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Abstract

We analyze the algebraic structures ofG-Frobenius algebras which are the algebras assoc
to global group quotient objects a.k.a. global orbifolds. HereG is any finite group. First, we show
that these algebras are modules over the Drinfel’d double of the group ringk[G] and are moreove
k[G]-module algebras andk[G]-comodule algebras.

We furthermore considerG-Frobenius algebras up to projective equivalence and define univ
shifts of the multiplication and theG-action preserving the projective equivalence class. We s
that these shifts are parameterized byZ2(G,k∗) and byH2(G,k∗) when considering ofG-Frobenius
algebras up to isomorphism. We go on to show that these shifts can be realized by the form
tensor products with twisted group rings, thus providing a group action ofZ2(G,k∗) onG-Frobenius
algebras acting transitively on the classesG-Frobenius related by universal shifts. The multiplicat
is changed according to the cocycle, while theG-action transforms with a different cocycle deriv
from the cocycle defining the multiplication. The values of this second cocycle also appear as
in front of the trace which is considered in the trace axiom ofG-Frobenius algebras. This allows
to identify the effect of our action byZ2(G,k∗) as so-called discrete torsion, effectively unifyi
all known approaches to discrete torsion for global orbifolds in one algebraic theory. The new
action of discrete torsion is essentially derived from the multiplicative structure ofG-Frobenius al-
gebras. This yields an algebraic realization of discrete torsion defined via the perturbation
multiplication resulting from a tensor product with a twisted group ring.

Additionally we show that this algebraic formulation of discrete torsion allows for a treatme
G-Frobenius algebras analogous to the theory of projective representations of groups, group
sions and twisted group ring modules.
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Lastly, we identify another set of discrete universal transformations amongG-Frobenius algebra
pertaining to their super-structure and classified by Hom(G,Z/2Z) which are essential for the appl
cation to mirror symmetry forsingularities with symmetries.
 2004 Elsevier Inc. All rights reserved.

Introduction

G-Frobenius algebras were introduced in [26] to explain the algebraic structure r
ing Frobenius algebras when one is dealing with global group quotients by the actio
finite groupG, a.k.a. global orbifolds, in theories such as (quantum) cohomology of glob
quotients [18,22], K-theory [23], local rings of singularities [26,29], etc.G-Frobenius
algebras have also provided exactly the right structure to describe the cohomology o
metric products [27,28] whose structure is closely related to that of Hilbert schemes
Physically they can be thought of as topological field theories with a finite gauge g
The precise sense of this interpretation in terms of functors from a cobordism categ
a linear category is contained in [26].

The characteristic features ofG-Frobenius algebras are that they are group graded
commutative algebras with a group action and a controlled non-commutativity. T
algebras take into account the geometry of all the various fixed point sets under t
tion of the various group elements and their interrelations. The group degreeg part of the
algebra encodes the properties of the fixed point set of the action byg ∈ G. For a non-
trivial elementg the group degreeg parts are called the twisted sectors, while the p
of group degree of the identity is called the untwisted sector. The data of theG-grading
together with the required type ofG-action and several compatibilities can be concisely
stated by sayingG-Frobenius algebras are modules over the Drinfel’d double of the g
ring D(k[G]). This gives an important link ofG-Frobenius algebras to other orbifold th
ories. The role of the Drinfel’d doubleD(k[G]) in the description of orbifold conforma
field theories as described by [9] was first observed in [2,3,11], for a discussion s
low.

As we prove below, the algebraic structures of aG-Frobenius algebra are as follows: it
naturally a leftk[G]-module algebra as well as a rightk[G]-comodule algebra. Moreove
it satisfies the Yetter–Drinfel’d (YD) condition for bimodules and is thus also a mo
over D(k[G]), the Drinfel’d double ofk[G]. Thus one could call it aD(k[G])-module
algebra.

The invariants of aG-Frobenius algebra under the group action yield a comm
tive algebra which is naturally graded by the conjugacy classes of the group which
been previously regarded for instance in the context of cohomology [6]. The large
commutative algebras are more adapted, however, to reflect the geometry and gene
properties. The most pertinent example being the existence of aG-graded multiplication
in lieu of a complicated grading by conjugacy classes.

Another feature which is best described in the non-commutative setup is the ph
enon of discrete torsion. This is the main topic of the present paper. Discrete tors
a phenomenon which is expected to appear inthe setting of global quotients by finit
groups. In different settings discrete torsion takes on different meanings, but in all of the
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one thinks about a new “degree of freedom” which one should take to mean that th
not a unique description of an orbifold, but that there is a whole set of descriptions in
by cohomological data of the group in question. In our setting ofG-Frobenius algebras a
ambiguity in theG-action dubbed discrete torsion was first observed in [26] for so-ca
JacobianG-Frobenius algebras.

In the present paper, we approach the “ambiguity” by considering transformatio
the multiplication and theG-action which map oneG-Frobenius algebra into a proje
tively equivalent one. We show that those transformations, also called twists, which
defined universally are exactly parameterized byZ2(G, k∗). Here universal means that th
twists are defined for anyG-Frobenius algebra.

We then go on to show that these universal twists for allG-Frobenius algebras can b
realized by the operation of tensoring with twisted group rings. This operation pres
the dimensions of the twisted sectors and generatesG-Frobenius algebras which are pr
jectively equivalent by changing the multiplication and theG-action, where the change
theG-action is completely determined by the change in the multiplication. Moreover
leads to a group action ofZ2(G, k∗) on the set ofG-Frobenius algebras, thus realizi
discrete torsion for the first time as a group action.

The effect the twisting of the multiplication has on theG-action is via a cocycleε,
which, as we show, also appears as factor in front of the trace considered in the trace a
iom for G-Frobenius algebras. In the case the elementsg,h considered in the trace axio
commute, these factors are what has classicallybeen called discrete torsion. This obser
tion justifies the name and furthermore allows us to relate to various other definitio
discrete torsion in different settings, see below.

We would like to note that due to the consideration of the multiplicative structu
G-Frobenius algebras, not only have we identified the possible choices of discrete t
but we have found a group of transformations acting by taking tensor products with tw
group rings, which transforms from one choice of discrete torsion to any other. Als
these considerations it is essential that we deal not only with the invariants, but wi
wholeG-Frobenius algebra, since the dimensions of the invariants of the untwisted s
can change. The operation of twisting by discrete torsion by tensoring with the appro
twisted group ring changes the metric, the multiplication and the group action in a p
tive fashion. We would also like to stress that it is actually the group of cocycles w
plays a major role and not only the cohomology classes. Two cohomologous cyc
Z2(G, k∗) give rise to isomorphic, but differentG-Frobenius algebras.

As demonstrated in [28], the presented “algebra of discrete torsion” allows for a
ple explanation of a sign for the metric which appears in passing from the symm
product to the Hilbert scheme that had been much discussed in the literature (see, e
[18,21]). Moreover, the consideration of cocycles versus cohomology classes al
plains the existence of a whole family of multiplications [33] associated to the ch
of sign, as shown in [28]. This application exhibits the importance of dealing with
cocycles themselves rather than their cohomology classes, since the twists actuall
from non-trivial cocycles whose cohomology class is, however, trivial when consid
C∗ coefficients.

Another application of the current presentation of discrete torsion and super-twis
below) is given by the results of [27] which characterize theG-Frobenius algebra relate
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to symmetric products as unique up to the above mentioned twists, which are exp
computed [27].

At this point it might be instructive to compare and contrast the discrete torsion ap
ing in G-Frobenius algebras with other incarnations of discrete torsion that have app
in the literature.

