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Abstract

Using a cell model for the little discs operad in terms of spineless cacti we give a minimal common topological
operadic formalism for three a priori disparate algebraic structures: (1) a solution to Deligne’s conjecture on the
Hochschild complex, (2) the Hopf algebra of Connes and Kreimer, and (3) the string topology of Chas and Sullivan.
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0. Introduction

When considering an algebraic structure there is often a topological framework which is indicative of
this structure. For instance, it is well known that Gerstenhaber algebras are governed by the homology
operad of the little discs operad [2,3] and that Batalin–Vilkovisky algebras are exactly the algebras over
the homology of the framed little discs operad [12]. The purpose of this paper is to prove that there
is a common, minimal, topological operadic formalism [17,26] for three a priori disparate algebraic
structures: (1) a homotopy Gerstenhaber structure on the chains of the Hochschild complex of an
associative algebra, a.k.a. Deligne’s conjecture, (2) the Hopf algebra of Connes and Kreimer [7], and
(3) string topology [6].
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To accomplish this task, we use the spineless cacti operad of [17] which is responsible for the
Gerstenhaber structure of string topology [4,6,17,19,26,40]. Moreover our operad of spineless cacti is
actually equivalent to the little discs operad [17]. The analysis of this operad on the chain level allows
us to give a new topological proof of Deligne’s conjecture. Furthermore it provides chain models for the
operads whose algebras are precisely pre-Lie algebras and graded pre-Lie algebras, respectively, as well
as a chain realization for the Hopf algebra of Connes and Kreimer.

As we are using cacti, this approach naturally lies within string topology on one hand and on the other
hand it is embedded in the framework of a combinatorial description of the moduli space of surfaces
with punctured boundaries via theArc operad [17,18,26,34]. Therefore all the previous structures obtain
a representation in terms of moduli spaces.

We start by giving new CW decompositions for the spaces Cact1(n) of normalized spineless cacti
with n lobes which are homotopy equivalent to the spaces Cact(n) of spineless cacti with n lobes, the
homotopy being the contraction of n factors of R>0.

Theorem 3.5. The space Cact1(n) is homeomorphic to the CW complex K (n).

As shown in [17] the spaces Cact1(n) form a quasi-operad whose homology is an operad isomorphic to
the homology operad of cacti and hence to the homology of the little discs operad. The operad structure,
however, already appears on the chain level.

Theorem 3.11. The glueings induced from the glueings of spineless normalized cacti make the spaces
CC∗(Cact1(n)) into a chain operad. Thus CC∗(Cact1) is an operadic model for the chains of the little
discs operad.

Moreover, the cells of K (n) are indexed by planted planar bipartite trees and the operad of cellular
chains is isomorphic to a combinatorial tree dg-operad. Reinterpreting the trees as “flow charts” for
multiplications and brace operations and specifying appropriate signs, we obtain an operation of the
cell operad of cacti and hence a cell model of the little discs operad on the Hochschild cochains of an
associative algebra. This proves Deligne’s conjecture in any characteristic, i.e. over Z.

Theorem 4.3. Deligne’s conjecture is true for the chain model of the little discs operad provided by
CC∗(Cact1), that is C H∗(A, A) is a dg-algebra over CC∗(Cact1) lifting the Gerstenhaber algebra
structure.

Moreover, all possible flow charts using multiplication and brace operations are realized by the
operations of the cells, and these operations are exactly the set of operations which appear when studying
iterations of the bracket and the product on the Hochschild cochains. In this sense our solution to
Deligne’s conjecture is minimal.

Deligne’s conjecture has by now been proven in various ways [1,23,24,29,30,35,39] (for a full review
of the history see [32]). The different approaches are basically realized by choosing adequate chain
models and some more or less abstract form of homological algebra. The virtue of our approach which
is in spirit close to those of [29,24] lies in its naturality and directness. It yields a new topological proof,
which is constructive, transparent and economical.

Restricting our attention to the suboperad of the operad of cellular chains of normalized spineless
cacti given by symmetric top-dimensional cells CCtop

n (n)S, we obtain a chain model for the operad GPl
whose algebras are precisely graded pre-Lie algebras. Suitably shifting degrees in this chain operad, we
obtain the operad Pl whose algebras precisely are pre-Lie algebras.
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Let L∗ be a free k (or Z) module generated by an element of degree −1.

Theorem 4.24. The operad CCtop
n (n)S⊗k is isomorphic to the operad GPl for graded pre-Lie algebras.

Furthermore the shifted operad (CCtop
n ⊗ (L∗)⊗Ew)S(n) ⊗ k is isomorphic to the operad Pl for pre-Lie

algebras.
The analogous statements also hold over Z.

The considerations above leading to the operations of the Hochschild cochains are actually of a more
general nature. To make this claim precise, we analyze meta-structures on operads and show that their
structure naturally leads to pre-Lie algebras, graded pre-Lie algebras, Lie algebras and Hopf algebras.
Here the same “flow-chart argument” gives these structures a cell interpretation. For another approach
to relations between Hopf algebras and co-operads, see [27,28].

Specializing to the Hopf structure of the operad of the shifted top-dimensional symmetric cells above
and taking Sn-coinvariants, we obtain the renormalization Hopf algebra of Connes and Kreimer.

Proposition 6.4. HCK is isomorphic to the Hopf algebra of Sn coinvariants of the suboperad of top-
dimensional symmetric combinations of shifted cells ((CC∗(Cact1))top)S ⊗ (L∗)⊗Ew of the shifted
cellular chain operad of normalized spineless cacti CCcact ⊗ (L∗)⊗Ew .

Our analysis thus unites the pre-Lie definition of the Gerstenhaber bracket in string topology, the
arc operad and the original work of Gerstenhaber with the renormalization procedures of Connes and
Kreimer in terms of natural operations on operads.

Going beyond the algebraic properties of operads, we prove that any operad with a multiplication is an
algebra over the cell model of the little discs operad given by the cellular chains of normalized spineless
cacti. This is a generalization of Deligne’s conjecture to the operad level and realizes the program of [15]
by giving a moduli space interpretation to the brace algebra structure on an operad.

Theorem 5.17. The generalized Deligne conjecture holds. That is, the direct sum of any operad algebra
which admits a direct sum is an algebra over the chains of the little discs operad in the sense that it is
an algebra over the dg-operad CC∗(Cact1).

The resemblance of the geometric realization of the chains defining the homotopy Gerstenhaber
structure and the algebraic calculations of Gerstenhaber [11] is striking, making the case that cacti are
the most natural topological incarnation of these operations. In fact, using the translation formalism
developed in this paper, the topological homotopies listed in [26] are the exact geometrization of the
algebraic homotopies of [11]. As an upshot, the natural boundary map present in the spineless cacti/arc
description shows how the associative multiplication is related to the bracket as a degeneration. In
an algebraic topological formulation this establishes that the pre-Lie multiplication is basically a ∪1
operation.

It is thus tempting to say that the Arc operad [26] is an underlying “string mechanism” for all of the
above structures.

The paper is organized as follows:

In the first section, we introduce the types of trees we wish to consider and several natural morphisms
between them. This is needed to fix our notation and allows us to compare our results with the literature.
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In the second section, we recall the definitions of [17] of the different types of cacti. Furthermore,
we recall their quasi-operad structure from [17] and the description of spineless cacti as a semi-direct
product of the normalized spineless cacti and a contractible so-called scaling operad. Finally, we recall
the equivalence of the operad of spineless cacti with the operad of little discs.

In Section 3, we give a cell decomposition for the space of normalized spineless cacti. We also show
that the induced quasi-operad structure on the chain level is in fact an operad structure on the cellular
chains of this decomposition. This yields our chain model for the little discs operad.

Section 4 contains our new solution to Deligne’s conjecture. After recalling the definition of the
Hochschild complex and the brace operations, we provide two points of view of the operation of our
cellular operad on the Hochschild cochains. One which is close to the operation of the chains of the Arc
operad on itself and also to string topology and a second one which is based on a description in terms of
flow charts for substitutions and multiplications among Hochschild cochains.

In the fifth section, we show that the symmetric combinations of these cells yield an operad which is
the operad whose algebras are precisely graded pre-Lie algebras. We additionally show that the pre-Lie
operad has a natural chain interpretation in terms of the symmetric combinations of the top-dimensional
cells of our cell decomposition for normalized spineless cacti. Furthermore, we analyze the situation in
which an operad that admits a direct sum also has an element which acts as an associative multiplication.
In this setting, we prove a natural generalization of Deligne’s conjecture which states that a chain model
of the little discs operad acts on such an operad.

In the sixth section, we use our previous analysis to define pre-Lie and Hopf algebras for operads of
Z-modules or any operad leading to Z-modules. Applying the Hopf algebra construction to our chain
model operad for pre-Lie algebras and then taking Sn-coinvariants we obtain the Hopf algebra of Connes
and Kreimer.

In a final short section, we comment on the generalization to the A∞ case and the cyclic case as well
as on new developments.

Notation

We denote by Sn the permutation group on n letters and by Cn the cyclic group of order n.
We denote the shuffles of two ordered finite sets S and T by Sh(S, T ). A shuffle of two finite ordered

sets (S, ≺S) and (T ≺T ) is an order ≺ on S q T which respects both the order of S and that of T , i.e. for
t, t ′ ∈ T : t ≺ t ′ is equivalent to t ≺T t ′ and for s, s′

∈ S: s ≺ s′ is equivalent to s ≺S s′. We also denote
by Sh′(S, T ) the subset of Sh(S, T ) in which the minimal element w.r.t. ≺ is the minimal element of S.
Finally we denote the trivial shuffle in which s ≺ t for all s ∈ S and t ∈ T by ≺S q ≺T .

For any element s of an ordered finite set (S, ≺) which is not the minimal element, we denote the
element which immediately precedes s by ≺ (s). We use the same notation for a finite set with a cyclic
order.

We also fix k to be a field of arbitrary characteristic.
We will tacitly assume that everything is in the super setting, that is Z/2Z graded. For all formulas,

unless otherwise indicated, the standard Koszul rules of sign apply.
We let Set, T op, Chain,Vectk be the monoidal categories of sets, topological spaces, free Abelian

groups and (complexes of) vector spaces over k and call operads in these categories combinatorial,
topological, chain and linear operads, respectively.
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1. Trees

In the following trees will play a key role for indexing purposes and in the definition of operads and
operadic actions.

1.1. General definitions

Definition 1.1. A graph Γ is a collection (V (Γ ), F(Γ ), δ : F(Γ ) → V (Γ ), ı : F(Γ ) → F(Γ )) with
ı2

= id and no fixed points ∀ f ∈ F(Γ ) : ı( f ) 6= f . The set V (Γ ) is called the set of vertices and
the set F(Γ ) is called the set of flags. We let E(Γ ) be the set of orbits of ı and call it the edges of Γ .
Notice that δ induces a map ∂ : E(Γ ) → V (Γ ) × V (Γ ), and that the data (V (Γ ), E(Γ ), ∂) defines a
CW complex by taking V (Γ ) to be the vertices or 0-cells and E(Γ ) to be the 1-cells and using ∂ as the
attaching maps. The realization of a graph is the realization of this CW complex.

A tree is a graph whose realization is contractible.
A rooted tree is a tree with a marked vertex.
We call a rooted tree planted if the root vertex lies on a unique edge. In this case we call this unique

edge the “root edge”.

We usually depict the root of a planted tree τ by a small square, denote the root vertex by root(τ ) ∈

V (τ ) and the root edge by eroot(τ ) ∈ E(τ ).
Notice that an edge e of a graph or a tree gives rise to a set of vertices ∂(e) = {v1, v2}. In a tree the

set ∂e = {v1, v2} uniquely determines the edge e. An orientation of an edge is a choice of order of the
two flags in the orbit. An oriented edge is an edge together with an orientation of that edge. On a tree
giving an orientation to the edge e defined by the boundary vertices {v1, v2} is equivalent to specifying
the either ordered set (v1, v2) or the ordered set (v2, v1). If we are dealing with trees, we will denote the
edge corresponding to {v1, v2} just by {v1, v2} and likewise the ordered edge corresponding to (v1, v2)

just by (v1, v2).
An edge that has v as a vertex is called an adjacent edge to v. We denote by E(v) the set of edges

adjacent to v. Likewise we call a flag f adjacent to v if δ( f ) = v and denote by F(v) the set of flags
adjacent to v. We call an oriented edge ( f, ı( f )) incoming to v if δ(ı( f )) = v. If δ( f ) = v we call it
outgoing.

Of course the oriented edges are in 1–1 correspondence with the flags by identifying ( f, ı( f )) with
f , but it will be convenient to keep both notions.

An edge path on a graph Γ is an alternating sequence of vertices and edges v1, e1, v2, e2, v3, . . . with
vi ∈ V (Γ ), ei ∈ E(Γ ), s.t. ∂(ei ) = {vi , vi+1}. Notice that since we define this notion for a general
graph, we need to keep track of the vertices and edges.

Definition 1.2. Given a tree τ and an edge e ∈ E(τ ) one obtains a new tree by contracting the edge e.
We denote this tree by τ/e.

More formally let e = {v1, v2}, and consider the equivalence relation ∼ on the set of vertices which
is given by ∀w ∈ V (τ ) : w ∼ w and v1 ∼ v2. Then τ/e is the tree whose vertices are V (τ )/ ∼ and
whose edges are E(τ ) \ {e}/ ∼

′ where ∼
′ denotes the induced equivalence relation {w1, w2} ∼

′
{w′

1, w
′

2}

if w1 ∼ w′

1 and w2 ∼ w′

2 or w2 ∼ w′

1 and w1 ∼ w′

2.
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1.1.1. Structures on rooted trees
A rooted tree has a natural orientation, toward the root. In fact, for each vertex there is a unique

shortest edge path to the root and thus for a rooted tree τ with root vertex root ∈ V (τ ) we can define the
function N : V (τ ) \ {root} → V (τ ) by the rule that

N (v) = the next vertex on unique path to the root starting at v.

This gives each edge {v1, v2} with v2 = N (v1) the orientation (v1, N (v1)).
We call the set {(w, v) | w ∈ N−1(v)} the set of incoming edges of v and denote it by In(v) and call

the edge (v, N (v)) the outgoing edge of v.

Definition 1.3. We define the arity of v to be |v| := |N−1(v)|. The set of leaves Vleaf of a tree is defined
to be the set of vertices which have arity zero, i.e. a vertex is a leaf if the number of incoming edges is
zero. We also call the outgoing edges of the leaves the leaf edges and denote the collection of all leaf
edges by Eleaf.

CAVEAT: For v 6= root: |v| = |E(v)| − 1. That is, |v| is the number of incoming edges, which is the
number of adjacent edges minus one. For the root |v| is indeed the number of adjacent edges.

Remark 1.4. For a rooted tree there is also a bijection which we denote by: out : V (τ )\ {root} → E(τ ).
It associates to each vertex except the root its unique outgoing edge v 7→ (v, N (v)).

Definition 1.5. An edge e′ is said to be above e if e lies on the edge path to the root starting at the vertex
of e′ which is farther from the root. The branch corresponding to an edge e is the subtree consisting of
all edges which lie above e (this includes e) and their vertices. We denote this tree by br(e).

1.2. Planar trees

Definition 1.6. A planar tree is a pair (τ, p) of a tree τ together with a so-called pinning p which is a
cyclic ordering of each of the sets E(v), v ∈ V (τ ).

1.2.1. Structures on planar trees
A planar tree can be embedded in the plane in such a way that the induced cyclic order from the

natural orientation of the plane and the cyclic order of the pinning coincide.
The set of all pinnings of a fixed tree is finite and is a principal homogeneous set for the group

S(τ ) := ×v∈V (τ ) S|v|

where each factor S|v| acts by permutations on the set of cyclic orders of the set E(v). This action is
given by an identification of the symmetric group S|v+1| with the permutations of the set of the |v| + 1
edges of v and then modding out by the subgroup of cyclic permutations which act trivially on the set of
induced cyclic orders of E(v): S|v| ' S|v|+1/C|v|+1.

1.2.2. Planted planar trees
Given a rooted planar tree (τ, root) there is a linear order on each of the sets E(v), v ∈ V (τ ) \ {root}.

This order is given by the cyclic order and designating the outgoing edge to be the smallest element. The
root vertex has only a cyclic order, though.
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Since the root of a planar planted tree has only one incoming edge and no outgoing one such a tree
has a linear order at all of the vertices. Vice versa, providing a linear order of the edges of a root vertex
is tantamount to planting a rooted tree by adding a new root edge which induces the given linear order.
Therefore these are equivalent pictures and we will use either one of them depending on the given
situation.

Furthermore, on such a tree there is an edge path which passes through all the edges exactly twice –
once in each direction – by starting at the root going along the root edge and at each vertex continuing on
the next edge in the cyclic order until finally terminating in the root vertex. We call this path the outside
path.

