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Abstract

We analyze the algebraic structures@fFrobenius algebras which are the algebras associated
to global group quotient objects a.k.a. global orbifolds. Heres any finite group. First, we show
that these algebras are modules over the Drinfel'd double of the groug[idfigand are moreover
k[G]-module algebras and G]-comodule algebras.

We furthermore conside®-Frobenius algebras up to projective equivalence and define universal
shifts of the multiplication and th&-action preserving the projective equivalence class. We show
that these shifts are parameterizedZt?;(G, k*)and bsz(G, k*) when considering of;-Frobenius
algebras up to isomorphism. We go on to show that these shifts can be realized by the forming of
tensor products with twisted group rings, thus providing a group acti@? of, k*) on G-Frobenius
algebras acting transitively on the clasée&robenius related by universal shifts. The multiplication
is changed according to the cocycle, while theaction transforms with a different cocycle derived
from the cocycle defining the multiplication. The values of this second cocycle also appear as a factor
in front of the trace which is considered in the trace axion&efrobenius algebras. This allows us
to identify the effect of our action b 2(G, k*) as so-called discrete torsion, effectively unifying
all known approaches to discrete torsion for global orbifolds in one algebraic theory. The new group
action of discrete torsion is essentially derived from the multiplicative structuéeBfobenius al-
gebras. This yields an algebraic realization of discrete torsion defined via the perturbation of the
multiplication resilting from a tensor product with a twisted group ring.

Additionally we show that this algebraic formulation of discrete torsion allows for a treatment of
G-Frobenius algebras analogous to the theory of projective representations of groups, group exten-
sions and twisted group ring modules.
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Lastly, we identify another set of discrete universal transformations a@eRgpbenius algebras
pertaining to their super-structure and classified by KIGnZ /27) which are essential for the appli-
cation to mirror symmetry fosingularities with symmetries.

0 2004 Elsevier Inc. All rights reserved.

Introduction

G-Frobenius algebras were introduced in [26] to explain the algebraic structure replac-
ing Frobenius algebras when one is dealing with global group quotients by the action of a
finite groupG, a.k.a. global orbifolds, in theosesuch as (quantum) cohomology of global
quotients [18,22], K-theory [23], k&l rings of singularities [26,29], et&-Frobenius
algebras have also provided exactly the right structure to describe the cohomology of sym-
metric products [27,28] whose structure is closely related to that of Hilbert schemes [21].
Physically they can be thought of as topological field theories with a finite gauge group.
The precise sense of this interpretation in terms of functors from a cobordism category to
a linear category is contained in [26].

The characteristic features 6-Frobenius algebras are that they are group graded non-
commutative algebras with a group action and a controlled non-commutativity. These
algebras take into account the geometry of all the various fixed point sets under the ac-
tion of the various group elements and their interrelations. The group dggrae of the
algebra encodes the properties of the fixed point set of the actignebg. For a non-
trivial elementg the group degreg parts are called the twisted sectors, while the part
of group degree of the identity is called the untwisted sector. The data @ -tpeading
together with the required type 6f-action and several compatibilities can be concisely re-
stated by sayings-Frobenius algebras are modules over the Drinfel'd double of the group
ring D(k[G]). This gives an important link of7-Frobenius algebras to other orbifold the-
ories. The role of the Drinfel'd doubl® (k[G]) in the description of orbifold conformal
field theories as described by [9] was first observed in [2,3,11], for a discussion see be-
low.

As we prove below, the algebraic structures 6f-drobenius algebra are as follows: it is
naturally a leftc[G]-module algebra as well as a rigtitG]-comodule algebra. Moreover,
it satisfies the Yetter—Drinfel'd (YD) condition for bimodules and is thus also a module
over D(k[G]), the Drinfel'd double ofk[G]. Thus one could call it @& (k[G])-module
algebra

The invariants of aG-Frobenius algebra under the group action yield a commuta-
tive algebra which is naturally graded by the conjugacy classes of the group which have
been previously regarded for instance in the context of cohomology [6]. The larger non-
commutative algebras are more adapted, éx@x, to reflect the geometry and general
properties. The most pertinent example being the existencesofjeaded multiplication
in lieu of a complicated grading by conjugacy classes.

Another feature which is best described in the non-commutative setup is the phenom-
enon of discrete torsion. This is the main topic of the present paper. Discrete torsion is
a phenomenon which is expected to appeathim setting of global quotients by finite
groups. In different settings discrete torsiakes on different meanings, but in all of them
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one thinks about a new “degree of freedom” which one should take to mean that there is
not a unique description of an orbifold, but that there is a whole set of descriptions indexed
by cohomological data of the group in question. In our setting dfrobenius algebras an
ambiguity in theG-action dubbed discrete torsion was first observed in [26] for so-called
JacobianG-Frobenius algebras.

In the present paper, we approach the “ambiguity” by considering transformations on
the multiplication and the5-action which map oné& -Frobenius algebra into a projec-
tively equivalent one. We show that those transformations, also called twists, which can be
defined universally are exactly parameterized?8yG, k*). Here universal means that the
twists are defined for ang -Frobenius algebra.

We then go on to show that these universal twists folGalFrobenius algebras can be
realized by the operation of tensoring with twisted group rings. This operation preserves
the dimensions of the twisted sectors and gener@tésobenius algebras which are pro-
jectively equivalent by changing the multiplication and tieaction, where the change in
the G-action is completely determined by the change in the multiplication. Moreover, this
leads to a group action dt2(G, k*) on the set ofG-Frobenius algebras, thus realizing
discrete torsion for the first time as a group action.

The effect the twisting of the multiplication has on tleaction is via a cocycle,
which, as we show, also appears as factor amfiof the trace considered in the trace ax-
iom for G-Frobenius algebras. In the case the elemgnsconsidered in the trace axiom
commute, these factors are what has classi¢edbn called discrete torsion. This observa-
tion justifies the name and furthermore allows us to relate to various other definitions of
discrete torsion in different settings, see below.

We would like to note that due to the consideration of the multiplicative structure of
G-Frobenius algebras, not only have we identified the possible choices of discrete torsion,
but we have found a group of transformations acting by taking tensor products with twisted
group rings, which transforms from one choice of discrete torsion to any other. Also, for
these considerations it is essential that we deal not only with the invariants, but with the
whole G-Frobenius algebra, since the dimensions of the invariants of the untwisted sectors
can change. The operation of twisting by discrete torsion by tensoring with the appropriate
twisted group ring changes the metric, the multiplication and the group action in a projec-
tive fashion. We would also like to stress that it is actually the group of cocycles which
plays a major role and not only the cohomology classes. Two cohomologous cycles in
Z?(G, k*) give rise to isomorphic, but differeit-Frobenius algebras.