In order to make the operation of discrete torsion transparent, we have phras
present article purely in terms of algebra. To connect to the literature it will be, how
necessary to make some digression into physics and vertex operator algebras (VOA
reader not enthusiastic about these subjects can safely skip ahead, since none of th
rial is necessary for the presentation of the algebraic facts.

As mentioned previously in terms of physics one can think ofG-Frobenius algebras as
non-commutative incarnation of topological field theories with a finite gauge groupbefore
projection.

In physics, orbifolds were first considered for string theory [9,10,38], Landau–Ginz
theories (see, e.g., [15,37]), conformal field theory [16], and gauge theory [17]. The
tionship betweenG-Frobenius algebra, orbifold string theory and orbifold conformal fi
theory is, as is customary in considerations related to mirror symmetry, given by reg
chiral rings and suitably twisted models such as Landau–Ginzburg B-models or A
B-twisted Sigma-models [39].

In all these theories discrete torsion makes its appearance as an ambiguity in assign
a fixed “model” to a given orbifold geometry. These treatments also all include the
sideration of twisted sectors and the operation of the orbifold groupG by “conjugation”
on the twisted sectors. Here “conjugation” means that the action of an elementg takes
theh-twisted sector to theghg−1 twisted sector. Another common property of all orbifo
descriptions is that the twisted sectors are modules over the untwisted sector. The c
approach is then to consider the invariants under the group action and calculate for in
the dimensions, which yield partition functions. A more mathematical approach is to
sify the possible twisted the modules over the invariants untwisted sector in examin

As observed in [2], the particular structure of theG-action on the twisted sectors pr
vides a link to the Drinfel’d double. By considering operators for the group action
operators for the projection to the twisted sectors and the algebra they form one ar
D(k[G]). Strictly speaking in the physical setup (e.g., [16]), the twisted sectors are
considered after the projection to invariants, so that the projections to theg-twisted sec-
tors are only possible in the case of an Abelian group. Otherwise the twisted secto
indexed only by conjugacy classes. So, to be precise after the projection there is
D(k[G])-module structure, but a module structure of the twisted sectors over the v
centralizers. These representationsthen can be induced to representations ofD(k[G]) [11].
A striking fact is that all the irreducible representation theory can be obtained by ind
from representations of the centralizers as noticed in [3,11] (see [25] for a generaliz
The classical treatment ofD(k[G]) in the orbifold setup [3,11] actually only usesD(k[G])
as a separate structure, whose representation theory miraculously reproduces th
rules of the conformal field theory in the special case of so-called holomorphic RC
which were considered in [16]. For a nice explanation of the underlying philosop
terms of an equivalence of categories of modules and specific calculations in this dir
see [31].
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Classically, that is to say in physics, the ambiguity of discrete torsion manifests
as a consistent choice of factors in front of the partition functions on tori and more
ematically in the possibility of having twisted modules over the untwisted sector. Mo
generally given a CFT one can consider the partition function over any closed surfa
this will yield factors depending on the surface. All these factors can however be expres
essentially via the ones from the torus (see, e.g., [4,37]).

In the considerations of open string theory and D-branes discrete torsion has als
its appearance in the form of projective representation of the orbifold group [7,8], se
[35]. In this form the “phase factors” are associated to surfaces with boundary instea
of closed surfaces. The fact that the phase factors defined in this fashion [7] agree w
those defined for the closed surface [36] was observed in [1]. Here the equality is a
statement, since the surfaces are decidedly different, one is closed and the other ha
boundary.

The mathematical formulation of conformal field theory is mostly done in terms of
tex operator algebras. These algebraic objects then inherit the structures discusse
This leads to the classification of all twisted modules over the invariants of the untw
sector as in [12–14,24].

Our setup is slightly different, but can berelated to the ones described above. The
major difference is that in the construction involvingG-Frobenius algebras we do not on
consider the invariants, but define the multiplication and all other structuresbefore taking
invariants.

Thus in our setup, since we consider all twisted sectors before projection to the
ants, aG-Frobenius algebra is indeed aD(k[G])-module. We actually derive this proper
using the fact that theG-grading gives ak[G]-comodule structure, and theG-action gives
a k[G]-module structure which satisfy the Yetter–Drinfel’d (YD) condition of [32]. More-
over, we show that the multiplicative structure is also compatible, that is that aG-Frobenius
algebra is not onlyk[G]-module and ak[G]-comodule, but actually ak[G]-module algebra
and ak[G]-comodule algebra.

The second major difference is that we are most interested in the possiblealgebra
structures given underlying linear data. The consideration of theD(k[G]) module and
the twisted sectors as modules over the untwisted sector are only intermediate step
plained for instance in [26,27,29]. In the setting of VOAs a multiplication of the twi
sectors is not usually considered and only known for the special example of theZ/2Z

orbifold [12] used to construct the monster and in the cases recently constructed in
As we explained above the main tool in the description of the group action of dis

torsion are the possibleG-Frobeniusalgebrastructures on aG-graded linear space all o
whose graded components are one-dimensional which precisely the twisted group al
Moreover, once the multiplication is fixed all other structures of theG-Frobenius algebra
can be derived from it. Thus it is themultiplicative structurewhich characterizes the twiste
group algebras and hence discrete torsion. This gives a different interpretation of the
of cocyclesZ2(G, k∗) in the setting of orbifolds, which is related to the usual one
the operation of forming tensor products. Namely, using our results on universal
presented below, it follows that tensoring withthe twisted group ring realizes all discre
torsions by agroup actionof Z2(G, k∗). Classically one discrete torsion is onlyindexedby
H 2(G, k∗). Our group action descends toH 2(G, k∗) if we considerG-Frobenius algebra
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up to isomorphism. As noted above this entails that two isomorphicG-Frobenius algebra
might have different metrics. The universality condition for the twists can be compared
the genericity conditions used in [2,3,11,16] to derive the fusion rules.

Thus one can say themultiplicativestructure ofG-Frobenius algebras and twisted gro
rings in particular explain, classify and realize what has to be called “discrete torsio
G-Frobenius algebras as a group action.

It turns out that while the cocycles themselves describe the twists in the multiplica
derived cocycleε describes the twist of the group action. It is this cocycleε evaluated
on commuting elements which makes it possible to link our results to other con
ations in the literature on various quantities which all seem to carry the same na
discrete torsion. The most important observation here is that the cocycleε appears, as w
show, as a factor in front of the trace in the trace axiom which by [26] corresponds
partition function on the torus with one boundary. Here we do not need commuting m
odromies. Moreover, using the cobordism construction for commuting monodromie
trace corresponds at the same time to the closed torus and to the torus with one
ary component with monodromy around that boundary being identity, see [26]. Vi
cobordism description of [26] one can also calculate the discrete torsion for othe
faces. These considerations yield an alternative description of the results of [1], with th
additional benefit that we do not have to switch between open and closed string
and compare two actually different surfaces on a formal level. Also, we do not ha
restrict ourselves to commuting elements, but can use a unifying framework of c
disms.

We stress that sinceG-Frobenius algebras already encode the whole cobordism th
[26], only the torus makes a direct appearance through the trace axiom. This is eno
all surfaces though. These correspond to different traces, whose calculation is then m
or less straightforward using [26].

The action of the modular group is built in tothe theory by cutting and gluing operatio
on the torus [26], whose algebraic manifestation is the trace axiom. One astonishing
about the treatment of discrete torsion is that the modular transformation propertie
the trace axiom, hold automatically for twisted group rings, so we do not have to dea
this separately. For a discussion of the action of the modular group in the represe
theory ofD(k[G]) see [3].