By omitting recurring elements, that is counting each vertex or edge only the first time it appears, the
outside path endows the set V (τ )q E(τ ) with a linear order ≺

(τ,p). The smallest element is the root edge
and the largest element in this order is the root vertex. This order induces a linear order on the subset
of vertices V (τ ), on the subset of all edges E(τ ), as well as a linear order on each of the subsets E(v)

for all the vertices. In this order on E(v) the smallest element is the outgoing edge. This order will be
denoted by ≺

(τ,p)
v . We omit the superscript for ≺

(τ,p) if it is clear from the context.

1.2.3. Labelled trees

Definition 1.7. For a finite set S an S-labelling for a tree is an injective map L : S → V (τ ). An S-
labelling of a tree yields a decomposition into disjoint subsets of V (τ ) = Vl q Vu with Vl = L(S). For
a planted rooted tree, we demand that the root is not labelled: root ∈ Vu .

An n-labelled tree is a tree labelled by n̄ := {1, . . . , n}. For such a tree we call vi := L(i).
A fully labelled tree τ is a tree such that Vl = V (τ ).

1.3. Black and white trees

Definition 1.8. A black and white graph (b/w graph) Γ is a graph together with a function clr : V (Γ ) →

{0, 1}.
We call the set Vw(τ ) := clr−1(1) the set of white vertices and call the set Vb(τ ) := clr−1(0) the set

of black vertices.
By a bipartite b/w tree we understand a b/w tree whose edges only connect vertices of different colors.
A S-labelled b/w tree is a b/w tree in which exactly the white vertices are labelled, i.e. Vl = Vw and

Vu = Vb.
For a rooted tree we call the set of black leaves the tails.
A rooted b/w tree is said to be without tails if all the leaves are white.
A rooted b/w tree is said to be stable if there are no black vertices of arity 1, except possibly the

root.
A rooted b/w tree is said to be fully labelled if all vertices except for the root and the tails are white

and labelled.
In a planar planted rooted b/w tree, we require that the root be black.

Definition 1.9. For a black and white bipartite tree, we define the set of white edges Ew(τ ) to
be the edges {b, N (b)} with N (b) ∈ Vw and call the elements white edges. Likewise we define
Eb = {{w, N (w)}|N (w) ∈ Vb} with elements called black edges, so that there is a partition E(τ ) =

Ew(τ ) q Eb(τ ). White edges thus point towards white vertices and black edges towards black vertices
in the natural orientation towards the root.
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Notation 1.10. For a planar planted b/w tree, we understand the adjective bipartite to signify the
following attributes:

(1) both of the vertices of the root edge are black, i.e. root and the vertex N−1(root) are black
(2) the tree after deleting the tail vertices and their edges, but keeping the other vertices of these edges,

is bipartite otherwise.

The root edge is considered to be a black edge. Also in the presence of tails, all non-white tail edges
are considered to be black.

Definition 1.11. For a planar planted b/w bipartite tree τ and a white edge e = (b, N (b)) we define the
branch of e denoted by br(e) to be the planar planted bipartite rooted tree given as follows.

(1) The vertices and edges are those of the branch of e as defined in Definition 1.5.
(2) The colors of all vertices except N (b) are kept and the color of N (b) is changed to black. This black

vertex is defined to be the root.
(3) In the case that the tree τ is also labelled, br(e) is considered to be labelled by the set of labels of its

white vertices—we stress that this does not include the root N (b), which is the root of br(e).

1.3.1. Notation I
N.B. A tree can have several of the attributes mentioned above; for instance, we will look at bipartite

planar planted rooted trees. To fix the set of trees, we will consider the following notation. We denote
by T the set of all trees and use subscripts and superscripts to indicate the restrictions. The superscript
r, pp, nt will mean rooted and planar planted, without tails while the subscripts b/w, bp, st will mean
black and white, bipartite, and stable, where bipartite and stable insinuate that the tree is also b/w. For
example,

T r The set of all rooted trees
T pp

b/w The set of planar planted b/w trees
T pp

bp The set of planar planted bipartite trees
T pp

st The set of planar planted stable b/w trees.

Furthermore we use the superscripts f l for fully labelled trees. For example,

T r, f l The set of all rooted fully labelled trees.

We furthermore use the notation that T (n) denotes the n-labelled trees and adding the sub and
superscripts denotes the n-labelled trees of that particular type conforming with the restrictions above for
the labelling. Likewise T (S) for a set S are the S-labelled trees conforming with the restrictions above
for the labelling. For example,

T pp
b/w(n) The set of planar planted b/w trees with n white vertices which are labelled by the set {1, . . . , n}.

1.3.2. Notation II
Often we wish to look at the free Abelian groups or free vector spaces generated by the sets of trees.

We could introduce the notation Free(T , Z) and Free(T , k) with suitable super- and subscripts, for the
free Abelian groups or vector spaces generated by the appropriate trees. In the case that there is no risk
of confusion, we will just denote these freely generated objects again by T with suitable subscripts and
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Fig. 1. (a) The n-tail tree ln , (b) The white n-leaf tree τn , (c) The black n-leaf tree τb
n .

superscripts to avoid cluttered notation. If we define a map on the level of trees it induces a map on the
level of free Abelian groups and also on the k-vector spaces. Likewise by tensoring with k a map on the
level of free Abelian groups induces a map on the level of vector spaces. Again, we will denote these
maps in the same way.

1.3.3. Notation III
If we will be dealing with operads of trees, we will consider the collection of the T (n) with the

appropriate subscripts and superscripts. Again to avoid cluttered notation when dealing with operads, we
also denote the whole collection of the T (n) just by T with the appropriate subscripts and superscripts.

Definition 1.12. There are some standard trees, which are essential in our study, these are the n-tail tree
ln , the white n-leaf tree τn , and the black n-leaf tree τ b

n , as shown in Fig. 1.

1.4. Maps between different types of trees

1.4.1. The map cppin : T r
→ T pp,nt

bp
First notice that there is a map from planted trees to rooted trees given by contracting the root edge.

This map actually is a bijection between planted and rooted trees. The inverse map is given by adding
one additional vertex which is designated to be the new root and introducing an edge from the new root
to the old root. We call this map plant.

Secondly, there is a natural map pin from the free Abelian group of planted trees to that of planted
planar trees. It is given by:

pin(τ ) =

∑
p∈Pinnings(τ )

(τ, p).

Finally there is a map from planted planar trees to planted planar bipartite trees without tails. We
call this map bp. It is given as follows. First color all vertices white except for the root vertex which is
colored black, then insert a black vertex into every edge.

In total we obtain a map

cppin := bp ◦ pin ◦ plant : T r
→ T pp,nt

bp

that plants, pins and colors and expands the tree in a bipartite way.
Using the map cppin, we will view T r as a subgroup of T pp,nt

bp . The image of T r coincides with the
set of invariants of the actions S(τ ). We will call such an invariant combination a symmetric tree.

Remark 1.13. The inclusion above extends to an inclusion of the free Abelian group of fully labelled
rooted trees to labelled bipartite planted planar trees: cppin : T r, f l(n) → T pp,nt

bp (n).
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1.4.2. The map st∞ : T pp
st → T pp

bp
We define a map from the free groups of stable b/w planted planar trees to the free group of bipartite

b/w planted planar trees in the following way: First, we set to zero any tree which has black vertices
whose arity is greater than two. Then, we contract all edges which join two black vertices. And finally,
we insert a black vertex into each edge joining two white vertices. We call this map st∞.

Notice that st∞ preserves the condition of having no tails and induces a map on the level of labelled
trees.

This nomenclature is chosen since this map in a sense precisely forgets the trivial A∞ structure
of an associative algebra in which all higher multiplications are zero and all n-fold iterations of the
multiplication agree.

1.5. An operad structure on T pp
bp

1.5.1. Grafting planar planted b/w trees at leaves
Given two trees, τ ∈ T pp

bp (m), τ ′
∈ T pp

bp (n) and a white vertex vi which is a leaf of τ , we define
τ ◦i τ ′ by the following procedure:

First identify the root of τ ′ with the vertex vi . The image of vi and root(vi ) is taken to be black and
unlabelled. The linear order of all of the edges is given by first enumerating the edges of τ in their order
until the outgoing edge of vi is reached, then enumerating the edges of the tree τ ′ in their order and
finally the rest of the edges of τ in their order, the latter being all the edges following the outgoing edge
of vi in the order of τ .

Second contract the image of the root edge of τ ′, i.e. the image of the edge eroot(τ
′) under the

identification vi ∼ root(τ ′), and also contract the image of the outgoing edge of vi , i.e. the image
after gluing and contraction of the edge (vi , N (vi )).

The root of this tree is specified to be the image of the root of τ and the labelling is defined in the
usual operadic way. The labels 1, . . . , i − 1 of τ are unchanged, the labels 1, . . . , n of τ ′ are changed to
i, . . . , n + i − 1, and finally the labels i + 1, . . . , m of τ are changed to i + n, . . . , m + n − 1.

1.5.2. Cutting branches
Given a tree τ ∈ T pp

bp (n) and a vertex vi we denote the tree obtained by cutting off all branches at v

by cut(τ, v). This is the labelled subtree of τ consisting of all edges below (viz. not above) the incoming
edges of v and the vertices belonging to these edges. We stress that the outgoing edge out(v) is a part
of this tree as is v. By keeping the labels of the remaining white vertices the tree cut(τ (v)) becomes
an S-labelled planar planted bipartite tree. Here S ⊂ {1, . . . , n} is the set of labels of the subtree under
consideration.

Let br(τ, v) denote the set of the branches of the incoming edges of v which is ordered by the order
≺ induced by ≺

τ
v . That is, br(ei ) ≺ br(e j ) if and only if ei ≺

τ
v e j .

br(τ, v) = ({br(ei )|ei ∈ In(vi )}, ≺).

1.5.3. Grafting branches
Fix a tree τ ∈ T pp

bp (S0) and an ordered set of trees τ ′

i ∈ T pp
bp (Si ) : i ∈ {1, . . . , m}. Let

R := ({eroot(τ
′

1), . . . , eroot(τ
′
m)}, ≺R) be the ordered set in which eroot(τi ) ≺R eroot(τ j ) if and only if

i < j .
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Set E := (E(τ )\{eroot}, ≺
τ ) and define vwhite : E → V (τ ) to be the map which maps each edge in E

to its unique white vertex. Denote the minimal element of E by emin. This is the edge which immediately
follows eroot(τ ) in the linear order of τ .

Given a shuffle ≺∈ Sh′(E, R) such that the minimal element of the ordered set (E q R, ≺) is emin
we define the grafting of the branches τ ′

1, . . . , τ
′
m onto τ with respect to ≺ to be the labelled b/w tree

obtained as follows:

(1) Identify the roots of the τ ′

i with the white vertex of the edge immediately preceding the root edge:
rootτ ′

i
∼ w = vwhite(≺ (eroot(τ ′))).

(2) Designate the image to be a white vertex with the label L−1(w).
(3) Endow this tree with the planted planar structure induced by the order ≺ together with the orders ≺

τ ′
i

and ≺
τ . The root of this tree is the image of the root of τ .

This tree is again in T pp
bp and is labelled by S0 q S1 q · · · q SM . We denote it by

gr(τ ; τ1, . . . , τn; ≺).

1.5.4. Signs
For a shuffle of sets with weighted elements wtS : S → N wtT : T → N, we define the sign of the

shuffle to be the sign obtained from shuffling the elements of T past the elements of S, i.e.

sign(≺) =

∏
t∈T

(−1)

∑
s∈S:t≺s

wtS(s)wtT (t)
.

We define the weight function by

wt (e) =

1 if e is white
0 if e is black and e is not a root edge
|Ew(τ )| if e is the root edge of τ.

(1.1)

Definition 1.14. We define the grafting of the τi onto τ as branches to be the signed sum over all possible
graftings using the weight function (1.1):

gr(τ ; τ1, . . . , τn) :=

∑
≺∈Sh′

sign(≺)gr(τ ; τ1, . . . , τn; ≺). (1.2)

1.5.5. An operad structure for T pp
bp

With the above procedures, we define operadic compositions τ ◦i τ ′ for T pp
bp as follows: first cut off

the branches corresponding to the incoming edges of vi . Second graft τ ′ as a planar planted tree onto the
remainder of τ at the vertex vi which is now a leaf according to the grafting procedure of Section 1.5.1.
Finally sum over the possibilities to graft the cut off branches onto the white vertices of the resulting
planar tree which before the grafting belonged to τ ′. Here one only sums over those choices in which the
order of the branches given by the linear order at vi is respected by the grafting procedure. That is, the
branches after grafting appear in the same order on the grafted tree as they did in τ .

An example of such an insertion is depicted in Fig. 2.
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Fig. 2. Example of the insertion of a bipartite planted planar tree.

Definition 1.15. Given τ ∈ T pp
bp (m) and τ ′

∈ T pp
bp (n), we define the tree τ ◦i τ ′

∈ T pp
bp (m + n − 1)

τ ◦i τ ′
:= gr(cut(τ, vi ) ◦i τ ′

; br(τ, vi )) (1.3)

with the following relabelling: the labels 1, . . . , i − 1 of vertices which formerly belonged to τ remain
unchanged. The labels of the vertices 1, . . . , n of the vertices which formerly belonged to τ ′ are
relabelled i, . . . , i + n − 1 and the remaining vertices of those which formerly belonged to τ which
used to be labelled by i + 1, . . . , m are now relabelled by i + n, . . . , m + n − 1.

1.5.6. Labelling by sets
There is a way to avoid labelling and explicit signs by working with tensors and operads labelled by

arbitrary sets [8,24,32]. In this case, if S and S′ are the indexing sets for τ and τ ′ and i ∈ S, then the
indexing set of τ ◦i τ ′ is given by S \ {i} q S′. To obtain the signs, one associates a free Z-module (or
k-vector space) generated by an element of degree minus one to each white edge. See Definition 1.24.

1.5.7. Positive signs
We define τ ◦

+

i τ ′ just as above only with the wt (e) ≡ 0, that is as the formal sum with the same
summands and only positive coefficients.

1.5.8. Contracting trees
Given a rooted subtree τ ′

⊂ τ ∈ T pp,nt
bp with white leaves and black root, we define τ/τ ′ to be the tree

obtained by collapsing the subtree τ ′ to one black edge by identifying all white and all black vertices of
τ ′. That is, let v ∼

τ ′

V v′ if v = v′ or v, v′
∈ V (τ ′) and clr(v) = clr(v′) then V (τ/τ ′)/ ∼

τ ′

V . Likewise let
e ∼

τ ′

E e′ if e, e′
∈ E(τ ′) or e = e′ and set E(τ/τ ′) = E(τ )/ ∼

τ
E .

For any tree labelled tree τ ⊂ T pp,nt
bp (n) with labelling L , we set τ+i to be the same underlying tree,

but with the shifted labelling function L+i
: {i, . . . , i +n−1} → Ew(τ ) given by L+i (k) = L(k−i +1).

By abuse of notation we use τ ′ to denote a subtree τ ′
⊂ τ and the planted planar tree obtained from

τ ′ by planting the root vertex while preserving the linear order already present on the original edges of
τ ′. Vice versa, given a planted tree τ , when identifying it with a subtree the root edge will be contracted,
but the linear order of the subtree has to coincide with that of the tree considered as “free standing”.

Consider τ ′
∈ T pp,nt

bp (m). If τ ′+i
⊂ τ ∈ T pp,nt

bp (m + n − 1) as a labelled subtree, we write τ ′
⊂i τ .

In this case we label τ/τ ′ as follows. The labels 1, . . . , i − 1 remain unchanged, the label of the vertex
representing the white vertices of the contracted τ ′ is set to be i and the labels i + m, . . . , n + m − 1 are
changed to i + 1, . . . , n. Set

T (τ, τ ′, i) := {τ̃ |τ ′
⊂i τ̃ and τ̃ /τ ′

= τ }. (1.4)
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Remark 1.16. With the above definitions, we can rewrite Eq. (1.3) as

τ ◦i τ ′
:=

∑
τ̃∈T (τ,τ ′,i)

sign(≺τ̃ )τ̃ (1.5)

where ≺
τ̃ is considered as the shuffle (Ew(τ̃ ) = Ew(τ ) q Ew(τ ′), ≺) of the ordered sets (Ew(τ ), ≺τ )

and (Ew(τ ′), ≺τ ′

). Notice that the compatibility of the orders is automatic.

Proposition 1.17. The gluing maps (1.3) (with or without signs) together with the symmetric group
actions permuting the labels turn T pp

bp := {T pp
bp (n)} into an operad.

Proof. This is a straightforward calculation especially in view of the reformulation of Remark 1.16. An
alternative topological way to prove the associativity of ◦

+

i is given in Corollary 3.9. The signs for the
maps ◦i then follow from Section 1.5.10 using Definition 1.24. �

Remark 1.18. With the above compositions T pp,nt
bp is a suboperad of T pp

bp .

