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2. The Künneth formula in quantum cohomology 79
3. Examples 81

Acknowledgements 91

Bibliography 93

1





Introduction

In the last decade, a new branch of mathematics grew out of the interaction of
theoretical physics, namely string theory, and mathematics. In an attempt to find
a mathematically rigorous formulation of the fundamental paper of Witten [W]
and thus to explain some of the striking numerical predictions made for instance
by the Austin physics group of Candelas [COGP] using the so called Mirror
Symmetry emerging from string theory, the theory of Gromov–Witten invariants
and several mathematical versions of Mirror Symmetry (MS) were created.

In the physical formulation, Mirror Symmetry basically states that two string
theories with different target spaces (the so–called A–model and B–model) lead to
the same conformal field theory on the worldsheet. This has several consequences,
e.g. in an imprecise formulation that for each Calabi–Yau quintic threefold with
Hodge numbers h1,1 = a and h1,2 = b there exists a dual Calabi–Yau with the
mirrored Hodge numbers h1,1 = b and h1,2 = a. Much evidence of this nature was
presented in the above mentioned collaboration. In the guise of Hodge number
duality the mirror symmetry has been rigorously formulated and was proven to
exist in the case of Calabi–Yaus which can be realized inside toric spaces by
Batyrev [Ba].

A more sophisticated version of MS relates two generating functions: on the
A–side a generating function for the “number of curves” and a hyper–geometric
series which satisfies certain Picard–Fuchs equations on the B–side. The term
“number of curves” has been made precise by the theory of Gromov–Witten
invariants [G, W] which were, in the algebraic context, first introduced in [KM]
on an axiomatic basis and later proven to exist [BM, Be1] by constructing a virtual
fundamental class [Mg,n(V, β)]virt of the moduli space of stable mapsMg,n(V, β)
introduced by Kontsevich. The above mentioned space parameterizes stable maps
of n–pointed curves of genus g into a given projective smooth manifold V and
can be viewed as an extension of the classical Delinge Mumford Knudsen spaces
of stable curves of genus g with n marked points M g,n. In the symplectic setting
similar results were proven by Ruan and Tian [RT] and Li and Tian [LT]. The
MS in this formulation has been proved by Givental for the case of projective
complete intersections [Gi] by using equivariant cohomology in order to enhance
the approach via torus action suggested by [K2]. A review of these constructions
can be found in [V].

The most far reaching statement of MS has been given by Kontsevich in [K3]
where the so–called homological MS is thought of as relating two triangulated cat-
egories. It is conjectured that the bounded derived category of coherent sheaves
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4 INTRODUCTION

of one manifold is equivalent to the bounded derived category obtained from the
Fukaya category of a dual manifold.

In the present exposition we concentrate on the A–side of this general picture
and deal with the theory of Gromov–Witten invariants. The Gromov–Witten in-
variants can be regarded as a precise definition of what is meant by “the number
of curves on a variety V with certain incidence conditions”. These numbers coin-
cide under certain conditions with the actual number of these curves. Motivated
by physics, one collects “all” of these solutions to the corresponding enumerative
problems in a generating series, the Gromov–Witten–potential. The fact that the
GW–numbers can be regarded as the correlation functions of a topological field
theory or, more precisely, as the codimension zero correlation functions of a Co-
homological Field Theory (CohFT), corresponds to a mathematical property of
the GW–numbers which leads to a differential equation for the generating series,
the Witten–Dijkgraaf–Verlinde–Verlinde (WDVV) or associativity equations. In
the case of Fano varieties, these equations can be used to provide recursion re-
lations for the GW–numbers, thus reducing “all” problems to certain basic ones
(see [KM]).

So far, only the GW–numbers which represent the codimension zero correla-
tion functions of a CohFT have been discussed. The GW–invariants, however,
also furnish all higher codimension correlation functions. These correlation func-
tions are defined as maps from H∗(V )⊗n to the cohomology of the moduli space
of stable n–pointed curves of genus g, H∗(M g,n). In [KM, KMK] it was shown
that in genus zero all these maps can be reconstructed using the GW–numbers.
For the proof of this statement and the explicit reconstruction of the GW–classes
from the GW–numbers in genus zero, one needs to study the intersection theory
on the moduli space of stable n–pointed genus zero curves M 0n. In particular, a
basis of H∗(M 0n) and its intersection matrix needed for the explicit reconstruc-
tion is presented in this exposition.

In genus zero the theory appears in various alternative formulations. Two
of these formulations were already mentioned: the CohFT approach and the
approach using just the codimension zero correlation functions which in a general
framework are an instance of Abstract Correlation Functions (ACFs). Thanks to
the associativity equations one can define a commutative and associative algebra
with the help of the third derivatives of the GW–potential, the so–called quantum
cohomology ring. Starting from the data of the linear super–space H∗(V ) together
with the GW–potential Φ regarded as yielding the quantum multiplication on
the tangent space to H∗(V ), one is lead to the notion of a formal Frobenius
manifold. Following this starting point or more generally analyzing topological
field theories together with their natural moduli spaces, Dubrovin founded the
theory of Frobenius manifolds [D] which forms a third vantage point for the genus
zero theory. There is yet another formulation of CohFT avoiding the explicit
mentioning of the moduli spaces via the structures of Comm∞–algebras [Ge1]
which is up to a dualization equivalent to the formulation in terms of ACFs.

In the realm of CohFT, there is a natural operation of forming the tensor prod-
uct which —translated in terms of quantum cohomology— yields the Künneth
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formula (cf. [KMK] and Chapter 3). Turning to the language of operads [Ge1,
GK], this reflects the fact that the H∗(M 0n) operad is an operad of coalgebras
and not just of linear spaces. In the Comm∞ picture, this operation is not natu-
rally seen and quite an amount of work is needed to translate this operation into
this setting.

In the present exposition, we perform an in–depth analysis of the operation of
forming the tensor product in the various formulations of the genus zero theory
(CohFT, ACFs and Frobenius manifolds) with the help of intersection theory
on the moduli space of stable n–pointed genus zero curves M 0n and study the
interrelation between the different presentations. In this way, we obtain a pre-
sentation of the operation of forming the tensor product in all presently known
facets of the genus zero theory.

In two additional sections, we review the results of the collaboration [KMZ]
concerning higher Weil–Petersson volumes and one–dimensional CohFT, putting
emphasis on our part of the proofs.

Pertaining to the theory of Frobenius manifolds, we provide the explicit for-
mula for the tensor product of formal Frobenius manifolds and derive the tensor
product in the enlarged category of formal Frobenius manifolds with an Euler
field and a flat identity. Furthermore, we introduce the notion of forming the
tensor product germs of pointed Frobenius manifolds and give a complete de-
scription of the dependence of this operation on the base–point. In the special
case of semi–simple Frobenius manifolds, this leads to a formula for the special
initial conditions which basically determine the structure of these manifolds.

In the setting of quantum cohomology, we derive the explicit Künneth formula
for quantum cohomology.

The exposition is organized as follows:

In Chapter I, we begin by recalling the necessary basic definitions concerning
the moduli spaces M g,n. After providing the intersection formula for two strata
classes of complementary dimension, we set out to prove a formula for the inter-
section of an arbitrary number of strata classes. To this end, we introduce the
new notions of trees with multiplicity and multiplicity orientations. Using these
definitions, we prove the mentioned formula. In the following section, we present
a basis for the cohomology of M 0n and use the results of the previous section
to derive its intersection form. We then provide a formula for the inverse inter-
section matrix, which, together with the basis, supplies a representative of the
diagonal class ∆M0n

of M0n×M 0n and give examples of the intersection matrices
for small values of n.

The last section of Chapter I deals with a second aspect of the geometry of
the spaces M g,n, the study of a generalization of Weil–Petersson volumes which
has been the subject of the collaboration [KMZ]. Having defined these higher
analogs, we collect them into a generating series and derive a recursion relation
for this series in genus zero again using explicit formulas in the cohomology ring
of M 0n. We continue this section by quoting the further results of [KMZ] which
are used in the next chapter.
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The second chapter, Chapter II, is devoted to the study of the tensor product
in the theory of Frobenius manifolds. We begin by reviewing the basic notions of
Frobenius manifolds, formal Frobenius manifolds, semi–simple Frobenius mani-
folds, the additional structures of an Euler field and a (flat) identity and introduce
the notion of pointed Frobenius manifolds. Then, we turn to the tensor product
for each of these types of Frobenius manifolds.

In the case of formal Frobenius manifolds, the tensor product is defined via
the connection to ACFs or Comm∞–algebras. Since the tensor product is only
naturally defined on CohFT, one has to first reconstruct the relevant CohFTs
from the ACFs and only afterwards can one reduce to the ACFs of the tensor
product CohFT. The theoretic framework for this construction is provided by
passing to an operadic version of ACFs which again takes the geometry of M 0n

into account. In this setting, we use the results of Chapter I to give an explicit
formula for the potential of the tensor product.

In the following section, we make a digression to the rank or dimension one
CohFTs and the tensor product in this subset of CohFT. The theory of these
CohFTs is equivalent to the study of the higher Weil–Petersson volumes of the
previous chapter. Translating the results into this language yields a complete
description of the tensor product for the potential as well as explicit formulas
which we quote from [KMZ].

We continue by translating the conditions for an Euler field and a flat iden-
tity into relations among the operadic correlation functions. We then present an
Euler field and a flat identity for the tensor product of two Frobenius manifolds,
if the factors also carry these additional structure. The proof that the proposed
candidate indeed satisfies the definition of an Euler field is non–trivial and, be-
sides involving the properties of the Euler field and the identity in the setting
of operadic ACFs, it additionally relies on properties of the diagonal class of
M 0n ×M 0n under the push–forward and pull–back with respect to the forgetful
morphisms.

Using the formulation for formal Frobenius manifolds, we transfer the opera-
tion of forming the tensor product to germs of pointed Frobenius manifolds under
certain convergence conditions. We then study the dependence on the choice of
the base–point and prove a theorem that basically states that up to the mentioned
convergence conditions the tensor product for germs of Frobenius manifolds is
independent of the choice of base–points up to unique isomorphism.

In the case of split semi–simple Frobenius manifolds, these convergence con-
ditions are automatic and the above considerations provide a base–point–free
formulation of the tensor product in this class. Moreover, according to [M3] a
split semi–simple Frobenius manifold is already determined by the initial data for
a particular differential equation. Using our theorem about the tensor product
for the Euler fields, we derive the initial data for the tensor product of two such
manifolds in terms of the initial data of the factors.

In the last chapter, Chapter III, we focus on the aspect of quantum cohomol-
ogy and apply the previously established results to this situation. In particular,
as mentioned above, the explicit formula for the tensor product of two formal
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Frobenius manifolds turns into the explicit Künneth formula for quantum coho-
mology which expresses the quantum cohomology of a product variety V ×W in
terms of the quantum cohomology of the factors V and W .

We end this exposition by giving several examples. Namely, we provide the
special initial conditions for a product of projective spaces and calculate the GW–
potential of a product of two and three three–dimensional Calabi–Yau manifolds.





CHAPTER 1

Moduli spaces of stable curves

In this chapter, we deal with the geometry of the moduli spaces of stable
curves M g,n. After recalling some of the basic definitions, we present our results

concerning the intersection theory on M 0n and on the so–called higher Weil–
Petersson volumes. We will, in particular, provide formulas for the intersection
of strata classes and monomials of boundary divisors in M 0n. Furthermore, we
present a basis for H∗(M 0n) and its intersection form as well as the inverse in-
tersection form. In an additional section containing the results of [KMZ], we will
reproduce the proof of a recursion relation for the generating function of higher
Weil–Petersson volumes.

1. The moduli stacks M g,n

The moduli spaces of smooth Riemann surfaces of a given genus were clas-
sically already studied by Riemann himself. In a more precise framework, the
respective moduli stacks to the coarse moduli problem which are denoted by
Mg were introduced (see e.g. [MF]). Deligne and Mumford [DM] developed a
compactification scheme for these spaces yielding the stacks M g. This compacti-
fication basically adds the locus of degenerate curves with simple double points as
boundary divisors. The latter author also initiated the algebro–geometric study
of the Chow ring of these spaces. In [Mu], he introduced a series of classes which
were consequently named after him and gave a complete description of the Chow
ring in the case g = 2. For higher genus explicit descriptions for g = 3 and some
results for g = 4 were obtained by Faber [Fa].

Often one additionally includes the additional structure of marked points into
the moduli problem thus considering curves of genus g with n marked points.
Following Deligne and Mumford, Knudsen [Kn] developed a compactification
M g,n for the appropriate moduli stacks Mg,n.

An excellent detailed account of what is currently known about these moduli
spaces and and their mapping class groups can be found in the recent article [HL].
Thus, we will only repeat briefly the notions which are essential to our work.

1.1. Pointed curves and their graphs. In this subsection, we cite the
main definitions of the general geometric objects under investigation in the for-
mulation of [M2].

9
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1.1.1. Definition. A prestable curve over a scheme T is a flat proper mor-
phism π : C → T whose geometric fibers are reduced one–dimensional schemes
with at most ordinary double points as singularities. Its genus is a locally con-
stant function on T : g(t) := dim(H1(Ct,O)).