Another new point is that the phase factorε is essentially derived from the multiplicativ
structure as it results from the twist for the group operation which is defined via the m
plication in the twisted group ring. As an additional benefit, we do not need any rec
to one of the different geometrical schemes or an ad hoc introduction of phase fa
Also the relationship of the cocycles inZ2(G, k∗) and cocyclesε is transparent and has
simple algebraic reason. And as mentioned previously,ε is naturally defined on the whol
of G × G and not just only on the commuting elements.

In terms of the mathematical theory there are twists by discrete torsion in orbifo
homology as explained in [34] which agree with the ones we define in the setting of g
orbifolds [18,22]. The other cases of discrete torsion which were previously found for
bianG-Frobenius algebras [26] and the algebraic discrete torsion of [27] are all subs
in the present formulation.
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Thus one can say that our present treatment unifies and extends all the differe
proaches to discrete torsion [1,7,8,26,27,34–36,38] in the setting ofG-Frobenius algebras
that is topological field theories with a finite gauge group in the sense of [26].

We go on to show that our treatment of discrete torsion allows an interpretation w
analogous to the theory of projective representations of groups, group extensio
twisted group ring modules. Loosely said given a cocycleα ∈ Z2(G, k∗) as above on ca
find an Abelian extensionGα whose representations correspond to lifts of projective
resentations ofG with the cocycleα, see [30] and Section 4 for details. This classical f
has for instance been successfully exploited in [20] to obtain character tables and
diagrams for projective representations necessary to discuss the fusion rules.

Our motivation is different and comes from the fact that the groupG plays a central role
in the structure of aG-Frobenius algebra, so it ought to be possible to find aGα-Frobenius
algebra which encodes the situation after the twist by discrete torsion. We show tha
is indeed a canonical way to construct aGα-Frobenius algebra which is a lift of theG-
Frobenius algebra twisted byα. Notice that this entails a new bigger grading group
thus new twisted sectors and an extension of the action to the bigger group.

In a geometric interpretation this amounts to taking a twisted Cartesian produc
point/H whereH is the Abelian group used in the extension. In the case of trivialα this
corresponds to extending the action of the groupG to the groupG × H with H acting
trivially. Informally, one can either compare this to a fattening of a point by a trivial ac
or more generally to different stacks having the same coarse moduli space. We plan
elaborate on these geometrical aspects in [23].

We would like to point out that even after twisting theG-Frobenius algebra remains
G-Frobenius algebra, that is there is still has a true action ofG and not only a projective
one. This seems to be the reason, parallel to the discussion in [17], that our discrete
is in Z2(G, k∗)—respectivelyH 2(G, k∗) up to isomorphism—rather than inH 3(G, k∗) as
discussed in [2,3,11,16]. Another observation in the same spirit is that since the con
of [16,17], as explained in [3], is met one can expect to get the same representation
from the quantum double as from the twisted quantum double [3]—although in our setting
we never have change fromD(k[G]) to its twisted version.

We furthermore examine on the generic super-structures one can impose on a
G-Frobenius algebra and show that these are again given by tensor product, but no
“superized” versions ofk[G]. These are a second type of discrete deformation, whic
actually different from the one of discrete torsion.

This freedom of choice is essential for applications to orbifolding and mirror symm
for singularities with symmetries [26,29].

In summary, we have obtained a new algebraic way of describing discrete to
through agroup operationof Z2(G, k∗) via forming of tensor products with twisted grou
rings. Here both the description of discrete torsion as a group action and the releva
the use of cocycles rather than just the cohomology classes are novel points. We als
new approach, since we essentially use themultiplicativestructure ofG-Frobenius algebra
which was not previously discussed. In our formulation discrete torsion is primarily a
of the multiplication, which has as a secondary consequence a twist in theG-action. This
also clarifies the appearance ofZ2(G, k∗) which naturally classifies the multiplications
the various twisted group rings.
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It is this algebraic description which via the cobordism considerations of [26] re
duces, extends, and unifies all the previously known incarnations of discrete torsi
global quotients—and arbitrary surfaces.

We would like to emphasize that the elegant and lucid picture of discrete torsi
given by the operation of tensoring with twisted group rings is only possible when co
ering the whole non-commutativeG-Frobeniusalgebrarather than its invariants or onl
its D(k[G])-module structure—which are the focus of all previous work on the subje
where such a description cannot exist.

The paper is organized as follows.
In the first section, we recall the notion ofG-Frobenius algebras, and show that gro

rings and twisted group rings areG-Frobenius algebras.
In the second section, we give the algebraic properties ofG-Frobenius algebras. Th

main theorem is that aG-Frobenius algebra has the natural algebraic structure of ak[G]-
module algebra and ak[G]-comodule algebra which satisfies the YD condition.

We also characterizeG-Frobenius algebras which are Galois over their identity se
ask[G]-comodule algebras.

The third section contains the realization of discrete torsion as an action ofZ2(G, k∗)
on G-Frobenius algebras and ofH 2(G, k∗) on the isomorphism classes ofG-Frobenius
algebras. This is done by analyzing universal twists ofG-Frobenius algebras which a
twists of the multiplication and the group action preserving the projective class of thG-
Frobenius algebra. The main statements then are, that

(1) the universal twists are entirely governed by the multiplicative structure,
(2) the universal twists are in 1-1 correspondence withZ2(G, k∗),
(3) these twists can be realized by tensoring with the respective twisted group ring,
(4) renders agroup actionof Z2(G, k∗) on the set ofG-Frobenius algebra. Furthermore
(5) the induced change in theG-action is given by a cocycleε, which
(6) appears in front of the trace of the trace axiom.

The result (6) legitimizes the name of discrete torsion and gives the link to the other
tities of the same name as discussed above.

Additionally, we study the generic super-structures (Z/2Z-gradings) which one can im
pose on a givenG-Frobenius algebra and show that they are classified by Hom(G,Z/2Z)

and can be implemented by tensoring with super group algebras. We prove that both
“commute” in the sense that one can twist by twisted super group algebras or fi
twisted group algebras and then by super group algebras.

In the fourth section we introduce a theory for twists ofG-Frobenius algebras in analog
with projective representations of a group and their relation to modules over the tw
group algebra and extensions of the group. Here the final result is that given any A
groupH and a cocycle[α′] ∈ H 2(G,H) then for any central extensionGα of G by H with
class[α′] and anyG-Frobenius algebraA there is a naturalGα′

-Frobenius algebraAα′
to

which the Frobenius algebraAα (A twisted byα) can be lifted. Here[α] ∈ H 2(G, k∗) is
the image under the transgression map associated to[α′] of aχ ∈ Hom(H, k∗). Vice versa,
the aboveχ gives a push down map, which mapsAα ontoAα . Lastly, we show that ther
is a universal setup of this kind if there is a representation group forG.
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1. G-Frobenius algebras

We fix a finite groupG and denote its unit element bye. We furthermore fix a groun
field k of characteristic zero for simplicity. With the usual precautions the characteristic
the field does not play an important role and furthermore the group really only needs
completely disconnected.