1.5.9. The differential on T pp,nt
bp

There is a differential on T pp,nt
bp which we will now define in combinatorial terms. We will show later

that it has a natural interpretation as the differential of a cell complex.
Recall that for a planted planar tree there is a linear order on all edges and therefore a linear order on

all subsets of edges.

Definition 1.19. Let τ ∈ T pp,nt
bp . We set Eangle = E(τ ) \ (Eleaf(τ ) ∪ {eroot}) and we denote by

numE : Eangle → {1, . . . , N } the bijection which is induced by the linear order ≺
(τ,p).

Definition 1.20. Let τ ∈ T pp,nt
bp , e ∈ Eangle, e = {w, b}, with w ∈ Vw and b ∈ Vb. Let e− = {w, b−}

be the edge preceding e in the cyclic order ≺
τ
w at w. Then ∂e(τ ) is defined to be the planar tree obtained

by collapsing the angle between the edge e and its predecessor in the cyclic order of w by identifying b
with b− and e with e−. Formally

w = vwhite(e), e− = ≺
τ
w(e), {b−} = ∂(e−) ∩ Vb(τ )

V∂e(τ ) = V (τ )/(b ∼ b−), E∂e(τ ) = Eτ/(e ∼ e−).

The linear order of ∂e(τ ) is given by keeping the linear order at all vertices which are not in the image b̄
of b and b− and using the linear order

(In(b̄), ≺
∂e(τ )

b̄
) = (In(b−) q In(b), ≺τ

b−
q ≺

τ
b)

extended to E(b̄) by declaring the image of e and e− to be the minimal element. See Fig. 3 for an
example.

Definition 1.21. We define the operator ∂ on the space T pp,nt
bp to be given by the following formula

∂(τ ) :=

∑
e∈Eangle

(−1)numE (e)−1∂e(τ ). (1.6)

Denote by T pp,nt
bp (n)k the elements of T pp,nt

bp (n) with k white edges.
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Fig. 3. The tree ∂e(τ ).

Proposition 1.22. The map ∂ : T pp,nt
bp (n)k

→ T pp,nt
bp (n)k−1 is a differential for T pp,nt

bp and turns T pp,nt
bp

into a differential operad.

Proof. The fact that ∂ reduces the number of white edges by one is clear. The fact that ∂2
= 0

follows from a straightforward calculation. Collapsing two angels in one order contributes negatively
with respect to the other order. The compatibility of the multiplications ◦i is also straightforward. �

1.5.10. Other choices of signs
The way the signs are fixed in the above considerations is by giving the white edges the weight 1 and

the black vertices the weight 0. Once the order of the edges for trees is fixed all signs are the standard
signs obtained from permuting weighted (i.e. graded) elements. We chose the “natural” order in which
the edges are enumerated with respect to ≺

τ , i.e. the order derived from the embedding into the plane.
Another choice of ordering would be “operadic” in which the white edges are enumerated first

according to the label of their incident white vertex and then according to their linear order at that
vertex. We leave it to the reader to make the necessary adjustments in the formulae (1.2), (1.3) and (1.6)
to adapt the signs to this choice.

Finally one can avoid explicitly fixing an order if one works with operads over arbitrary sets (see also
Section 1.5.6).

1.5.11. Other tree insertion operads and compatibilities
There are two tree insertion operads structures already present in the literature on rooted trees T r [5,

10], or to be more precise on T r, f l and, historically the first, on planar planted stable b/w trees without
tails T pp,st,nt

b/w [24].
In the gluing for T r, f l one simply omits mention of the order. And in the case of T pp,st,nt

b/w one also
allows gluing to the images of the black vertices of τ ′. Also in the case of T r, f l the basic grafting of
trees is used (no contractions), while in the case of T pp,st,nt

b/w the grafting for planted trees is used, i.e. the
image of the root edge is contracted, but not the outgoing edge of vi .

The signs for the first gluing are all plus [5] and in the second gluing they are given by associating the
weight 1 to all edges except the root and weight −2 to the white vertices and weight 2 to the root vertex.
The latter of course do not contribute to the signs.

Proposition 1.23. The map st∞ : T pp,st,nt
b/w → T pp,nt

bp is an operadic map. Moreover, it is a map of

differential graded operads, if one reverses the grading of T pp,nt
bp , i.e. defining (T pp,nt

bp )(n)k to have
degree −k.
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Proof. The operadic properties of st∞ over Z/2Z follow from the fact that the summands given by
gluing branches to black vertices in the composition of [24] are sent to zero by the map st∞. In the
calculation for the differential the unwanted terms disappear by the same argument. The compatibility
of signs follows from the fact that the trees that survive st∞ have trivalent black subtrees. These have an
odd number of edges counting all the edges incident to the black vertices. Let the outgoing edge be the
outgoing edge of the lowest vertex of the subtree. Collapsing the subtree then corresponds to assigning
an odd weight to the outgoing edge and weight zero to the incoming edges, since there is no gluing to
black vertices. In the case of edges connecting two white vertices, one inserts a black vertex and the
weight can be transferred to the white edge, again since there is no gluing onto black vertices. Now
the parity of the induced weights on the edges coincides with the weights we defined on T pp,nt

bp . The
weights of the vertices being even play no role. Hence the signs agree. In fact taking the signs of the
vertices into account, we would exactly obtain weight −1 for white edges and weight 0 for black ones.
The compatibility of the degrees follows from the fact that in T pp,st,nt

b/w a black vertex b will contribute
degree −(|b| − 2) and a white vertex w will contribute degree −|w| to the total degree. Thus in the case
in which the tree has only binary black vertices the total degree is the sum over the −|w| which is the
negative of the grading in T pp,nt

bp . �

Definition 1.24. We define the shifted complex S+T pp,st,nt
b/w to be given by S+T pp,st,nt

b/w (n) :=

T pp,st,nt
b/w (n) ⊗ L⊗Ew where L is a freely generated k (or Z-module) generated by an element l of degree

1 and we used the notation of tensor products indexed by sets. This means that generators are given by
τ ⊗ l⊗Ew(τ ). The differential is the tree differential without signs on the trees which just collapses the
angles and the multiplications on the component of trees are the ◦

+

i . Now the signs come from the tensor
factors and their permutations as induced by the maps Section 1.5.6 and L⊗Ew(τ )

→ L⊗Ew(∂e(τ )). Here
the latter map can be induced by the multiplication map µ : Le ⊗ Le− → L ē defined by µ(l ⊗ l) = l.

It is clear that there is an operadic isomorphism S+T pp,nt
bp ' (T pp,nt

bp , ◦i ).
Notice that if we shift back with the dual line L∗, i.e. set ST pp,nt

bp = T pp,nt
bp ⊗ (L∗)⊗Ew where

now the compositions on the tree factor are given by ◦i , then there is an operadic isomorphism
ST pp,nt

bp ' (T pp,nt
bp , ◦+

i ).
In an analogous way we define T r, f l

⊗ L⊗E .

Proposition 1.25. The map cppin : T r, f l
→ T pp,nt

bp is injective and its image are the symmetric

combinations of the trees of T pp,nt
bp with |Ew| = |Vw| − 1 which we denote by ((T pp,nt

bp )top)S. Moreover

(a) cppin : T r, f l
→ T pp,nt

bp is an operadic embedding into the operad (T pp,nt
bp , ◦+

i ). This corresponds
to assigning weight zero to all edges in the formalism above.

(b) The map cppin also induces an operadic embedding of T r, f l
⊗ L⊗E into the (T pp,st,nt

b/w , ◦i ), via

T r, f l
⊗ L⊗E cppin⊗id⊗|E(τ )|

−−−−−−−−−→ T pp,nt
bp ⊗ L⊗Ew = S+T pp,nt

bp .

We will also denote this map by cppin.

Proof. For rooted trees the composition defined in [5] tells us to cut off the branches, glue the second
tree to the truncated tree and redistribute the branches. Now the map cppin associates to each tree a
sum whose summands are uniquely determined by a linear order on the underlying rooted tree, which
is obtained by forgetting the linear order, contracting the root edge and all black edges. The possible



54 R.M. Kaufmann / Topology 46 (2007) 39–88

linear orders on the composed tree are naturally in a 1–1 correspondence between the linear orders on
the truncated tree, the tree which is grafted on and a compatible order of the re-grafted branches. These
are the terms appearing in the gluing of the planar planted trees. Before and after the embedding, the
symmetric group actions produces no signs. The second statement follows clearly from the first. �

2. Species of cacti and their relations to other operads

2.1. Spineless cacti

In this section, we review the spaces of spineless cacti, normalized spineless cacti, their relation to
each other and the little discs operad. These spaces were introduced in [17,26], but in order to facilitate
the reading we reiterate one definition of the sets corresponding to spineless cacti and normalized
spineless cacti and define operadic respectively quasi-operad maps on these sets. In order to not disrupt
the flow of the paper too much, we relegate some of the technical details to the Appendix. To be
completely self-contained, we also define a topology on these sets which makes spineless cacti into
an operad of spaces and normalized spineless cacti into a homotopy associative quasi-operad. After this
we briefly recall other equivalent ways of giving a topology.

2.1.1. Background on spineless cacti and cacti
In [17] we introduced the operad of spineless cacti. It is a suboperad of the operad of cacti which was

introduced by Voronov in [40] descriptively as treelike configurations of circles in the plane. One precise
definition of the topology of cacti was given in [26] via an operadic embedding of cacti into the operad
DArc which is a deprojectivized version of the Arc operad [26]. By definition DArc = Arc × R>0. It
carries the obvious action of R>0 acting freely on the right factor. This action is a global re-scaling. The
spaces Arc(n) of the Arc operad are open subsets of a cell complex [26]. This realizes cacti as a subset
of a cell complex crossed with R>0 whence it inherits the subspace topology. Equivalently, using the
map Loop of [26] one arrives at a description of the set of cacti as marked treelike ribbon graphs with
a metric. Again, one obtains a subspace topology from that of marked metric ribbon graphs. A marking
is the choice of a point on each cycle. In this setting treelike means that the ribbon graph is of genus
zero and that there is one marked cycle which passes through all of the unoriented edges. A very brief
summary is given below. A short but detailed summary of both these constructions is given in Appendix
B of [17].

2.1.2. Background on the normalized versions
In [17] we also introduced normalized spineless cacti and normalized cacti. The condition of

normalization means in the description via configurations of circles that all the circles are of length one.
The normalized versions are homotopy equivalent to the non-normalized versions as spaces. They are not
operads, but they can be endowed with a quasi-operad structure which is quasi-isomorphic to the operad
structure of the non-normalized version, i.e. it agrees with the operad structure of cacti respectively
spineless cacti on the level of homology [17].

The main result of the next section is that there is a cell decomposition for normalized spineless cacti,
such that the induced quasi-operad structure on the level of cellular chains is an operad structure, and
hence gives an operadic chain model for spineless cacti.

We start by recalling the definition of spineless cacti and then recast their definition in terms of trees
which allows us to give a new cell decomposition.
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2.2. Spineless cacti as treelike ribbon graphs

We recall from [17,19] the definition of normalized spineless cacti and spineless cacti in terms of
treelike ribbon graphs.

2.2.1. Ribbon graphs
A ribbon graph is a graph Γ together with a cyclic order ≺v of each of the sets F(v). On a ribbon

graph, there is a natural map N from flags to flags given by associating to a flag f the flag following
ı( f ) in the cyclic order ≺∂(ı( f )). The orbits of the map N are called the cycles. We say that a vertex lies
on a cycle, if there is a flag in the cycle which is adjacent to this vertex.

If a graph is a ribbon graph, the knowledge of the map N is equivalent to the knowledge of the cyclic
orders ≺v , since the successor of a flag f is given by N (ı( f )).

Every ribbon graph has a genus which is defined by 2 − 2g = #vertices − #edges + #cycles.1

A metric on a graph is a function µ : E(Γ ) → R≥0. A graph with a metric is called a metric graph.

Definition 2.1. A marked spineless treelike ribbon graph is a ribbon graph of genus 0 together with a
distinguished flag f0, such that

(i) if c0 is the unique cycle that contains the flag f0, then for each flag f either f ∈ c0 or ı( f ) ∈ c0 and
(ii) if v0 = δ( f0), then |F(v0)| ≥ 2 and for v 6= v0 : |F(v)| ≥ 3.

We will fix the notation c0 for the cycle containing f0 and call it the distinguished cycle. Likewise we
fix the notation v0 := δ( f0) and call it the root or global zero.

2.2.2. Spineless cacti
Cacti without spines are the set of metric marked treelike ribbon graphs.

Definition 2.2. We define Cact(n) to be the set of metric marked treelike ribbon graphs which have
n + 1 cycles together with a labelling of the cycles by {0, . . . , n} such that c0 is labelled by 0. We call
the elements of Cact(n) spineless cacti with n lobes.

2.2.3. Sn-action
Notice that Sn acts via permuting the labels {1, . . . , n}.

2.2.4. Scaling
There is an action of R>0 on Cact(n) which simply scales the metric. That is if µ is the metric of the

cactus, the metric scaled by λ ∈ R>0 is defined by (λµ)(e) = λµ(e).

2.2.5. Cactus terminology
Since the notion of cacti comes with a history, we set up the usual terminology that is used in the

literature to describe these objects. Given a spineless cactus with n lobes, we use the alternate name

1 It is well known that a ribbon graph can be fattened to a surface with boundary, such that it is the spine of this surface
and the cycles correspond to the boundary components. The genus is the genus of the corresponding surface without boundary
obtained by contracting the boundaries to points (or equivalently gluing in discs).
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“arc” for “edge” and call v0 the root. Also, we will use the terminology “special points” for the vertices
and call the vertices v with |F(v)| ≥ 3 the intersection points. Sticking with this theme the arc length of
an arc e of a metric spineless treelike ribbon graph will be simply µ(e) where µ is the metric. The lobes
will be the cycles labelled by {1, . . . , n} and the cycle c0 will be called the perimeter or outside circle.
The length or radius of a lobe or the perimeter is the sum of the lengths of the underlying edges of the
oriented edged belonging to the cycle.

2.3. Lobes and base points

Notice that in a spineless cactus, every cycle has a distinguished flag. For this enumerate the flags of
c0 starting with f0. Now for each cycle ci other that c0, there is a first flag f of this linearly ordered
set c0 such that ı( f ) is an element of the cycle ci . The distinguished flag is then defined to be flag
N (ı( f )). Notice that this flag and f share the same vertex, the distinguished flag of the cycle. In cactus
terminology these vertices are called the local zeros and v0 = δ( f0) is sometimes referred to as the
global zero.

Also notice that the cycle c0 gives a linear order to all the edges of a cactus. This linear order is
given by fixing the edge { f0, ı( f0)} to be the first edge. In the same fashion, there is a linear order on all
edges belonging to the other cycles by letting the first edge be the one containing the distinguished flag
discussed above.

2.3.1. Dual black and white graph
Given a marked spineless treelike metric ribbon graph, we can associate to it a dual graph. This is

a graph with two types of vertices, white and black. The first set of vertices is given by replacing each
cycle except c0 by a white vertex. The second set of vertices, the set of black vertices, is given by the
vertices of the original graph. The set flags of the dual graph is taken to be equal to the set of flags of
the original graph. The maps ı and δ are defined in such a way, that the edges run only from white to
black vertices, where we two such vertices are joined if the vertex of the ribbon graph corresponding
to the black vertex lies on the cycle represented by the white vertex. See the Appendix for the precise
combinatorial description of this construction.

Notice that this is a planted planar bipartite tree. It is a planar tree, since the underlying ribbon graph
had genus zero, and the pinning is the one induced by the cyclic order of the flags of the original graph
(see Appendix). It is planted by defining the linear order at v0 := ∂( f0) by letting f0 be the first flag.
Moreover, the set of edges of this tree is in 1–1 correspondence with the set of edges of the ribbon graph
and the two enumerations of the edges by the distinguished cycles agree. For details, see the Appendix.

Definition 2.3. The topological type of a spineless cactus in Cact1(n) is defined to be the tree τ ∈

T pp,nt
bp (n) which is its dual b/w graph together with the labelling induced from the labels of the cactus

and the linear order induced on the edges by the embedding into the plane and the position of the root.

For an example of a spineless cactus and its topological type, see Fig. 4.

2.4. The marked treelike spineless ribbon graph obtained from a tree

The inverse construction to the dual graph is combinatorially a little tricky and it can be found in the
Appendix.
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Fig. 4. (a) A cactus without spines with its arc lengths. (b) Its topological type as a labelled planted planar bipartite tree. (c) Its
depiction as a surface with boundary and arcs in DArc.

A good geometric picture is the following. Given a b/w planar planted bi-partite tree τ . Draw the tree
in the plane, where we do not draw a root edge, but rather mark the first flag at the root vertex. The first
part of the construction is to expand each white vertex to a circle. This can be done, since we have a
cyclic order at each edge. This graph has twice the number of edges as τ , the new edges and the edges
of τ . It is a genus zero ribbon graph and the cycle of f0 contains all edges. The new edges are in 1–1
correspondence with the edges of τ , by assigning to each edge of τ the edge which is the next edge
in the cyclic order given by c0. To obtain the marked ribbon graph contract all the edges which were
formerly the edges of τ . We choose a marking by fixing the flag which is the successor of the image
of the originally marked flag in the unique cycle of this graph. The result of this operation is a marked
spineless ribbon graph whose topological type is that of τ and whose edges are in 1–1 correspondence
with those of τ . The precise graph theoretic proof of these statements can be found in the Appendix.