1.1.2. Definition. Let S be a finite set. An S–pointed (equivalently, S–
labeled) prestable curve over T is a family (C, π, xi|i ∈ S) where π : C → T
is a prestable curve and the xi are sections such that for any geometric point t
of T we have xi(t) 6= xj(t) for i 6= j and the xi are smooth on Ct. The points
xi(t), i ∈ S and the singular points of Ct are called special points.

Such an irreducible curve is called stable, if 2g − 2 + |S| > 0 and every non–
singular genus zero component of any Ct contains at least three special points. A
general prestable pointed curve is called stable, if all its connected components
are stable.

1.1.3. Definition. A finite graph τ is a quadruple (Fτ , Vτ , ∂τ , jτ ) of a (finite)
set of (of flags) Fτ , a (finite) set (of vertices) Vτ , the boundary map ∂τ : Fτ → Vτ ,
and an involution jτFτ → Fτ , j

2
τ = jτ .

An isomorphism τ → σ consists of two bijections Fτ → Fσ, Vτ → Vσ, compat-
ible with ∂ and j.

The two–element orbits of jτ form the set of edges Eτ and the one–element
orbits form the set of tails Tτ .

1.1.4. Geometric realization. Given a graph τ define for each vertex v
the set Fτ (v) = ∂−1

τ (v) and consider the topological space called “the star of v”
consisting of |v| := |Fτ (v)| semiintervals having one common boundary point.
These semiintervals are labeled by their respective flags. Then glue these stars
according to jτ yielding edges and tails.

A graph τ is called connected (respectively simply connected), if its geometric
realization ||τ || has this property.

1.1.5. Definition. A modular graph is a graph τ together with a map g :
Vτ → Z≥0, v → gv. An isomorphism of two modular graphs is an isomorphism of
the underlying graphs, preserving the g–labels of the vertices.

A modular graph (τ, g) is called stable, if |v| ≥ 3 for all v with gv = 0 and
|v| ≥ 1 for all v with gv = 1.

1.1.6. Definition. The dual modular graph (τ, g) of a prestable S–pointed
curve (C, π, xi|i ∈ S) over an algebraically closed field is given by the following
data:

a) Fτ = the set of branches of C passing through special points.
b) Vτ = the set of irreducible components of C, gv = the genus of the

normalization of the component corresponding to v (which is sometimes
denoted by Cv).

c) ∂τ (f) = v, iff the branch f of C belongs to the component Cv.
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d) jτ (f) = f, f 6= f , iff the two branches f, f intersect at a common double
point. In this way, the edges of the graph correspond bijectively to the
special points of C.

e) jτ (f) = f , iff f is a branch passing through a labeled point of C. This
yields a bijective correspondence between the labeled points of C and S
which is isomorphic to the set of tails.

The combinatorial type of a curve will be the isomorphism class of its modular
graph (τ, g).

1.2. Mumford classes. As previously mentioned, D. Mumford initiated the
algebro–geometric study of the Chow ring of M g,0 in [Mu], where intersection
theory of M g,n is understood in the sense of orbifolds or stacks. To this end,
he introduced certain classes, now called Mumford classes, whose definition was
subsequently extended in [AC] to the spaces M g,n with a slight alteration. We
will use this version of the Mumford classes.

1.2.1. Definition. Let pn : Cn →Mg,n be the universal curve, xi ⊂ Cn, i =
1, . . . , n the images of the structure sections and ωC/M the relative dualizing sheaf.
Put for a ≥ 0

ωn(a) = ωg,n(a) := pn∗(c1(ωC/M(
n∑

i=1

xi))
a+1) ∈ H2a(M g,n, Q)Sn

(1.1)

where we used the notation of [KMK]; in [AC] these classes are denoted by κi.
We will mostly omit g in our notation but not n.

The class ωg,n(1) is actually 1
2π2 [v

WP
g,n ] where vWP

g,n is the Weil–Petersson (see
[Wo] and [Z]) 2–form so that∫

Mg,n

ωg,n(1)3g−3+n = (2π2)3g−3+n ×WP–volume of M g,n (1.2)

(see [AC]).

1.2.2. Classical Weil–Petersson–volumes. The case of the classical WP–
volumes (1.2) of the genus zero moduli spaces was first treated by P. Zograf [Z].
Put v3 = 1 and

vn :=

∫

M0n

ωn(1)n−3, n ≥ 4 . (1.3)

The main result of [Z] then reads:

vn =
1

2

n−3∑

i=1

i(n− i− 2)

n− 1

(
n− 4

i− 1

)(
n

i + 1

)
vi+2 vn−i , n ≥ 4 .

(1.4)
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If one considers the generating functions

Φ(x) =
∞∑

n=3

vn

n!(n− 3)!
xn , h(x) = Φ′(x) =

∞∑

n=3

vn

(n− 1)!(n− 3)!
xn−1 ,

(1.5)

then the recursion relation (1.4) directly translates into the differential equation

xh′′ − h′ = (xh′ − h) h′′ . (1.6)

for h(x) = Φ′(x).

The generating series (1.5) also arises in Liouville gravity models [Ma].

Differentiating the differential equation (1.6) once more, we obtain h′h′′′ =
xh′′3. Setting y = h′ and interchanging the roles of x and y in the resulting cubic
equation yy′′ = xy′3, it transforms into the Bessel equation

y
d2x

dy2
+ x = 0.

This observation can be used to derive an explicit solution of (1.4) via an inverted
modified Bessel function:

y =

∞∑

n=3

vn

(n− 2)! (n− 3)!
xn−2 ⇐⇒ x =

∞∑

m=1

(−1)m−1

m! (m− 1)!
ym .

(1.7)
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2. The moduli spaces M 0n of genus 0

Now, we turn to the genus 0 case which we will mainly focus on. We will
briefly review the known results about the structure of the moduli spaces M 0n,
again quoting [M2], and then present our results. Most of the original work
contained in the following section can be found in [Ke] and [Kn].

2.1. Theorem.

a) For any n ≥ 3, there exists a universal n–pointed stable curve (π : C0n →
M 0n; xi, i = 1, . . . , n) of genus zero. This means that any such curve over
a scheme T is induced by a unique morphism T →M 0n.

b) M 0n is a smooth irreducible projective algebraic variety of dimension
n− 3.

c) For any stable n–tree τ , there exists a locally closed irreducible subscheme
D(τ) ⊂M 0n, parameterizing exactly curves of the combinatorial type τ .
Its codimension is equal to the cardinality |Eτ | of the set of edges. This
subscheme depends only on the n isomorphism class of τ .

d) M 0n is the disjoint union of all D(τ). The closure of any of the strata
D(τ) is the union of all the strata such that τ > σ in the sense of 2.2.4.

2.2. Forgetful morphisms. Consider a stable pointed curve given by the
data (C, x1, . . . , xn+1). We say that (C, x1, . . . , xn) is obtained from the first curve
by forgetting the point xn+1. However, it might happen that the new curve is not
stable any more. This is precisely the case, if the component of C supporting xn+1

has only one additional labeled point say xj. In this situation, we can contract
the unstable component to its intersection point x′

j with some other component.
We call the resulting n–pointed curve (C, x1, . . . , xj−1, x

′
j, xj+1, . . . , xn) the result

of stably forgetting xn+1. Of course, regarding any S–curve, one can in the same
manner stably forget the point xs for any s ∈ S.

2.2.1. Theorem.

a) There is a canonical flat and proper morphism πn+1 : M 0,n+1 → M 0n

which acts on the isomorphism classes of (n+1)–pointed curves by stably
forgetting the last point. More generally, there exists a canonical mor-
phism πs : M0S →M 0,S\{s} stably forgetting the point xs of an S–pointed
curve.

b) There exists a canonical isomorphism µn : M 0n+1 → C0,n.

2.2.2. The dual tree of a genus 0 curve. Since we will be dealing with
genus zero curves, the graphs which will be considered will be trees, i.e. connected
and simply connected graphs.
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2.2.3. Degeneration of genus 0 curves. Geometrically, a stable genus 0
curve can degenerate in the following way: given a partition of the set of special
points of a component Cv it may split into two irreducible genus 0 curves where
the special points are distributed in the way prescribed by the partition. This is
the only codimension one specialization possible for pointed genus 0 curves.

On the level of trees, this corresponds to the addition of an edge at a given
vertex v splitting the flags of this vertex into two sets corresponding to a partition
of S.

2.2.4. Notation. Given a tree τ , a vertex v ∈ Vτ and a partition (F1, F2)
of the set Fτ (v), we denote by τF1,F2

v the tree obtained by replacing the vertex v
by an additional edge e which separates the flags of v according to the partition
(F1, F2).

If a tree σ can be obtained from a tree τ by adding edges in the above manner,
we will write τ > σ.

2.3. Stratification. For any set S with |S| ≥ 3, there exist the coarse mod-
uli spaces M0,S and M 0S classifying irreducible respectively arbitrary stable S–
marked curves. Furthermore, given any tree τ , one can consider the space

Mτ :=
( ∏

v∈Vτ

M0Fτ (v)

)
. (2.1)

These spaces give a stratification of the compactified moduli space M 0n in-
dexed by n–trees

M 0n =
∐

τ

( ∏

v∈Vτ

M0Fτ (v)

)
. (2.2)
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3. Trees and the cohomology of the spaces M 0S

One of the main tools for the study of the geometry of moduli spaces of
curves is provided by the combinatorics associated to trees (respectively modular
graphs). It is for instance possible, as already mentioned above, to give a strat-
ification of M 0S in terms of S–trees. It is, in particular, also possible to present
the cohomology of these spaces in terms of trees.

3.1. Spaces of Trees. Let k be a supercommutative Q–algebra. Noticing
that the stability condition implies that the number of isomorphism classes of
stable S–trees is finite and that the maximal number of edges of a stable S–tree
is |S| − 3, we can define the graded free k–module over the set of isomorphism
classes of stable S–trees via

ΓS,e := The set isomorphism classes of stable S–trees with |Eτ | = e
(3.1)

V (ΓS,e) := The free k–module over ΓS,e (3.2)

V (ΓS) :=

|S|−3⊕

e=0

V (ΓS,e). (3.3)

3.2. Keel’s presentation. As was shown in [Ke], the cohomology ring of
M 0S can be presented in terms of classes of boundary divisors as generators and
quadratic relations as introduced by [Ke]. The additive structure of this ring and
the respective relations can then be naturally described in terms of stable trees
(see [KM] and [KMK]).

More precisely: The boundary divisors of M 0S are in one–to–one correspon-
dence with unordered 2–partitions {S1, S2} of S, satisfying |S1| ≥ 2 and |S2| ≥ 2
(stability). Let {Dσ|σ = {S1, S2} a stable S–partition} be a set of commuting
independent variables. Consider the ideal IS ⊂ FS in the graded polynomial ring
FS := k[D{S1,S2}] generated by the following relations:

(i) D{S1,S2}D{S′
1,S′

2}
, if the number of non–empty pairwise intersections of

these sets equals to 4.
(ii) ∀ distinct i, j, k, l ∈ S :

∑
ijσkl Dσ −

∑
kjτil Dτ

where the notation of the type ijσkl is used to imply that {i, j} and {k, l} are
subsets of different parts of σ.

Set H∗
S := FS/IS.

3.2.1. Theorem [Ke]. The map

Dσ 7−→ dual cohomology class of the boundary divisor

in M 0S corresponding to the partition σ (3.4)

induces the isomorphism of rings (doubling the degrees)
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H∗
S

∼
−→H∗(M 0S, k) ' A∗(M 0S)k (3.5)

where A∗ is the Chow ring.

3.3. Additive structure of H∗
n. The additive structure of the cohomology

can be nicely presented in terms of trees (see [KMK]). There (Proposition 1.3),
it is proved that the set of trees with r edges is in bijection with the set of good
monomials of degree r. We will briefly quote some of the notions and results
from that paper. A monomial Dσ1 . . .Dσa ∈ FS is called good, if the family of
2–partitions {σ1, . . . , σa} is good, i.e. a(σi, σj) = 3, where for two unordered
stable partitions σ = {S1, S2} and τ = {T1, T2} of S

a(σ, τ) := the number of non–empty pairwise distinct sets

among Si ∩ Tj, i, j = 1, 2. (3.6)

3.3.1. Lemma (1.2 of [KMK]). Let τ be a stable S–tree with |Eτ | ≥ 1.
For each e ∈ Eτ denote by σ(e) the 2–partition of S corresponding to the one
edge S–tree obtained by contracting all edges except for e. Then

mon(τ) :=
∏

e∈Eτ

Dσ(e) (3.7)

is a good monomial.

3.3.2. Proposition (1.3 of [KMK]). For any 1 ≤ r ≤ |S| − 3, the map
τ 7−→ mon(τ) establishes a bijection between the set of good monomials of degree
r in FS and stable S–trees τ with |Eτ | = r modulo S–isomorphism. There are no
good monomials of degree greater than |S| − 3.