1.1. Definition. A G-twisted Frobenius algebra—or G-Frobenius algebra for short—ov
a fieldk of characteristic 0 is〈G,A,◦,1, η,ϕ,χ〉, where

G finite group;
A finite dimG-gradedk-vector space,A = ⊕

g∈G Ag, Ae is called the untwisted
sector and theAg for g �= e are called the twisted sectors;

◦ a multiplication onA which respects the grading:◦ :Ag ⊗ Ah → Agh;
1 a fixed element inAe—the unit;
η non-degenerate bilinear form which respects grading, i.e.,g|Ag⊗Ah = 0 unless

gh = e;
ϕ an action ofG on A (which will be by algebra automorphisms),ϕ ∈ Hom(G,

Aut(A)), s.t.ϕg(Ah) ⊂ Aghg−1;
χ a characterχ ∈ Hom(G, k∗),

satisfying the following axioms:

Notation. We use a subscript on an element ofA to signify that it has homogeneous gro
degree—e.g.,ag meansag ∈ Ag—and we writeϕg := ϕ(g) andχg := χ(g).

(a) Associativity:

(ag ◦ ah) ◦ ak = ag ◦ (ah ◦ ak).

(b) Twisted commutativity:

ag ◦ ah = ϕg(ah) ◦ ag.

(c) G invariant unit:

1◦ ag = ag ◦ 1= ag and ϕg(1) = 1.

(d) Invariance of the metric:

η(ag, ah ◦ ak) = η(ag ◦ ah, ak).

(i) Projective self-invariance of the twisted sectors:

ϕg|Ag = χ−1
g id.
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(ii) G-invariance of the multiplication:

ϕk(ag ◦ ah) = ϕk(ag) ◦ ϕk(ah).

(iii) ProjectiveG-invariance of the metric:

ϕ∗
g(η) = χ−2

g η.

(iv) Projective trace axiom:

∀c ∈ A[g,h] andlc left multiplication byc:
χh Tr(lcϕh|Ag ) = χg−1 Tr(ϕg−1lc|Ah).

1.1.1. Special G-Frobenius algebras. We briefly review specialG-Frobenius algebras
For details see [26,27].

We call aG-Frobenius algebra special if allAg are cyclicAe modules via the mul
tiplication Ae ⊗ Ag → Ag . Fixing a cyclic generator 1g ∈ Ag the algebra is completel

characterized by two compatible cocycles, namelyγ ∈ Z̄2(G,Ae) andϕ ∈ Z1(G, k∗[G])
whereZ̄ are graded cocycles (see [26]) andk∗[G] is the group ring restricted to invertib
coefficients withG-module structure induced by the adjoint action:

φ(g) ·
(∑

µhh
)

=
∑
h

µhghg−1.

We setϕ(g) = ∑
h ϕg,hghg−1 andγg,h = γ (g,h).

The multiplication andG-action are determined by

1g1h = γg,h1gh, ϕg(1h) = ϕg,h1ghg−1.

There are two compatibility equations:

ϕg,hγghg−1,g = γg,h and (1.1)

ϕk,gϕk,hγkgk−1,khk−1 = ϕk(γg,h)ϕk,gh. (1.2)

Notice that if γg,h is non-zero, i.e.,AgAh �= 0, then (1.1) determinesϕg,h. We also
would like to remark that (1.2) is automatically satisfied ifAgAhAk �= 0 (cf. [26]).

1.2. The group ring k[G]. Let k[G] denote the group ring ofG.

1.2.1. The Hopf structure of k[G]. Recall thatk[G] is a Hopf algebra with the natura
multiplication, the comultiplication induced by∆(g) = g ⊗ g, counit ε(g) = 1 and an-
tipodeS(g) = g−1.



242 R.M. Kaufmann / Journal of Algebra 282 (2004) 232–259

he

ul-

we
1.2.2. The G-Frobenius structure of k[G]. When consideringk[G] as aG-Frobenius
algebra we will considerk[G] as a leftk[G]-module with respect to conjugation, i.e., t
mapk[G] ⊗ k[G] → k[G] given by∑

g

νgg ⊗
∑
h

µhh �→
∑
g,h

νhµgghg−1.

The other structures are the naturallyG graded natural multiplication onk[G] with the
unit e, the metricη(g,h) = δgh,e andχg ≡ 1. It is trivial to check all axioms.

If we were to choose a grading̃∈ Hom(G,Z/2Z), thenχg = (−1)g̃ and ϕg(h) =
(−1)g̃h̃.

1.3. The twisted group ring kα[G]. Recall that given an elementα ∈ Z2(G, k∗) one
defines the twisted group ringkα[G] to be given by the same linear structure with m
tiplication given by the linear extension of

g ⊗ h �→ α(g,h)gh (1.3)

with 1 remaining the unit element. To avoid confusion, we will denote elements ofkα[G]
by ĝ and the multiplication with· . Thus

ĝ · ĥ = α(g,h)ĝh.

Forα the following equations hold:

α(g, e) = α(e, g), α
(
g,g−1) = α

(
g−1, g

)
. (1.4)

Furthermore,

ĝ−1 = 1

α(g,g−1)
ĝ−1.

1.3.1. Remark. Given a two cocycleα and possibly extending the field by square roots
can find a cocyclẽα in the same cohomology class which also satisfies

α̃
(
g,g−1) = 1. (1.5)

If one wishes to considerC as a ground field, one can work with such cocycles.

1.3.2. Lemma. Set

ε(g,h) = α(g,h)

α(ghg−1, g)
,

then the left adjoint action ofkα[G] onkα[G] is given by

g ⊗ h
ad�−→ ε(g,h)ĝhg−1. (1.6)
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Proof. By the definition of multiplication inkα[G],

ĝ · ĥ · ĝ−1 = α(g,h)α(gh,g−1)

α(g, g−1)
ĝhg−1.

Now by associativity,

α
(
gh,g−1)α(

ghg−1, g
) = α(gh, e)α

(
g−1, g

) = α
(
g,g−1).

So

α(g,h)α(gh,g−1)

α(g, g−1)
= α(g,h)

α(ghg−1, g)
. �

1.3.3. The G-Frobenius algebra structure of kα[G]. Recall from [26,27] the following
structures which turnkα[G] into a specialG-Frobenius algebra:

γg,h = α(g,h), ϕg,h = (−1)g̃h̃ α(g,h)

α(ghg−1, g)
=: ε(g,h),

η
(
ĝ, ĝ−1) = α

(
g,g−1), χg = (−1)g̃. (1.7)

Here the second line induces the third via

ĝ · ĥ = α(g,h)ĝh, ĝhg−1 · ĝ = α
(
ghg−1, g

)
ĝh.

We recall that ifk∗ is two divisible, we could scale s.t.η(g,g−1) = 1 andε would
indeed yield the adjoint action. The last equation follows from the special case of the tra
axiom since the dimension of all sectors is one.

It is an exercise to check all axioms. All compatibility equations follow automatic
sinceα(g,h) �= 0. The only axiom which is not straightforward is the trace axiom, but
[27] for a proof.

1.3.4. Remark. By the general theory (see above),ε ∈ H 1(G, k∗[G]) wherek∗[G] is the
group ring restricted to invertible coefficients withG-module structure induced by th
adjoint action:

φ(g) ·
(∑

µhh
)

=
∑
h

µhghg−1.

1.3.5. Relations. Theε(g,h) satisfy the equations:

ε(g, e) = ε(g, g) = 1, (1.8)

ε(g1g2, h) = ε
(
g1, g2hg−1

2

)
ε(g2, h), (1.9)

ε(g,h)−1 = ε
(
g−1, ghg−1), (1.10)
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ε(k, gh) = ε(k, g)ε(k,h)
α(kgk−1, khk−1)

α(g,h)
, (1.11)

where (1.9) is the statement thatϕ ∈ Hom(G,Aut(A)), (1.10) is a consequence of (1.9
and (1.11) is the compatibility equation which also ensures the invariance of the me

Furthermore, the trace axiom holds [27] which is equivalent to the equation

α
([g,h], hgh−1)ε(h,g) = α

([g,h], h)
ε
(
g−1, ghg−1) (1.12)

or

ε(h,g) = ε
(
g−1, ghg−1) α([g,h], h)

α([g,h], hgh−1)
. (1.13)

In the case that the group elements in the equations commute we obtain the f
conditions of discrete torsion which makeε into a bicharacter on commuting elements.