As demonstrated in [28], the presented “algebra of discrete torsion” allows for a sim-
ple explanation of a sign for the metric which appears in passing from the symmetric
product to the Hilbert scheme that had beenchmdiscussed in the literature (see, e.g.,
[18,21]). Moreover, the consideration of cocycles versus cohomology classes also ex-
plains the existence of a whole family of multiplications [33] associated to the change
of sign, as shown in [28]. This application exhibits the importance of dealing with the
cocycles themselves rather than their conomology classes, since the twists actually come
from non-trivial cocycles whose cohomology class is, however, trivial when considering
C* coefficients.

Another application of the current presentation of discrete torsion and super-twists (see
below) is given by the results of [27] which characterize ¢hérobenius algebra related
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to symmetric products as unique up to the above mentioned twists, which are explicitly
computed [27].

At this point it might be instructive to compare and contrast the discrete torsion appear-
ing in G-Frobenius algebras with other incarnations of discrete torsion that have appeared
in the literature.

In order to make the operation of discrete torsion transparent, we have phrased the
present article purely in terms of algebra. To connect to the literature it will be, however,
necessary to make some digression into physics and vertex operator algebras (VOAS). The
reader not enthusiastic about these subjects can safely skip ahead, since none of the mate-
rial is necessary for the presentation of the algebraic facts.

As mentioned previously in terms of physics one can thin& éfrobenius algebras as a
non-commutative incarnation of topological field theories with a finite gauge drvefque
projection

In physics, orbifolds were first considered for string theory [9,10,38], Landau—-Ginzburg
theories (see, e.g., [15,37]), conformal field theory [16], and gauge theory [17]. The rela-
tionship betweert;-Frobenius algebra, orbifold string theory and orbifold conformal field
theory is, as is customary in considerations related to mirror symmetry, given by regarding
chiral rings and suitably twisted models such as Landau-Ginzburg B-models or A- and
B-twisted Sigma-models [39].

In all these theories discrete torsion reakts appearance as an ambiguity in assigning
a fixed “model” to a given orbifold geometry. These treatments also all include the con-
sideration of twisted sectors and the operation of the orbifold g@lgy “conjugation”
on the twisted sectors. Here “conjugation” means that the action of an elentakes
the h-twisted sector to thekg 1 twisted sector. Another common property of all orbifold
descriptions is that the twisted sectors are modules over the untwisted sector. The common
approach is then to consider the invariants under the group action and calculate for instance
the dimensions, which yield partition functions. A more mathematical approach is to clas-
sify the possible twisted the modules over the invariants untwisted sector in examined.

As observed in [2], the particular structure of tGeaction on the twisted sectors pro-
vides a link to the Drinfel'd double. By considering operators for the group action and
operators for the projection to the twisted sectors and the algebra they form one arrives at
D(k[G]). Strictly speaking in the physical setup (e.g., [16]), the twisted sectors are only
considered after the projection to invariants, so that the projections tg-tivisted sec-
tors are only possible in the case of an Abelian group. Otherwise the twisted sectors are
indexed only by conjugacy classes. So, to be precise after the projection there is not a
D(k[G])-module structure, but a module structure of the twisted sectors over the various
centralizers. These representatithen can be induced to representation®¢t[G]) [11].

A striking fact is that all the irreducible representation theory can be obtained by inducing
from representations of the centralizers as noticed in [3,11] (see [25] for a generalization).
The classical treatment @ (k[G]) in the orbifold setup [3,11] actually only us&gk[G])

as a separate structure, whose representation theory miraculously reproduces the fusion
rules of the conformal field theory in the special case of so-called holomorphic RCFTs,
which were considered in [16]. For a nice explanation of the underlying philosophy in
terms of an equivalence of categories of modules and specific calculations in this direction
see [31].
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Classically, that is to say in physics, the ambiguity of discrete torsion manifests itself
as a consistent choice of factors in front of the partition functions on tori and more math-
ematically in the possibility of having twisd modules over the untwisted sector. More
generally given a CFT one can consider the partition function over any closed surface and
this will yield factors depending on the sade. All these factors can however be expressed
essentially via the ones from the torus (see, e.g., [4,37]).

In the considerations of open string theory and D-branes discrete torsion has also made
its appearance in the form of projective representation of the orbifold group [7,8], see also
[35]. In this form the “phase factors” arassociated to swates with boundary instead
of closed surfaces. The fact that the phaseidrs defined in this fashion [7] agree with
those defined for the closed surface [36] was observed in [1]. Here the equality is a formal
statement, since the surfaces are decidedfgrént, one is closed and the other has a
boundary.

The mathematical formulation of conformal field theory is mostly done in terms of ver-
tex operator algebras. These algebraic objects then inherit the structures discussed above.
This leads to the classification of all twisted modules over the invariants of the untwisted
sector as in [12-14,24].

Our setup is slightly different, but can lbelated to the ones described above. The first
major difference is that in the construction involviGgFrobenius algebras we do not only
consider the invariants, but define the multiplication and all other strudbhafese taking
invariants

Thus in our setup, since we consider all twisted sectors before projection to the invari-
ants, aG-Frobenius algebra is indeed® k[ G])-module. We actually derive this property
using the fact that th&-grading gives &[G]-comodule structure, and tl@-action gives
ak[G]-module structure which satisfy the Yatt®rinfel'd (YD) condition of [32]. More-
over, we show that the multiplicative structure is also compatible, that is thef@benius
algebrais not onl¥[G]-module and &[G]-comodule, but actually & G]-module algebra
and ak[G]-comodule algebra.

The second major difference is that we are most interested in the poatielera
structures given underlying linear data. The consideration ofZfilig§ G]) module and
the twisted sectors as modules over the untwisted sector are only intermediate steps as ex-
plained for instance in [26,27,29]. In the setting of VOAs a multiplication of the twisted
sectors is not usually considered and only known for the special example &@f/2%
orbifold [12] used to construct the monster and in the cases recently constructed in [19].

As we explained above the main tool in the description of the group action of discrete
torsion are the possibl@-Frobeniusalgebrastructures on &-graded linear space all of
whose graded components are one-dimensional which precisely the twisted group algebras.
Moreover, once the multiplication is fixed all other structures of@Erobenius algebra
can be derived from it. Thus itis tmaultiplicative structurevhich characterizes the twisted
group algebras and hence discrete torsion. This gives a different interpretation of the group
of cocyclesZ?(G, k*) in the setting of orbifolds, which is related to the usual one via
the operation of forming tensor products. Namely, using our results on universal twists
presented below, it follows that tensoring witie twisted group ring realizes all discrete
torsions by ayroup actionof Z2(G, k*). Classically one discrete torsion is otifidexedoy
H?(G, k*). Our group action descends H?(G, k*) if we considerG-Frobenius algebras
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up to isomorphism. As noted above this entails that two isomor@ghkrobenius algebras
might have different metrics. The univelisacondition for the twists can be compared to
the genericity conditions used in [2,3,11,16] to derive the fusion rules.

Thus one can say thaultiplicativestructure ofG-Frobenius algebras and twisted group
rings in particular explain, classify and realize what has to be called “discrete torsion” for
G-Frobenius algebras as a group action.