3.3.3. Additive relations. In [KMK] it is shown that the good monomials
span the cohomology space and, furthermore, that all linear relations between
them are generated by the relative versions of (ii);

∑

ijτ ′kl

mon(τ ′) =
∑

ikτ ′′jl

mon(τ ′′) (3.8)

where {ijτ ′kl} and {ikτ ′′jl} are the preimages of the contraction onto a given τ
contracting exactly one edge onto a fixed vertex v separating the flags marked
by i, j and k, l respectively i, k and j, l in such a way that they lie on different
components after severing e where the markings i, j, k, l refer to flags which are
part of the edges of the unique paths from v to the tails i, j, k, l in τ and it is
required that the paths start along different edges.
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3.3.4. Relations among trees. For any S–tree τ , any vertex v of τ and
four distinct flags fi, fj, fk, fl ∈ Fτ (v) set

Rτ,v,(fi,fj ,fk,fl) =
∑

(F1,F2)
fi,fj∈F1fk,fl∈F2

τF1,F2
v −

∑

(F1,F2)
fi,fk∈F1fj ,fl∈F2

τF1,F2
v . (3.9)

Let

RS := span{Rτ,v,(fi,fj ,fk,fl)}. (3.10)

Then we can reformulate Keel’s Theorem together with the analysis of the addi-
tive structure of H∗(M0S) as follows

V (ΓS)/RS ' A∗(M 0S). (3.11)

3.4. Forgetful morphisms and trees. The flat and proper morphisms πs :
M 0S → M0,S\{s} which forget the point marked by s and stabilize if necessary
induce the maps π∗ and π∗ on the Chow rings where we omitted the subscript s
which we will always do, if there is no risk of confusion.

We will now define the maps π∗, π
∗ on V (ΓS) corresponding under mon to the

respective maps in the Chow rings of M 0S induced by the isomorphism (3.11).

Define π∗ via

πs∗(τ) =

{
forget the tail number s and stabilize, if the stabilization is necessary

0 otherwise (3.12)

For any S–tree τ and any s /∈ S set

τ s
v = the (S ∪ {s})–tree obtained from τ by adding an additional tail

marked by s at the vertex v. (3.13)

Now define

πs∗(τ) =
∑

v∈Vτ

τ s
v , (3.14)

Taking the definition of mon, it is a straightforward calculation to check that
indeed mon(π∗(τ)) = π∗(mon(τ)) and mon(π∗(τ)) = π∗(mon(τ)). Furthermore,
one can check that these maps descend to the quotients by RS.
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4. The intersection formula for strata classes

Starting from the tree description of the additive structure of the cohomology
ring H∗(M 0n), we give, as a first result, a formula for the intersection index of two
strata classes. To this end, we first introduce the new notion of a good orientation
and then provide the formula.

4.1. The intersection product for H∗(M 0S). Consider the functional∫
M0,S

: H∗(M 0,S)→ k is given by

mon(τ) 7−→

{
1, if deg mon(τ) = |S| − 3,

0 otherwise.
(4.1)

Notice that deg mon(τ) = |S| − 3 iff |v| = 3 for all v ∈ Vτ , and M τ is a
point in this case. We put 〈σ1, σ2〉 =

∫
M0S

mon(σ1)mon(σ2) and set to calculate

this intersection index for the case when deg mon(σ1) + deg mon(σ2) = |S| − 3.
Generally, we will write 〈m〉 instead of

∫
M0S

m. We can assume that all pairs of

different divisors of mon(σ1) and mon(σ2) are compatible, otherwise 〈σ1, σ2〉 = 0.
Put τ = σ1 × σ2 in the category of S–morphisms. This is a tree with a marked
subset of edges E corresponding to Dσ’s whose squares divide mon(σ1)mon(σ2).
We denote by δ the subgraph of τ consisting of E and its vertices.

Consider an orientation of all edges of δ. Call it good, if for all vertices v of
τ , the number of ingoing edges equals |v| − 3 where |v| means the valence in τ .
Notice that in case v /∈ Vδ, we interpret this as |v| = 3.

4.2. Proposition. There cannot exist more than one good orientation of δ.
If there is none, we have 〈σ1, σ2〉 = 0. If there is one, we have

〈σ1, σ2〉 =
∏

v∈Vτ

(−1)|v|−3(|v| − 3)! (4.2)

The proof can be found in the Appendix of [KMK]. It also follows from the more
general Theorem 6.5 below.

4.3. Remark. The above proposition gives the intersection formula in terms
of the strata–tree description. However, if one is interested in the intersection
index of any number of strata classes or of some particular type of non–strata
classes, one has to generalize Proposition 4.2. This will be the objective for the
next sections. We will, in particular, provide the above mentioned intersection
formula and, furthermore, present a basis of H∗(M 0n) together with its intersec-
tion matrix and the inverse intersection matrix.
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5. Partitions and Trees

In order to state the above mentioned theorem, we will first introduce some
new notions to extend the combinatorics which can be handled by the trees
introduced so far.

5.1. Trees with multiplicity. To generalize Proposition 4.2, we will have
to deal with monomials which are not necessarily good; consequently, we will
extend the notion of trees to that of trees with multiplicity which can be seen as
the objects corresponding to arbitrary monomials in boundary divisors.

5.1.1. Definition. A S–tree with multiplicity is a pair (τ, m) consisting of
a S–tree and a function m : Eτ → N.

If no multiplicity function is given, we will assume that it is identically 1.

Call a monomial Dm1
σ1
· · ·Dmk

σk
nice, if a(σi, σj) = 2 or 3.

Set

mon((τ, m)) :=
∏

e∈Eτ

D
m(e)
σ(e) . (5.1)

5.1.2. Proposition. For any 1 ≤ r ≤ |S|−3, the map: (τ, m) 7→ mon((τ, m))
establishes a bijection between the set of nice monomials of degree r in FS and
stable S–trees with multiplicity (τ, m) with deg(τ, m) :=

∑
e∈Eτ

m(e) = r.

Proof. Immediate from 3.3.2.

5.1.3. Remark. Notice that unlike in the case of good monomials it can
happen that a nice monomial can represent a zero class, even if the degree is less
or equal to |S| − 3.

5.2. Rooted trees and ordered partitions.

5.2.1. Remark. If we choose a distinguished element s ∈ S, we can define
natural bijections between the following three sets:

a) unordered 2–partitions σ = {S1, S2} of S
b) ordered 2–partitions σ = 〈S1, S2〉 with the condition s ∈ S2

c) subsets T ⊆ S \ {s}.

This is due to the fact that given the first component of an ordered pair of the
above type the second one is uniquely determined.
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5.2.2. The case of n. In particular for S = n, we choose n as the dis-
tinguished element and we equivalently index the generators of H∗ by subsets
S ⊂ n− 1 with the restriction 2 ≤ |S| ≤ n − 2 (note that this excludes the set
n− 1 itself). We will denote the generator corresponding to such a set S:

DS := DS,n\S ,

for S ⊂ n− 1. The relations (i) and (ii) of Section 3.2 stated in this notation
become:

(i’) DSDT if S ∩ T 6= ∅ and the two sets do not satisfy an inclusion relation.
(ii’) For any four numbers i, j, k, l:

∑

n−1⊃T⊇{i,j}
k,l /∈T

DT +
∑

n−1⊃T⊇{k,l}
i,j /∈T

DT −
∑

n−1⊃T ′⊇{i,k}
j,l /∈T

D′
T −

∑

n−1⊃T ′⊇{j,l}
i,k /∈T

D′
T .

(5.2)

The expression for D2
S for a choice i, j ∈ S and k /∈ S reads:

D2
S = −

∑

S⊃T⊇{i,j}

DSDT −
∑

S⊂T⊂n−1
k/∈T

DSDT . (5.3)

This is the formula (5.4) from [KMK] with i, j, k, n playing the role of i, j, k, l.

The analogs of formula (3.8) follow in the same manner.

5.2.3. Rooted trees and orientation. A rooted S–tree will be a pair
(τ, vroot) consisting of a S–tree τ and one of its vertices vroot called root. An
orientation of a tree is considered to be a map or : Eτ → Vτ , with the restriction
that e is incident to or(e). We will use the terminology “e is pointing towards v”
to indicate v = or(e) (“pointing away” will be used on the same basis). The set
or−1(v) will be called the incoming edges, the remaining incident edges will be
considered as outgoing. Furthermore, notice that an oriented edge e of a tree de-
fines a subtree by cutting e and selecting the tree containing or(e). This subtree
will be called the branch of e.

5.2.4. Natural orientation for a rooted tree. For a rooted tree (τ, vroot),
there is a natural orientation defined by setting or(e) = the vertex of e which is
furthest away from the root (i.e. e is part of the unique path from this vertex to
the root). Notice that in this orientation there is exactly one incoming edge to
each vertex except for the root which has none. Therefore, the restriction of or
induces an one–to–one correspondence of V (τ) \ {vroot} and E(τ).

e 7→ vertex to which e is pointing

inversely

v 7→ the unique incoming edge (5.4)
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5.2.5. Orientation for a n–tree. For a given n–tree, we will fix the root
to be the vertex with the flag numbered by n emanating from it. This defines
an one–to–one correspondence of n–trees with rooted n trees. Using this picture
and Remark 5.2.1, we can equivalently view a n–tree (with multiplicity) as either
given by the good (nice) collection of 2–partitions associated to its edges or as a
good (nice) collection of subsets of n− 1 associated to its vertices. In the latter
case, we associate to each vertex the set S of the 2–partition corresponding to
the incoming edge, which does not contain n. In this way, denote for given nice
σ and S ∈ σ by vS (respectively eS) the vertex (respectively edge) corresponding
to S.

Adopting this point of view, we can express quantities which are defined in
the language of Remark 5.2.1 c) in terms of oriented n–trees. Let σ be a collection
of stable subsets of n, i. e. for each S ∈ σ S ⊂ n− 1 and |S| ≥ 2. Define for any
S ∈ σ:

ωσ(S) = {T |T ⊂ S and maximal in this respect}

depthσ(S) = |{T |T ∈ σ and T ⊇ S}| (5.5)

The definitions of (5.5) translate in the following way into tree language:

|S| = |{tails marked by i ∈ n− 1 on the branch of eS}|

ωσ(S) = {outgoing edges of vS}

depthσ(S) = the distance from vS to vroot
(5.6)

where the distance is the number of edges along the unique shortest path.
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6. The intersection form

6.1. Notation. Having introduced the notions of trees with multiplicity and
good multiplicity orientations, we can now calculate the intersection form as
a formula for two arbitrary monomials of boundary divisors of complementary
degree. Recall that for a tuple (σ, m) of a nice collection of subsets of n− 1
and a multiplicity function m : σ 7→ N we denote by mon(σ, m) the monomial∏

S∈σ D
m(S)
S . The degree of such a monomial is

∑
S∈σ m(S). Furthermore, let

τ(σ, m) be the tuple (τ(σ), m′) where τ(σ) is the tree corresponding to the good
monomial

∏
S∈σ DS and m′ : Eτ(σ) → N is the the multiplicity function given by

eS → m(S).

6.2. Definition. A multiplicity orientation for a tree with multiplicity (τ, m)
is a map mult : Fτ \ Tτ 7→ N such that, if v1 and v2 are the vertices of an edge e:

mult((v1, e)) + mult((v2, e)) = m(e)− 1. (6.1)

It is called good, if for every v ∈ Vτ it satisfies:
∑

f∈Fτ (v)

mult(f) = |v| − 3. (6.2)

This is the analog of the good orientation in [KMK].

6.3. Lemma. For a n–tree (τ, m) in top degree (i.e.
∑

e∈Eτ
m(e) = n − 3),

there exists, at most, one good multiplicity orientation.

Proof. Assume that there are two good orientations mult, mult′. Consider
the union of all edges on which mult 6= mult′. Each connected component of this
union is a tree. Choose an end edge e of this tree and an end vertex v of e. At
v, the sum over all flags f of mult(f) and mult′(f) must be equal, but on (v, e)
these differ. Hence, there must exist an edge e′ 6= e incident to v upon which
mult((v, e′)) and mult′((v, e′)) differ. But this contradicts to the choice of v and
e.

The next lemma gives a way to decide whether this good multiplicity orien-
tation exists and, if so, to calculate it.

6.4. Lemma. Assume that an n–tree τ(σ, m) in top degree has a good mul-
tiplicity orientation mult. Let vS be the vertex corresponding to S ∈ σ and fS be
the flag of the unique incoming edge, then the following formula for its multiplicity
holds:

mult(fS) = |S| − 2−
∑

T∈σ|T⊂S

m(T ). (6.3)

Proof. We will use induction on the distance from the end vertices (i.e those
vertices with only one adjacent edge) in the natural orientation of n–trees given
by 5.2.5; the case for the end vertices being trivial. Now let vS be the vertex
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corresponding to S. By induction, we can assume that for all outgoing flags (6.3)
holds; i.e. for all (v, eT ) with T ∈ ωσ(S):

mult((v, eT )) = m(T )− 1− |T |+ 2 +
∑

T ′∈σ|T ′⊂T

m(T ′).

Inserting this into the condition (6.2), we arrive at

mult(fS) = |vS| − 3−
∑

T∈ωσ(S)

mult((v, eT ))

=|S| − |
⋃

T∈ωσ(S)

T |+ |ωσ(S)| − 2−
∑

T∈ωσ(S)

(m(T )− |T |+
∑

T ′∈σ|T ′⊂T

m(T ′) + 1)

=|S| − 2−
∑

T∈σ|T⊂S

m(T ),

(6.4)

where in the last step we have used |
⋃

T∈ωσ(S) T | =
∑

T∈ωσ(S) |T |, since σ is a nice
collection.

Consider again the functional
∫

M0,S
: H∗(M 0,S)→ k is given by

mon(τ) 7−→

{
1, if deg mon(τ) = |S| − 3,

0 otherwise

for any tree τ with m ≡ 1.