Forcommuting elements:

ε(g, e) = ε(g, g) = 1, ε(g1g2, h) = ε(g1, h)ε(g2, h),

ε(g,h)−1 = ε
(
g−1, h

)
, ε(g,h) = ε

(
h−1, g

) = ε(h,g)−1,

ε(h, g1g2) = ε(h,g1)ε(h, g2), (1.14)

where the last equation is now a consequence of the second and the fourth and t
equation follows from the second.

1.3.6. Fact. One can show [27] that the twisted group algebraskα[G] are the onlyG-
Frobenius algebras with the property that allAg are one-dimensional. To be complete
precise there is an additional freedom of choosing a super (i.e.,Z/2Z) structure determine
by a homomorphismσ ∈ Hom(G,Z/2Z) (see [26] and 3.4 below).

1.3.7. Geometry of kα[G]. From the point of view of Jacobian Frobenius algebras [2
is natural to say thatk[G] is the Frobenius algebra naturally associated topoint/G. The
existence of the twisted algebras suggests that there are several equivalent ways o
the group quotient. This is made precise by Theorem 3.3.2 below.

2. Algebraic structures of a G-Frobenius algebra

We fix aG-Frobenius algebra〈G,A,◦,1, η,ϕ,χ〉.

2.1. Theorem. A G-Frobenius algebra is naturally a leftk[G]-module algebra as well a
a right k[G]-comodule algebra. Moreover, it satisfies the Yetter–Drinfel’d(YD) condition
for bimodules and is thus a module overD(k[G]), the Drinfel’d double ofk[G]. Where the
YD condition reads∑

h1 · m0 ⊗ h2m1 =
∑

(h2 · m)0 ⊗ (h2 · m)1h1. (2.1)
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Here we used the usual notation for coalgebras and right comodules. I.e., if∆ :H →
H ⊗ H is the comultiplication ofH then forh ∈ H we write ∆(h) = ∑

h1 ⊗ h2 and if
ρ̌ :M → H is a right comodule map, then form ∈ M we write ρ̌(m) = ∑

m0 ⊗ m1.

Proof. The theorem follows from the collection of facts below and the general state
that anyH bimodule satisfying the YD-condition is a module overD(H) (see, e.g., [32])

2.1.1. Remark. In this particular case the YD condition states that the comodule structu
is k[G]-equivariant with respect to the adjoint action ofk[G] on itself, viz. as a tenso
product ofG-Frobenius algebras of leftk[G] modules. See below.

2.1.2. The k[G]-module structure. SinceA is ak algebra, theG-actionϕ turnsA into a
right k[G] module. More precisely, fora ∈ A

∑
g νgg ∈ k[G],

(∑
νgg

)
⊗ a �→

∑
g

νgϕg(a). (2.2)

Sinceϕ ∈ Hom(G,Aut(A)) this is a module structure.

2.1.3. The k[G]-comodule structure. SinceA is aG graded algebra it is naturally ak[G]-
comodule.

More precisely, fora ∈ A, a = ⊕
g ag thek[G]-comodule structureρ :A → A ⊕ k[G]

is given by

a �→
∑
g

(ag ⊗ g), (2.3)

which obviously yields a comodule.

2.1.4. Lemma. A G-Frobenius algebra is ak[G]-module algebra and ak[G]-comodule
algebra or equivalently ak[G]∗-module algebra.

Proof. For the module algebra structure notice that:

(1) A is a leftk[G] module as noticed before.
(2) Thek[G]-action induced byϕ is by definition by algebra automorphisms, and∆(g) =

g ⊗ g thus

ϕg(ab) = ϕg(a)ϕg(b).

(3) Since the unit is invariant:

ϕg(1) = 1= ε(g)1.
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The structure of comodule algebra follows from the fact that

ϕ(agbh) = agbh ⊗ gh,

which, as is well known, is nothing but the condition ofA being aG graded algebra

AgAh ⊂ Agh. � (2.4)

2.1.5. Remark. Notice that the condition (2.4) is usually given by a strict inclusion, so
it is usually notk[G]-Galois—which is equivalent toAgAh = Agh (cf. [32]). In case it is,
the structure of the algebra is particularly transparent. We will come back to this late

2.1.6. The compatibility. We will view k[G] as a leftk[G]-module using the adjoint ac
tion. ThenA⊗ k[G] turns into a leftk[G]-module by using the diagonal action. This is t
natural leftk[G]-module structure on the tensor product of left Hopf modules:(∑

h

µhh

)(∑
g

ag ⊗ νg

)
=

∑
h,g

µhνϕ(h)(ag) ⊗ ghg−1.

2.1.7. Lemma. The comodule structure isk[G]-equivariant and thus the comodule map
a map of leftk[G]-modules where we use the left adjoint action ofk[G] on itself as the lef
k[G]-action:

ρ

((∑
h

µhh

)
(a)

)
= ρ

(∑
h

µhϕh(a)

)
=

∑
h,g

µhϕh(ag) ⊗ hgh−1

=
(∑

h

µhh

)
·
(∑

g

ag ⊗ g

)
=

(∑
h

µhh

)
· ρ(a). (2.5)

2.1.8. The YD condition. Plugging in the coproduct and action yields

ϕg(ah) ⊗ gh = ϕg(ah) ⊗ (
ghg−1)g, (2.6)

which verifies the YD condition forA.

2.1.9. Proposition. If A is a G-Frobenius algebra that isk[G]-Galois overAe as ak[G]-
comodule algebra, thenA is special andγ ∈ Z2(G,A∗) whereA∗ are the units ofA. So
in particular γ determinesϕ uniquely.

Moreover, ifAe is one-dimensional, thenA = kα[G], for someα ∈ H 2(G, k∗) with a
choice of paritỹ ∈ Hom(G,Z/2Z).

Proof. SinceAg−1Ag = Ae, there are elementsag ∈ Ag , bg−1 ∈ Ag−1 s.t.bg−1ag = 1 then
ag is a cyclic generator since∀cg ∈ AG cg = cg(bg−1ag) = (cgbg−1)ag andcgbg−1 ∈ Ae.
Choosing generators 1g in this way it is easy to check that the cocycles need to be
vertible and thus theϕ are fixed by (1.1). Furthermore, notice that the multiplication m
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induces an isomorphism ofAe modules betweenAe andAg via a �→ a1g whereAe is
a cyclicAe module over itself via left multiplication. This follows by associativity from
a = a(1g1g−1) = (a1g)1g−1 and thusa1g �= 0 and the mapAe → Ag is also injective.
Thus the restriction maps are all isomorphisms and graded cocycles coincide with
usual ones. �

3. The action of discrete torsion

3.1. Twisting G-Frobenius algebras. Given aG-Frobenius algebraA we can re-scale th
multiplication andG-action by a scalar. More precisely, letλ :G × G → k∗ be a function.
Fora = ⊕

g ag ∈ A we define

ϕλ(g)(a) =
⊕

h

λ(g,h)ϕ(g)(ah).

Given another functionµ : G × G → k∗ we can also define a new multiplication◦µ,

ag ◦µ bh = µ(g,h)ag ◦ bh.