It turns out that while the cocycles themselves describe the twists in the multiplication a
derived cocycles describes the twist of the group action. It is this cocyclevaluated
on commuting elements which makes it possible to link our results to other consider-
ations in the literature on various quantities which all seem to carry the same name of
discrete torsion. The most important observation here is that the cacgglpears, as we
show, as a factor in front of the trace in the trace axiom which by [26] corresponds to the
partition function on the taws with one boundary. Here we do not need commuting mon-
odromies. Moreover, using the cobordism construction for commuting monodromies this
trace corresponds at the same time to the closed torus and to the torus with one bound-
ary component with monodromy around that boundary being identity, see [26]. Via the
cobordism description of [26] one can also calculate the discrete torsion for other sur-
faces. These considerations yield an altéweadescription of the results of [1], with the
additional benefit that we do not have to switch between open and closed string theory
and compare two actually different surfaces on a formal level. Also, we do not have to
restrict ourselves to commuting elements, but can use a unifying framework of cobor-
disms.

We stress that sinc@-Frobenius algebras already encode the whole cobordism theory
[26], only the torus makes a direct appearance through the trace axiom. This is enough for
all surfaces though. These correspond to déffertraces, whose calculation is then more
or less straightforward using [26].

The action of the modular group is built intiee theory by cutting and gluing operations
on the torus [26], whose algebraic manifestation is the trace axiom. One astonishing upshot
about the treatment of discrete torsion is that the modular transformation properties, viz.
the trace axiom, hold automatically for twisted group rings, so we do not have to deal with
this separately. For a discussion of the action of the modular group in the representation
theory of D(k[G]) see [3].

Another new point is that the phase factas essentially derived from the multiplicative
structure as it results from the twist for the group operation which is defined via the multi-
plication in the twisted group ring. As an additional benefit, we do not need any recourse
to one of the different geometrical schemes or an ad hoc introduction of phase factors.
Also the relationship of the cocycles #?(G, k*) and cocycles is transparent and has a
simple algebraic reason. And as mentioned previousk/naturally defined on the whole
of G x G and not just only on the commuting elements.

In terms of the mathematical theory there are twists by discrete torsion in orbifold co-
homology as explained in [34] which agree with the ones we define in the setting of global
orbifolds [18,22]. The other cases of discrete torsion which were previously found for Jaco-
bian G-Frobenius algebras [26] and the algebraic discrete torsion of [27] are all subsumed
in the present formulation.
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Thus one can say that our present treatment unifies and extends all the different ap-
proaches to discrete torsion [1,7,8,26,27,34-36,38] in the settiGgfabenius algebras,
that is topological field theories with a finite gauge group in the sense of [26].

We go on to show that our treatment of discrete torsion allows an interpretation which
analogous to the theory of projective representations of groups, group extensions and
twisted group ring modules. Loosely said given a cocycte Z2(G, k*) as above on can
find an Abelian extensioG® whose representations correspond to lifts of projective rep-
resentations of; with the cocyclar, see [30] and Section 4 for details. This classical fact
has for instance been successfully exploited in [20] to obtain character tables and quiver
diagrams for projective representations necessary to discuss the fusion rules.

Our motivation is different and comes from the fact that the gréuypgays a central role
in the structure of &-Frobenius algebra, so it ought to be possible to fidetaFrobenius
algebra which encodes the situation after the twist by discrete torsion. We show that there
is indeed a canonical way to constructG&-Frobenius algebra which is a lift of th@-
Frobenius algebra twisted hy. Notice that this entails a new bigger grading group and
thus new twisted sectors and an extension of the action to the bigger group.

In a geometric interpretation this amounts to taking a twisted Cartesian product with
point/ H whereH is the Abelian group used in the extension. In the case of trividlis
corresponds to extending the action of the gr@upo the groupG x H with H acting
trivially. Informally, one can either compare this to a fattening of a point by a trivial action
or more generally to different stacks hiag the same coarse moduli space. We plan to
elaborate on these geenical aspects in [23].

We would like to point out that even after twisting teFrobenius algebra remains a
G-Frobenius algebra, that is there is still has a true actiofi ahd not only a projective
one. This seems to be the reason, parallel to the discussion in [17], that our discrete torsion
isin Z2(G, k*)—respectivelyH %(G, k*) up to isomorphism—rather than #3(G, k*) as
discussed in [2,3,11,16]. Another observation in the same spirit is that since the condition
of [16,17], as explained in [3], is met one can expect to get the same representation theory
from the quantum double as from the twidgguantum double [3]—#hough in our setting,
we never have change from(k[G]) to its twisted version.

We furthermore examine on the generic super-structures one can impose on a given
G-Frobenius algebra and show that these are again given by tensor product, but now with
“superized” versions ok[G]. These are a second type of discrete deformation, which is
actually different from the one of discrete torsion.

This freedom of choice is essential for applications to orbifolding and mirror symmetry
for singularities with symmetries [26,29].

In summary, we have obtained a new algebraic way of describing discrete torsion
through agroup operatiorof Z2(G, k*) via forming of tensor products with twisted group
rings. Here both the description of discrete torsion as a group action and the relevance of
the use of cocycles rather than just the cohomology classes are novel points. We also use a
new approach, since we essentially usatidtiplicativestructure ofG-Frobenius algebras
which was not previously discussed. In our formulation discrete torsion is primarily a twist
of the multiplication, which has as a secondary consequence a twist G-twdion. This
also clarifies the appearance#(G, k*) which naturally classifies the multiplications in
the various twisted group rings.
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It is this algebraic description which via the cobordism considerations of [26] repro-
duces, extends, and unifies all the previously known incarnations of discrete torsion for
global quotients—and arbitrary surfaces.

We would like to emphasize that the elegant and lucid picture of discrete torsion as
given by the operation of tensoring with twisted group rings is only possible when consid-
ering the whole non-commutativ@-Frobeniusalgebrarather than its invariants or only
its D(k[G])-module structure—which are the focus of all previous work on the subject—
where such a description cannot exist.

The paper is organized as follows.

In the first section, we recall the notion 6FFrobenius algebras, and show that group
rings and twisted group rings a€e-Frobenius algebras.

In the second section, we give the algebraic properties-¢frobenius algebras. The
main theorem is that &-Frobenius algebra has the natural algebraic structurecpfd
module algebra and/d G]-comodule algebra which satisfies the YD condition.

We also characterizé-Frobenius algebras which are Galois over their identity sector
ask[G]-comodule algebras.

The third section contains the realiiom of discrete torsion as an action Bf(G, k*)
on G-Frobenius algebras and &f%(G, k*) on the isomorphism classes 6tFrobenius
algebras. This is done by analyzing universal twist<GeFrobenius algebras which are
twists of the multiplication and the group action preserving the projective class of-the
Frobenius algebra. The main statements then are, that

(1) the universal twists are entirely governed by the multiplicative structure,

(2) the universal twists are in 1-1 correspondence WRWG, k*),

(3) these twists can be realized by tensoring with the respective twisted group ring, which
(4) renders aroup actionof Z2(G, k*) on the set ofG-Frobenius algebra. Furthermore,

(5) the induced change in thiig-action is given by a cocycle, which

(6) appears in front of the trace of the trace axiom.