Lemma 2.4. A spineless cactus c ∈ Cact(n) is uniquely determined by its topological type
τ ∈ T pp,nt

bp (n) (as defined in Definition 2.3) and the lengths of its arcs. Moreover the arcs are
in 1–1 correspondence to the edges of it topological type.

Proof. By the above results, it follows that each spineless cactus gives rise to the corresponding data.
Vice versa, given τ ∈ T pp,nt

bp (n), it gives rise to a marked spineless ribbon graph with both constructions
being inverses. Since the set of edges of both the ribbon graph and the tree can be identified, the claim
follows. �

2.4.1. Lobes as circles
To simplify the exposition, we now explain how to think of a cycle as a parameterized circle. Each

cycle is a sequence of arcs with a given length. So by simply combining these arcs and viewing the result
as a CW complex, we obtain a CW decomposition of S1 and a metric on this space. In effect the radius
of this metric S1 is the radius of the lobe or the outside circle. Moreover there is a distinguished point
on this S1 given by the vertex of the distinguished flag and there is an orientation induced by the order
of the cycle. Thus we can think of a cycle as a parameterized S1 of radius r where r is the length of the
cycle. The technical purely combinatorial version of this construction is relegated to the Appendix.

A realization of a cactus with n lobes as a CW complex can then be thought of as a topological space
with n + 1 maps φi from S1

ri
to this space, so that the i-th map is bijective onto the i-th lobe for i > 0
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and ri is the radius of the i-th lobe. For i = 0 the map is surjective. In this way we can think of a cactus
in Cact(n) as a collection of S1

ri
’s which intersect in a treelike fashion.

Moreover, removing the special points, we are left with a 1-manifold with many components, one
for each edge, which is naturally a subset of the realization of the cactus. We can think of a lobe as the
closure of its components which presents it as a metric space.

2.4.2. Gluing for cacti without spines
In this section, we recall how to define the operations

◦i : Cact(n) × Cact(m) → Cact(n + m − 1). (2.1)

In plain words: given two cacti without spines let ri be the length of the i-th lobe of the first cactus. First
scale, such that the outside circle of the second cactus has length ri , then glue in the second cactus by
identifying the outside circle of the second cactus with the i-th circle of the first cactus.

This gluing is naturally understood as a gluing of the CW complexes. For this realize both graphs,
then consider the i-th lobe and the outside circle as a S1s as in Section 2.4.1 and then glue the two CW
complexes by identifying points using the maps of S1 to both spaces as gluing data. The topologically
most satisfying way to define the gluing is via the Arc operad as it is done in [26]. A detailed recollection
of these results would be too much of a detour, however, to be self-contained, we give the somewhat
technical combinatorial description corresponding to the graph theoretic definition of spineless cacti in
the Appendix.

It is easily checked that the operations (2.1) turn Cact = {Cact(n)} into an operad [17,26], albeit for
the moment an operad of sets. We will deal with the topology shortly.

2.4.3. Normalized cacti without spines
Normalized cacti without spines are the subset of spineless cacti whose lobes all have length one.

Definition 2.5. The set of normalized cacti without spines with n lobes is the subset Cact1(n) ⊂ Cact(n)

of spineless cacti with n lobes all of whose length is 1.

2.4.4. Gluing for normalized cacti without spines
We define the operations

◦i : Cact1(n) × Cact1(m) → Cact1(n + m − 1) (2.2)

basically by the following procedure: given two normalized cacti without spines we re-parameterize the
i-th component circle of the first cactus to have length m and glue in the second cactus by identifying
the outside circle of the second cactus with the i-th circle of the first cactus. The rigorous combinatorial
gluing operation is in the Appendix.

Notice that this gluing differs from the one for spineless cacti, since now just a lobe and not a whole
cactus is re-scaled.

These maps do not endow the normalized spineless cacti with the structure of an operad, since they
are not associative. But they induce the slightly weaker structure of a quasi-operad.

Definition 2.6 ([17]). A quasi-operad is an operad where the associativity need not hold. An operad in
the category of topological spaces is called homotopy associative if the compositions are associative up
to homotopy.
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2.5. Scaled cacti and other variations

2.5.1. Projective cacti
Spineless cacti come with a universal scaling operation of R>0 which simultaneously scales all

radii by the same factor λ ∈ R>0. This action is a free action and the gluing descends to the
quotient by this action. We call the resulting operad projective spineless cacti and denote its spaces
by PCact(n) := Cact(n)/R>0.

It is clear that Cact(n) = PCact(n) × R>0.

Remark 2.7. Notice that the topological type as defined in Definition 2.3 is invariant under the global
re-scaling action of R>0 so that a projective spineless cactus also has a well defined topological type.

2.5.2. Left, right and symmetric cacti operads
For the gluing maps (2.1) one has three basic possibilities to scale in order to make the size of the

outer loop of the cactus that is to be inserted match the size of the lobe into which the insertion should
be made.

(1) Scale down the cactus which is to be inserted. This is the original version—we call it the right scaling
version.

(2) Scale up the cactus into which will be inserted. We call it the left scaling version.
(3) Scale both cacti before gluing. Let ri be the length of the lobe i of c and let R =

∑
j r ′

j be the length
of the outside circle of c′. Now to define c ◦i c′ first scale c by R and c′ by ri . Then identify the
outside loop of c′ with the lobe i of c which now both have length Rri . We call this the symmetric
scaling version.

All of these versions turn out to be homotopy equivalent. In particular passing to the quotient operad
PCact they all descend to the same operations.

The advantages of the different versions are as follows: version (1) is the original one and inspired by
the re-scaling of loops, i.e. the size of the outer loop of the first cactus is constant. Version (2) has the
advantage that cacti whose lobes have integer sizes are a suboperad. And version (3) is the one which
needs to be used to embed into the operad DArc of [26]. In this version there is an embedding of the
operad of spineless cacti operad into the cyclic operad DArc. Projective spineless cacti embed into the
cyclic operad Arc. The equivalent statements for the larger operad of cacti which contains the operad of
spineless cacti under consideration as a suboperad also hold true.

2.6. The topology

In this section, we give a short account of how to put a topology on the set of spineless cacti. As
discussed above, the quickest way would be to give the topology to the spaces Cact1 as subspaces of the
operadDArc as defined in [26], see also [17]. We will also give an equivalent way to define the topology
in the next section by identifying normalized spineless cacti with a CW complex. This description is
intrinsic and the most adapted to cacti. This is the reason why we decided to define the topology for
spineless cacti and cacti using the CW complex approach of this article in [17] rather than using one of
the other equivalent descriptions. Endowed with a topology spineless cacti become a topological operad
and normalized spineless cacti a homotopy associative topological quasi-operad.
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2.6.1. Cacti glued from open cells
For definiteness, we give one construction of the topology which is tantamount to defining the

topology of PCact as an open subset of Arc without referring the reader to [26].

Notation 2.8. Let ∆n denote the standard n-simplex and ∆̇n its interior.
For τ ∈ T pp,nt

bp , set S(τ ) = ∆|Ew(τ )| and denote its interior by ˙S(τ ).

Lemma 2.9. The projective spineless cacti of a fixed topological type τ are in bijection with points of
the interior ˙S(τ ) of the simplex S(τ ). Moreover

PCact(n) = q

τ∈T pp,nt
bp (n)

˙S(τ ).

Proof. First notice that in each class of a projective spineless cactus there is a unique representative
whose arc lengths sum up to one. Using barycentric coordinates on the simplex S(τ ) we can thus identify
the projective spineless cacti of the given topological type τ with points in the open simplex ˙S(τ ). Hence
the first bijection follows from Lemma 2.4. It is clear that every topological type occurs, so the second
statement follows. �

Definition 2.10. We define the degeneration of a spineless cactus c with respect to an arc a which is
not an entire lobe to be the spineless cactus obtained by contracting the arc a. If the root was on the
boundary of a, the image of a is the new root. The marked lobe is the image of the lobe to which the arc
immediately following a around the outside circle belonged.

Remark 2.11. Notice that if τ is the topological type of a spineless cactus c and e = {w, b} is the edge
corresponding to the arc a in the terminology of Section 2.4 then the topological type of the degeneration
of the spineless cactus c with respect to the arc a is ∂e(τ ).

Definition 2.12. We give PCact(n) the topology induced by identifying the e-th open face of S(τ ) with
˙S(∂e(τ )) for any e ∈ Eangle(τ ).

We define the topology for Cact(n) = PCact(n) × R>0 to be the product topology and endow
Cact1(n) ⊂ Cact(n) with the subset topology.

This identifies the e-th open face of S(τ ) with the degenerations of spineless cacti in S(τ ) with respect
to the arc a that corresponds to e.

Lemma 2.13. As topological spaces Cact(n) = Cact1(n) × Rn
>0 and PCact(n) = Cact(n)/R>0.

Proof. The first statement follows by identifying the factors Rn
>0 with the sizes of the lobes. The second

statement follows from the observation that the R>0 action is free and continuous. �

Proposition 2.14. The gluing maps (2.1) endow the spaces Cact(n) with the structure of a topological
operad.

Proof. Straightforward. �

Proposition 2.15 ([17]). The glueings of Section 2.4.4 together with the permutation action of Sn on
Cact1(n) turn Cact1(n) into a topological quasi-operad which is homotopy associative.

Proof. Straightforward. �
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2.7. Other approaches to the topology

In this subsection we give a brief non-technical summary of alternative approaches to give spineless
cacti a topology by identifying them with other well known objects. Although the approaches seem
vastly different they all lead to the same topology. For a detailed but still concise summary see [17].

2.7.1. Topology of cacti as special types of ribbon graphs
A topology on this set of cacti could alternatively be given as follows: given by the metric and the

following convention. If the length of an arc goes to zero, the respective edge is contracted. If one of the
two vertices of the edge corresponded to a root, the new root marking will be the vertex corresponding
to the contracted edge. The cycle of the root marking is defined as the image of the cycle to which the
edge immediately preceding the contracted edge in the order of the distinguished cycle belonged. Vice
versa, the realization of a graph as above defines a unique normalized spineless cactus and hence the set
of normalized spineless cacti is topologized.

2.7.2. Cacti–ribbon graphs as surfaces with weighted arcs
To get an element of DArc take the ribbon graph and consider a surface of which it is the spine. This

surface will be of genus zero and can be realized as a disc with holes. Run arcs from the inside boundaries
(viz. the “holes”) to the boundary, one for each edge, such that it crosses this edge transversally and has
no other crossings with edges or arcs. In other words the ribbon graph is the dual graph on the surface to
the graph given by the arcs and the boundaries. Mark a point on each boundary, which is not the endpoint
of an arc, so that the linear order on the cycles of the ribbon graph agrees with the linear order on the
arcs induced by going around the boundary in the orientation of the disc starting at the marked point.
Each arc carries a weight given by the value of the metric on the respective edge to it. This gives the
unique element of DArc representing the spineless cactus. In the limit where a weight goes to zero, the
respective arc is simply erased [26].

For an example, see Fig. 4.

2.8. The relation between spineless cacti and normalized spineless cacti

In this section we briefly review the relationship between spineless cacti and their normalized version.
For the full details, we refer to [17].

2.8.1. The scaling operad
We define the scaling operad R>0 to be given by the spaces R>0(n) := Rn

>0 with the permutation
action by Sn and the following products

(r1, . . . , rn) ◦i (r ′

1, . . . , r ′
m) =

(
r1, . . . ri−1,

ri

R
r ′

1, . . . ,
ri

R
r ′

m, ri+1, . . . rn

)
where R =

∑m
k=1 r ′

k .
On one hand the scaling operad keeps track of the sizes of the lobes of a cactus. On the other hand

the difference between the compositions in normalized and non-normalized spineless cacti is given by
an action of the following type:

ρi : Cact1(n) ×R>0(m) × Cact1(m) → Cact1(n). (2.3)
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The effect of the action is to move the intersection points of the lobes incident to the lobe i of the
first normalized spineless cactus around that lobe according to the outside circle of spineless cactus
to be inserted. The action is defined so that after the displacement of the lobes the composition of the
perturbed normalized spineless cactus with the other normalized spineless cactus as normalized spineless
cacti coincides with the composition obtained by gluing the two normalized spineless cacti simply as
spineless cacti and then scaling back each lobe of the resulting cactus to length one. For the explicit
formulas, we refer to [17]. Using this action, we can perturb the multiplications of normalized spineless
cacti to fit with those of spineless cacti.

◦
R>0
i : Cact1(n) ×R>0(m) × Cact1(m)

id×id×∆
−→ Cact1(n) ×R>0(m) × Cact1(m) × Cact1(m)

ρi ×id
−→ Cact1(n) × Cact1(m)

◦i
−→ Cact1(n + m − 1) (2.4)

to get a continuous map

(c, Er ′, c′) 7→ c ◦
Er ′

i c′.

Due to the nature of the maps above it is possible to continuously “undeform” the deformed product
while staying in the category of quasi-operads.

Theorem 2.16 ([17]). The operad of spineless cacti is isomorphic to the operad given by the semi-direct
product of its normalized version with the scaling operad. The latter is homotopy equivalent (through
quasi-operads) to the direct product as a quasi-operad. The direct product is in turn equivalent as a
quasi-operad to Cact1.

Cact ∼= R>0 n Cact1 ∼ Cact1 ×R>0 ' Cact1 (2.5)

where the semi-direct product compositions are given by

(Er , c) ◦i (Er ′, c′) = (Er ◦i Er ′, c ◦
Er ′

i c′). (2.6)

From this description one obtains several useful corollaries [17]. The ones relevant to the present
discussion are listed below.

Corollary 2.17. The quasi-operad of normalized spineless cacti is homotopy associative and thus its
homology quasi-operad is an operad.

Moreover as quasi-operads normalized spineless cacti and spineless cacti are homotopy equivalent
via a homotopy of quasi-operads.

And finally:

Corollary 2.18. Normalized spineless cacti are operadically quasi-isomorphic spineless cacti. That
is, their homology operads are isomorphic.

2.9. Spineless cacti and the little discs operad

The most important result of [17] which we will use is:

Theorem 2.19 ([17]). The operad Cact is equivalent to the little discs operad.
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3. A cell decomposition for normalized spineless cacti

3.1. The cell complex

Remark 3.1. For a normalized spineless cactus the lengths of the arcs have to sum up to the radius of
the lobe and the number of arcs on a given lobe represented by a vertex v is |v|+ 1. Hence the lengths of
the arcs lying on the lobe represented by a vertex v are in 1–1 correspondence with points of the simplex
|∆|v|

|. The coordinates of |∆|v|
| naturally correspond to the arcs of the lobe v on one hand and on the

other hand to the incident edges to v in the dual b/w graph.

Definition 3.2. We define T pp,nt
bp (n)k to be the elements of T pp,nt

bp (n) with |Ew| = k.

Definition 3.3. For τ ∈ T pp,nt
bp we define

∆(τ ) := ×v∈Vw(τ ) ∆|v|. (3.1)

We define C(τ ) = |∆(τ )|. Notice that dim(C(τ )) = |Ew(τ )|.
Given ∆(τ ) and a vertex x of any of the constituting simplices of ∆(τ ) we define the x-th face of

C(τ ) to be the subset of |∆(τ )| whose points have the x-th coordinate equal to zero.

Definition 3.4. We let K (n) be the CW complex whose k-cells are indexed by τ ∈ T pp,nt
bp (n)k with the

cell C(τ ) = |∆(τ )| and the attaching maps eτ defined as follows. We identify the x-th face of C(τ ) with
C(τ ′) where τ ′

= ∂e(τ ) is the topological type of the spineless cactus c′ which is the degeneration of
a spineless cactus c of topological type τ with respect to the arc a that simultaneously represents the
vertex x of ∆(τ ) and the edge e of τ (see Section 2.4).

We denote by ėτ the restriction of eτ to the interior of ∆(τ ). Notice that ėτ is a bijection.

Theorem 3.5. The space Cact1(n) is homeomorphic to the CW complex K (n).

Proof. The map from Cact1(n) to K (n) is given by Lemma 2.4 and Remark 3.1. Vice versa given an
element on the right hand side, the unique open cell it belongs to determines the topological type and it
is obvious that any tree in T pp,nt

bp can be realized. Then the barycentric coordinates assign weights to the
arcs via the correspondence of the vertices of the factors of ∆(τ ) with arcs of the cactus.