3.1.1. Remark. These twists arise from a projectivization of theG-structures induced o
a module overA as for instance the associated Ramond-space (cf. [26]). In physics
this means that each twisted sector will have a projective vacuum, so that fixing their lift
in different ways induces the twist. Mathematically this means thatg twisted sector is
considered to be a Verma module overAg based on this vacuum.

3.1.2. Induced shift on the metric. Due to the invariance of the metric, the twist in t
multiplication results in a twisted metric

ηµ
(
ag, b

−1
g

) := µ
(
g,g−1)η(

ag, b
−1
g

)
.

3.1.3. Definition. We defines(µ,λ)(A) to be the collection

〈
G,A,◦µ,1, ηλ,ϕλ,χ

〉
.

3.1.4. Proposition. s(µ,λ)(A) is G-Frobenius algebra if and only if the following equ
tions hold forµ,λ:

µ(e,g) = µ(g, e) = 1. (3.1)

Furthermore,∀g,h, k ∈ G s.t.AgAhAk �= 0:

µ(g,h)µ(gh, k) = µ(h, k)µ(g,hk) (3.2)



248 R.M. Kaufmann / Journal of Algebra 282 (2004) 232–259

state-
he

tic if

:

and ifAgAh �= 0, then

λ(g,h) = µ(g,h)

µ(ghg−1, g)
. (3.3)

If AgAh �= 0 as well asAgAhAk = 0,

λ(g,hk)µ(h, k) = λ(g,h)λ(g, k)µ
(
ghg−1, gkg−1). (3.4)

Furthermore,

λ(gh, k) = λ(h, k)λ
(
g,hkh−1),

λ(e, g) = λ(g,g) = 1,

µ
([g,h], hgh−1)λ(h,g) = µ

([g,h], h)
λ
(
g−1, ghg−1), (3.5)

where the third equation has to hold for all pairsg,h s.t.∃c ∈ A[g,h] s.t.χh Tr(lcϕh|Ag ) �= 0,
wherelc is the left multiplication byc. In particular, it must hold for all pairsg,h with
[g,h] = e.

Proof. The first equation (3.1) expresses that 1 is still the unit for the algebra. The
ment (3.2) forµ is the obvious form of associativity. The statement (3.3) comes from t
compatibility equation of the group action with the multiplication.

Equation (3.4) ensures the equivariance of the multiplication. It is automa
AgAhAk �= 0 and also ifAgAh = 0.

The first equation (3.5) forλ is equivalent to the fact thatϕλ is still a G-action.
Notice thatλ(e, g) = 1 sinceAeAg = Ag and thus

λ(e, g) = µ(e,g)

µ(g, e)
= 1

and so the identity remains invariant.
Also notice that there is no twist to the character!

χλ
g = (−1)g̃ dimAg Str−1 (

ϕλ)
g

∣∣
Ae

) = χgλ(g, e) = χg.

This in turn implies the second statement in the second line by projective self-invariance

χ−1
g id|Ag = ϕλ

g |Ag = λ(g,g)ϕg |Ag = λ(g,g)χ−1
g id|Ag,

1 = λ(e, k) = λ
(
g−1g, k

) = λ(g, k)λ
(
g−1, gkg−1),

so

λ(g,h) = λ
(
g−1, ghg−1)−1

.
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The third equation follows from the projective trace axiom.
∀c ∈ A[g,h] andlc left multiplication byc:

χh Tr(lcϕh|Ag ) = χg−1 Tr(ϕg−1lc|Ah). (3.6)

Thus we must haveχh Tr(lcϕλ
h|Ag ) = χg−1 Tr(ϕλ

g−1lc|Ah) but this is equivalent to th
third equation in view of (3.6).

Now we check the other axioms.
The invariance of the metric follows from associativity:

ηµ(ag, bh ◦µ ch−1g−1) = µ
(
g,g−1)µ(

h,h−1g−1)η(ag, bh ◦ ch−1g−1)

= µ(g,h)µ
(
gh,h−1g−1)η(ag ◦ bh, ch−1g−1)

= ηµ(ag ◦µ bh, ch−1g−1).

The projective invariance of the metric reads as

λ(g, k)λ
(
g, k−1)µ(

gkg−1, gk−1g−1) = µ
(
k, k−1),

which is automatic sinceAgAkAk−1 �= 0. �
3.1.5. Definition. We call a twists(λ,µ) universalif it transformsanyG-Frobenius algebra
into aG-Frobenius algebra. We call two twistss(λ,µ) ands(λ′,µ′) isomorphic if for any
G-Frobenius algebraA the algebrass(λ,µ)(A) ands(λ′,µ′)(A) are isomorphic.

3.1.6. Theorem. The universal twists are in1-1 correspondence with elementsα ∈
Z2(G, k∗) and the isomorphism classes of universal twists are given byH 2(G, k∗).

Proof. If the twist is universal then there are no restrictions on the equations. In part
µ ∈ Z2(G, k∗) andλ is completely determined byµ via (3.3). All the other properties ar
then automatic. The claim about isomorphism classes is obvious by noticing that ifα and
α′ are cohomologous andα/α′ = dβ for someβ ∈ Z1(G, k∗) then a diagonal rescaling o
the generators ofkα[G] by β yieldskα′ [G] so the result follows from the characterizatio
of universal twists as taking tensor produce with twisted group rings below.�
3.2. Discrete torsion. In this subsection we prove that universal twists are exactly give
twisting with discrete torsion.

3.2.1. Reminder. Given twoG-Frobenius algebras〈G,A,◦,1, η,ϕ,χ〉 and〈G,A′,◦′,1′,
η′, ϕ′, χ ′〉 we defined [26] their tensor product asG-Frobenius algebras to be theG-
Frobenius algebra〈

G,
⊕
g∈G

(Ag ⊗ A′
g),◦ ⊗ ◦′,1⊗ 1′, η ⊗ η′, ϕ ⊗ ϕ′, χ ⊗ χ ′

〉
.

We will use the short hand notationA ⊗̂ B for this product.
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3.2.2. Definition. Given aG-Frobenius algebraA and an elementα ∈ H 2(G, k) we define
theα-twist of A to be theG-Frobenius algebraAα := A ⊗̂ kα[G].

Notice that

Aα
g = Ag ⊗ k � Ag. (3.7)

Using this identification theG-Frobenius structures are given by:

3.3. Lemma. The induced structures under the isomorphism(3.7)are

◦α|Aα
g⊗Aα

h
= α(g,h)◦, ϕα

g |Aα
h
= ε(g,h)ϕg,

ηα|Aα
g⊗Aα

g−1
= α

(
g,g−1)η, χg = χg. (3.8)

Proof. We notice that the two algebras have the same linear structureAα,g = Ag ⊗ kg �
Ag with the isomorphism given byag ⊗ g �→ ag . Now the multiplication is given by

(ag ⊗ g) ⊗ (ah ⊗ h) �→ agah ⊗ α(g,h)gh = α(g,h)agah ⊗ gh,

which yields the twisted multiplication.
The twist for theG-action is computed to be

ϕα,h(ag ⊗ g) = ε(g,h)ϕh(g) ⊗ hgh−1.

This leads us to the following proposition.

3.3.1. Proposition. Aα � s(α, ε)A.

3.3.2. Theorem. The set of universal twists are described by tensoring with twisted g
algebras which identifies this operation with twisting by discrete torsion.

In other words given a genericG-Frobenius algebraA there are exactlyH 2(G, k) twists
of it by discrete torsion.