The result (6) legitimizes the name of discrete torsion and gives the link to the other quan-
tities of the same name as discussed above.

Additionally, we study the generic super-structurggdZ-gradings) which one can im-
pose on a giveld -Frobenius algebra and show that they are classified by(8o/27)
and can be implemented by tensoring with super group algebras. We prove that both twists
“commute” in the sense that one can twist by twisted super group algebras or first by
twisted group algebras and then by super group algebras.

In the fourth section we introduce a theory for twistgbfrobenius algebras in analogy
with projective representations of a group and their relation to modules over the twisted
group algebra and extensions of the group. Here the final result is that given any Abelian
groupH and a cocycléua'] € H?(G, H) then for any central extensia@ of G by H with
class[e’] and anyG-Frobenius algebra there is a natural;® -Frobenius algebra® to
which the Frobenius algebr&, (A twisted bya) can be lifted. Herda] € H2(G, k*) is
the image under the transgression map associafed]tof a y € Hom(H, k*). Vice versa,
the abovey gives a push down map, which mag$ onto A,,. Lastly, we show that there
is a universal setup of this kind if there is a representation grou@ for
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1. G-Frobeniusalgebras

We fix a finite groupG and denote its unit element lay We furthermore fix a ground
field k of characteristic zero for simplicity. With éusual precautions the characteristic of
the field does not play an important role and furthermore the group really only needs to be
completely disconnected.

1.1. Definition. A G-twisted Frobenius algebraor G-Frobenius algebra for short—over
a fieldk of characteristic 0 i$G, A, o, 1, n, ¢, x), Where

G finite group;

A finite dimG-gradedk-vector spaceA = P, Ag, A is called the untwisted
sector and thel, for g # e are called the twisted sectors;

o a multiplication onA which respects the grading: A, ® Ay, — Agn;
a fixed element im,.—the unit;

n non-degenerate bilinear form which respects grading, /8,24, = 0 unless
gh=e;

) an action ofG on A (which will be by algebra automorphismg),e Hom(G,
AUt(A)), S.t.gg(Ap) C Agpg-1;

X a charactey € Hom(G, k%),

satisfying the following axioms:

Notation. We use a subscript on an elementdofo signify that it has homogeneous group
degree—e.gg, meansi, € A,—and we writep, := ¢(g) andy, := x (g).

(a) Associativity

(ag oap) oap =ag o (aj o a).
(b) Twisted commutativity

ag o ap = @g(ap) o a,.
(c) G invariant unit
loag=as0l=a, and ¢g(1)=1

(d) Invariance of the metric

n(ag, ap o ar) =n(ag o ap, ag).

(i) Projective self-invariance of the twisted sectors

PglAg = X;lid.
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(i) G-invariance of the multiplication
@k (ag o ap) = gr(ag) o i (an).
(iif) ProjectiveG-invariance of the metric
HOEP
(iv) Projective trace axiom
Yc € Apg i andl. left multiplication byc:
xn Trewnla,) = Xg-1 Tr(@g-1lcla,)-
1.1.1. Special G-Frobenius algebras. We briefly review speciaG-Frobenius algebras.
For details see [26,27].
We call aG-Frobenius algebra special if all, are cyclicA, modules via the mul-

tiplication A, ® A, — A,. Fixing a cyclic generator e A, the algebra is completely
characterized by two compile cocycles, namely € Z2(G, A.) andg € Z1(G, k*[G])

whereZ are graded cocycles (see [26]) aidG] is the group ring restricted to invertible
coefficients withG-module structure induced by the adjoint action:

(@) (Y mnh) = wnghg™
h

We setp(g) = 3=, ¢g.nghg ™ andyg.n =y (g, h).
The multiplication and5-action are determined by

1.1p = yg,nlen, Pe(Ln) = g nlype-1.
There are two compatibility equations:
(pg,hyghg*l’g - Vgh and (1.1)
Ph.gPk.hVigk—1 knk—1 = Pk (Vg.h) Pk gh- (1.2)

Notice that if y, 5 is non-zero, i.e.AgA, # 0, then (1.1) determineg,,,. We also
would like to remark that (1.2) is automatically satisfiediifA, A # O (cf. [26]).

1.2. Thegroup ring k[G]. Let k[G] denote the group ring af .
1.2.1. The Hopf structure of k[G]. Recall thatk[G] is a Hopf algebra with the natural

multiplication, the comltiplication induced byA(g) = ¢ ® g, counite(g) = 1 and an-
tipodeS(g) =g~ 1.
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1.2.2. The G-Frobenius structure of k[G]. When considering[G] as aG-Frobenius
algebra we will considet[G] as a leftk[ G]-module with respect to conjugation, i.e., the
mapk[G] ® k[G] — k[G] given by

D g ® Y pnh> Y vnpgghg ™t
8 h g.h

The other structures are the naturallygraded natural multiplication ok G] with the
unite, the metricn(g, k) = 841, andy, = 1. It is trivial to check all axioms.

If we were to choose a gradirige Hom(G, Z/2Z), then x, = (—1)¢ and @g(h) =
(—1)8".

1.3. The twisted group ring k*[G]. Recall that given an element € Z2(G, k*) one
defines the twisted group ring*[G] to be given by the same linear structure with mul-
tiplication given by the linear extension of

g ®h>alg, h)gh (1.3)

with 1 remaining the unit element. To avoid confusion, we will denote elemerit$[6f]
by ¢ and the multiplication with . Thus

g-h=a(g hgh.

For « the following equations hold:

alg.e)=ale,g), o(g.g ) =a(g Tt g). (1.4)
Furthermore,
e 1 e
1 = 7_1 g 1.
a(g, g™

1.3.1. Remark. Given a two cocycle and possibly extending the field by square roots we
can find a cocyclé& in the same cohomology class which also satisfies

a(g.gh) =1 (1.5)
If one wishes to considet as a ground field, one can work with such cocycles.

1.3.2. Lemma. Set

a(g, h)
(g h)y=——"75—,
8 a(ghg™1, g)
then the left adjoint action df*[G] onk“[G] is given by

—

g ®@h S e(g, h)ghg 1. (1.6)
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Proof. By the definition of multiplication irk®[G],

1 a(g.ha(gh,g™h ——
‘g = — h .
alg, g™

>
=

Now by associativity,
a(gh. g V)a(ghg ™t g) =a(gh,e)a(s ™t g) = a(g.g71).
So

a(g. Ma(gh. g™ a(g.h)
a(g. g™ a(ghg™t )

1.3.3. The G-Frobenius algebra structure of k*[G]. Recall from [26,27] the following
structures which turk®[G] into a specialG-Frobenius algebra:

;i alg.h)
Yen=0a(g,h),  @gn= (=18 ——"2 _ —ie(g, h),
# ¢ a(ghg1,g)
n(8. &) =alg. g7h),  xge= (D5 1.7
Here the second line induces the third via
g-h=a(g. hgh,  ghgl g=a(ghg™  g)gh.