For the homeomorphism, we notice that the bijection restricted to the insides of the top-dimensional
cells is obviously a homeomorphism. This is seen by slightly perturbing the non-zero lengths of the arcs.
The limit where one of the lengths of the arcs goes to zero is given by passing to the corresponding face
of the corresponding simplex factor of C(τ ). The resulting tree, which is the topological type of the limit
cactus, will be the tree which was used in the definition of the attaching map. Thus the contraction of
the arc corresponds to the projection map sending the respective coordinate to zero. This agrees with the
limit in S(τ ). Therefore in the case of a degeneration the limits also agree and the result follows. �

3.1.1. Chains for Cact
Since the factors of R>0 are contractible, it is clear that CC∗(Cact1) is a chain model for Cact.

Furthermore, by Theorem 3.11 below, we will see that CC∗(Cact1) is even an operadic chain model
for Cact and hence by Theorem 2.19 for the little discs operad.
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Instead of using purely the cells of Cact1 as a chain model for the little discs operad one can choose
any operadic chain model Chain(R>0) for the scaling operad and then use the mixed chains for Cact,
i.e. CC∗(Cact1)⊗Chain(R>0). It follows that the inclusion of the cellular chains of Cact1 into the mixed
chains is an inclusion of operads up to homotopy.

Given an operation of the CC∗(Cact1) we can let the mixed chains of Cact act by letting the action of
the mixed chains of bi-degree (n, 0) be that of the component of Cact1 and setting the action of all the
other chains to zero.

In any case, CC∗(Cact1) is chain equivalent to any form of chain complex of mixed chains
CC∗(Cact1) ⊗ Chain(R>0).

3.1.2. Pseudo-cells for PCact
From Theorem 3.5 and Lemma 2.13, we obtain a decomposition for PCact as

PCact(n) = q

τ∈T pp,nt
bp (n)

C̃(τ ), C̃(τ ) = ∆(τ ) × ∆̇n.

This is not a cell decomposition since this C̃(τ ) are not really cells, but this decomposition will be
useful in the following.

Remark 3.6. One could formally close the C̃(τ ) to cells and glue them by forgetting the lobes whose
lengths goes to zero as described. This type of forgetting map is a quasi-fibration as shown in [17].
The gluing would yield a CW space which is the union over n of all PCact(n). We will not pursue this
construction further here.

3.2. Orientations of chains

To fix the generators and thereby the signs for the chain operad we have several choices, each of which
is natural and has appeared in the literature.

To fix a generator g(τ ) of CC∗(Cact1) corresponding to the cell indexed by τ ∈ T pp,nt
bp (n) we need to

specify an orientation for it, i.e. an explicit parametrization or equivalently an order of the white edges
of the tree it is represented by.

The first orientation which we call Nat is the orientation given by the natural orientation for a planar
planted tree. That is, fixing the order of the white edges to be ≺

τ . N.B. this actually coincides with the
natural orientation of the cells of Arc, see [26].

We will also consider the orientation Op which is the enumeration of the white edges which is obtained
by starting with the incoming edges of the white vertex labelled one, in the order ≺

τ
v1

, then continuing
with the incoming white edges of the vertex two, etc. until the last label is reached.

Finally, for top-dimensional cells, we will consider the orientation of the edges induced by the labels,
which we call Lab. It is obtained from Nat as follows: for τ ∈ T pp,nt, f l

b/w let σ ∈ Sn be the permutation
which permutes the vertices v1, . . . , vn to their natural order induced by the order ≺

τ . Then let the
enumeration of Ew be σ(Nat), where the action of σ on Ew is given by the correspondence out and the
correspondence between black and white edges via (v, N (v)) 7→ (N (v), N 2(v)) for top-dimensional
cells.

To compare with the literature it is also useful to introduce the orientations Nat, Lab, and Op which
are the reversed orientation of Nat, Lab and Op, i.e. reading the respective orders from right to left.
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Lemma 3.7. In the orientation Nat the induced quasi-operad structure on the cellular chains of
CC∗(Cact1) is given by

C(τ ) ◦i C(τ ′) = C(τ ◦i τ ′)

where we understand the right hand side to be given by the natural extension to Z-modules,
i.e. C(

∑
i ziτ) :=

∑
i zi C(τ ).

Proof. Let τ ∈ T pp,nt
bp (n) and τ ′

∈ T pp,nt
bp (m). If we glue a cactus from C(τ ′) into C(τ ′) at the lobe i ,

its topological type will be one of the trees in the sum τ ◦i τ ′. Conversely, fix a tree τ̃ which appears in
the sum τ ◦i τ ′. Now any element c̃ of C(τ̃ ) can be uniquely decomposed as c ◦i c′ with c ∈ C(τ ) and
c′

∈ C(τ ′) as follows. Since the topological type τ̃ is one of the summands of τ ◦i τ ′ if follows that the
lobes i through i + n are connected. Let c′ be the normalized spineless subcactus which consists of the
lobes i through i + m − 1 and has the local zero of the lobe i as the root marking. The cactus c will be
the cactus constituted by the lobes 1 through i − 1 and i + n through n + m − 1 together with a lobe
marked i which is the outside circle of c′ re-parameterized to the length one. Its root will be the root of
c̃ if it does not lie on c′. And if it does, it will necessarily be the local zero of the i-th lobe of c̃ and the
root of c will be this point thought of as the zero of the outside circle of c′ which is the i-th lobe of c.

To give the coordinates of this construction let τ ′ be the connected subtree of τ̃ whose white vertices
are the white vertices labelled i through i + m − 1 and whose black vertices are the N (v j ), j ∈

{i, . . . , i + m − 1} together with the induced structure of planar planted tree. Let τ := τ̃ /τ ′ be the planar
planted tree obtained from τ̃ by contracting τ ′. Let the coordinates of c̃ in C(τ̃ ) be v = (v1, . . . vn+m−1),
were we use the short hand notation vi = (vvi ,1, . . . , vvi ,|vi |+1) ∈ |∆|vi ||. Then c′ is the cactus with
coordinates (vi , . . . , vn+m−1) in C(τ ′). To define c let (d1, . . . , dk) be the non-zero distances along the
outside circle between the lobes of τ̃ meeting the subtree τ ′ which are not part of τ ′. Now c is the cactus
with coordinates v = (v1, vi−1, v̄, vi+m−1, . . . vn+m−1) in C(τ ) where v̄ =

1
m (d1, . . . , dk). It is clear

that (c, c′) will be the only pre-image of c̃. Hence the sets are in bijection and therefore the sum contains
the correct summands with the correct multiplicity up to a sign.

If one wishes to construct a representing configuration one just has to resolve the intersection points of
c′. This can be done by for instance choosing a thickening of the cactus to a surface taking the boundary
corresponding to the outside circle and attaching the lobes at the distances around this circle as dictated
by the cactus c̃.

To verify the signs, we have to check that the respective orientations agree. For this we notice that the
coordinates in the orientation Nat correspond to the white edges enumerated in the natural order of the
given tree and that the permutation induced on the coordinates is exactly the sign incorporated into the
definition of τ ◦i τ ′. Thus the signs agree as stated. �

Lemma 3.8. On the level of sets let C̃(τ ◦
+

i τ ′) = qτ̃ C̃(τ̃ ) where τ̃ is a summand of τ ◦
+

i τ ′ then the
map ◦i : C̃(τ ) × C̃(τ ′) → C̃(τ ◦

+

i τ ′) is a bijection.

Proof. As above, for the equation c̃ = c ◦i c′, identify c′ and c with the respective spineless subcactus
and quotient cactus, yielding a unique pre-image. �

This gives a topological proof for the associativity of the ◦
+

i .

Corollary 3.9. The operations ◦
+

i give T pp,nt
bp the structure of an operad.
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Proposition 3.10. For the choice of orientation Nat and the induced operad structure ◦i the map
τ 7→ g(τ ) where g(τ ) is the generator corresponding to C(τ ) fixed in Section 3.2 is a map of differential
graded operads which identifies T pp,nt

bp (n)k with CCk(Cact1(n)), where CCk are the dimension-k
cellular chains.

The same holds true for the orientation Op with the appropriate changes to the signs of the operad
T pp,nt

bp discussed in Section 1.5.10. Finally the analogous statement holds true when passing to operads

indexed by sets for both Cact and T pp,nt
bp .

Proof. This statement for the orientation Nat follows from the Lemma 3.7 above. For the other
orientations the signs will agree, since they are forced onto the combinatorial operad by definition. �

Theorem 3.11. The glueings induced from the glueings of spineless normalized cacti make the spaces
CC∗(Cact1(n)) into a chain operad. Thus CC∗(Cact1) is an operadic model for the chains of the little
discs operad.

Proof. The first statement follows from Proposition 1.17 together with the Proposition 3.10. The second
part of the statement follows from Theorem 2.19 and Corollary 2.18. �

3.3. Operadic action of T pp,nt
bp

Given an assignment of operations on a complex (O, δ) to the trees ln and τ b
n of Fig. 1, a natural

way to let a tree τ ∈ T pp,nt
bp act on the complex (O, δ) is given as follows. Formally read off the

operation of τ by decorating the white vertices with elements of O and interpreting the tree as a flow
chart, assigning to each white vertex w the operation of l|w| and to each black vertex v the operation
of τ b

|v|
. If the operations of ln and τ b

n are also compatible with the differentials, then one can obtain a
dg-action of T pp,nt

bp by regarding a mixed complex CC∗(Cact1) ⊗ Hom(O,O) in which the order of the

tensor factors of homogeneous elements of the tensor product is dictated by the trees τ ∈ T pp,nt
bp . For this

one identifies the white edges of a tree with the coordinates from Cact1 and the vertices with elements
from Hom(O,O) and builds a differential from the tree differential and the internal differential of O.

In the graded case, a sign for these operations and the differentials has to be included. A way for
implementing this idea compatibly is as discussed in the following.

3.3.1. Tensor orders
For an action of the operad T pp,nt

bp on a collection of objects O(ni ) of a monoidal category C, we will
consider maps

ρ : T pp,nt
bp (k) → Hom(O(n1) ⊗ · · · ⊗ O(nk), O(m))

τ 7→ [ f1 ⊗ · · · ⊗ fk 7→ τ( f1 ⊗ · · · ⊗ fk)]. (3.2)

Actually, τ( f1 ⊗ · · · ⊗ fk) will be zero unless m =
∑

v∈Ew(τ )(nL−1(v) − |v|).
In the cases of interest for the present considerations, one can furthermore associate an object of C to

each τ ∈ T pp,nt
bp which is usually of the form

⊗
e∈Ew(τ ) L with L of dimension or degree plus or minus

one. We call this the decomposable case.
Alternatively one can sometimes associate an object of the form

⊗
v∈Ew(τ ) D|v| to τ where the

dimension or degree of D|v| is |v|, e.g. the simplex ∆|v|. We call this the operadic case.
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If this is not possible, one can still consider a mixed complex made up of tensors of objects C(τ ) and
the O(ni ).

In all these descriptions if the operad has a differential there is a natural differential obtained by using
a combination of the tree differential and the operadic differential on the various factors. We now make
these constructions precise.

3.3.2. Tensor order for the decomposable case
Fix C to be Chain or Vectk . In this case we wish to consider the maps (3.2) formally as maps⊗

e∈Ew(τ )

L ⊗

⊗
v∈Vw(τ )

OnL−1(v)
→ Om . (3.3)

In the graded case, we have to fix the order of (3.3). We do this by using ≺
τ to give the tensor

product the natural operadic order. This amounts to formally inserting O(ni ) into the vertex vi . For this
let N := |Vw(τ ) q Ew(τ )| and again let num : V (τ ) q E(τ ) → {1, . . . , N } be the bijection which is
induced by ≺

τ . We fix L to be a “shifted line”, i.e. a free Z-module or k-vector space generated by an
element of degree plus one (or minus one). Now set

Wi :=

{
O(n j ) if num−1(i) = v j

L if num−1(i) is a white edge.
(3.4)

We then define the order on the tensor product on the l.h.s. of the expression (3.3) to be given by

W := W1 ⊗ · · · ⊗ WN .

Another way to add the necessary signs but circumnavigating the use of maps of the type (3.3) would
be to define the operation ρ to include the sign which is the sign of the shuffle of the two ordered sets on
the l.h.s. of (3.3) ordered by the orders on the edges and vertices into the order given by W . This has the
drawback of using a new convention for each ρ.

3.3.3. The operadic case
In case we can associate objects Dn in C to each n-ary white vertex, we would consider the maps (3.2)

formally as maps⊗
v∈Vw(τ )

(OnL−1(v)
⊗ D|v|) → Om (3.5)

where the order for the tensor product on the l.h.s. is defined to be the one given by ≺
τ on the white

vertices.

3.3.4. The action of the symmetric group
The action of the symmetric group on the maps ρ is induced by permuting the labels and permuting

the elements Oni . This induces signs by pulling back the permutation onto the factors of W . These signs
should be included in the definition of Sn-equivariance of the operadic action.

Remark 3.12. This treatment of the signs is essential if one is dealing with operads versus non-Σ
operads and wishes to obtain equivariance with respect to the symmetric group actions. In general the
symmetric group action on the endomorphism operads will not produce the right signs needed in the
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description of the iterations of the universal concatenation ◦ of Section 5. In particular this is the case
for Gerstenhaber’s product on the Hochschild cochains. The above modification however leads to an
agreement of signs for the action of the symmetric group for the subcomplex of the Hochschild complex
generated by products and the brace operations, see Section 4. Another approach is given by viewing
the operations not as endomorphisms of the Hochschild cochains but rather as maps of the Hochschild
cochains to Hochschild cochains twisted by tensoring with copies of the dual line L∗.

If one is not concerned with the action of the symmetric group, then one can forgo this step.

3.4. Examples

An example of the type of action described above as the operadic case is given in [26] by the
action of Chain(Arc) on itself. For the homotopy Gerstenhaber structure we should consider the chains
CC∗(Cacti1) and any choice of chain model for Arc or any of the suboperads which are stable under the
action of the linear trees suboperad which is the image of spineless cacti.

The operadic ordering was also used in [6] to define the action of string topology on the chains of the
free loop space of a compact manifold.

We get agreement with the usual signs and conventions of Gerstenhaber’s original results [11]
upgraded to operads (see Section 5) with those of the operations of Arc and those of string topology [6],
if we denote the action of τ1 as ∗

op and τ b
2 as ·; see [26] for the operations and Fig. 1 for the definitions

of the trees.

4. Spineless cacti as a natural solution to Deligne’s conjecture

4.1. The Hochschild complex, its Gerstenhaber structure and Deligne’s conjecture

Let A be an associative algebra over a field k. We define C H∗(A, A) :=
⊕

q≥0 C Hq(A, A) with
C Hq(A, A) = Hom(A⊗q , A).

There are two natural operations

◦i : C H p(A, A) ⊗ C Hq(A, A) → C H p+q−1(A, A)

∪ : C Hn(A, A) ⊗ C Hm(A, A) → C Hm+n(A, A)

where the first morphism is for f ∈ C H p(A, A) and g ∈ C Hq(A, A)

f ◦i g(x1, . . . , x p+q−1) = f (x1, . . . , xi−1, g(xi , . . . , xi+q−1), xi+q , . . . , x p+q−1) (4.1)

and the second is given by the multiplication

f (a1 . . . , am) ∪ g(b1, . . . , bn) = f (a1 . . . , am)g(b1, . . . , bn). (4.2)

4.1.1. The differential on C H∗

The Hochschild complex has a differential which is derived from the algebra structure.
Given f ∈ C Hn(A, A) then

∂( f )(a1, . . . , an+1) := a1 f (a2, . . . , an+1) − f (a1a2, . . . , an+1)

+ · · · + (−1)n+1 f (a1, . . . , anan+1) + (−1)n+2 f (a1, . . . , an)an+1. (4.3)
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Definition 4.1. The Hochschild complex is the complex (C H∗, ∂), its cohomology is called the
Hochschild cohomology and denoted by H H∗(A, A).

4.1.2. The Gerstenhaber structure
Gerstenhaber [11] introduced the ◦ operations: for f ∈ C H p(A, A) and g ∈ C Hq(A, A)

f ◦ g :=

p∑
i=1

(−1)(i−1)(q+1) f ◦i g (4.4)

and defined the bracket

{ f, g} := f ◦ g − (−1)(p−1)(q−1)g ◦ f (4.5)

and showed that this indeed induces what is now called a Gerstenhaber bracket, i.e. an odd Poisson
bracket for ∪, on H H∗(A, A). Here odd Poisson bracket means odd Lie bracket and the derivation
property of the bracket with shifted (odd) signs.

4.2. Contents of Deligne’s conjecture

Since H H∗(A, A) has the structure of a Gerstenhaber algebra one knows from general theory [2,3]
that thereby H H∗(A, A) is an algebra over the homology operad of the little discs operad D2. Now the
Gerstenhaber structure on H H∗(A, A) actually stems from the cochain level and the operadic structure
of H∗(D2) even originates from the level of topological operads. The question of Deligne was:

Question 4.2 ([9]). Can one lift the action of the homology of the little discs operad to the chain
respectively cochain level? Or in other words: is there a chain model for the little discs operad that
operates on the Hochschild cochains which reduces to the usual action on the homology/cohomology
level?