We put 〈(τ1, m1) (τ2, m2)〉 =
∫

M0S
mon((τ1, m1))mon((τ2, m2)) and set to cal-

culate this intersection index for the case when the two classes are of complemen-
tary degree: deg (mon((τ1, m1))) + deg (mon((τ2, m2))) = |S| − 3. Generally, we
will write 〈µ〉 instead of

∫
M0S

µ.

6.5. Theorem. Let mon(σ1, m1) and mon(σ2, m2) be two monomials of com-
plementary degree in H∗

n. If there is no good multiplicity orientation of (τ, m) :=
τ(σ1 ∪ σ2, m1 + m2), then 〈mon(σ1, m1)mon(σ2, m2)〉 = 0. If there does exist one
then:

〈mon(σ1, m1)mon(σ2, m2)〉 =
∏

v∈Vτ

(−1)|v|−3 (|v| − 3)!∏
f∈F (v)(mult(f))!2

∏

e∈Eτ

(m(e)− 1)!

where mult is the unique multiplicity orientation of (τ, m) provided by the Lemma
6.3 whose value is given in the formula (6.3).

Proof. Set E := {e ∈ Eτ |m(e) > 1} and δ the subtree consisting of E with
multiplicity m|E and its vertices. Consider the canonical embedding ϕτ : M τ →
M 0S.

〈mon(σ1, m1)mon(σ2, m2)〉 = 〈
∏

e∈E

ϕ∗
τ (D

m(e)−1
S(e) )〉 (6.5)

where the cup product in the r.h.s. is taken in H∗(M τ ) ∼= ⊗v∈Vτ H
∗(M 0,Fτ (v)).

Applying an appropriate version of the formulas (5.2), we can write for any e ∈ E
with vertices v1, v2:

ϕ∗
τ (Dσ(e)) = −Σv1 ,e − Σv2,e, (6.6)
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where

Σvi,e ∈ H∗(M0,Fτ (vi))⊗
∏

v 6=vi

[M0,Fτ (v)] (6.7)

and [M 0,Fτ (v)] is the fundamental class. Later, we will choose an expression for
Σvi,e depending on the choice of flags denoted i, j or k, l in (5.2).

Inserting (6.6) into (6.5), we get

〈mon(σ1, m1)mon(σ2, m2)〉 =
∑

or

∏

e∈Eτ

(m(e)− 1)!〈
∏

(v,e)∈Fδ
or((v,e))≥1

1

or((v, e))!
(−Σv,e)

or((v,e))〉 (6.8)

where or runs over all multiplicity orientations of δ. The summand of (6.8)
corresponding to a given or can be non–zero only, if for every v ∈ Vδ the sum
of the degrees of factors equals dim M 0,Fτ (v) = |v| − 3. This is what was called
a good multiplicity orientation. By Lemma 6.3 there can only exist one such
orientation. Now assume that one good orientation mult exists. We can rewrite
(6.8) as

〈mon(σ1, m1)mon(σ2, m2)〉 =
∏

e∈Eτ

(m(e)− 1)!
∏

(v,e)∈Fδ
mult((v,e))≥1

1

mult((v, e))!
〈(−Σv,e)

mult((v,e))〉. (6.9)

In view of (6.7), this expression splits into a product of terms computed in all
H∗(M 0,Fτ (v)), v ∈ Vτ separately. Each such term depends only on |v|, and we want

to demonstrate that it equals (−1)|v|−3 (|v|−3)!
Q

f∈F (v)(mult(f))!
. Put |v| = m, so m ≥ 3.

Let us identify Fτ with {1, . . . , m} and denote by D
(m)
ρ the class of a boundary

divisor in H∗(M 0,m) corresponding to a stable partition ρ of {1, . . . , m} and set
di := mult((v, ei)) where ei is the edge belonging to the flag i ∈ {1, . . . , m}. The
contribution of v in (6.9) becomes

m∏

i=1

〈(−Σ
(m)
i )di〉 := g(d1, . . . , dm) (6.10)

where −Σ
(m)
i is the element of (6.7) and the superscript (m) is again included to

keep track of the spaces involved. We will prove the following properties of the

function g(d1, . . . , dm) identifying it as (−1)m−3 (m−3)!
d1!...dm!

.

a) g(0, 0, 0) = 1.
b) g(d1, . . . , dm) is symmetric in the di.
c) If dm = 0, then

g(d1, . . . , dm) = −
∑

i:di≥1 g(d1, . . . , di − 1, . . . , dm−1).
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6.5.1. Remarks. Notice that up to the minus sign in c) these are exactly the
conditions satisfied by the numbers 〈τα1 . . . ταm〉 in genus zero [K2]. Furthermore,
we can always choose the flags in such a way that the flags 1, . . . , k (k ≤ m− 3)
belong to the edges e with mult(f(v, e)) ≥ 1.

ad a) We have by definition 〈[M 0,3]〉 = 1.
ad b) The symmetry results from the fact that the integral in question does

not depend on a renumbering of the flags.
ad c) First, we can use relation (5.2) for any k, l to write

−Σ
(m)
i =

∑

ρ: iρ{k,l}

−D(m)
ρ . (6.11)

We will calculate (6.10) inductively. Consider the projection map (for-
getting the (m)–th point) p : M 0,m →M 0,m−1 and the i–th section map
xi : M 0,m−1 →M 0,m obtained via the identification of M 0,m+3 with the

universal curve. We have p ◦xi = id, and xi identifies M 0,m−1 with D
(m)
σi

where
σi = {{m, i}{1, . . . , î, . . . , m− 1}};

so if we choose some k, l 6= m:
∑

ρ: iρ{k,l}

−D(m)
ρ = −p∗

( ∑

ρ′: iρ′{k,l}

D
(m−1)
ρ′

)
− xi∗([M 0,m−1]). (6.12)

We will now replace one of the Σi for each i with di ≥ 1 using (6.11)
with some arbitrary k, l 6= m. Then (6.10) reads

m∏

i=1

〈
(
− p∗(

∑

ρ′: iρ′{k,l}

D
(m−1)
ρ′ )− xi∗([M 0,m−1])

)
(−Σ

(m)
i )di−1〉

(6.13)

where ρ′ runs over stable partitions of {1, . . . , m− 1}. We represent the
resulting expression as a sum of products consisting of several p∗–terms
and several xi∗–terms each. If such a product contains two or more
xi∗–terms, it vanishes, because the structure sections pairwise do not
intersect. We obtain∑

i:di≥1

〈
∏

j 6=i:dj≥1

(
−p∗(

∑

ρ′: jρ′{k,l}

D
(m−1)
ρ′ )(−Σ

(m)
j )dj−1

)
(−xi∗([M 0,m−1]))(−Σ

(m)
i )di−1〉

+ 〈
∏

i:di≥1

p∗(−
∑

ρ′: iρ′{k,l}

D
(m−1)
ρ′ )(−Σ

(m)
j )dj−1〉. (6.14)

If di − 1 > 0, then the summand containing an xi∗–term will vanish. To
see this, again replace one of the Σi using (6.11), but with k = m and
some l. In case di − 1 = 0, we can write the respective term in the sum
in (6.14) as

〈(p∗(−
∑

ρ′: jρ′{k,l}

D
(m−1)
ρ′ )dj−1)(−xi∗([M0,m−1]))〉

by replacing the Σj according to (6.12) and again using the fact that
the structure sections do not pairwise intersect. Using induction on the
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last summand in (6.14), we arrive at the situation where all Σ
(m)
i ’s have

been replaced. And the product only contains p∗(Σ
(m−1)
i )–terms, but

this term vanishes, because dim M 0,m−1 = m − 2. Finally, we are left
with one summand for each i : di ≥ 1 containing only one xi∗–term and
p∗–terms. Using the projection formula

〈p∗(X)xi∗([M 0,m−1])〉 = 〈X〉

one sees that each such term equals −g(d1, . . . di−1, . . . , dm−1). And the
result follows.

6.6. Remark. Another approach to the theorem above is given by excess
intersection theory [F] using the formula for the normal bundle for strata given
in [HL]; as pointed out by E. Getzler who used a modular graph version of our
trees with multiplicity in calculations pertaining to the case of g = 1 [Ge2].
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7. A boundary divisorial basis and its tree representation

The work presented in this section is inspired by the presentation of a basis
of the cohomology ring of M 0n given in terms of hyperplane sections in [Yu] who
worked out a basis in another presentation of the cohomology ring developed by
DeConcini and Procesi [CP] via hyperplane arrangements. Especially the notion
of the ∗–operation and the partial order have been adapted from [Yu] to the
present context.

7.1. Preliminaries. In order to state the basis, we make use of certain
classes

DSxk
S := πfS∗(D

k+1
S DSqfS

), k ≥ 0 (7.1)

where πfS∗ : M 0,nqfS
→M 0n is the forgetful map forgetting the point fS.

Another way to present these classes is given by the following observation.
Consider the following decomposition of D2

S using (5.3):

D2
S = DS(−

∑

{i,j}⊂T⊂S

DT −
∑

n−1⊃T ′⊃S
k/∈T ′

D′
T ) =: DS(xS + yS) (7.2)

for any choice of i, j ∈ S, k, l /∈ S. With the notation (7.2), we can write Dk+1
S in

the same spirit as:

Dk+1
S = DS(

k∑

i=0

(
k

i

)
xi

Syk−i
S ). (7.3)

In the context of the proof of Theorem 6.5, each summand of (7.3) corresponds to
a choice of multiplicity orientation. In particular, the term with xi

S corresponds
to the one which satisfies mult(fS) = i, mult(fSc) = k − i for the flags fS and
fSc of eS, so that we can identify (7.1) with the summand corresponding to
mult(fS) = k, mult(fSc) = 0.

7.1.1. A tree representation. A tree representation for a class (7.1) is
given by a choice of an ordered k + 1 element subset 〈f1, . . . , fk+1〉 of S as the
sum over all assignments of the flags of S \ {f1, · · · , fk+1} to the vertices of the
linear tree determined by the monomial D{f1,f2}D{f1,f2,f3} . . .D{f1,...,fk+1}

DSxk
S = (−1)kDS

∑

〈S1,...,Sk〉
S1q···qSk=S\{f1,...,fk+1}

D{f1,f2}qS1D{f1,f2,f3}qS2 . . .D{f1,...,fk+1}qSk

(7.4)

or more generally, let τ given by DT1 · · ·DTk
be any tree with |vTi

| = 3 for
i = 1, . . . , k and T1 ∪ · · · ∪ Tk = {f1, . . . , fk+1} then

DSxk
S = (−1)kDS

∑

〈S1,...,Sk〉
S1q···qSk=S\{f1,...,fk+1}

DT1qS1 . . .DTkqSk
. (7.5)
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Both (7.4) and (7.5) follow from (5.2) with the appropriate choices for the
flags.

7.2. The basis. Consider a class of the following type

µ = πn∗(DS1x
m(S1)
S1

· · ·DSk
x

m(Sk)
Sk

Dn−1x
m(n−1)

n−1
), m(S) ≥ 0. (7.6)

To this class we associate the underlying (n + 1)–tree τ(µ) determined by the
monomial DS1 . . .DSk

Dn−1. The powers m(S) then determine a unique multi-
plicity orientation in the sense of 7.1 given by mult(fS) := m(S), mult(fSc) = 0
where fS and fSc are the flags corresponding to the edge eS in τ(µ).

Using the equations of the type (7.4), we can associate to each monomial µ a
sum of good monomials which we will call tree(µ).

Consider the following set:

Bn := {πn+1∗(DS1x
m(S1)
S1

· · ·DSk
x

m(Sk)
Sk

Dn−1x
m(n−1)

n−1
) | 0 ≤ m(S) ≤ |vS| − 4 and

0 ≤ m(n− 1) ≤ |vn−1| − 3}. (7.7)

7.2.1. Proposition. The set Bn is a basis for A∗(M 0n).

Proof. By Lemma 7.2.2 and 7.2.7.

7.2.2. Lemma. The set Bn spans A∗(M0n).

Proof. From [Ke] and [KMK] we know that the good monomials span; so
it will be sufficient to show that any such monomial is in the span of Bn. Now
let τ(µ) be the tree corresponding to such a good monomial µ. If for all v ∈
Vτ |v| ≥ 4, then the monomial is already in Bn. If not let τ3 be a maximal subtree
of τ whose vertices, except for the root (induced by the natural orientation), all
have valence three; call such a tree a 3–subtree and the number of its edges its
length. Furthermore, let R be the set associated with the root. Let F3(τ3) be
the set of tails of τ3 without the ones coming from the root. The formula (7.5)
for the tree representation of DRxl

R with the choice of F3(τ3) as the fixed set and
τ3 as a 3–subtree expresses τ in terms of trees with less maximal 3–subtrees of
maximal length whose vertices either comply with the conditions of Bn or are
part of a unique maximal subtree whose root vR has multiplicity 0, i.e. xR does
not divide the monomial corresponding to the tree. Notice that if the root vR of
any 3–subtree is three–valent then R = n− 1. We can now proceed by induction
of the number of such maximal 3–subtrees with the maximal number of edges l.
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7.2.3. The *–operation. We define the following involution on Bn × Z2:

πn+1∗(DS1x
m(S1)
S1

· · ·DSk
x

m(Sk)
Sk

Dn−1x
m(n−1)

n−1
)

∗
−→

πn+1∗((−1)|vS1
|−3DS1x

|vS1
|−4−m(S1)

S1
· · · (−1)|vSk

|−3DSk
x
|vSk

|−4−m(Sk)

Sk

(−1)|vn−1|−3Dn−1x
|vn−1|−3−m(n−1)

n−1
). (7.8)

This operation preserves the underlying tree τ(µ), but changes the multiplic-
ities in such a way that µ and µ∗ have complementary dimensions. More pre-

cisely, consider µ as the push forward of the class
⊗

vS∈Vτ(µ)
x

m(S)
S ∈ H∗(Mτ(µ))

to H∗(M 0n), then, locally at each vertex, we have a class of degree m(S). This
class is replaced under the *–operation by a “dual” class of complementary degree

dim(M0,Fτ (vS))−m(S) which is provided as a summand of ϕ∗
DS

(DSx
|vS |−4−m(S)
S ).