We recall that ifc* is two divisible, we could scale s.t(g, g~1) = 1 ande would
indeed yield the adjoint action. The lasfumtion follows from the special case of the trace
axiom since the dimension of all sectors is one.

It is an exercise to check all axioms. All compatibility equations follow automatically,
sincea(g, h) # 0. The only axiom which is not straightforward is the trace axiom, but see
[27] for a proof.

1.3.4. Remark. By the general theory (see abovex H(G, k*[G]) wherek*[G] is the
group ring restricted to invertible coefficients with-module structure induced by the
adjoint action:

(@) (Y mnh) = wnghg ™
h

1.3.5. Relations. Thee (g, h) satisfy the equations:

e(g,e)=e(g, 8) =1, (1.8)
e(g182, h) = £ (g1, g2hgy H)e g2, h), (1.9)
e(g, h) = s(g_l, ghg_l), (1.10)
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1 -1
ek, gh) = e (k. ge(k, h)%, (1.11)

where (1.9) is the statement that Hom(G, Aut(A)), (1.10) is a consequence of (1.9),
and (1.11) is the compatibility equation which also ensures the invariance of the metric.
Furthermore, the trace axiom holds [27] which is equivalent to the equation

allg, hl, hgh™e(h, ) = a(lg, hl, h)e(g ™, ghg™?) (1.12)
or

a(lg, hl, h)
a(lg. h], hgh=1)
In the case that the group elements in the equations commute we obtain the famous

conditions of discrete torsion which makénto a bicharacter on commuting elements.
Forcommuting elements

e(h,g)=e(g™t ghg™) (1.13)

e(g.e)=¢e(g,8) =1,  e(g1ga, h) =e(g1, h)e(ga, h),
e(g, ) t=e(g7h ), e(g.h)=e(ht g)=elh, g,
e(h, g1g2) = ¢(h, g1)e(h, g2), (1.14)

where the last equation is now a consequence of the second and the fourth and the third
equation follows from the second.

1.3.6. Fact. One can show [27] that the twisted group algeb¥dgG] are the onlyG-
Frobenius algebras with the property that 4ll are one-dimensional. To be completely
precise there is an additional freedom of choosing a superZj.27) structure determined
by a homomorphismr e Hom(G, Z/27) (see [26] and 3.4 below).

1.3.7. Geometry of k*[G]. From the point of view of Jacobian Frobenius algebras [26] it

is natural to say that[G] is the Frobenius algebra naturally associategdmt/ G. The
existence of the twisted algebras suggests that there are several equivalent ways of taking
the group quotient. This is made precise by Theorem 3.3.2 below.

2. Algebraic structures of a G-Frobeniusalgebra

We fix aG-Frobenius algebréG, A, 0,1, 1, ¢, x).
2.1. Theorem. A G-Frobenius algebra is naturally a lek[G]-module algebra as well as
a right k[G]-comodule algebra. Moreover, it satisfies the Yetter—Drinf€Y®) condition
for bimodules and is thus a module ove¢k[G]), the Drinfel'd double ok[G]. Where the

YD condition reads

Y hi-mo®hamy="y (h2-m)o® (hz-m)1hi. (2.1)
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Here we used the usual notation for coalgebras and right comodules. ke.Hif—
H ® H is the comultiplication ofH then forh € H we write A(h) =Y h1 ® hp and if
p:M — H is aright comodule map, then for € M we write 5(m) =Y mo ® m1.

Proof. The theorem follows from the collection of facts below and the general statement
that anyH bimodule satisfying the YD-condition is a module ov&¢H ) (see, e.g., [32]).

2.1.1. Remark. In this particular case the YD conditicstates that the comodule structure
is k[G]-equivariant with respect to the adjoint actionidfz] on itself, viz. as a tensor
product of G-Frobenius algebras of Ief{ G] modules. See below.

2.1.2. The k[G]-module structure. SinceA is ak algebra, the5-actiong turnsA into a
right k[G] module. More precisely, far € A Zg veg € k[G],

(Z vgg> Rar> ng(pg(a). (2.2)
g

Sincep € Hom(G, Aut(A)) this is a module structure.
2.1.3. The k[G]-comodule structure. SinceA is aG graded algebrait is naturallykdG1-
comodule.

More precisely, fow € A, a = @g ag thek[G]-comodule structure : A — A @ k[G]
is given by

ar Z(ag ® g), (2.3)
8

which obviously yields a comodule.

2.1.4. Lemma. A G-Frobenius algebra is &[G]-module algebra and &[G]-comodule
algebra or equivalently @[ G]*-module algebra.

Proof. For the module algebra structure notice that:
(1) Ais aleftk[G] module as noticed before.
(2) Thek[G]-action induced by is by definition by algebra automorphisms, afi¢z) =
g ® g thus
@glab) = @g(a)pg(b).

(3) Since the unitis invariant:

(D =1=¢e(g)lL
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The structure of comodule algebra follows from the fact that
p(agbp) = agby @ gh,
which, as is well known, is nothing but the condition4being aG graded algebra
AgAn CAgp. O (2.4)

2.1.5. Remark. Notice that the condition (2.4) is usually given by a strict inclusion, so that
it is usually notk[G]-Galois—which is equivalent td A, = A,y (cf. [32]). In case it s,
the structure of the algebra is particularly transparent. We will come back to this later.

2.1.6. The compatibility. We will view k[G] as a leftk[G]-module using the adjoint ac-
tion. ThenA ® k[G] turns into a leftt[G]-module by using the diagonal action. This is the
natural lefts[G]-module structure on the tensor product of left Hopf modules:

(Zuhh) (Zag ® vg) =D mnve(h)(ag) ® ghg ™.
h 8 h.g

2.1.7. Lemma. The comodule structure i G]-equivariant and thus the comodule map is
a map of leftt[G]-modules where we use the left adjoint actiok @] on itself as the left
k[G]-action

p<(2mh>(a>> - p(me(a)) =3 snnlag) ® hgh™t
h h

h.g
= (th) : (Zag ®g) = (Zm) pl@).  (2.5)
h g h
2.1.8. The YD condition. Plugging in the coproduct and action yields

0g(an) ® gh = pe(an) ® (ghg™)sg, (2.6)

which verifies the YD condition foA.

2.1.9. Proposition. If A is a G-Frobenius algebra that i8[G]-Galois overA, as ak[G]-
comodule algebra, thed is special andy € Z%(G, A*) whereA* are the units ofA. So
in particular y determinesy uniquely.

Moreover, ifA, is one-dimensional, theA = k%[G], for somex € H2(G, k*) with a
choice of parity e Hom(G, Z/27).