This question has an affirmative answer in many ways by picking a suitable chain model for the little
discs operad [1,23,24,29,30,35,39], see also [32] for a review of these constructions. We will provide
a new, natural, transparent and minimal positive answer to this question, by giving an operation of
CC∗(Cact1) on the Hochschild cochains.

There is a certain minimal set of operations necessary for the proof of such a statement which is given
by iterations of the operations ∪ and ◦i . These are, as we argue below, in bijective correspondence with
trees in T pp,nt

bp . Our model for the chains of the little discs operad CC∗(Cact1) has cells which are exactly
indexed by these trees hence the operation of the cellular operad contains only the minimal number of
operations and all operations are non-zero. Furthermore, the top-dimensional cells which control the
bracket constitute the universal concatenation operad and hence yield operations for any operad, see
Section 5.

Finally, we will show that the differential which contracts arcs of the cactus can be seen as a
topological version of the Hochschild differential. This makes our new topological solution natural and
minimal.

The main statement of this section is

Theorem 4.3. Deligne’s conjecture is true for the chain model of the little discs operad provided by
CC∗(Cact1), that is C H∗(A, A) is a dg-algebra over CC∗(Cact1) lifting the Gerstenhaber algebra
structure.
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Proof. This follows from Theorem 3.11 together with either Proposition 4.10 or equivalently
Proposition 4.21. �

Remark 4.4. We will give two proofs using the cell model CC∗(Cact1) for the chains of the little disc
operad by defining actions of its operadically isomorphic model T pp,nt

bp . First the trees act naturally on
the Hochschild complex by considering a tree as a flow chart of brace operations and multiplications;
the signs being fixed by one of the schemes discussed below. Going one level deeper, instead of flow
charts for brace and multiplication operations we will use a so-called foliage operator to reduce the brace
operations to those of insertion.

4.3. The brace operations

The following operations appear naturally when considering the iterations of Gerstenhaber’s operation
◦. They were first described by Getzler [13,16] and are called brace operations. For homogeneous f, gi
of degrees | f | and |gi |, N = | f | +

∑
i |gi | − n

f {g1, . . . , gn}(x1, . . . , xN )

:=

∑
1≤i1≤···≤in≤| f |:

i j +|g j |≤i j+1

± f (x1, . . . , xi1−1, g1(xi1, . . . , xi1+|g1|), . . . ,

. . . , xin−1, gn(xin , . . . , xin+|gn |), . . . , xN ) (4.6)

where the sign is the sign of the shuffle of the g j and xi which is determined by assigning shifted degrees
to the xi and g j ; namely the xi are considered to be of degree 1 and the g j are considered to be of degree
|g j | + 1.

Notice that f {g} = f ◦ g.

4.3.1. The suboperad generated by the brace operations
It is well known ([13,14,16] see also [32] for the history of the brace operations and Deligne’s

conjecture) that the set of concatenations of multiplications and brace operations form a suboperad of
the endomorphism operad of the Hochschild complex. We will call it Brace.

The generators of this suboperad are in 1–1 correspondence with elements of T pp,nt
bp . Such a tree

represents a flow chart. The functions to be acted upon are to be inserted into the white vertices. A black
vertex signifies the multiplication of the incoming entities. A white vertex represents the brace operation
of the element attached to that vertex outside the brace and the elements obtained by performing the
operations associated to the incoming branches inside the braces.

Remark 4.5. Notice that in the flow chart of an expression of the type f {(g1), (g2 · g3 · g4{h1, h2})} the
symbols “{” and “,” correspond to the white edges when reading off the operation from a labelled tree
τ ∈ T pp,nt

bp (n) in the order ≺
τ .

Proposition 4.6. The association of a flow chart is a non-Σ operadic isomorphism between Brace and
T pp,nt

bp of operads with a differential.

Proof. The fact that the association of a flow chart is a bijection on the generators was already
mentioned. It is straightforward to check the combinatorics of inserting a formula made up out of
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braces and multiplications into a brace or a multiplication leads to exactly the behavior described by
our operad structure on the trees T pp,nt

bp . The checking of the compatibility of the signs is tedious but
straightforward. We would like to remark that for the signs, in the brace formalisms the sums can be
viewed as being parameterized over a discretized simplex, in the sense that the size of the gaps (number
of variables between function insertions) parameterize the summands in the formula (4.6) and the sum
of all the sizes of the gaps is fixed. This formalism also yields the agreement of signs. The compatibility
of the differential can then be seen by a either a straightforward calculation, a comparison with [11,14]
or the above formalism of discretized simplices. �

4.4. Signs for Brace

Definition 4.7. We define an action of the symmetric group on Brace, by considering the symbols “{”
and “,” to be each of degree one.

Proposition 4.8. With the above action of the symmetric group on Brace the isomorphism of
Proposition 4.6 is an isomorphism of operads.

Proof. This follows from the fact that the white edges correspond to the symbols “{” and “,”. It can also
be seen directly by comparing to the formulas of [11,14]. �

4.5. The operation of CC∗(Cact1) on HomC H

For O = HomC H the endomorphism operad of C H∗(A, A), we define the map ρ of Eq. (3.2) to be
given by the operadic extension of the maps which send the tree τn of Fig. 1 to the non-intersecting brace
operations. We let τ0 act as the identity and τ b

n as multiplication.
As discussed above, in order to make signs match for the symmetric group actions, we consider

the action as described in Section 3.3. To get complete agreement with the signs of [11], we will
have to consider the opposite orientation for tensor factors in (3.3) to that of W , i.e. we use the order
W := WN ⊗ · · · ⊗ W1 for the tensor factors. To implement this change of sign we define signW (τ ) to be
the sign obtained by shuffling the graded tensor factors from the order W to the order W . This basically
means that in the orientation given by W one would regard the operations ◦

op and ∪
op on the Hochschild

complex, where f ◦
op g = (−1)pq+p+1g ◦ f and f ∪

op g := (−1)pq g ∪ f .
The action of the tree τn is given by:

f ⊗ Le1 ⊗ g1 ⊗ · · · ⊗ Len ⊗ gn 7→ (−1)signW (τ ) f {g1, . . . , gn}. (4.7)

Here we used the notation Le1 to mean L in the position of e1 in the tensor product of the form (3.3).
The action of τ b

n is given by

g1 ⊗ · · · ⊗ gn 7→ (−1)signW (τ )g1 ∪ · · · ∪ gn. (4.8)

The operadic extension means that we read the tree as a flow chart: at each black vertex |v| the
operation τ b

|v|
is performed and at each white vertex the operation τw

|v|
is performed. The Sn-action

is given by permutations and indeed induces the right signs on the Hochschild complex as seen by
straightforward calculation.
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Proposition 4.9. The above procedure gives an operation of CC∗(Cact1) on C H∗(A, A) and an
operadic isomorphism between Brace and CC∗(Cact1).

Proof. This follows directly from Proposition 3.10, the previous section and the considerations
above. �

4.5.1. The differential
Denote the differential on CC∗(Cact1) by ∂ and the differential of C H∗(A, A) by δ. On the space

W there is a natural differential ∂W which is induced by δ + ∂ . The differential on W is induced by
the respective tree differential which equivalently collapses the arcs of the spineless cactus or removes
factors of W . Then the action of CC∗(Cact1) onHomC H commutes with the differential in the following
sense.

Proposition 4.10.

ρ ◦ (∂W ) = δ ◦ ρ. (4.9)

The Hochschild cochains C H∗(A, A) are a dg-algebra over CC∗(Cact1) and there is an operadic
isomorphism of the differential operads Brace and CC∗(Cact1).

Proof. The verification of the compatibility of the grading and differentials is a straightforward
computation. �

4.6. A second approach to the operation of CC∗(Cact1)

Another way to make CC∗(Cact1) or T pp,nt
bp act is by using the foliage operator, see below Section 4.7.

This approach was first taken in [24]. It stresses the fact that a function f ∈ C Hn(A, A) is naturally
depicted by τn . Notice for instance the compatibility of the differentials. The tree for ∂( f ) is ∂(τn) where
∂ is the differential on trees with tails given in Section 4.7.1.

4.6.1. Natural operations on C H∗ and their tree depiction
Given elements of the Hochschild cochain complex there are two types of natural operations

which are defined for them. Suppose fi is a homogeneous element, then it is given by a function
f : A⊗n

→ A. Viewing the cochains as functions, we have the operation of insertion. The second
type of operation comes from the fact that A is an associative algebra; therefore, for each collection
f1, . . . , fn ∈ C H∗(A, A) we have the n! ways of multiplying them together.

We can encode the concatenation of these operations into a black and white bipartite tree as follows:
Suppose that we would like to build a cochain by using insertion and multiplication on the homogeneous
cochains f1, . . . , fn . First we represent each function fi as a white vertex with | fi | inputs and one output
with the cyclic order according to the inputs 1, . . . , | fi | of the function. For each insertion of a function
into a function we put a black vertex of arity one having as input edge the output of the function to be
inserted and as an output edge the input of the function into which the insertion is being made. For a
multiplication of k ≥ 2 functions we put a black vertex whose inputs represent the factors in the order
of their multiplication. Finally, we add tails to the tree by putting a black vertex at the end of each input
edge which has not yet been given a black vertex, and we decorate the tails by variables a1, . . . , as
according to their order in the total order of the vertices of the rooted planted planar tree. It is clear that
this determines a black and white bipartite tree.
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4.6.2. Operations on Hochschild from trees with tails
A rooted planted planar bipartite black and white tree whose tails are all black and decorated by

variables a1, . . . , as and whose white vertices are labelled by homogeneous elements fv ∈ C H |v|(A, A)

determines an element in C H s(A, A) by using the tree as a flow chart. This means the operation of
insertion for each black vertex of arity one and multiplication for each black vertex of higher arity.
Notice that, since the algebra is associative, given an ordered set of elements ai : i ∈ {1, . . . , n} there is
a unique multiplication

∏n
i=1 ai .

Remark 4.11. Using the above procedures, the possible ways to compose k homogeneous elements of
C H∗(A, A) using insertion and cup product are bijectively enumerated by black and white bipartite
planar rooted planted trees with tails and k white vertices labelled by k functions whose degree is equal
to the arity of the vertex.

Notation 4.12. We will fix A and use the short hand notation C H := C H∗(A, A). For an element
f ∈ C H , we write f (d) for its homogeneous component of degree d.

Definition 4.13. For τ ∈ T pp
bp (n) and f1, . . . , fn ∈ C H we let τ( f1, . . . , fn) be the operation obtained

in the above fashion by decorating the vertex vi with label i with the homogeneous component of f (|vi |)
i .

Notice that the result is zero if any of the homogeneous components f (|vi |)
i vanishes.

Remark 4.14. Up to the signs which are discussed below this gives an operation of CC∗(Cact1) on the
Hochschild complex.

4.7. The operation of T pp,nt
bp

In order to define the operation we need foliation operators in the botanical sense, i.e. operators that
add leaves. To avoid confusion with the mathematical term “foliation”, we choose to abuse the English
language and call these operations “foliage” operators.

Definition 4.15. Let ln be the tree in T pp
bp with one white vertex labelled by v and n tails as depicted in

Fig. 1. The foliage operator F : T pp,st,nt
b/w → T pp,st

b/w is defined by the following equation

F(τ ) :=

∑
n∈N

ln ◦v τ.

Remark 4.16. Notice that the right hand side is infinite, but T pp,st
b/w is graded by the number of leaves,

and F(τ ) is finite for a fixed number of black leaves so that the definition does not pose any problems.
Furthermore, one could let F take values in T pp,st

b/w [[t]] where t keeps track of the number of tails which
would make the grading explicit.

Also notice that F : T pp,nt
bp → T pp

bp and F : T pp,nt, f l
b/w → T pp, f l

b/w .

Definition 4.17. For a tree τ ∈ T pp,nt
bp (n) with n white vertices we define a map op(τ ) ∈

Hom(C H⊗n, C H) = HomC H (n) by

op(τ )( f1, . . . , fn) := ±(F(τ ))( f1, . . . , fn)
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here the signs are as discussed in Section 3.2 and the right hand side is well defined since it only has
finitely many non-zero terms.

Remark 4.18. The considerations of this section naturally lead to brace operations in a far more general
setting. This is explained in detail in Section 5.

4.7.1. Differential on trees with tails

Definition 4.19. For a tree τ with tails in T pp
bp and vertex v ∈ Vb \ {vroot} we define τ+

v to be the b/w
tree obtained by adding a black vertex b+ and an edge e+

:= {b+, v}, if |v| 6= 0 and if |v| = 0, the tree
obtained by adding two vertices b+ and bst and two edges e+ = {b+, v} and est = {bst , v} to τ .

We call a linear order ≺
′ on τ+

v compatible with the order ≺ on τ if (a) e +≺
′ est if applicable and (b)

the order induced on τ by ≺
′ by contracting e+ and est (if applicable) coincides with ≺. We define Ew−int

to be the white internal edges, i.e. white edges which are not leaves and set Eb−angle : E(τ ) \ Ew−int .
For a linear order ≺

′ on τ+
v

sign(≺′) := (−1)|{e|e∈Eb−angle,e ≺
′ v}|

and set

∂v(τ ) :=

∑
compatible ≺′

sign(≺′)(τ+
v , ≺′).

We recall that tail edges are considered to be black. Finally, we define

∂(τ ) :=

∑
v∈Vb\{vroot}

∂v(τ ). (4.10)

Remark 4.20. In the tree depiction for the operations of inserting and cup product Section 4.6.1, the
tree differential amounts to inserting ∪ products into the “slots” represented by black vertices. Using this
interpretation and the tree notation for the calculations of [11,14] it is straightforward to check that the
tree differential (4.10) defined above agrees with the differential on the Hochschild cochains.

Proposition 4.21. The Hochschild cochains are a dg-algebra over the operad T pp,nt
bp .

Proof. The properties of an operad follow in a straightforward way from Definition 4.17 and the
definition of the differentials. �

4.8. The top-dimensional cells of spineless cacti and pre-Lie operad

We denote the top-dimensional cells of CCn(Cact1(n)) by CCtop
n (n). These cells again form an

operad and they are indexed by trees with black vertices of arity one. Furthermore, the symmetric
combinations of these cells which are the image of T r, f l under the embedding cppin form a suboperad,
see Proposition 1.25. For one choice of orientation we make the signs explicit in the next lemma.

Lemma 4.22. In the orientation Lab for the top-dimensional cells for τ ∈ T r, f l(n) and τ ′
∈ T r, f l(m)

cppin(τ ) ◦i cppin(τ ′) = ±cppin(τ ◦i τ ′)

where the sign is (−1)(i−1)(n−1) if the root vertex of τ has a label which is less than i and (−1)i(n−1) if
the root vertex of τ has a label which is bigger than i .
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Proof. First notice that by Proposition 1.25, we have that the right hand side contains the terms indexed
by the trees appearing in the embedding. Furthermore, notice that under the choice of signs induced by
the orientation Lab the signs do not depend on the particular structure of the tree and are only dictated
by the labels. In the composition the labels are such that the n labels of the second tree are permuted to
the i-th label of the first tree. Therefore there is a universal sign which is given by (−1)(i−1)(n−1) if the
root vertex of τ has a label which is less than i and by (−1)i(n−1) if the root vertex of τ has a label which
is bigger than i . �

Definition 4.23. Let GPl be the quadratic operad in the category V ectZ obtained as the quotient of a
free operad F generated by the regular representations of S2 by the quadratic relations defining a graded
pre-Lie algebra. Let R be the ideal generated by the graded S3-submodule generated by the relation

r = (x1x2)x3 − x1(x2x3) − (−1)|x2||x1|((x1x3)x2 − x1(x3x2)).

Then GPl = F/I. Here F and R are considered to be graded by assigning the degree n − 1 to F(n).

This operad is the operad for graded pre-Lie algebras in the sense that any algebra over this operad is
a graded pre-Lie algebra and vice versa any graded pre-Lie algebra is an algebra over this operad:

Theorem 4.24. The operad CCtop
n (n)S⊗k is isomorphic to the operad GPl for graded pre-Lie algebras.

Furthermore the shifted operad (CCtop
n ⊗ (L∗)⊗Ew)S(n) ⊗ k is isomorphic to the operad Pl for pre-Lie

algebras.
The analogous statements also hold over Z.

Proof. In view of Lemma 4.22 and Proposition 1.25, the second statement follows from the operadic
isomorphism of T r, f l and the pre-Lie operad Pl of [5]. This also proves the first statement up to signs.
The matching of the signs is guaranteed by the shift, see Definition 1.24. The fact that the relation r holds
and generates the respective ideal was verified in the presentation of Gerstenhaber structure for spineless
cacti [17] by a translation from the explicitly given relation on the chains of the arc operad [26]. �

Corollary 4.25. The pre-Lie algebra of Sn-coinvariants
⊕

n((CCtop
n ⊗ (L∗)⊗Ew)S(n))Sn is isomorphic

to the free pre-Lie algebra in one generator.
Likewise the graded pre-Lie algebra of Sn-coinvariants

⊕
n((CCtop

n )S(n))Sn is isomorphic to the
graded free pre-Lie algebra in one generator.