7.2.4. Lemma. For two elements µ, ν of Bn the integral
∫

M0n
µν∗ does not

vanish iff τ(µν∗) is nonzero and if there is one good multiplicity orientation
among the multiplicity orientations satisfying mult(fS) = mµ(S) + mν∗

(S) +
1, mult(fSc) = 0 or mult(fS) = mµ(S)+mν∗

(S), mult(fSc) = 1 where fS, fSc are
the flags of the edge eS. If such an orientation exists, it is unique and∫

M0n

µν∗ =
∏

v∈Vτ(ν)

(−1)|v|−3
∏

v∈Vτ(µν∗)

(−1)|v|−3 (|v| − 3)!∏
f∈Fτ(µν∗)(v)(mult(f))!

.
(7.9)

Proof. The formula (7.9) and the conditions for µ and ν as well as the ones for
the considered multiplicity orientations follow from Theorem 6.5 by considering
the summands of

πn+1∗(D
ε(S1)+m(S1)
S1

· · ·D
ε(Sl)+m(Sl)
Sl

D
m(n−1)

n−1
),

corresponding via 7.1 to the given monomial

µν∗ = πn+1∗(D
ε(S1)
S1

x
m(S1)
S1

· · ·Dε(Sl)
Sl

x
m(Sl)
Sl

Dn−1x
m(n−1)

n−1
)

with ε(S) ∈ {1, 2}.

Notice that in the formula (7.9) the binomial coefficients
(

m(eS)−1
mult(fS)

)
which

appear in Theorem 6.5 are absent. This is due to the fact that these factors

stemming from the expansion of D
m(eS)
S as in (7.3) are stripped off in the definition

of the classes DSxk
S .

7.2.5. An order. Given two monomials µ, µ′ of type (7.6) of the same degree
we write µ ≺ µ′, if for the maximal integer k such that all sets of the depth d
vertices for 1 ≤ d ≤ k coincide and m(S) = m′(S) for all sets of the depth d′

vertices for 1 ≤ d′ < k one of the following conditions holds

(a) m(S) ≤ m′(S) for all S of depth k and the inequality is strict for at least
one S or

(b) m(S) = m′(S) and |vS| ≥ |v
′
S| for all S of depth k and there is at least

one S where the inequality is strict.
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It is easy to check that this defines a partial order on Bn.

The *–operation connects with the partial order ≺ in the following way:

7.2.6. Lemma. If µ, ν ∈ Bn are two distinct basis elements (µ 6= ν) and
µν∗ 6= 0, then µ ≺ ν.

Proof. We will use superscripts µ, ν to refer to the quantities concerning the
monomials µ, ν and take quantities without any superscript to refer to µν∗. So
the notation |vν

S| is used for the valence of the vertex vS in the tree τ(ν) and
|vS| without any superscript is taken to be the valence of the vertex vS in the
tree τ(µν∗). If µν∗ 6= 0 then the underlying tree of µν∗ carries a unique good
multiplicity orientation by Theorem 6.5. Furthermore, the underlying trees of
µ and ν coincide up to depth k; this is the first condition for k. From this,
together with Lemma 7.2.3, it follows that the good multiplicity orientation up
to depth k − 1 is given by mult(fS) = |vS| − 3. Now at depth k we must have
mult(fS) ≤ |vS| − 3 and, because the multiplicity orientation is fixed for all
lower depths as specified, we also have mult(fS) = mµ(S) + mν∗

(S) + δS,n−1 =
m(S) + |vν

S| − 3−mν(S). Combining these two relations, we find the condition:

mµ(S)−mν(S) ≤ |vS| − |v
ν
S|. (7.10)

Furthermore, we have the inequalities |vS| ≤ |v
ν
S|, |vS| ≤ |v

µ
S|, since τ(µ) and

τ(ν∗) = τ(ν) result from τ(µν∗) via contractions of edges which only increase the
number of flags at the remaining vertex. So the left–hand side of (7.10) is less or
equal to zero:

mµ(S)−mν(S) ≤ 0. (7.11)

Thus, if the inequality is strict for some S, we arrive at condition (a), if, however,
mµ(S) = mν(S) for all S of depth k, the following inequality must also hold:

0 ≤ |vµ
S| − |v

ν
S|. (7.12)

Equality for all S in (7.12), however, would contradict the choice of k, since if
mµ

S = mν
S and |vµ

S| = |v
ν
S|, we have |vν

S| = |vS| = |v
µ
S| from the above inequalities

so that there are no contractions from τ(µν∗) to τ(µ) and τ(ν) up to depth k +1
and the sets of depth k + 1 corresponding to the outgoing edges of vµ

S and vν
S

must also coincide.

7.2.7. Lemma. Consider the matrix T = (tµ,ν)µ,ν∈Bn given by

tµ,ν :=

∫

M0n

µν∗. (7.13)

This matrix is unipotent and the entry tµ,ν is determined by Lemma 7.2.3. In
particular, the set Bn is linear independent.

Proof. For the diagonal entries
∫

µµ∗ mult(fS) = |vS| − 3 is a good multi-
plicity orientation so that (7.9) renders tµµ∗ = 1. Furthermore, by considering
any extension of the partial order to a total order, the unipotency is proved by
Lemma 7.2.6.
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7.3. The intersection form and its inverse for the basis Bn. With the
help of the matrix T introduced in 7.2.6, we can write the matrix M for the
intersection form in the basis Bn as M = TP where the matrix P is the matrix
representation of the ∗–operation given by the signed permutation matrix

Pµ,ν = (−1)n−2−|Eτ(µ)|δµ,µ∗ . (7.14)

7.3.1. Theorem. The Gram–matrix (mµν) for the basis Bn is given by

mµν = (−1)n−2−|Eτ(ν)|tµν∗ (7.15)

and its inverse matrix (mµν) is given by the formula:

mµν = (−1)n−2−|Eτ(µ)|(δµ∗ν +
∑

k≥0

(−1)k+1
∑

µ∗≺τ1···≺τk≺ν

tµ∗τ1tτ1τ2 · · · tτk−1τk
tτkν)
(7.16)

where the values for the tσ,σ′ are given by (7.9) and the sum over k is finite.

Proof. The formula (7.15) follows from the above decomposition M = TP .
To prove the formula (7.16), set N := id − T . According to Lemma 7.2.6, N is
nilpotent and the inverse to the intersection form can now be written as

M−1 = PT−1 = P (id + N + N 2 + . . . ) (7.17)

where the sum in (7.17) is finite.

7.3.2. Corollary. In the notation of Theorem 7.3.1, the diagonal class ∆M 0n

of M 0n ×M 0n has the following representation in H2(n−3)(M 0n ×M 0n):

∆M0n
=

∑

µ,ν∈Bn

µ mµν ⊗ ν. (7.18)

7.4. Particular cases. Writing down the results of this and the previous
section, we obtain the following intersection matrices Mn for small values of n:

n = 3 M3 = (1).
n = 4 For the basis π5∗(D1,2,3), π5∗(−D1,2,3x1,2,3) we obtain

M4 =

(
0 1
1 0

)

n = 5 For the basis π6∗(D1,2,3,4), D1,2,3, D1,2,4, D1,3,4, D2,3,4, π6∗(D1,2,3,4x1,2,3,4),
π6∗(D1,2,3,4x

2
1,2,3,4) the intersection matrix is:

M5 =




0 0 0 0 0 0 1
0 −1 0 0 0 0 0
0 0 −1 0 0 0 0
0 0 0 −1 0 0 0
0 0 0 0 −1 0 0
0 0 0 0 0 1 0
1 0 0 0 0 0 0
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n = 6 In this case, the intersection matrix also has only nonzero entries for the
integrals of dual classes under the ∗–operation:

∫
M0n

µµ∗ whose values

are (−1)4−|Eτ(µ)|.
n ≥ 7 For the higher values of n, the structure of the matrix T is not diagonal,

since entries other than those coming from the product of *–dual classes
can also be nonzero, e.g. 〈Di,j,k,lxi,j,k,lDi,j,k,lxi,j,k,l〉 in M0,7. Thus, the
*–operation fails to give the Poincaré duality for these spaces.

However, on the subspace A1(M 0n)⊕ An−4(M 0n), the *–operation
does provide the Poincaré duality as can be deduced from Lemma 7.2.3.
On this subspace, the matrix T is just the identity matrix so that the
restriction to this subspace of Mn is given by P . In the case of small
n < 7 this subspace is already the whole space so that the matrices in
the previous cases are just given by P .
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8. Higher Weil–Petersson–volumes

As a second part in the study of the geometry of the moduli spaces of curves,
we will now consider —as an extension of (1.2)— the integrals of the type∫

Mg,n

ωg,n(1)m(1) . . . ωg,n(a)m(a) . . . ,
∑

a≥1

am(a) = 3g − 3 + n
(8.1)

which we will call higher WP–volumes. In [KMZ] several formulas for these
volumes and their generating functions were derived. For genus zero, we proved
a recursive formula whose proof, which uses calculations of the ωn(a) via strata
classes, will be reproduced below.

Among the further results of the collaboration [KMZ] is a closed formula
which expresses each higher volume in genus zero as an alternating sum of multi-
nomial coefficients and a higher genus generalization of this formula in which
the multinomial coefficients are replaced by the correlation numbers 〈τd1 . . . τdn〉
which are computable via Witten–Kontsevich’s theorem [W], [K1].

Encoding the values of the higher WP–volumes into a generating function in
infinitely many variables, one can translate the recursion relation into an infinite
system of non–linear differential equations for this generating function. Using a
slightly modified version of this generating function, it is shown in [KMZ] that
the above system of non–linear differential equations turn into a linear system
for its inverse power series which can be solved explicitly. This fact will be used
in the next Chapter.

Recently, the g = 1 case has been treated in [KK] following the lines of [KMZ].

We will now reproduce the proof of the recursive formula and quote the other
results from [KMZ].

8.1. Recursive relations for the generating function.

8.1.1. Notation. Let N∞ be the semigroup of sequences of the form m =
(m(1), m(2), . . . ) where the m(a) are nonnegative integers and m(a) = 0 for
sufficiently large a.

Set

Vg(m) :=
1

(
∑

a≥1 am(a))!

∫

Mg,n

∏

a≥1

ωg,n(a)m(a)

m(a)!
∈ Q (8.2)

where the r.h.s. is interpreted as zero unless
∑

a≥1 am(a) = dim M g,n = 3g−3+n.
In the rest of this section g = 0 and V0(m) is simply denoted by V (m).

To shorten expressions like (8.2), a shorthand notation of the following type
is utilized

|m| :=
∑

a≥1

am(a), ‖m‖ :=
∑

a≥1

m(a), m! :=
∏

a≥1

m(a)!,

ω
m

n =
∏

a≥1

ωg,n(a)m(a), sm =
∏

a≥1

sm(a)
a

(8.3)
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where s = (s1, s2, . . . ) is a family of independent formal variables or complex
numbers. For instance, V (m) =

∫
ω

m/m! |m|! in this notation.

8.1.2. A recursive formula for V (m). Put

K(n1, . . . , na) :=
1

n1(n1 + n2) · · · (n1 + · · ·+ na)
(8.4)

and denote by δa ∈ N∞ the sequence with 1 at the a–th place and zeros elsewhere.

8.1.3. Theorem. For any m and a ≥ 1, we have:

(m(a) + 1)V (m + δa) = (|m|+ a + 1)
∑

m=
Pa+1

i=1 mi

K(n1, . . . , na)

a+1∏

i=1

V (mi)
(8.5)

where in each summand of (8.5)

(n1, . . . , na) := (|m1|, . . . |ma|) + (2, 1, . . . , 1) (8.6)

(notice the absence of |ma+1|). These relations uniquely define V (m), starting
with V (0) = 1.

8.1.4. A particular case of (8.5). Applying (8.5) to V (m) := V (m, 0, 0, . . . )
and a = 1 yields:

(m + 1)V (m + 1) = (m + 2)
∑

m=m1+m2

1

m1 + 2
V (m1)V (m2)

=
1

2
(m + 2)

∑

m=m1+m2

(
1

m1 + 2
+

1

m2 + 2
) V (m1) V (m2) (8.7)

so that
V (m + 1)

m + 3
=

1

2

(m + 2)(m + 4)

(m + 1)(m + 3)

∑

m=m1+m2

V (m1)

m1 + 2

V (m2)

m2 + 2
.

On the other hand, Zograf’s recursive relations (1.4) can be rewritten as

(n− 2)vn

(n− 3)!(n− 1)!
=

1

2

(n− 2)n

(n− 3)(n− 1)

∑

n+2=p+q
p,q≥3

(p− 2)vp

(p− 3)!(p− 1)!