Proof. SinceA,-1A, = A, there are elements, € Ay, b,-1 € A -1 S.t.b,-1a5 =1 then
ag is a cyclic generator sinCécg € Ag cg = cg(by-1ag) = (cgbg-1)ag andcgh,-1 € A,.
Choosing generators, Iin this way it is easy to check that the cocycles need to be in-
vertible and thus the are fixed by (1.1). Furthermore, notice that the multiplication map
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induces an isomorphism of, modules betweer, and A, via a — al, where A, is

a cyclic A, module over itself via left multiplicatin. This follows by associativity from

a =a(lel,-1) = (aly)l,-1 and thusal, # 0 and the mapd, — A, is also injective.
Thus the restriction maps are all isomorghs and graded cocycles coincide with the
usual ones. O

3. Theaction of discretetorsion

3.1. Twisting G-Fraobeniusalgebras. Given aG-Frobenius algebra we can re-scale the

multiplication andG-action by a scalar. More precisely, letG x G — k* be a function.
Fora =P, a, € A we define

0 (2)(@) =P 1(g. We(g)(an).
h

Given another functiop : G x G — k* we can also define a new multiplicatiefi,
ag ot by, = (g, h)ag o by.
3.1.1. Remark. These twists arise from a projectivization of tGestructures induced on
a module over as for instance the associated Ramond-space (cf. [26]). In physics terms
this means that each twisted sector will have@jgrtive vacuum, so that fixing their lifts
in different ways induces the twisMathematically this means thgt twisted sector is
considered to be a Verma module ovgr based on this vacuum.

3.1.2. Induced shift on the metric. Due to the invariance of the metric, the twist in the
multiplication results in a twisted metric

n"(ag. by t) = (g, 8~ )n(ag. b ).
3.1.3. Definition. We defines (i, 1) (A) to be the collection
(G, A, 0" 1, . o, X).

3.1.4. Proposition. s(u, A)(A) is G-Frobenius algebra if and only if the following equa-
tions hold foru, A:

ule, g) =pn(g,e)=1. (3.1)
FurthermoreNg, h,k € G s.t. AgApAr #0:

n(g, Mp(gh, k) = p(h, kyu(g, hk) (3.2)
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andifAgA, #0, then

n(g, h)
Mg h) = ——21 2 3.3
8. 2) n(ghg=t, ) 33
If A, A, #0aswell asAgApAr =0,
A(g. hk)p(h, k) = (g, (g, b)u(ghg ™, gkg™?). (3.4)
Furthermore,
A(gh, k) = r(h, k)A(g, hkh™Y),
Ae,g)=X(g. 8 =1,
(g, 11, hgh ™ )a(h, &) = n(lg, k. h)A (g™ ghg ™). (3.5)

where the third equation has to hold for all pagsh s.t.3c € Ajg,n1 S.t. xn Trlcen la,) #0,
wherel. is the left multiplication by. In particular, it must hold for all pairsg, 2 with
(g, hl=e.

Proof. The first equation (3.1) expresses that 1 is still the unit for the algebra. The state-
ment (3.2) foru is the obvious form of associativitfhe statement (3.3) comes from the
compatibility equation of the group action with the multiplication.

Equation (3.4) ensures the equivariance of the multiplication. It is automatic if
A ArAr#0andalsoifA, A, =0.

The first equation (3.5) fax is equivalent to the fact that* is still a G-action.

Notice thati(e, g) = 1 sinceA. A, = A, and thus

nie.g) 4

e, g) = -
(€. 8) n(g, e

and so the identity remains invariant.
Also notice that there is no twist to the character!

Xy =(=DfdimAgStr! (¢§>|Ae) = X (g, €) = X
This in turn implies the second statementhe second line by projective self-invariance:
X Nid|Ag = @} |Ag = M(3. 9)0g|Ag = A(g. &)X, Mid|Ag,
1=MXA(e, k)= )»(gilg, k) =A(g, k))»(gil, gkgfl),

SO

Mg h)=2(g7 ghg™H)
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The third equation follows from the projective trace axiom.
Ve € Afg,n) andl. left multiplication byc:

Xn Tregnla,) = X1 Tr(@g-1lc|a,)- (3.6)

Thus we must have, Trlcg)|a,) = Xg-1 Tr(<p§,1lC|Ah) but this is equivalent to the

third equation in view of (3.6).
Now we check the other axioms.
The invariance of the metric follows from associativity:

n"(ag, by o ¢j-1g-1) = (g, 8~ ) (b k=g )n(ag, b o cp-15-1)
=u(g, h),u,(gh, hilgfl)n(ag 0 by, cp-14-1)

=n*(ag o* by, Ch—lg—l).
The projective invariance of the metric reads as

Ag (g k Nu(gkg ™t gk g™ = w(k. k1),
which is automatic sincd, Ay A;-1 #0. O

3.1.5. Definition. We call a twists (A, 1) universalif it transformsany G-Frobenius algebra
into a G-Frobenius algebra. We call two twisté\, 1) ands (1, 1) isomorphic if for any
G-Frobenius algebrd the algebras(i, 1)(A) ands(\', u’)(A) are isomorphic.

3.1.6. Theorem. The universal twists are irl-1 correspondence with elemenise
7Z?(G, k*) and the isomorphism classes of universal twists are giveH ¥y, k*).

Proof. If the twist is universal then there are no restrictions on the equations. In particular
w € Z2(G, k*) andx is completely determined by via (3.3). All the other properties are
then automatic. The claim about isomorphism classes is obvious by noticing thah

o’ are cohomologous ang/«’ = dp for someg € Z1(G, k*) then a diagonal rescaling of

the generators df*[G] by B yieldsk“’[G] so the result follows frm the characterization

of universal twists as taking tensor produce with twisted group rings belaw.

3.2. Discretetorsion. In this subsection we prove that universal twists are exactly given by
twisting with discrete torsion.

3.2.1. Reminder. Given twoG-Frobenius algebra&s, A, o, 1, 1, ¢, x) and{G, A’, o', 1/,
n',¢', x') we defined [26] their tensor product & Frobenius algebras to be thg-
Frobenius algebra

<G, P4, 00,101,107, 90¢, x & x’>.
geG

We will use the short hand notation® B for this product.
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3.2.2. Definition. Given aG-Frobenius algebra and an element € H2(G, k) we define
thea-twist of A to be theG-Frobenius algebrd® := A ® k*[G].

Notice that
AS=A; @k~ Ag. (3.7)
Using this identification th&-Frobenius structures are given by:

3.3. Lemma. The induced structures under the isomorph{8na7) are

oaegaz =a(g.h)o,  ¢glax =e(g. h)pg,
n“IAngQl =a(g.g7 )0, Xe=Xe (3.8)

Proof. We notice that the two algebras have the same linear strudture= A, @ kg ~
A, with the isomorphism given by, ® g — a,. Now the multiplication is given by

(ag ® g) ® (ap @ h) = agap @ a(g, h)gh = a(g, h)agan @ gh,

which yields the twisted multiplication.
The twist for theG -action is computed to be

Pan(ag ® g) =e(g, Wi (g) ® hgh™™.
This leads us to the following proposition.
3.3.1. Proposition. A, >~ s(«, €)A.