Proof. The first statement follows from [5] and thus so does the second up to signs. These are guaranteed
to conform by the shifting procedure and Theorem 4.24. �

5. Structures on operads and meta-operads

In this section, we discuss how Deligne’s conjecture and the Gerstenhaber structure for the Hochschild
complex can in fact be generalized to structures on operads. This helps to explain some choices of signs
and explains the naturality of the construction of insertion operads which gives a special role to spineless
cacti as their topological incarnation as well as to Arc as a natural generalization.

This analysis also enables us surprisingly to relate spineless cacti to the renormalization Hopf algebra
of Connes and Kreimer [7], see the next section.
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5.1. The universal concatenations

Given any operad there are certain universal operations, i.e. maps of the operad to itself. We will first
ignore possible signs and comment on them later.

Any operad possesses the operations given by its structure maps

◦i : O(m) ⊗ O(n) → O(m + n − 1).

Any concatenations of these maps will also yield operations on the operad. All possible concatenations
of the structure map are described by their flow charts. These charts are in turn given by trees τ ∈ T pp, f l

b/w
as we now explain.

Any concatenation of k objects opi ∈ O(ni ) using the structural maps ◦i will be given by

(. . . ((opσ(1) ◦i1 opσ(2)) ◦i2 opσ(3) ◦i3) . . .) ◦ik−1 opσ(k) (5.1)

with i1 < i2, . . . < ik and some permutation σ ∈ Sk .
Let τ ∈ T pp, f l

b/w (k) such that |vi | = ni , i ∈ 1, . . . k and set m =
∑k

i=1 ni − k − 1 then there is an
operation

◦(τ ) : (O(n1) ⊗ · · · ⊗ O(nk)) → O(m) (5.2)

which is obtained as follows. First label the vertex vi by opni ∈ O(ni ). Let σ ∈ Sk be the permutation
which is defined by the order of the tree, i.e. vσ(1) ≺

τ
· · · ≺

τ vσ(i) ≺
τ vσ(i+1) ≺

τ
· · · ≺

τ vσ(k).
Now starting at the bottom of the tree and going along the outside edge path, we read off the operation

◦(τ )(op1 ⊗ · · · ⊗ opk) := (· · · ((opσ(1) ◦i1 opσ(2)) ◦i2 opσ(3) ◦i3) · · ·) ◦ik−1 opσ(k) (5.3)

where the ik are given by ik = |{v ∈ Eb(τ ) : v ≺
τ vσ(k)}|; recall that the root is considered a black

vertex.
Vice versa, given a concatenation as above we can successively build up the corresponding tree.

Remark 5.1. Notice, we might have white leaves, which allows one to consider operads with a 0
component—such as C H∗. In general lifting the restriction on the ni , we define the operations ◦(τ )

to be zero if |vi | 6= ni .

5.1.1. The insertion partial meta-operad
Algebraically we can concatenate the operations ◦(τ ) by substituting

opi = ◦(τ ′)(op′

1 ⊗ · · · ⊗ op′

l) for some τ ′
∈ T pp, f l

b/w (l)

into (5.1). In general, for τ ∈ T pp, f l
b/w (k), let vi := Lτ (i) be the i-th white vertex of τ , and let

τ ′
∈ T pp, f l

b/w (l) with |vi | = |Vleaf(τ
′)|, we define the tree τ ◦i τ ′ to be the tree of the concatenated

operation

◦(τ ◦i τ ′)(op1 ⊗ · · · ⊗ opk+l−1)

:= ◦(τ )(op1 ⊗ · · · ⊗ opi−1 ⊗ ◦(τ ′)(opi ⊗ · · · ⊗ opi+l−1) ⊗ opi+l ⊗ · · · ⊗ opl+k−1). (5.4)
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Lemma 5.2. The multiplication maps ◦i (5.4) together with the permutation action on the labels imbue
T pp, f l

b/w with the structure of a partial operad.2

Proof. Straightforward. �

Remark 5.3. The partial concatenations ◦i insert a tree with k tails into the vertex vi if |vi | = k, by
connecting the incoming edges of vi to the tail vertices in the linear order at vi and then contracting the
images of the tail edges.

Definition 5.4. We will fix that for O in Set the direct sum which we again denote by O is given by the
free Abelian group generated byO which we consider to be graded by the arity of the operations op ∈ O
minus one. If the operad O is in Chain we can take the direct sum of the components as Z-modules. In
the case of an operad O in the category Vectk we consider its direct sum to be the direct sum over k of
its components. In all these cases, we say O = {O(n)} admits a direct sum and write O =

⊕
n∈N O(n).

We also consider O to be graded by N with the degree of O(n) being n − 1.

Remark 5.5. Consider an operad which admits a direct sum. Let O be its direct sum, then we obtain a
map of partial operads.

T pp, f l
b/w → Hom(O,O).

In this sense one can say that T pp, f l
b/w is the universal concatenation partial meta-operad.

5.2. The pre-Lie structure of an operad

In an operad which admits a direct sum, one can define the analog of the ◦ product of [11] and the
iterated brace operation (cf. [13–15]).

Definition 5.6. Given any operad O in Set, Chain or Vectk , we define the following map

O(m) ⊗ O(n) → O(m + n − 1) (5.5)

opm ⊗ opn 7→

m∑
i=1

(−1)(i−1)(n+1)opm ◦i opn. (5.6)

This extends to a map on O =
⊕

n∈N O(n)

◦ : O ⊗O → O (5.7)

which we call the ◦ product.
We call the map which is defined in the same fashion as ◦, but with the omission of the signs

(−1)(i−1)(n+1) the ungraded ◦ product.

Proposition 5.7. The product ◦ defines the structure of a graded pre-Lie algebra on O :=
⊕

i∈N O(n).
Omitting the sign (−1)(i−1)(n+1) in the sum yields the structure of a non-graded pre-Lie algebra.

2 A partial operad is the notion obtained from an operad by requiring that the composition maps ◦i are only defined on a
subobject of the O(n). These compositions should be equivariant with respect to the Sn action and satisfy the associativity
axioms if it is possible to compose them.
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Fig. 5. (a) op1 ◦ op2 (b) (op1 ◦ op2) ◦ op3 and (c) op1 ◦ (op2 ◦ op3).

Proof. The proof is a straightforward calculation which is analogous to Gerstenhaber’s original
calculation [11]. We do not wish to rewrite the proof here, but in graphical notation the proof follows
from Fig. 5. Without signs this notation is related to the one that can be found in [5], for the case with
signs the interpretation of the resulting trees is discussed in Section 3.2 and Proposition 1.25. �

See also [31] for another variant of this fact.

Proposition 5.8. If an operad admits a direct sum then its direct sum is an algebra over the symmetric
top-dimensional chains of the little disc operad of the chain model provided by CC∗(Cact1) as well as
over the shifted chains (CCtop

n )S ⊗ (L∗)⊗Ew .

Proof. We have shown that the direct sum of an operad which admits such a sum has the structure of a
pre-Lie algebra and a graded pre-Lie algebra so that the statement follows from Theorem 4.24. �

5.3. The insertion operad

The interesting property of the operation ◦ is that it effectively removes the dependence on the number
of inputs of the factors. Using this logic systematically, we obtain a universal insertion operad.

5.3.1. Actions of T pp,nt, f l
b/w

Given an operad which admits a direct sum, we can also define other operations similar to ◦i . The
summands of these operations are brace operations, which are in natural correspondence with T pp,nt, f l

b/w .
In fact these operations all appear in the iterations of ◦. They are given by inserting the operations into
each other according to the scheme of the tree. In other words, we will show that every operad is a brace
algebra.

Essentially, at this level of abstraction, we would not like to a priori specify the number of leaves,
i.e. inputs and degrees of the operations, so we have to consider trees with all possible decorations by
leaves. For this, we can use the foliage operators of Section 4.7.

Recall that there is an operation of T pp, f l
b/w on homogeneous elements of O of the right degree. We

extend this operation to all of O by extending linearly and setting to zero expressions which do not
satisfy degree condition. Where the degree condition corresponding to a given τ applied to homogeneous
elements opk is that opk ∈ O(|vk |).

Given τ in T pp,nt, f l
b/w (n), we then define the operation

◦(τ )(op1 ⊗ · · · ⊗ opn) := F(τ )(op1 ⊗ · · · ⊗ opn). (5.8)

Notice that, although F(τ ) is an infinite linear combination, for given op1, . . . , opn the expression on
the right hand side is finite.
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Examples of this are given in Fig. 5. Here the first tree yields the operation op1 ◦op2, i.e. the insertion
(at every place) of op2 into op1. Iterating this insertion we obtain expression (b) which shows that
inserting op3 into op1 ◦ op2 gives rise to three topological types: inserting op3 in front of op2, into op2
and behind op2. In the opposite iteration one just inserts op2 ◦op3 into op1 which gives a linear insertion
of op2 into op1 and op3 into op2. From the figure (up to signs) one can read off the symmetry in the
entries 2 and 3 of the associator. The signs are fixed by the considerations of Section 3.2.

Remark 5.9. Again, inserting opi = ◦(τ ′)(op′

1 ⊗ · · · ⊗ op′

k) we obtain operad maps with respect to the
symmetric group actions on the labels

◦i : T pp, f l
b/w (k) ⊗ T pp,nt, f l

b/w (l) → T pp,nt, f l
b/w (k + l − 1)

by demanding that for all op1, . . . , opk+l−1

◦(τ ◦i τ ′)(op1 ⊗ · · · ⊗ opk+l−1)

= ◦(τ )(op1 ⊗ · · · ⊗ opi−1 ⊗ ◦(τ ′)(opi ⊗ · · · ⊗ opi+l−1) ⊗ opi+l ⊗ · · · ⊗ opl+k−1).

Or in other words thinking about F as a formal power series, e.g. in T pp, f l
b/w [[t]] where the powers of t

keep track of the number of tails,

F(τ ◦i τ ′) = F(τ ) ◦i F(τ ′).

Thus we have an insertion operad structure on T pp,nt, f l
b/w .

Remark 5.10. We can induce a pre-Lie operation on T pp, f l
b/w via the ◦ operation.

F(τ1 ∗ τ2) := F(τ1) ◦ F(τ2). (5.9)

Theorem 5.11. Any chain operad which admits a direct sum is an algebra over the operad T pp,nt, f l
b/w

with the insertion products.

Proof. Immediate from the preceding. �

5.4. Operad algebras and a generalized Deligne conjecture

Definition 5.12. We define an operad algebra to be an operad O which admits a direct sum together
with an element ∪ ∈ O(2) which is associative, i.e. if a ∪ b := (−1)|a|(∪ ◦1 a) ◦|a+1| b then
(a ∪ b) ∪ c = a ∪ (b ∪ c). Recall that |a| = n − 1 if a ∈ O(n).

This definition is essentially equivalent to the definition of an operad with a multiplication of [15].

Definition 5.13. For op ∈ O(m), op′

i ∈ O(ni ), we define the generalized brace operations

op{op′

1, . . . , op′
n} :=

∑
1≤i1≤···≤in≤m:

i j +|op′
j +1|≤i j+1

±(· · · ((op ◦i1 op′

1) ◦i2 op′

2) ◦i3 · · ·) ◦in op′
n (5.10)

where the sign is defined to be the same one as in Eq. (4.6).

Lemma 5.14. There is an operadic action of T pp,nt
bp of any operad algebra.
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Proof. We can view the bipartite tree as a flow chart. For the white vertices, we use the brace opera-
tions (5.10) and for a black vertex with n incoming edges, we use the n − 1 times iterated operation
∪. Notice that the order in which we perform these operations does not matter, since we took ∪ to be
associative. �

Definition–Proposition 5.15. Generalizing Gerstenhaber’s [11] definition to an operad algebra, we
define a differential on the direct sum by ∂ f = f ◦ ∪ − (−1)| f |

∪ ◦ f .

Proof. The fact that this is a differential follows from the calculations of [11]. �

Remark 5.16. The analogous tree differential is given in Section 4.7.1. Replacing functions by elements
of the operad the compatibility follows for the more general set-up of Definition–Proposition 5.15.

Theorem 5.17. The generalized Deligne conjecture holds. That is, the direct sum of any operad algebra
which admits a direct sum is an algebra over the chains of the little discs operad in the sense that it is
an algebra over the dg-operad CC∗(Cact1).

Proof. By the preceding Lemma 5.14, we have an operadic action of T pp,nt
bp and thus an action

of the chains CC∗(Cact1) which is a chain model for the little discs operad. The compatibility of
the differentials follows directly from their definitions by a straightforward calculation as remarked
above. �

6. The Hopf algebra of Connes and Kreimer and spineless cacti

6.1. The Hopf algebra of an operad

We have seen in Section 5.2 that any operad that admits a direct sum gives rise to a pre-Lie algebra.
Now by the defining properties for a pre-Lie algebra the commutator of its product yields a Lie algebra
or in the graded case an odd Lie algebra.

By the above considerations, we can thus naturally associate a pre-Lie algebra, a Lie algebra, and a
Hopf algebra to each operad that admits a direct sum.

Definition 6.1. Given an operad {O(n)} which admits a direct sum O =
⊕

n O(n), we define its
pre-Lie algebra PL(O) to be the pre-Lie algebra (O, ◦) with ◦ as defined in Section 5.2, its Lie
algebra Lie(O) to be the Lie algebra (O, [ , ]) using the Lie bracket [a, b] := a ◦ b − b ◦ a and its
odd Lie algebra LieZ/2Z(O) to be the odd Lie algebra (O, { , }) where { , } is defined as usual via
{a , b} := a ◦ b − (−1)(|a|+1)(|b|+1)b ◦ a for a ∈ O(|a|) and b ∈ O(|b|). Finally, the Hopf algebra of
an operad Hop f (O) is defined to be U∗(Lie(O)), i.e. the dual of the universal enveloping algebra of its
Lie algebra.

As it turns out these objects or their Sn-coinvariants are of interest. In particular, we obtain chain
models in terms of chains of spineless cacti or even moduli space for some well known algebras.

6.2. Connes and Kreimer’s Hopf algebra as the Hopf algebra of an operad

In [7] a Hopf algebra based on trees was defined to explain the procedure of renormalization in terms
of the antipode of a Hopf algebra. This Hopf algebra was described directly, but also as the dual to
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the universal enveloping algebra of certain Lie algebra which was identified in [5] as the Lie algebra
associated to the free pre-Lie algebra in one generator.

Definition 6.2. By the Sn-coinvariants of an operad which admits a direct sum, we mean
⊕

n∈N
(O(n))Sn . We write OS for this sum. Here

⊕
n∈N(O(n))Sn is the shorthand notation explained in

Definition 5.4.

In our notation we can rephrase the results of [5,7] as

Theorem 6.3. The renormalization Hopf algebra of Connes and Kreimer HCK is isomorphic to the Hopf
algebra of Sn-coinvariants of Hopf (T r, f l). This Hopf algebra is also isomorphic to the Sn-coinvariants
of Hopf (Pl).

6.3. A chain interpretation of HCK

As shown in Theorem 4.24 there is a cell and thus a topological interpretation of the pre-Lie operad
and the graded pre-Lie operad inside Cact1 and thus inside the Arc operad. In this interpretation HCK is
also the Hopf algebra of the coinvariants of the shifted chain operad CCtop

∗ (Cact)S ⊗ (L∗)⊗Ew . Recall
that L∗ is a free Z-module generated by an element l of degree −1.

Proposition 6.4. HCK is isomorphic to the Hopf algebra of Sn-coinvariants of the suboperad of top-
dimensional symmetric combinations of shifted cells ((CC∗(Cact1))top)S ⊗ (L∗)⊗Ew of the shifted
cellular chain operad of normalized spineless cacti CCcact ⊗ (L∗)⊗Ew

HCK ' (Hop f ((CC∗(Cact1))top)S ⊗ (L∗)⊗Ew)S.

Proof. Immediate from Theorem 6.3 and Corollary 4.25. �

It is interesting to note that also the G structures and BV structures which are given by spineless cacti
and cacti [17] are inside the symmetric (graded symmetric) combinations as well.

Definition 6.5. We define the planar Connes–Kreimer Hopf algebra H pl
CK to be (Hop f (CCtop

∗ ⊗

(L∗)⊗Ew))S. This is the straightforward generalization from rooted to planar planted trees.

Remark 6.6. We can also consider the graded Hopf algebra corresponding to the Sn-coinvariants of
graded top-dimensional cells U∗(LieZ/2Z(O))S.

Remark 6.7. The examples above should be relevant in the context of multiple polylogarithms. We
expect to obtain other interesting examples of such Hopf algebras by applying the above constructions
to other operads based on trees.

