chain model for the operad S built on the monoid S1.

Remark 4.9. The operation of the little discs operad by braces, viz. the original
Deligne conjecture as discussed in [K2] for Frobenius algebras, corresponds to the
decorations in which dec± ≡ 0 and the decorated edge is always the outgoing edge.

Remark 4.10. In the Theorem 4.5 we can relax the conditions and implications as
explained in §4.1.
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5. Relation to String Topology and Variations

5.1. String Topology like operations. Let M be a simply connected compact
manifold M and denote the free loop space by LM and let C∗(M) and C∗(M) be
the singular chains and co–chains of M . We know from [J, CJ] that C∗(LM) '
CH∗(C∗(M,C∗(M)) and H∗(LM) ' HH∗(C∗(M), C∗(M)). Moreover C∗(M) is
an associative dg algebra with unit, differential d and an integral (M was taken
to be a compact manifold)

∫
: C∗(M) → k such that

∫
dω = 0 for ω ∈ C∗(M).

The integral descends to H := H∗(M) and makes it into a Frobenius algebra. By
using the spectral sequence and taking field coefficients we obtain an action on E1 =
CH∗(H,H) compatible with the differential, that hence descends to the subsequent
terms in the sequence which ultimately converges to HH∗(C∗(M)) and hence induces
an operadic action on the level of (co)-homology.

Corollary 5.1. When taking field coefficients, the above action gives a dg action of
a dg–operad of a chain model of the famed little discs on the E1–term of a spectral
sequence converging to H∗(LM). This induces an operation on the homology of the
loop space of a simply connected compact manifold making it into a BV algebra.

Remark 5.2. We know from [CJ, Me] that the induced multiplication is indeed the
multiplication for string topology.

5.2. Variation, Generalizations and the Connection to Moduli Spaces.
There are generalizations of the constructions above to moduli space which are very
subtle and involved [K4, K5]. The connection is made via the map called loop of
[KLP] which maps the so–called Arc operad to ribbon graphs with marked points
on the cycles of the graph. In the case of no punctures the analysis of this map in
terms of Strebel differentials yields an isomorphism between the moduli space M1n

g,n

of genus g surfaces with n marked points and a tangent vector at each of these points
[K4] and the suboperad of quasi–filling arcs. The latter is also homotopy equivalent
to the moduli space of decorated bordered surfaces [P]. In this way one obtains a cell
decomposition of the aforementioned moduli space M1n

g,n in terms of marked ribbon
graphs. Moreover the correspondence induces an operadic structure on the ribbon
graphs by pulling back the gluings from the Arc operad. Using the notion of operadic
correlation functions one can obtain an action of the cells on the cyclic complex.
Moreover, a further decoration of the cells by Z/2Z produces an operad which acts
on the cyclic complex of such an algebra and is compatible with the differential when
passing to an associated graded [K5]. When restricted to the part corresponding to
the little discs the action corresponds to the one given in [MS], in which the authors
also announced a generalization to the cyclic case.

Finally, one can define a topological quasi–PROP which has a CW model whose
chains are a dg-PROP of Sullivan Chord diagrams and let it act in a dg-fashion on
the Hochschild co-chain complex of a Frobenius algebra [K5]. Similar results using
a different version of Sullivan–Chord diagrams have been obtained in [TZ], after the
results of this paper were posted.

It is to be expected that there are A∞– versions of all the these statements which
can be deduced from a conjectural “blow–up” of the cacti operads first presented in
[K3]. Here the cells are given by products of associahedra and cyclohedra and are
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indexed by trees of the type appearing in [KS]. The details of the action for the little
discs will be contained in [KSch].
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