3.3.2. Theorem. The set of universal twists are described by tensoring with twisted group
algebras which identifies this operation with twisting by discrete torsion.

In other words given a generi-Frobenius algebrai there are exactiyf2(G, k) twists
of it by discrete torsion.

3.3.3. Discrete torsion as phases for the partition sum. Notice that for any € A}, ,; ~
Alg,hy

X Stlepn|az) = €(h, &) xn Stle@n|a,)- (3.9)

This is the original freedom of choice of a phase for the summands of the partition function
postulated by physicists. In this context, we should regavd [g, 2] = ¢ and setc = e.
More precisely, set

Z(A) = ) StOegelas) = Y. Zen (3.10)
g,heG: [g,h]=e g,heG: [g,h]=e
ZA)= Y. @ mZen (3.11)

g,heG: [g,h]=e
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We could omit the factorg,, but from the point of view of physics we should take the
trace in the Ramond space (cf. [26]) where €] module structure is twisted by.

3.4. Supergrading. In this subsection we wish to address questions of supergrading. There
is a general theory of supergrad@eFrobenius algebras and spediaFrobenius algebras.
We will expose the structures here for the group ring.

3.4.1. Super G-Frobenius algebras. If the underlying algebra of &-Frobenius algebra
has a supergradingthen the axioms of &-Frobenius algebra have to be changed to

(b®) Twisted super-commutativity
agoap = (—1)5’g‘1"g0g(ah) odyg.
(iv?) Projective super-trace axiom
Yc € Apg i andl. left multiplication byc:
Xh STtepnla,) = Xg-1 STH(@g-1lca,),
where STr is the super-trace.
For details on the super-structure as well as the role of the super structure for special

G-Frobenius algebras we refer to [26].

3.4.2. Supergraded twisted group rings. Fix « € H%(G, k*), o € Hom(G, Z/27Z) then
there is a twisted super-version of the group ring where now the relations read

gh=a(g, h)gh, (3.12)
and the twisted commutativity is
gh=(=1)7®" Mg, (h)g, (3.13)
and thus
pe(h) = (~17 @ Do(g hya(gh. g Y)ghg L =t penghg~.  (3.14)
and thus
e(g,h) =g = (-)7WIW —— S (:}EZ _}i) o (3.15)

We would just like to remark that the axiom {iyshows the difference between super
twists and discrete torsion.
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3.4.3. Definition. We denote ther-twisted group ring with super-structuseby £*:°[G].
We still denotek®-%[G] by k*[G] where 0 is the zero map and we denbi€ [G] just by
k° [G] where 0 is the unit of the grou2(G, k*).
A straightforward calculation shows
3.4.4. Lemma. k*°[G] =k“[G] ® k°[G] and more generally.
3.4.5. Lemma. Let A be theG-Frobenius algebra or more generally super Frobenius al-
gebra with supergrading(G, A, o, 1, n, ¢, x), thenA ® k° [G] is isomorphic to the super
G-Frobenius algebrgG, A, o, 1, n, ¢, x°) with supergradings, where
o (—1)° &) o —(—1)°® S0 _ = 3.16
(pg,h ( ) (Pg,hs X ( ) ng ag ag +G(g) ( . )
Using arguments and definitions for unigal twists as for discrete torsion, we can
obtain the following proposition. Here univatsneans that there is no assumption on the

particular structure of th&-Frobenius algebra, in other words it pertains to genéric
Frobenius algebras.

3.4.6. Proposition. Given a(supe) G-Frobenius algebraA the universal supeiG-
Frobenius algebra re-gradings are ih-1 correspondence withlom(G, Z/27Z) and these
structures can be realized by tensoring With G] for o € Hom(G, Z/27Z).
4. Projectiverepresentations, extensions, and twisted group algebras

In this section we first assemble classical facts about groups which will be extended to
G-Frobenius algebras. As an intermediate step we analyze twisted group algebras, which
belong to both worlds.

4.1. Part |: groups.

4.1.1. Projective representations. A projective representatiop of a group is a map
0:G — GL(V), V being ak-vector space, which satisfies

p(g)p(h) =a(g, h)p(gh), p(e)=id. (4.1)
It is easy to check thai(g, i) € Z%(G, k*). Moreover, with a natural notion of projec-
tive isomorphy two projective representations are isomorphic if their classes are cohomol-
ogous (cf., e.g., [5,30]).

4.1.2. Extensions. Given a central extension

1>A—>G* 53 G—1 (4.2)
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fix a sections of 7 and definex : G x G — A by s(g)s(h) = a(g, h)s(gh). Itis easy to see
that indeedr € Z2(G, A) and furthermore changing the section or changing the extension
by an isomorphism preserves the cohomology class of

Vice versa a cycle i € Z2(G, A) were A is an Abelian group gives rise to a central
group extension of;:

1»A—>G*S G—1, (4.3)

whereG* = A x G. The maps are given by— (A, eg), (a, g) — g and the multiplication
is given by(a, g)(a’, g') = (aa'a(g, g'), g¢)-

4.1.3. The transgression map. Given a cyclax € H%(G, A) there is a natural map
Tra, : Hom(A, k*) — H?(G, k"), (4.4)

which sendsy € Hom(A, k*) to the cocycles defined b, 1) — xa(g, h). Actually this
map maps into the cohomology group with values in the torsion subgrokipwfiich we
call torgk*):

Tray : Hom(A, k*) — H?(G, tors(k*)). (4.5)

4.1.4. Facts. We briefly give the facts linking group cohomology, projective representations
and twisted group algebras. For a detailed account see [30].

(1) The classes of central extensions of a grauy an Abelian groupA are in 1-1
correspondence WitH 2(G, A).

(2) Any projectivex-representation is a module over ihéawisted group algebra®[G].
(This is in fact an equivalence of categories.)

(3) Every projective representation with cyelés projectively equivalent to one that can
be lifted to linear representation @i if [«] is in the image of the transgression map
associated tfx].

(4) If HX(G, k*) = H?(G, (tors(k*)) then:

(a) any projective representation can be lifted to a suitable group, and
(b) there is a universal extension

1-A-G*"-G—1

such thatany projective representation lifts t6* and moreover the groupg ~
H?%(G, k*).