(q − 2)vq

(q − 3)!(q − 1)!
.

These relations agree for V (n− 3) = vn/(n− 3)!2 which is the correct formula in
view of (1.3) and (8.2).

We will now start proving Theorem 8.1.3.

For any stable n–tree σ, we put (with notation (8.3))

Ωn(m, σ) =

∫

Mσ

ϕ∗
σ(ωm

n )

m!
, (8.8)

interpreting this as zero unless n − 3 − |m| = codim ϕσ(Mσ) = |Eσ|. If σn is
an one–vertex n–tree, we write Ωn(m) := Ωn(m, σn). Notice that Ωn(a) from
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[KMK] is
(

n−3
a

)
! Ωn(n−3

a
δa) in our present notation. The numbers V (m) in (8.2)

are Ωn(m)/|m|!.

8.2. Lemma. We have

Ωn(m, σ) =
∑

(mv |v∈Vσ):
m=

P

mv

∏

v∈Vσ

Ω|v|(mv), (8.9)

where the sum in r.h.s. is taken over all partitions of m indexed by vertices of
σ.

Proof. This follows from the fact that the ωn(a) form a “logarithmic CohFT”,
a notion which was defined in [KMK]. This means that they satisfy a certain
additivity property which was established in [AC], (8.8). For any genus:

ϕ∗
σ(ωn(a)) =

∑

w∈Vσ

pr∗w(ω|w|(a)) (8.10)

where Mσ is identified with
∏

w∈Vσ
M 0,|w| and prw is the respective projection.

Although these identifications are defined only up to the action of
∏

w∈Vσ
S|w|,

the classes pr∗w(ω|w|(a)) are well defined since they are S|w|–invariant.
Hence∫

Mσ

ϕ∗
σ(ωm

n ) =

∫
Q

v∈Vσ
M0,|v|

∏

a≥1

( ∑

w∈Vσ

pr∗w(ω|w|(a))
)m(a)

=

∫
Q

v∈Vσ
M0,|v|

∏

a≥1

∑

(mw(a)|w∈Vσ):
m(a)=

P

w mw(a)

m(a)!∏
w mw(a)!

∏

w∈Vσ

pr∗w(ω|w|(a))mw(a)

=

∫
Q

v∈Vσ
M0,|v|

∑

(mw |w∈Vσ):
m=

P

w mw

m!∏
w mw!

∏

w∈Vσ

pr∗w(ω|w|)
mw

=
∑

(mw |w∈Vσ):
m=

P

w mw

m!
∏

v∈Vσ

∫

M0,|v|

ω
mv

|v|

mv!
.

8.3. Calculation of ωn(a) via strata classes. For a fixed n ≥ 3 and a ≥ 1
consider labeled (a + 1)–partitions

S : n := {1, . . . , n} = S1 q · · · q Sa+1.

Denote by τ(S) the n–tree with Vτ(S) = {v1, . . . , va+1} and edges connecting
vi to vi+1 for i = 1, . . . , a, and unpaired flags (numbered by) Si put at vi. The
stability condition for τ(S) and S is:

ni := |Si| ≥ 2 for i = 1, a + 1; ≥ 1 for i = 2, . . . , a. (8.11)

In the following proof, all partitions are stable. Denote by m(S) the dual
cohomology class of the cycle ϕτ(S)(M τ(S)) in M 0n.
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8.3.1. Lemma. We have

ωn(a) =
∑

S:n=S1q···qSa+1

(n1 − 1)(na+1 − 1)n1 . . . na+1

n(n− 1)
K(n1, . . . , na) m(S)

(8.12)

where K(n1, . . . , na) is defined in (8.4).

8.3.2. Notation. To state some intermediate formulas, we will need some of
the notation of [KMK]. Let Tn(a) be the set of n–trees with a edges. For any flag
f denote by β(f) the set of tails of the branch of f and S(f) the set of their labels.
Then to any set of flags T we associate the set S(T ) :=

⋃
f∈T S(f) ⊂ {1, . . . , n}.

If {S(T1), S(T2)} is a partition of {1, . . . , n}, we use the shorthand notation DT1,T2

for DS(T1),S(T2). Let τ be an n–tree and let e be one of its edges, ∂e = {v1, v2}, σe

the corresponding partition S1 q S2 and De the corresponding divisor. Choosing
flags {i, j} ∈ F (v1) and {j, k} ∈ F (v2), we have [KM] the following formula:

Dem(τ) =−
∑

T : {i,j}⊂T⊂F (v1)
2≤|T |≤|F (v1)|−1

DT,F (v2)qF (v1)\T m(τ)

−
∑

T : {k,l}⊂T⊂F (v2)
2≤|T |≤|F (v2)|−1

DT,F (v1)qF (v2)\T m(τ).

8.3.3. Definition. A tree is called linear, if each vertex has at most two
incident edges. An orientation of a linear tree is a labeling of its vertices by
{1, . . . , |V (τ)|} such that vi and vi+1 are connected by an edge for i = 1, . . . , |E(τ)|.

We denote by LTn(a) the set of stable linear n–trees with a edges modulo
isomorphism. Given a geometrically oriented linear tree, we number its vertices
in the positive direction.

8.3.4. Remark. The oriented linear trees in LTn(a) are in 1–1 correspon-
dence with labeled a + 1–partitions S : n := {1, . . . , n} = S1 q · · · q Sa+1 which
satisfy (8.11).

8.3.5. Tautological classes and the ωn(a). In the proof of the Lemma,
we will consider some additional classes in H∗(M g,n, Q). Let ξi : M g,n → Cn be
the structure sections of the universal curve. Put as in [AC]:

Ψn,i := ξ∗i (c1(ωC/M)) ∈ H2(Mg,n, Q). (8.13)

Here we will need them only for g = 0; see below for any genus.

Identify C → M0n with the forgetful morphism pn : M 0,n+1 → M 0n. Then
ξi(M0n) becomes the divisor Di = D{i,n+1}{1,... ,̂i,... ,n} in M 0,n+1 and

Ψn+1,i = ϕ∗
Di

(−D2
i ).

where ϕ∗
Di

denotes the pullback on the divisor Di. We know from [AC]:

ωn−1(a) = pn−1∗(Ψ
a+1
n,n ).
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Combining these two formulas, we obtain:

ωn−1(a) = pn−1∗ ◦ ϕ∗
Dn

((−1)a+1Da+2
n ). (8.14)

To derive (8.14) notice that

Ψn,i =
∑

n∈S⊂{1,... ,n}

(n− |S|)(n− |S| − 1)

(n− 1)(n− 2)
DS,{1,... ,n}\S

(see [KMK]) so that we have

Ψa+1
n,n =

( ∑

n∈S∈{1,... ,n}

(n− |S|)(n− |S| − 1)

(n− 1)(n− 2)
DS,{1,... ,n}\S

)a+1

= ϕ∗
Dn

(
( ∑

{n,n+1}⊂S∈{1,... ,n+1}

(n− |S|)(n− |S| − 1)

(n− 1)(n− 2)
DS,{1,... ,n+1}\S

)a+1

Dn)

= ϕ∗
Dn

((−1)a+1Da+2
n ).

8.3.6. A calculation. Denote by DnLT (k) the set of oriented linear (n+1)–
trees with a edges whose monomials are divisible by Dn and whose orientation
is given by calling vk+1 the trivalent vertex with the two tails n and n + 1. Also
take S to be the set of the flags of the other vertex vk of the edge corresponding
to Dn without the flag belonging to that edge. Then

Dk
n =

∑

τ∈DnLT (a)

|v1|(|v1| − 1)

(n− 1)(n− 2)

k−1∏

i=2

|vi| − 2
∑k

j=i(|vj| − 2)
m(τ). (8.15)

We will prove (8.15) by induction using the following versions of (8.13). Let
τ be a tree which has an edge e corresponding to Dn, then call v2 the vertex with
F (v2) = {n, n + 1, fe} where fe is the flag corresponding to e.

Averaging the formula (8.13) over the set S of all flags of v1 without the flag
belonging to e, we obtain:

Dnm(τ) = −
∑

T⊂S
2≤|T |≤|F (v1)|−2

|T |(|T | − 1)

|S|(|S| − 1)
DT,{n,n+1}qS\T m(τ).

(8.16)

Fixing one particular flag f of S and averaging over the rest, we obtain:

Dnm(τ) = −
∑

f∈T⊂S
2≤|T |≤|F (v1)|−2

|T | − 1

|S| − 1
DT,{n,n+1}qS\T m(τ). (8.17)
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Now, for k = 1 the formula (8.15) is clear and for k = 2 it is a consequence
of (8.17). For k > 2, we have

Dk
n = Dn Dk−1

n = Dn

∑

τ∈DnLT (k−1)

|v1|(|v1| − 1)

(n− 1)(n− 2)

k−2∏

i=2

|vi| − 2∑k−1
j=i (|vj| − 2)

m(τ)

=
∑

τ∈DnLT (k−1)

∑

f∈T⊂S

|v1|(|v1| − 1)

(n− 1)(n− 2)
×

k−2∏

i=2

|vi| − 2∑k−1
j=i (|vj| − 2)

|T | − 1

|vk−1| − 2
DT,{n,n+1}qS\Tm(τ) (8.18)

where we have used (8.17) with the distinguished flag being the unique flag of S
belonging to an edge. This guarantees that the sum will again run over linear
trees. In the second sum, there is one edge inserted at the vertex vk−1 giving two
new vertices v′, v′′ with |v′| + |v′′| = |vk−1| + 2. Giving v′, v′′, the labels k − 1
and k and labeling the old vertex vk with k + 1 in the second sum, we obtain the
desired result (8.15).

8.3.7. Proof of the Lemma. What remains to be calculated is pn−1∗ ◦ϕ
∗
Dn

of the above formula for Da+2
n . The only nonzero contributions come from trees

τ ∈ DnLT (a + 2) with |vk| = 3, so that exactly one of the flags is a tail. Hence,
after push–forward and pull–back, the sum will run over oriented linear trees
with the induced orientation given by the image of vi with a distinguished flag
at the vertex vk−2. Summing first over the possible distinguished flags amounts
to multiplication by |vk−1|. We obtain:

ωn(a) =
∑

oriented τ∈LTn(a)

(|va+1| − 1)(|v1| − 1)

n

a+1∏

i=1

|vi| − 2∑a+1
j=i (|vj| − 2) + 1

m(τ)

which, using Remark 8.3.4, can be rewritten as a sum over partitions

ωn(a) =
∑

S:S1q···qSa+1

n1na+1

n
(n1−1)n2 · · ·na(na+1−1)

1

n− 1
K(na+1, . . . , n2)m(S)

with ni = |vi| − 1 for i = 1, a + 1 and ni = |vi| − 2 for i = 2, . . . , a, which is
equivalent to (8.12).

8.3.8. Remark. Instead of using (8.17) in the induction, one can succes-
sively apply (8.16). In this case, one obtains a formula for ωn(a) involving all
boundary strata. Since not necessarily linear trees cannot be handled using only
partitions, the associated generating functions and recursion relations become
very complicated.
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8.4. Proof of Theorem 8.1.3. In view of (8.8), we have

Ωn(m + δa) =

∫

M0n

∏

b≥1

ωn(b)m(b)

m(b)!
∧

ωn(a)

m(a) + 1
. (8.19)

Instead of wedge multiplying by ωn(a), we can integrate the product ωm

n /m! over
the cycle obtained by replacing m(S) by ϕτ(S)(M τ(S)) in the r.h.s. of (8.12). The
separate summands can then be calculated using (8.8) and (8.9). The result is:

(m(a) + 1)Ωn(m + δa) =
∑

S:n=S1q···qSa+1

(n1 − 1)(na+1 − 1)n1 . . . na+1

n(n− 1)
×

K(n1, . . . , na)
∑

m=m1+···+ma+1

Ωn1+1(m1)Ωna+1+1(ma+1)
a∏

i=2

Ωni+2(mi). (8.20)

Now, the product of Ω’s vanishes unless

|mi| = ni − 2 for i = 1, a + 1, |mi| = ni − 1 for i = 2, . . . , a
(8.21)

so that n = |m+δa|+3. Hence, we can make the exterior summation over vector
(a+1)–partitions of m, and for a fixed (mi) sum over the set of (a+1)–partitions
of n satisfying (8.21). Since the coefficients in (8.19) depend only on (ni) rather
than (Si), we can then replace the summation over (Si)’s by multiplication by

n!
n1!...na+1!

. This leads to

(m(a) + 1)
Ωn(m + δa)

|m + δa|!
= (n− 2)

∑

m=m1+···+ma+1

K(n1, . . . , na)

a+1∏

i=1

Ω|mi|+3(mi)

|mi|!

which is equivalent to (8.5) in view of (8.8) and (8.2).

We will now quote the further results of [KMZ] without proofs:

8.5. The differential equation for a generating function. Put

F (x; s) = F(x; s1, s2, . . . ) :=
∑

m

V(m)x|m| sm ∈ Q[s][[x]] (8.22)

and denote ∂a = ∂/∂sa, ∂x = ∂/∂x. Then the recursion (8.5) is equivalent to:

8.5.1. Theorem (1.6.1 of [KMZ]). F satisfies the following system of dif-
ferential equations:

∂aF = ∂x

( a∑

k=0

(−1)k F 2k+1

(∂xF )k+1
∂a−kF

)
, a = 1, 2, . . . (8.23)

where we put ∂0 = x ∂x. It is the unique solution of this system in 1 + xQ[s][[x]]
with F (x; 0) = 0.