3.3.3. Discrete torsion as phases for the partition sum. Notice that for anyc ∈ Aα[g,h] �
A[g,h],

χh Str(lcϕh|Aα
g
) = ε(h,g)χh Str(lcϕh|Ag ). (3.9)

This is the original freedom of choice of a phase for the summands of the partition fun
postulated by physicists. In this context, we should regardg,h: [g,h] = e and setc = e.
More precisely, set

Z(A) =
∑

g,h∈G: [g,h]=e

Str(χgϕg|Aα
h
) :=

∑
g,h∈G: [g,h]=e

Zg,h, (3.10)

Z(Aα) =
∑

ε(g,h)Zg,h. (3.11)

g,h∈G: [g,h]=e
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We could omit the factorsχg , but from the point of view of physics we should take t
trace in the Ramond space (cf. [26]) where thek[G] module structure is twisted byχ .

3.4. Supergrading. In this subsection we wish to address questions of supergrading.
is a general theory of supergradedG-Frobenius algebras and specialG-Frobenius algebras
We will expose the structures here for the group ring.

3.4.1. Super G-Frobenius algebras. If the underlying algebra of aG-Frobenius algebra
has a supergrading˜, then the axioms of aG-Frobenius algebra have to be changed to

(bσ ) Twisted super-commutativity:

ag ◦ ah = (−1)ãgãhϕg(ah) ◦ ag.

(ivσ ) Projective super-trace axiom:

∀c ∈ A[g,h] andlc left multiplication byc:
χh STr(lcϕh|Ag ) = χg−1 STr(ϕg−1lc|Ah),

where STr is the super-trace.
For details on the super-structure as well as the role of the super structure for s

G-Frobenius algebras we refer to [26].

3.4.2. Supergraded twisted group rings. Fix α ∈ H 2(G, k∗), σ ∈ Hom(G,Z/2Z) then
there is a twisted super-version of the group ring where now the relations read

ĝĥ = α(g,h)ĝh, (3.12)

and the twisted commutativity is

ĝĥ = (−1)σ(g)σ (h)ϕg(ĥ)ĝ, (3.13)

and thus

ϕg(ĥ) = (−1)σ(g)σ (h)α(g,h)α
(
gh,g−1)ĝhg−1 =: ϕg,hĝhg−1, (3.14)

and thus

ε(g,h) := ϕg,h = (−1)σ(g)σ (h) α(g,h)

α(ghg−1, g)
. (3.15)

We would just like to remark that the axiom (ivσ ) shows the difference between sup
twists and discrete torsion.
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3.4.3. Definition. We denote theα-twisted group ring with super-structureσ by kα,σ [G].
We still denotekα,0[G] by kα[G] where 0 is the zero map and we denotek0,σ [G] just by
kσ [G] where 0 is the unit of the groupH 2(G, k∗).

A straightforward calculation shows

3.4.4. Lemma. kα,σ [G] = kα[G] ⊗ kσ [G] and more generally.

3.4.5. Lemma. Let A be theG-Frobenius algebra or more generally super Frobenius
gebra with supergrading̃〈G,A,◦,1, η,ϕ,χ〉, thenA ⊗ kσ [G] is isomorphic to the supe
G-Frobenius algebra〈G,A,◦,1, η,ϕσ ,χσ 〉 with supergrading̃σ , where

ϕσ
g,h = (−1)σ(g)σ (h)ϕg,h, χσ = (−1)σ(g)χg, ãσ

g = ãg + σ(g). (3.16)

Using arguments and definitions for universal twists as for discrete torsion, we c
obtain the following proposition. Here universal means that there is no assumption on
particular structure of theG-Frobenius algebra, in other words it pertains to genericG-
Frobenius algebras.

3.4.6. Proposition. Given a (super) G-Frobenius algebraA the universal superG-
Frobenius algebra re-gradings are in1-1 correspondence withHom(G,Z/2Z) and these
structures can be realized by tensoring withkσ [G] for σ ∈ Hom(G,Z/2Z).

4. Projective representations, extensions, and twisted group algebras

In this section we first assemble classical facts about groups which will be exten
G-Frobenius algebras. As an intermediate step we analyze twisted group algebras
belong to both worlds.

4.1. Part I: groups.

4.1.1. Projective representations. A projective representationρ of a group is a map
ρ :G → GL(V ), V being ak-vector space, which satisfies

ρ(g)ρ(h) = α(g,h)ρ(gh), ρ(e) = id. (4.1)

It is easy to check thatα(g,h) ∈ Z2(G, k∗). Moreover, with a natural notion of proje
tive isomorphy two projective representations are isomorphic if their classes are coh
ogous (cf., e.g., [5,30]).

4.1.2. Extensions. Given a central extension

1 �→ A → G∗ π→ G → 1 (4.2)
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fix a sections of π and defineα : G×G → A by s(g)s(h) = α(g,h)s(gh). It is easy to see
that indeedα ∈ Z2(G,A) and furthermore changing the section or changing the exten
by an isomorphism preserves the cohomology class ofα.

Vice versa a cycle inα ∈ Z2(G,A) wereA is an Abelian group gives rise to a cent
group extension ofG:

1 �→ A → Gα π→ G → 1, (4.3)

whereGα = A�G. The maps are given bya �→ (A, eG), (a, g) �→ g and the multiplication
is given by(a, g)(a′, g′) = (aa′α(g,g′), gg′).

4.1.3. The transgression map. Given a cycleα ∈ H 2(G,A) there is a natural map

Traα : Hom
(
A,k∗) → H 2(G,k∗), (4.4)

which sendsχ ∈ Hom(A, k∗) to the cocycles defined by(g,h) �→ χα(g,h). Actually this
map maps into the cohomology group with values in the torsion subgroup ofk∗ which we
call tors(k∗):

Traα : Hom
(
A,k∗) → H 2(G, tors

(
k∗)). (4.5)

4.1.4. Facts. We briefly give the facts linking group cohomology, projective representa
and twisted group algebras. For a detailed account see [30].

(1) The classes of central extensions of a groupG by an Abelian groupA are in 1-1
correspondence withH 2(G,A).

(2) Any projectiveα-representation is a module over theα-twisted group algebrakα[G].
(This is in fact an equivalence of categories.)

(3) Every projective representation with cycleα is projectively equivalent to one that ca
be lifted to linear representation onGα̂ if [α] is in the image of the transgression m
associated to[α̂].

(4) If H 2(G, k∗) = H 2(G, (tors(k∗)) then:
(a) any projective representation can be lifted to a suitable group, and
(b) there is a universal extension

1 → A → G∗ → G → 1

such thatany projective representation lifts toG∗ and moreover the groupA �
H 2(G, k∗).

Assumption. For the remainder of the section we will assume thatk has the property tha
H 2(G, k∗) = H 2(G, (tors(k∗)). This is the case, e.g., if is algebraically closed ork = R,
see, e.g., [30].
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4.2. Part II: the twisted group algebra revisited. Fix [α′] ∈ H 2(G,A), an element[α] ∈
Im(Tra[α′]) and a pre-image characterχ ∈ Hom(A, k∗).

This yields a central extension:

1 �→ A → Gα′ π→ G → 1 (4.6)

with a sections of π s.t. the cocycle corresponding tos is α′. The mapχ induces map

χ : k
[
Gα

] → k[G] :ag �→ χ(a)g (4.7)

while the sections induces a map

s : k[G] → k
[
Gα

]
:g �→ 1Ag. (4.8)

4.2.1. Projective algebra. Using the mapss,χ , we can also characterize the multiplicati
µα in kα[G] as follows: it is the map which makes the following diagram commutativ

k
[
Gα

] ⊗ k
[
Gα

] µ
k
[
Gα

]
χ

k[G] ⊗ k[G]
s⊗s

µα

k[G].