Assumption. For the remainder of the section we will assume thhas the property that
H?(G, k*) = H%(G, (tors(k*)). This is the case, e.g., if is algebraically closed et R,
see, e.g., [30].
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4.2. Part |1: thetwisted group algebrarevisited. Fix [«'] € H2(G, A), an elemenfa] €
Im(Tra,/)) and a pre-image charactere Hom(A, k™).
This yields a central extension:
1>A->G"5G—>1 (4.6)
with a sectiors of 7 s.t. the cocycle corresponding4as «’. The mapy induces map
X k[G*] = k[G]:ag > x(a)g (4.7)
while the section induces a map

s k[G]— k[G*]: g+ 1ag. (4.8)

4.2.1. Projectivealgebra. Using the maps, x, we can also characterize the multiplication
u® in k*[G] as follows: it is the map which makes the following diagram commutative:

k[G*] @ k[G*] —~ k[G]

SQs T l X
Ma

kIG1®k[G] k[G].

We already know thai* induces the structure of an algebra. This diagram captures the
statement about lifts of projective representation& @b linear representations 6.
This is essentially 4.1.4(1).

4.2.2. Projective coalgebra. Using the diagram as above, we define a comultiplication by
commutativity of:

k[GY] —2= k[G*] @ k[G]

T im
A%

k[G] — kIG]®k[G].

The coalgebra structure we induce in this wayk¢@'] is actually the old coalgebra struc-
ture, butk®*[G] ceases to be a bialgebra.

4.2.3. Remark: braiding. If one would like a bialgebra structure on the group rk%§G]

then one has to consider braided objects, where the braiding is inverse to the twist. It should
be possible to find analogous statements to the ones presented in this article by considering
structures ovek®[G] in braided categories.
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4.2.4. Adjoint action. Let ad denote the adjoint actigfiG*]. Then there is an induced
action onk[G1,

k[G*] @ k[G*] —2~ k[G*]

SQs T l X
ad

kIG1®k[G] k[G].

According to 1.3.2 this action is given by

ad (g)(h) := e(g. h)ghg ™.
4.3. Part |11: G-Frobenius algebras. We now apply the logic of part Il to generél-
Frobenius algebras.

Let H be an Abelian group. Fikx/'] € H?(G, H), an elemenfa] € Im(Tra,)) and a
pre-image character e Hom(H, k*) and a central extension:

1l>H->G"5G6->1 (4.9)
with a sectiors of 7 s.t. the cocycle correspondingsads o’.

4.3.1. Definition. Let A“ be aG*-Frobenius algebra. We say thataFrobenius algebr&
can be lifted toA® if there are maps: A — A“ and resA* — A such that the structural
maps fit into the commutative diagrams

a0 " A" @ k[G]

,'T lres@x
P

A AQk[G]
and
MO( g00(
AY @ A% —— A“ k[G*] ® A% —— A“
i®iT J/res S®ST resJ/
"
ARA—— A k[G]®AL>A

and all algebraic structures are compatible.
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4.3.2. Definition. We say that ar{ -Frobenius algebr® is H homogeneous if it is en-
dowed with an additional lefH -action r which shifts group degree and is equivariant
w.r.t. multiplication. More precisely the following two equations hold:

T(h)(Ap) CApp, t(h)(ab)=at(h)(). (4.10)
It is standard to see that

4.3.3. Remark. With the notation as above, the left actienof H on B is necessarily
by isomorphisms and thuB is a specialH -Frobenius algebra whose components are all
isomorphic. MoreoverB is Galois as &[ H]-comodule oveB,.

4.3.4. Definition. Given aG-Frobenius algebra, an H-homogeneoug/ -Frobenius al-
gebraB and a cocycler € Z2(G, H) we define therossed producof A and B to be the
G“-Frobenius algebra

A#y B:=(G*, A®B,o#, 0,101, n®n,0o# ¢, x ® 1), (4.11)
where
(ag ® by) oty o (cg ® diy) = agey ®7(a(g, &) brdy (4.12)
and
@ # ¢ (g, h)(ay @ by) = pglag) @ T(a(g, gha(ge' g7 ))onby).  (4.13)

We leave it to the reader to verify all axioms, since it is analogous to previous calcula-
tions.

4.3.5. Quantum symmetry group. The postulated second left action by translatioran

be viewed as the quantum symmetry group postulated by physicists. Notice that it acts
freely. The invariants are linearly isomorphicd® A, ® B.,, whereey is the unit element

of H.

4.3.6. Lemma. The linear map above induces an isomorphism

T (At B) =~ P (A ® Beyy)
geG

as G-Frobenius algebras with trivial action on the second factor.
Here we denoted the invariants under the actioHoby ¢ by - .

4.3.7. Definition. Fix x € Hom(H, k*) then there is a natural map fromto B, given by
t(h)b, — x (h)b.. This map induces a map

Aty B—> P(A,; ® Bey).
geG
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which induces a structure @f-Frobenius algebra o@geG(Ag ® B., ), the G-action on
the second factor being trivial. We define

(A #, B)X
to be thisG-Frobenius algebra.
It is easy to check that the following holds:

4.3.8. Lemma. Keeping the notation above, Igi'] = Tra(x) and more precisely on the
level of cocycles lat'(g, g') = xa(g, g).
Then

(At BY = (DA ® Bey)) |

4.3.9. Definition. Given a cocycler € Z2(G, H), a central extensio6® of G by H and a
G-Frobenius algebrd we defineA* to be theG*-Frobenius algebra

A% = A#, k[H].

4.3.10. Theorem. Given a G-Frobenius algebrad and cocyclesy € Z2(G, k*), o’ €
Z2(G, H) which are related by e Hom(G, k*) viaa(g, §') = x (' (g. 8")-
Then the twistd,, of A lifts to the G¥'-Frobenius algebrad® and moreover,

(A%)* ~ A,.

Finally, if G* is the universal extension & whose cocycle i € H2(G, H2(G, k*)),
then any twistd,, of a G-Frobenius algebra lifts to AP,

Proof. Choose a sectiom of the extension yielding.. We denote the unit element of
H by ey and denotes(g) by eyg. We leti: A — AeHg be the map given by, —

Ag®key iay, — agQ@ey and define resAhg ~ Ay ®kep — Agtobethe map, @ey —
x (h)ag.
Then

(res® x)(,o“/(i(ag))) = (res® x)(,o"‘/(ag ®en))
= (res® x)(a; Qen) @ (eng) =ag ® g,
which assures the comodule algebra structure
x (1 (G ®@i)ag ®by))) = x(aghy ® a(g, g)gg") = (g, h)agby,
SinceAe, ¢ Acy e C A(g,ghgg’ Which assures the algebra structure

Xopo(s®s)(g®an) =xop((eng® Acyg)) =(g, 8wg(ag),
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which assures the module algebra structure, sjpge(A., 1) C Ag(g,n)gh, Where we set

!
(g, h)
¢(g.8)= 28R
a'(ghg™, 8)

to be the cocycle of the adjoint action. Then by 1.3.2,

x(¢'(g.8)) =¢(g. &).

For the last statement notice that (cf., e.g., [30])

{6"]= [TH6")

aeT

whereT is a transversal foB2(G, k*) in Z%(G, k*). So AP ~ @, A% and we can lift
to the appropriate component
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