The theorem yields the above mentioned system of non–linear differential
equations which can be used to obtain explicit formulas using a transformation
which will be presented below.
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8.6. Explicit formulas and the inversion of the generating function.

8.6.1. Notation. In this section the genus is fixed to be zero (g ≥ 0) and
g is only kept in the notation for M g,n and Vg(m), but omitted everywhere else.
To state the explicit formulas, some additional classes in H∗(M g,n, Q) need to be
introduced. Recall the definition of the Ψ–classes

Ψn,i := ξ∗i (c1(ωC/M )) ∈ H2(M g,n, Q) (8.24)

where ξi : M g,n → Cn are the structure sections of the universal curve.

Following Witten [W], the integrals of top degree monomials in Ψn,i are de-
noted

〈τa1 . . . τan〉 =

∫

Mg,n

Ψa1
n,1 . . .Ψan

n,n. (8.25)

For g = 0, they are just multinomial coefficients:

〈τa1 . . . τan〉g=0 =
(a1 + · · ·+ an)!

a1! . . . an!
(8.26)

(see e.g. [K2]). The generating series for all the correlation numbers 〈τa1 . . . τan〉
and all g was predicted by Witten [W] and later identified by Kontsevich [K1] as
a “matrix Airy function”.

More generally, consider the relative integrals of the type (8.25). For k ≥ l,
denote by πk,l : M g,k → M g,l the morphism forgetting the last k − l points. For
any a1, . . . , ap ≥ 0 define

ωn(a1, . . . , ap) := πn+p,n∗(Ψ
a1+1
n+p,n+1 . . .Ψ

ap+1
n+p,n+p) ∈ H2(a1+···+ap)(Mg,n, Q).

(8.27)

Notice that whenever a1 + · · ·+ ap = dim M g,n, also the equation (a1 +1)+ · · ·+
(ap + 1) = dim M g,n+p holds, and therefore

∫

Mg,n

ωn(a1, . . . , ap) =

∫

Mg,n+p

Ψa1+1
n+p,n+1 . . .Ψ

ap+1
n+p,n+p = 〈τn

0 τa1+1 . . . τap+1〉.
(8.28)

8.6.2. Theorem (2.2 of [KMZ]). For any g, n, a1, . . . , ap, ai ≥ 0, we have

ωn(a1) . . . ωn(ap) =

p∑

k=1

(−1)p−k

k!

∑

{1,...,p}=S1q···qSk

Si 6=∅

ωn(
∑

j∈S1

aj, . . . ,
∑

j∈Sk

aj).
(8.29)

Equivalently, for any m ∈ N∞ \ {0}, p = ‖m‖,

(−1)p

m!
ω

m

n =

p∑

k=1

(−1)k

k!

∑

m=m1+···+mk
mi 6=0

ωn(|m1|, . . . , |mk|)

m1! . . .mk!
. (8.30)

As a corollary, one obtains:
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8.6.3. Corollary (2.3 of [KMZ]). For p = ‖m‖, 3g − 3 + n = |m|:

Vg(m) =
1

|m|!

p∑

k=1

(−1)p−k

k!

∑

m=m1+···+mk
mi 6=0

〈τn
0 τ|m1|+1 . . . τ|mk|+1〉

m1! . . .mk!
.

(8.31)

In particular, if g = 0, then

V (m) =

p∑

k=1

(−1)p−k

(
|m|+ k

k

) ∑

m=m1+···+mk
mi 6=0

1∏p
k=1(|mi|+ 1)!mi!

.
(8.32)

Finally, the generalization of (1.7) which contains the announced inversion
formula reads:

8.6.4. Theorem (2.4 of [KMZ]). In the ring of formal series of one vari-
able with coefficients in Q[s] = Q[s1, s2, . . . ], we have the following inversion
formula

y =
∑

|m|≥0

V (m)
x|m|+1

|m|+ 1
sm ⇐⇒ x =

∑

|m|≥0

y|m|+1

(|m|+ 1)!

(−s)m

m!
.

(8.33)





CHAPTER 2

Frobenius manifolds

This chapter is devoted to the study of Frobenius manifolds and their tensor
product. The connection to the previous chapter is established by the very defini-
tion of the tensor product which inherently uses part of the geometry of M 0n. In
addition to this connection between Frobenius manifolds and the moduli spaces
M 0n, another part of the geometry of M 0n, namely the higher Weil–Petersson
volumes, appears in the study of formal Frobenius manifolds of dimension one.

We begin by introducing several types of Frobenius manifolds and their in-
terrelations. These notions have been introduced by Dubrovin who basically
developed the theory of Frobenius manifolds. Extended accounts can be found
in the books [D], [M2] and in the articles [H] and [MM]; for further examples see
[DZh].

In the second part, we will analyze the operation of forming the tensor product
in each of these guises. First, we present an explicit formula for the potential
function of a tensor product of formal Frobenius manifolds by applying the results
of Chapter I to this particular situation. In an additional section, we review the
complete description of the dimension one case following [KMZ] by reinterpreting
the results about the generating functions for the higher Weil–Petersson volumes.
Then, we extend the definition of forming the tensor product to the additional
structures of an Euler field and an identity. Furthermore, we prove a theorem on
the base–point dependence of tensor product in the case of convergent germs of
Frobenius manifolds, and finally, in the case of semi–simple Frobenius manifolds,
we give the special initial conditions for the tensor product of two semi–simple
Frobenius manifolds in terms of the special initial conditions of the factors.

1. Formal Frobenius manifolds

1.1. Formal Frobenius manifolds. We will follow the definition from [M2].
Let k be a supercommutative Q–algebra, H = ⊕a∈Ak∂a a free (Z2–graded) k–
module of finite rank, g : H ⊗ H → k an even symmetric pairing which is
non–degenerate in the sense that it induces an isomorphism g ′ : H → H t where
H t is the dual module.

Denote by K = k[[H t]] the completed symmetric algebra of H t. This means
that if

∑
a xa∂a is a generic element of H, then K is the algebra of formal series

k[[xa]]. We will also regard elements of K as derivations on K with H acting via
contractions. We will call the elements of H flat.

43



44 2. FROBENIUS MANIFOLDS

1.1.1. Definition. The structure of a formal Frobenius manifold on (H, g)
is given by a potential Φ ∈ K defined up to quadratic terms which satisfies the
associativity of WDVV–equations:

∀a, b, c, d :
∑

ef

Φabeg
efΦfcd = (−1)ã(b̃+c̃)

∑

ef

Φbceg
efΦfad (1.1)

where Φabc = ∂a∂b∂cΦ, gij is the inverse metric and ã := x̃a = ∂̃a is the Z2–degree.

From the equations (1.1) it follows that the multiplication law given by ∂a ◦
∂b =

∑
c Φc

ab∂c turns HK = K ⊗k H into a supercommutative K–algebra.

There are two other equivalent descriptions of formal Frobenius manifolds
using abstract correlation functions and Comm∞–algebras.

1.1.2. Definition. The structure of a cyclic Comm∞–algebra on (H, g) is
a sequence of even polylinear maps ◦n : H⊗n → H, n = 2, 3, . . . , called multipli-
cations, satisfying the following conditions: We will denote ◦n(γ1 ⊗ · · · ⊗ γn) by
(γ1, . . . , γn) and call the ◦n|n ≥ 3 higher order multiplications.

(i) Higher commutativity: The multiplications ◦n are Sn–symmetric in the
sense of superalgebra.

(ii) Cyclitity: The tensors

Yn+1 : H⊗(n+1) → k, Yn+1(γ1 ⊗ · · · ⊗ γn) := g((γ1, . . . , γn), γn+1)
(1.2)

are Sn+1–symmetric.
(iii) Higher associativity: ∀m ≥ 0 and α, β, γ, δa, . . . , δn we have:

∑

σ:S1qS1={1,...,n}

ε′(σ)((α, β, δi|i ∈ S1), γ, δj|j ∈ S2) =

∑

σ:S1qS1={1,...,n}

ε′′(σ)(α, (β, γ, δi|i ∈ S1), δj|j ∈ S2). (1.3)

Here σ runs over all ordered partitions of {1, . . . , m} into two disjoint subsets.
The signs ε′(σ), ε′′(σ) are defined as follows: fix an initial order of the arguments
e.g. α, β, γ, δa, . . . , δn, then calculate the sign of the permutation induced by σ
on the odd arguments in (1.3).

1.1.3. Remark. Clearly given g, ◦n and Yn+1 uniquely determine each other.

1.1.4. Definition. An abstract tree level system of correlation functions
(ACFs) on (H, g) is a family of Sn–symmetric even polynomials

Yn : H⊗n → k, n ≥ 3 (1.4)

satisfying the Coherence axiom (1.5) below.

Set ∆ =
∑

∂ag
ab∂b. Choose any pairwise distinct 1 ≤ i, j, k, l ≥ n and denote

by ijSkl any partition S = {S1, S2} of {1, . . . , n} which separates i, j and k, l,
i.e. i, j ∈ S1 and k, l ∈ S2. The axiom now reads:
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Coherence: For any choice of i, j, k, l
∑

ijSkl

∑

a,b

Y|S1|+1(
⊗

r∈S1

γr ⊗ ∂a)g
abY|S2|+1(∂b ⊗

⊗

r∈S2

γr)

=
∑

ikT jl

∑

a,b

Y|T1|+1(
⊗

r∈T1

γr ⊗ ∂a)g
abY|T2|+1(∂b ⊗

⊗

r∈T2

γr). (1.5)

1.1.5. Correspondence between formal series and families of poly-
nomials. Given a formal series Φ ∈ K, we can expand it up to terms of order
two as

Φ =

∞∑

n≥3

1

n!
Yn (1.6)

where the Yn ∈ (H t)⊗n. We will consider the Yn as even symmetric maps H⊗n →
k. One can check that the WDVV–equations (1.1) and the Coherence axiom
(1.5) are equivalent under this identification, see e.g. [M2].

1.1.6. Theorem (III.1.5 of [M2]). The correspondence of 1.1.5 establishes
a bijection between the following structures on (H, g).

(i) Formal Frobenius manifolds.
(ii) Cyclic Comm∞–algebras.
(iii) Abstract correlation functions.

1.1.7. Definition. An even element e in HK is called an identity, if it is an
identity for the multiplication ◦. It is called flat, if e ∈ H. In this case, we will
denote e by ∂0 and include it as a basis element.

1.1.8. Euler Operator. An even element E ∈ K is called conformal, if
LieE(g) = Dg for some D ∈ k. Here, we take the Lie derivative of the tensor g
bilinearly extended to K w.r.t. the derivation E. In other words:

∀X, Y ∈ K : LieE(g) := Eg(X, Y )− g([E, X], Y )− g(X, [E, Y ]) = D g(X, Y ).
(1.7)

It follows that E is the sum of infinitesimal rotation, dilation and constant
shift, hence, we can write E as:

E =
∑

a,b∈A

dabx
a∂b +

∑

a∈A

ra∂a := E1 + E0, (1.8)

for some dab ∈ k. Specializing X = ∂a, Y = ∂b we can rewrite (1.7)

∀a, b :
∑

c

dacgcb +
∑

c

dbcgac = Dgab. (1.9)

In particular, we see that [E, H] ⊂ H and that the operator

V : H → H : V(X) := [X, E]−
D

2
X (1.10)

is skew–symmetric.
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A conformal operator E is called Euler, if it additionally satisfies LieE(◦) =
d0◦ for some constant d0.

1.1.9. Quasi–homogeneity. The last condition is equivalent to the quasi–
homogeneity condition (Proposition 2.2.2. of [M2])

EΦ = (d0 + D)Φ + a quadratic polynomial in flat coordinates.
(1.11)

1.2. Operadic Correlation Functions. By identifying the index set n =
{1, . . . , n} or more generally any finite set S with a set of markings of a S–tree,
one can extend the notion of ACFs to operadic correlation functions. These are
maps from H⊗S which also depend on a choice of a stable S–tree τ .

Y (τ) : H⊗Tτ → k (1.12)

The relation of these operadic correlation functions to a given system of ACFs
is provided by the following Lemma.

1.2.1. Lemma (8.4.1 of [KM]). Starting from a system of ACFs {Yn},
there exists a unique extension to trees, if one requires:

(i) For the one vertex tree with n tails ρn

Y (ρn) = Yn. (1.13)

(ii) Grafting together two trees τ ′, τ ′′ at the tails i, j to a tree τ corresponds
to the contraction with the Casimir element:

Y (τ)(γ1 ⊗ · · · ⊗ γn) =

Y (τ ′)(γ1 ⊗ · · · ⊗∆a
↑
i

⊗ · · · ⊗ γn1)g
abY (τ ′′)(γ1 ⊗ · · · ⊗∆b

↑
j

⊗ · · · ⊗ γn2). (1.14)

(iii) The Y (τ) are compatible with tree isomorphisms.