6.4. Comments on operads and HCK

We have shown that any operad is an algebra over the operad T r, f l in a natural way and thus the
Hopf algebra HCK naturally appears in any context involving operads, such as Deligne’s conjecture. We
have furthermore shown that there is a topological incarnation of the insertion product, which is based
on surfaces. In this setting, we have constructed a chain representation of the algebra HCK . This links
the algebra HCK and its underlying bracket for instance to string topology and in positive characteristic
to Dyer–Lashof–Cohen operations [38].
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7. Further developments and generalizations

7.1. Generalizations

7.1.1. The A∞ case
All the statements made above in the context of algebras hold as well for A∞-algebras. For this one

has to change to an equivalent cell model for normalized spineless cacti. A sketch of the procedure is
given below. A detailed account will be given in [25].

For τ ∈ T pp,st,nt
b/w let

C∞(τ ) :=

∏
v∈Vw

W|v|+1 ×

∏
v∈Vb

K|v|

where W|v|+1 is the |v|-dimensional cyclohedron and K|v| is the |v| − 2-dimensional Stasheff polytope
a.k.a. associahedron.

Now one has to show a compatibility:

Lemma 7.1. The tree differential ∂∞
tree of [24] and the natural differential ∂poly for the cyclohedra and

associahedra are compatible in the following sense. The cells C∞(τ ′) appearing in the sum C∞(∂∞
treeτ)

are in 1–1 correspondence to the products appearing in ∂polyC∞(τ ) and furthermore the signs agree.

Definition 7.2. Let Cell(T pp,st,nt
b/w ) be the CW complex glued from the cells C∞(τ ) using ∂∞

tree.

Proposition 7.3. CC∗(Cell(T pp,st,nt
b/w )) is equivalent to CC∗(Cact1) and hence a cell model for the little

discs operad.

Proof. Just contract the associahedra simultaneously blowing down the cyclohedra to simplices. The
compatibility of this operation follows from the properties of the map st∞. �

Using flow charts as in [24] where now a black vertex b corresponds to the |b|-th of the A∞

multiplication µ|b| : A⊗|b|
→ A one obtains:

Theorem 7.4 ([25]). Deligne’s conjecture holds in the A∞ case over Z for the chain model
CC∗(Cell(T pp,st,nt

b/w )). Furthermore so does its generalization to an operad with an A∞ multiplication.

Here an operad with an A∞ multiplication is an operadO with a collection of multiplications elements
mn ∈ O(n) which satisfy the equations for A∞ multiplications.

Remark 7.5. Using compatible realizations of cyclohedra and associahedra given as particular faces,
one can also construct a topological quasi-operad [25]. An interesting open problem is the definition of
a suboperad of Arc which is the natural topological operad model for these cells.

7.1.2. The cyclic case
The results and methods of this paper have been extended to the cyclic case in [19] in which it is

proven that the Hochschild cochains of a Frobenius algebra carry an action of a chain model of the
framed little discs operad. For this one needs other techniques than presented in this paper, notably
operadic correlation functions.
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7.2. Further developments

Building on the techniques of [19] one can extend the action to include all marked ribbon graphs
and all Z/2Z decorated ribbon graphs [20,21]. The latter generalizes all known graph actions on the
Hochschild cochains such as the chains framed little discs and Sullivan Chord diagrams. These results
yield an action of pseudo-chains of the decorated moduli space. There remains one caveat, since the
ribbon graphs only give pseudo-cells, the dg-structure at the moment still needs some clarification.

In another new development, by taking up the philosophy of the present paper, we are able to realize
all little k-cubes operads inside the arc formalism by using stabilization with respect to the genus
operator of [26]. Using the formalism developed in this paper we then obtain a solution to Kontsevich’s
generalization of Deligne’s conjecture to d-algebras. Moreover in the stable limit, we obtain an E∞-
suboperad [22]. This implies that the stabilization of the Arc operad yields an infinite loop space
spectrum. We would like to point out, that this stabilization is different from the usual stabilization.
For this one would use the gluing on of a fixed element of a particular type of the Arc operad which
is not considered a stabilization in the above sense. Nevertheless, the proposed results of [22] could be
regarded as a combinatorial/chain incarnation of the seminal results of Tillmann [36,37] and Madsen and
Tillmann [33].
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Appendix. Graph theoretic details

A.1. Dual graph constructions

A.1.1. The dual bipartite b/w graph
Fix a marked spineless treelike ribbon graph (Γ , f0). We define a new bipartite b/w graph τ(Γ ) as

follows. Set

Vb(τ (Γ )) := V (Γ ), Vw(τ (Γ )) := {cycles of Γ } \ {c0}, F(τ (Γ )) := F(Γ )

and specify f0 as the distinguished flag. Now set

δτ(Γ )( f ) :=

{
δΓ ( f ) if f ∈ c0
ci if f ∈ ci 6= c0

, ıτ(Γ )( f ) :=

{
NΓ (ıΓ ( f )) if f ∈ c0
ıΓ (N−1

Γ ( f )) if f 6∈ c0.
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We fix the ribbon graph structure by declaring the cyclic order at the white vertices to be the conjugate
order of the cycle they represent. That is f is the predecessor of f ′ in the cyclic order at v = ci if f is the
successor of f ′ in the cycle ci . For the black vertices, we take the induced order from the identifications
Vb(τ (Γ )) = V (Γ ) and F(τ ) = F(Γ ). This means in particular that

Nτ(Γ )( f ) :=

{
ıΓ ( f ) if f ∈ c0
NΓ (ıΓ ( f )) if f 6∈ c0.

Notice that this graph only has one cycle and hence has genus 0, so it is a planar tree. This first
statement can be seen directly or as follows, we have that the number of vertices of τ is equal to
the number of vertices of Γ plus the number of cycles of Γ minus 1. The number of flags of τ is
the number of flags of Γ which is 2 times the number of edges of Γ . So we get that 2 − 2g(τ ) =

(|V (Γ )| + #cycles of Γ − 1) − E(Γ ) + #cycles of τ = 1 + #cycles of τ ≤ 2.

A.1.2. Ribbon graph defined by a b/w planar planted bipartite tree
The ribbon graph defined by a tree is given as follows: Given a b/w bipartite planar planted tree τ , we

define a new graph Γ (τ ) by setting

F(Γ (τ )) := F(τ ), V (Γ (τ )) := Vb(τ )

and specifying f0 as the distinguished flag. Furthermore, we define

δΓ (τ )( f ) :=

{
δτ ( f ) if δτ ( f ) ∈ Vb(τ )

δτ (ıτ ( f )) if δτ ( f ) ∈ Vw(τ )
, ıΓ (τ )( f ) :=

{
Nτ if δτ ( f ) ∈ Vb(τ )

N−1
τ if δτ ( f ) ∈ Vw(τ ).

We fix the ribbon graph structure by defining the cyclic order at a vertex as follows: if δ( f ) ∈ Vb then
the successor of f is the flag ıτ ( f ), the successor of this flag is defined to be the successor of f in the
cyclic order at v = δ( f ) of τ and so on. This means that if δ( f ) ∈ Vw then the successor of f is Nτ ( f ).
This implies that

NΓ (τ )( f ) :=

{
N 2

τ ( f ) if δ( f ) ∈ Vb
ıτ (N−1

τ ( f )) if δ( f ) ∈ Vw.

Now Γ has a cycle which runs through all the edges and the other cycles of Γ are in 1–1
correspondence with the white vertices. The cycle that contains f0 contains every second flag in the
unique cycle of the tree, that is all the flags f with δ( f ) ∈ Vb. On the other hand if δ( f ′) = v ∈ Vw then
all the flags in its cycle are incident to the same vertex and in effect ıτ (N−1

τ ( f )) is just the predecessor
of f in the cyclic order of its vertex. Thus these cycles are in 1–1 correspondence with the sets F(v) for
v ∈ Vw. This means that 2 − 2g(Γ ) = |Vb(τ )| − |E(τ )| + |Vw(τ )| + 1 = 2, so that the genus of Γ is
zero. The cycle of f0 contains all flags f with δτ ( f ) ∈ Vb and for such a flag δτ (ıΓ ( f )) ∈ Vw and vice
versa, so that either f or ıΓ ( f ) lie in the NΓ cycle of f0 and indeed the graph Γ is a marked spineless
treelike ribbon graph.

Lemma A.1. The dual graph is a duality transformation that is Γ (τ (Γ )) = Γ and τ(Γ (τ )) = τ .

Proof. On the level of flags this is clear. For the vertices, this is also clear for the first order of iteration, in
the second order the equality of the set of vertices follows from the observation explained above that the
cycles of Γ (τ ) which are not the distinguished cycle c0 are in 1–1 correspondence to the white vertices. It
remains to check the compatibility of the maps δ, ı and N which amounts to plugging in the definitions.
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Here are some examples: δΓ (τ (Γ ))( f ) with f ∈ c0: δΓ (τ (Γ ))( f ) = δτ(Γ )( f ) = δΓ ( f ). If f ∈ ci 6= c0
then δΓ (τ (Γ ))( f ) = δτ(Γ )(ıτ(Γ )( f )) = δτ(Γ )(NΓ (ıΓ ( f ))) = δΓ (NΓ (ıG( f ))) = δΓ ( f ). As another
example consider Nτ(Γ (τ ))( f ) for f with δτ ( f ) ∈ Vb, we get Nτ(Γ (τ ))( f ) = ıΓ (τ )( f ) = NΓ ( f ) and
if δτ ( f ) ∈ Vw then Nτ(Γ (τ ))( f ) = ıΓ (τ )( f ) = NΓ (τ )(ıΓ (τ )( f )) = NΓ (τ )(N−1

τ ( f )) = N 2
τ (N−1( f )) =

Nτ ( f ). Writing out the other calculations is tedious but straightforward. �

A.2. Gluing spineless and normalized spineless cacti: The graph version

A.2.1. S1-graphs
To formulate the gluing in a purely graph theoretic way, we first need a new definition. An S1-graph

is a metric ribbon graph of genus 0 together with a distinguished flag f0, such that

(i) if c0 is the cycle of f0 then for each flag either f ∈ c0 or ı( f ) ∈ c0
(ii) ∀v : |F(v)| = 2.

Such a graph has exactly two cycles that have the same length, which we call the radius of the S1-
graph.

An S1-graph is equivalent to the data of a circle embedded into the plane with several marked points.
To explain this, let S1

r := {(x, y) ∈ R2
|x2

+ y2
= r}. We will use the natural coordinate θ on S1:

x = r cos(2πθ), y = r sin(2πθ). Let 0 = θ0 < θ1 < · · · < θn < 1 be n + 1 points on S1. Then
(S1, (θi )) defines an S1-graph by letting the points be the vertices, the arcs the edges and the flags are
the half edges. To be very explicit each flag is an ordered pair (θi , θ j ) with |i − j | = 1 ≡ (n − 1) and
ı(v, w) = (w, v). We denote the edges by {θi , θ j } with the same restriction. Since |F(v)| = 2 there is
only one choice of cyclic order at each vertex. We let f0 = (θ0, θ1) and let c0 be the cycle f0 that contains
f0. Finally, we set µ({θ0, θn}) := 1 − θn and µ({θi , θi+1}) = θi+1 − θi for i = 0, . . . n − 1. Conversely,
any S1-graph gives rise to the data above. For this we embed the realization of the CW complex which is
an S1 into the plane as a circle S1

r of radius equal to the length of c0, such that c0 runs counterclockwise
and that the vertex of f0 is the point θ0 = 0. Each vertex then corresponds to a point θi .

A.2.2. Gluing S1-graphs
We define a gluing for two S1-graphs of the same radius. Given S and S′, we scale S′, so that

the lengths of the radii of S and S′ agree and then let S ◦ S′ be the S1-graph defined by taking the
union of marked points. That is if S = (S1

r , {θi : i ∈ I }) and S′
= (S1

r , {θ ′

j : j ∈ J }) then
S ◦ S′

= (S1
r , {θi : i ∈ I } ∪ {θ ′

j : j ∈ J }).
We identify the set of vertices of the glued graphs with the union of the vertices of the two graphs:

V (S ◦ S′) = V (S) ∪ V (S′), we can also naturally identify F(S ◦ S′) with F(S) ∪ F(S′).
We extend the gluing of S1-graphs to glueings of an S1-subgraph with an S1-graph.3 Let (Γ , µ) be a

metric ribbon graph and S be a subgraph which is an S1-graph with the induced ribbon graph structure.
Also fix an S1-graph S′, we define (Γ , µ) ◦S S′ by replacing the subgraph S by S ◦ S′. This is well
defined, since we can identify the vertices of S with vertices of S ◦ S′. The result is again a metric ribbon
graph.

This operation simply inserts new vertices into the subgraph, new vertices will have valence 2, so that
it is naturally a ribbon graph.

3 A subgraph is a subset of vertices and a subset of flags closed under ıΓ and δΓ .
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A.2.3. Lobes as S1-graphs
Every lobe gives rise to an S1-graph by considering the subgraph of vertices and edges of the cycle.

We define the marked flag fi of the S1-graph to be the first flag f of the cycle c0 such that ı( f ) ∈ ci .
The fact that a cycle corresponding to a lobe is actually an S1-subgraph, that is that each vertex v

has |F(v)| = 2 when considering the subgraph, can most easily be seen from the dual tree. Here the
statement corresponds to the fact that any two edges incident to a white vertex only have this vertex in
common, which is true since the dual graph is a tree.

A.2.4. Chord diagrams
There is an S1-graph covering each spineless cactus as follows. For a spineless cactus c = (Γ , f0, µ)

consider the S1-graph obtained by going around the cycle c0 and considering this an S1-graph. The set
of flags is defined to be the same as that of Γ and ı and µ are also defined identically in both graphs, but
let the set of vertices of the S1-graph be the set F(Γ ) and fix the map δ = id . The marked flag is again
f0. We call this graph S(c).

There is an equivalence relation on the vertices of S(c) given by v = δS(c)( f ) ∼ v′
= δS(c)( f ′)

if δ( f ) = δ( f ′) in c. We call (S(c), ∼) the chord diagram of c. We wish to point out that as graphs
Γ = S(c)/ ∼ and that (S(c)/ ∼, f0, µ) is c if we give the S(c)/ ∼ the ribbon structure of Γ that is
the structure induced by first lifting NΓ as a function on flags and then letting it descend to the quotient
graph.

A.2.5. The glueings for spineless cacti
Fix two spineless cacti c = (Γ , f0, µ) and c′

= (Γ ′, f ′

0, µ
′), let S be the S1-subgraph of c and

represent c′ as (S(c′), ∼). Fix a cycle ci of c and let ri be the radius of ci and R be the radius of c′

0, the
outside circle of c′.

We define the underlying metric graph of c ◦i c′ to be the graph given by[
(Γ , µ) ◦ci

ri

R
S(c′)

]/
∼ (A.1)

where ri
R is the scaling action and ∼ is the equivalence relation given above extended to the graph

(Γ , µ) ◦ci
ri
R S(c′) by identifying the vertices of ri

R S(c′) as a subset of the vertices of the glued graph.
We mark this graph by the image of the flag f0 of c. The ribbon structure is defined as follows. For all
vertices of Γ which do not lie on ci , we keep the order. For the other vertices, we fix the following linear
order. Given v let v1, v2, . . . , vn be its pre-images in (Γ , µ) ◦ci

ri
R S(c′) linearly ordered according to the

distinguished cycle c′

0 of S(c′) and its distinguished flag. Each of the sets F(vi ) is also linearly ordered
by using its cyclic order and declaring the first flag to be the first flag of c′

0 which is incident to the
vertex. Now F(v) =

∐
i=1,...,n F(vi ) and we enumerate the flags by the induced linear order starting to

enumerate F(v1) in its linear order, continuing with F(v2) and finishing with F(vn) again in their linear
orders. This gives a linear order on F(v) and we fix the cyclic order of F(v) to be the unique cyclic order
which is compatible with that linear order.

It is now straightforward to check that the resulting data defines a spineless cactus. With the exception
of ci , all the cycles which were lobes descend unaltered as subsets of flags. The Euler-characteristic
computation then shows that the genus is zero and that there is exactly one more cycle. This is the cycle
of the flag f0 and it passes through all the edges. It follows that the number of lobes is subadditive.
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A.2.6. The glueings for normalized spineless cacti
Keeping the notations of the section above, now let c and c′ be normalized spineless cacti and ci a

fixed cycle of Γ with radius ri . Then set µ̃(e) = µ(e) if e is not in ci that is none of the two flags is in
ci . If one of the flags of e is in ci then µ̃(e) =

R
ri

(e). This causes the radius of ci considered as a cycle of
c̃ to be R, the radius of the outside circle of c′. We then define the gluing for normalized spineless cacti
by setting the underlying metric graph to be

[(Γ , µ̃) ◦ci S(c′)]/ ∼ . (A.2)

Again we mark the resulting graph by the image of the flag f0 and induce a ribbon graph structure as
above. As above it follows that the result is a normalized spineless cactus and the gluing is subadditive
in the number of lobes.
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