We already know thatµα induces the structure of an algebra. This diagram capture
statement about lifts of projective representations ofG to linear representations ofGα .

This is essentially 4.1.4(1).

4.2.2. Projective coalgebra. Using the diagram as above, we define a comultiplication
commutativity of:

k
[
Gα

] ∆
k
[
Gα

] ⊗ k
[
Gα

]
χ⊗χ

k[G] ∆α

s

k[G] ⊗ k[G].

The coalgebra structure we induce in this way onk[G] is actually the old coalgebra stru
ture, butkα[G] ceases to be a bialgebra.

4.2.3. Remark: braiding. If one would like a bialgebra structure on the group ringkα[G]
then one has to consider braided objects, where the braiding is inverse to the twist. It
be possible to find analogous statements to the ones presented in this article by con
structures overkα[G] in braided categories.
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4.2.4. Adjoint action. Let ad denote the adjoint actionk[Gα]. Then there is an induce
action onk[G],

k
[
Gα

] ⊗ k
[
Gα

] ad
k
[
Gα

]
χ

k[G] ⊗ k[G] adε

s⊗s

k[G].

According to 1.3.2 this action is given by

adε(g)(h) := ε(g,h)ghg−1.

4.3. Part III: G-Frobenius algebras. We now apply the logic of part II to generalG-
Frobenius algebras.

Let H be an Abelian group. Fix[α′] ∈ H 2(G,H), an element[α] ∈ Im(Tra[α′]) and a
pre-image characterχ ∈ Hom(H, k∗) and a central extension:

1 �→ H → Gα′ π→ G → 1 (4.9)

with a sections of π s.t. the cocycle corresponding tos is α′.

4.3.1. Definition. Let Aα be aGα-Frobenius algebra. We say that aG-Frobenius algebraF
can be lifted toAα if there are mapsi :A → Aα and res :Aα → A such that the structura
maps fit into the commutative diagrams

Aα
ρα

Aα ⊗ k
[
Gα

]
res⊗χ

A
ρ

i

A ⊗ k[G]

and

Aα ⊗ Aα
µα

Aα

res

A ⊗ A
µ

i⊗i

A

k
[
Gα

] ⊗ Aα
ϕα

Aα

res

k[G] ⊗ A
ϕ

s⊗s

A

and all algebraic structures are compatible.
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4.3.2. Definition. We say that anH -Frobenius algebraB is H homogeneous if it is en
dowed with an additional leftH -action τ which shifts group degree and is equivaria
w.r.t. multiplication. More precisely the following two equations hold:

τ (h)(Ah′) ⊂ Ah,h′, τ (h)(ab) = aτ(h)(b). (4.10)

It is standard to see that

4.3.3. Remark. With the notation as above, the left actionτ of H on B is necessarily
by isomorphisms and thusB is a specialH -Frobenius algebra whose components are
isomorphic. Moreover,B is Galois as ak[H ]-comodule overBe.

4.3.4. Definition. Given aG-Frobenius algebraA, anH -homogeneousH -Frobenius al-
gebraB and a cocycleα ∈ Z2(G,H) we define thecrossed productof A andB to be the
Gα-Frobenius algebra

A #α B := 〈
Gα,A ⊗ B,◦ #α ◦′,1⊗ 1, η ⊗ η′, ϕ #ε ϕ′, χ ⊗ χ ′〉, (4.11)

where

(ag ⊗ bh) ◦ #α ◦′ (cg′ ⊗ dh′) = agcg′ ⊗ τ
(
α(g,g′)

)
bhdh′ (4.12)

and

ϕ #ε ϕ′(g,h)(ag′ ⊗ bh′) = ϕg(ag′) ⊗ τ
(
α(g,g′)α

(
gg′, g−1))ϕh(bh′). (4.13)

We leave it to the reader to verify all axioms, since it is analogous to previous ca
tions.

4.3.5. Quantum symmetry group. The postulated second left action by translationτ can
be viewed as the quantum symmetry group postulated by physicists. Notice that
freely. The invariants are linearly isomorphic to

⊕
Ag ⊗BeH whereeH is the unit elemen

of H .

4.3.6. Lemma. The linear map above induces an isomorphism

Hτ (A #α B) �
⊕
g∈G

(Ag ⊗ BeH )

asG-Frobenius algebras with trivial action on the second factor.
Here we denoted the invariants under the action ofH by τ by Hτ .

4.3.7. Definition. Fix χ ∈ Hom(H, k∗) then there is a natural map fromB to Be given by
τ (h)be �→ χ(h)be. This map induces a map

A #α B →
⊕

(Ag ⊗ BeH ),
g∈G
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which induces a structure ofG-Frobenius algebra on
⊕

g∈G(Ag ⊗ BeH ), theG-action on
the second factor being trivial. We define

(A #α B)χ

to be thisG-Frobenius algebra.

It is easy to check that the following holds:

4.3.8. Lemma. Keeping the notation above, let[α′] = Tra[α](χ) and more precisely on th
level of cocycles letα′(g, g′) = χα(g,g′).

Then

(A #α B)χ �
(⊕

(Ag ⊗ BeH )
)

α′ .

4.3.9. Definition. Given a cocycleα ∈ Z2(G,H), a central extensionGα of G by H and a
G-Frobenius algebraA we defineAα to be theGα-Frobenius algebra

Aα := A #α k[H ].

4.3.10. Theorem. Given a G-Frobenius algebraA and cocyclesα ∈ Z2(G, k∗), α′ ∈
Z2(G,H) which are related byχ ∈ Hom(G, k∗) via α(g,g′) = χ(α′(g, g′)).

Then the twistAα of A lifts to theGα′
-Frobenius algebraAα′

and moreover,(
Aα

)χ � Aα.

Finally, if G∗ is the universal extension ofG whose cocycle isβ ∈ H 2(G,H 2(G, k∗)),
then any twistAα of aG-Frobenius algebraA lifts to Aβ .

Proof. Choose a sections of the extension yieldingα. We denote the unit element
H by eH and denotes(g) by eHg. We let i :Ag → Aα′

eH g be the map given byAg →
Ag ⊗keH :ag �→ ag ⊗eH and define res :Aα′

hg � Ag ⊗keH �→ Ag to be the mapag ⊗eH �→
χ(h)ag .

Then

(res⊗ χ)
(
ρα′(

i(ag)
)) = (res⊗ χ)

(
ρα′

(ag ⊗ eH )
)

= (res⊗ χ)(ag ⊗ eH ) ⊗ (eHg) = ag ⊗ g,

which assures the comodule algebra structure

χ
(
µα

(
(i ⊗ i)(ag ⊗ bg′)

)) = χ
(
agbg′ ⊗ α(g,g′)gg′) = α(g,h)agbg′,

sinceAeH gAeH g′ ⊂ Aα(g,g′)gg′ which assures the algebra structure

χ ◦ ϕ ◦ (s ⊗ s)(g ⊗ ah) = χ ◦ ϕ
(
(eHg ⊗ AeH g′)

) = ε(g, g′)ϕg(ag′),
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which assures the module algebra structure, sinceϕeH g(AeH h) ⊂ Aε′(g,h)gh, where we set

ε′(g, g′) = α′(g,h)

α′(ghg−1, g)

to be the cocycle of the adjoint action. Then by 1.3.2,

χ
(
ε′(g, g′)

) = ε(g, g′).

For the last statement notice that (cf., e.g., [30])

k
[
G∗] =

∏
α∈T

k
[
Gα

]
,

whereT is a transversal forB2(G, k∗) in Z2(G, k∗). SoAβ � ⊕
α∈T Aα and we can lift

to the appropriate component.�
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