1.2.2. Remark. Given a set of ACFs {Yn} the correlation function of the
above Lemma for a stable n–tree τ is given by the formula

Y (τ)(∂a1 ⊗ · · · ⊗ ∂an) = (
⊗

v∈Vτ

YFv)(∂a1 ⊗ · · · ⊗ ∂an ⊗∆⊗|Eτ |).
(1.15)

We will extend this definition to the whole space V (Γn) by linearity. For any
element τ =

∑
αiτi ∈ V (Γn), we set

Y (τ ) :=
∑

αiY (τi) (1.16)
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1.2.3. Remark. To shorten the formulas, by abuse of notation, we will also
denote the following function from H⊗Fτ to k by Y (τ):

⊗

v∈Vτ

YFv =: Y (τ). (1.17)

Which function is meant will be clear from the index set of the arguments.

1.3. Cohomological Field Theories. The structure of a formal Frobenius
manifold on (H, g) is in fact equivalent to the structure of a CohFT on (H, g),
see [KM],[KMK]. This is due to the fact that a (tree–level) CohFT is uniquely
determined by its correlation functions.

1.3.1. Definition. A CohFT on (H, g) is given by a series of Sn–equivariant
maps:

In : H⊗n → H∗(M 0n, k), n ≥ 3

which satisfy the relations:

ϕ∗
σ(In(γ1 ⊗ . . .⊗ γn)) = ε(σ)(In1+1 ⊗ In2+1)(

⊗

j∈S1

γj ⊗∆⊗ (
⊗

k∈S2

γk))
(1.18)

where ϕσ for σ = S1 q S2 is the inclusion map of the divisor Dσ, ϕσ : M 0,|S1|+1 ×

M 0,|S2|+1 →M 0n, ∆ = Σ∆a ⊗∆bg
ab is the Casimir element, and ε(σ) is the sign

of the permutation induced on the odd arguments γ1, . . . , γn.

1.3.2. Equivalences of a CohFT and a system of ACFs. Given a Co-
hFT, the associated system of ACFs is defined as follows:

Yn(γ1 ⊗ · · · ⊗ γn) =

∫

M0n

In(γ1 ⊗ · · · ⊗ γn). (1.19)

Given the ACFs, one can equivalently pass to the potential

Φ(γ) :=
∑

n≥3

1

n!

∫

M0n

I0n(γ⊗n) =
∑

n≥3

1

n!
Yn(γ⊗n). (1.20)

The reverse direction of (1.19), i.e. the reconstruction of a CohFT from its
ACFs, is contained in the second reconstruction theorem of [KM]. In this context,
the In can be recovered by extending the Yn to a set of operadic ACFs. Then
the In themselves can be calculated via their Poincaré duals with the help of the
formula:

Y (τ)(γ1 ⊗ . . .⊗ γn) =

∫

Mτ

ϕ∗(In(γ1 ⊗ . . .⊗ γn)). (1.21)

The explicit calculation of the maps In given a potential Φ or a set of Yn thus
depends on the knowledge of the Poincaré duality as noted in [KMK] and is made
possible by the results of Chapter I.
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2. Germs of pointed Frobenius manifolds

2.1. Frobenius manifolds.

2.1.1. Definition. Following [M2], we define a Frobenius manifold M to be

a quadruple (M, T f
M , g, Φ) of a (super)manifold M , an affine flat structure T f

M ,
a compatible metric g and a potential function whose tensor of third derivatives
defines an associative commutative multiplication ◦ on each fiber of TM .

For the notion of supermanifolds and supergeometry in general we refer to
the book [M3].

2.1.2. Definition. A pointed Frobenius manifold is a pair (M, m0) of a Frobe-
nius manifold M and a point m0 ∈M called the base–point.

When considering flat coordinates in a neighborhood of the base–point m0 of
a pointed Frobenius manifold, we require that the coordinates of m0 are all zero.
In other words, the base–point corresponds to a choice of a zero–point in flat
coordinates.

2.2. Euler field and Identity. Just as in the formal case, a Frobenius
manifold may carry two additional structures; an Euler field and an identity.
They are defined analogously.

2.2.1. Definition. An even vector field E on a Frobenius manifold with a
flat metric g is called conformal of conformal weight D, for some constant D, if
it satisfies LieE(g) = Dg. A conformal field E is called Euler, if it additionally
satisfies LieE(◦) = d0◦ for some constant d0.

2.3. From germs of pointed Frobenius manifolds to formal Frobe-
nius manifolds. Regarding a germ of a pointed Frobenius manifold over a field
k of characteristic zero, choose a flat basis of vector fields (∂a) and set H = ⊕ak∂a

and keep the metric g. Choose corresponding unique local flat coordinates xa s.t.
∀a : xa(m0) = 0 as we demanded in 2.1.2. A structure of a formal Frobenius
manifold on (H, g) is then given by the expansion of the potential into a power
series in local flat coordinates (xa) at m0. Up to quadratic terms we obtain:

Φ(x) =
∑

n≥3

1

n!

∑

a1,...,an∈{1,... ,n}

xan · · ·xa1Yn(∂a1 ⊗ · · · ⊗ ∂an) (2.1)

where the functions Yn are defined via

Yn(∂a1 ⊗ · · · ⊗ ∂an) := ∂a1 · · ·∂anΦ|0 (2.2)

Φ obviously obeys the WDVV–equations.

Furthermore, in the presence of an Euler field or a flat identity writing E and
e = ∂0 in flat coordinates defines the same structures in the formal situation.

We stress again that we are dealing with pointed Frobenius manifolds. Due
to this a zero in flat coordinates has been fixed and {Yn}, E and e are uniquely
defined.
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On the other hand, the functions in (2.2) are dependent on the choice of the
base–point. Choosing a different base–point m̂0 with x–coordinates xa(m̂0) = xa

0

in the domain of convergence of Φ yields the new standard flat coordinates x̂a =
xa − xa

0. The corresponding functions Y transform via:

Ŷn(∂a1 ⊗ · · · ⊗ ∂an) := ∂a1 . . . ∂anΦ|x0

=
∑

N≥0

1

N !

∑

(b1,...,bN ):bi∈A

xbN

0 · · ·x
b1
0 Yn+N(∂b1 ⊗ · · · ⊗ ∂bN

⊗ ∂a1 ⊗ · · · ⊗ ∂an)

=
∑

N≥0

1

N !

∑

(b1,...,bN ):bi∈A

ε(b|a) xbN

0 · · ·x
b1
0 Yn+N(∂a1 ⊗ · · · ⊗ ∂an ⊗ ∂b1 ⊗ · · · ⊗ ∂bN

)
(2.3)

where ε(b|a) is a shorthand notation for ε(∂b1 · · ·∂bN
|∂a1 . . . ∂an) which we define

as the superalgebra sign acquired by permuting ∂b1 , . . . , ∂bN
past the ∂a1 , . . . , ∂an :

∂b1 · · ·∂bN
∂a1 · · ·∂an = ε(b|a) ∂a1 · · ·∂an∂b1 · · ·∂bN

. (2.4)

2.4. From convergent formal Frobenius manifolds to germs of poin-
ted Frobenius manifolds. Starting with any formal Frobenius manifold (H, g)
with a potential Φ, we can produce a germ of a manifold with a flat structure
by identifying the xa as coordinate functions around some point m0, choosing H
as the space of flat fields and considering g as the metric. To get a Frobenius
manifold, however, we need that the formal potential Φ has some nonempty
domain of convergence. If

Φ(γ) =
∑

n≥3

1

n!
Yn(γ⊗n) (2.5)

with γ =
∑

xa∆a is convergent, we can pass to a germ of a pointed Frobenius
manifold. If necessary, we can, in this situation, even move the base–point as
indicated above.
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3. Semi–simple Frobenius manifolds

3.1. Semi–simple Frobenius manifolds and Schlesinger equations.
We will briefly recall the main notions of semi–simple Frobenius manifolds as
explained in [M2]. For other versions see [D] or [H]. A Frobenius manifold of
dimension n is called semi–simple (respectively split semi–simple), if an isomor-
phism of the sheaves of OM–algebras

(TM , ◦) ' (On
M , componentwise multiplication) (3.1)

exists everywhere locally (respectively globally).

If a Frobenius manifold M is semi–simple, one can find so–called canonical
coordinates ui —unique up to constant shifts and renumbering— s. t. the metric
and the three–tensor A defining the multiplication become particularly simple.
Let ei = ∂

∂ui
, νi = dui, then

g =
∑

i

ηi(ν
2
i ), (3.2)

A =
∑

i

ηi(ν
3
i ). (3.3)

If in addition an Euler field exists, then it has the form E =
∑

(ui + ci)ei. In
this situation, we will normalize the coordinates in such a way that

E =
∑

uiei. (3.4)

This normalization fixes the ambiguity in the coordinates ui and renders them
unique up to the Sn–action.

3.2. Definition. In the above situation, we will call a point m ∈ M tame,
if it satisfies ui(m) 6= uj(m) for all i 6= j. In other words, the point m is tame, if
the spectrum of the operator E◦ on TM is simple.

3.3. The extended structure connection and the second structure
connection. As exhibited in [M2], the structure connection ∇λ which is defined
by

∇λ,X(Y ) = ∇0,X(Y ) + λX ◦ Y (3.5)

where ∇0 is the Levi–Civita connection for g, gives rise to two extended structure
connections:

∇̂ on the sheaf pr∗M(TM) on M̂ = M × P1
λ \ {0, 1,∞} (3.6)

and

∇̌ on the sheaf Ť = pr∗M(TM

∣∣
M̌

) on M̌ =
⋃

λ

(Mλ × {λ}) ⊂M × P1
λ

(3.7)

where Mλ ⊂M is the open subset defined by ∀i : ui 6= λ.
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Since it can be shown that the poles of ∇̌ are all of order 1, this connection
can be regarded as an isomonodromic deformation of a meromorphic connection
on P1. These deformations are governed by the Schlesinger differential equations
[Sch], [Mal], thus providing a link between Frobenius manifolds and solutions of
the Schlesinger equations; the details can be found in [M2] and [MM].

3.4. Definition. A solution to Schlesinger’s equation consists of any datum
(M, (ui), T, (Ai)) where M is a complex manifold of dimension m ≥ 2, the tuple
(u1, . . . , um) is a system of holomorphic functions on M with the properties that
for any i 6= j, x ∈ M , we have ui(x) 6= uj(x), and dui freely generate Ω1

M , T a
finite dimensional complex vector space and the Aj : M → End(T ), j = 1, . . . , m
are a family of holomorphic matrix functions satisfying

∀j : dAj =
∑

[Ai, Aj]
d(ui − uj)

ui − uj
. (3.8)

Summing the above equation over all j shows that
∑

j Aj is a constant matrix
which will be called W.

The main definition w.r.t. to the theory of Frobenius manifolds is:

3.5. Definition. A solution to Schlesinger’s equations is called special, if
dim(T ) = m = dimM ; T is endowed with a complex non–degenerate quadratic
form g;W = −V − 1

2
Id where V ∈ End(T ) is a skew–symmetric operator, w.r.t.

g, and

∀j : Aj = −(V +
1

2
Id)Pj, (3.9)

where Pj : M → End(T ) is a family of matrix functions whose values at any
point of M constitute a complete system of orthogonal projectors of rank one
w.r.t. g.

A solution is called strictly special, if the operators

A
(t)
j := Aj + tPj (3.10)

also satisfy Schlesinger’s equations for any t ∈ C.

3.6. Identity. Call a vector e in T an identity of weight D, if

V(e) = (1−
D

2
)e and (3.11)

ej := Pj(e) do not vanish at any point of M. (3.12)
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3.7. Theorem (2.6.1 of [MM]). Let (M, (ui), T, (Ai)) be a strictly special
solution and e an identity of weight D, then these data come from a unique
structure of semi–simple split Frobenius manifold M with an identity (d0 = 1)
and an Euler field via

T = Γ(M, T f
M) (3.13)

(ui) : the canonical coordinates (3.14)

Aj(ei) = 0 for i 6= j (3.15)

Ai(ei) = −
1

2
ei +

∑

j:j 6=i

(uj − ui)
ηij

ηi
. (3.16)

The operator V is given by:

V(X) = ∇0,X(E)−
D

2
X. (3.17)

Here, the manifold M only has tame points which means that by definition
ui(m) 6= uj(m), ∀i 6= j, m ∈M . M should be regarded as a splitting cover of the
subspace of tame points of a given Frobenius manifold.

3.8. Special initial conditions. Fixing a base–point in a solution to Schle-
singer’s equations and taking the coordinates ei for T call a family of matrices
A0

1, . . . A
0
m ∈ End(T ) special initial conditions, if there exists a diagonal metric

g and a skew–symmetric operator V s. t. A0
j = −(V + 1

2
Id)Pj, where Pj is the

projector onto Cej.
In the case of semi–simple Frobenius manifolds with an Euler field and a flat

identity, the special initial conditions are given by the value of the structures
listed in 3.7 at a fixed tame point m0 ∈M with coordinates (ui

0); more precisely,
the metric is given by the ηi(m0) and the operator V by the matrix (vij)ij defined
by (∇0,ei

(E)− D
2
(ei))(m0) = (

∑
j vijej)(m0).
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4. The tensor product of formal Frobenius manifolds

The tensor product of two formal Frobenius manifolds is defined via the corre-
sponding sets of CohFTs. Looking at all CohFTs together with the operation of
forming the tensor product, we can regard them naively as an infinite dimensional
algebraic variety with a structure of a semigroup on it. In this setting, a natural
question in view of Theorem 1.1.6 is the behaviour of the potential as a function
on this moduli space. In particular, we would like to understand how to express
the potential function ΦA′⊗A′′ associated to the tensor product of two CohFTs
A′ = (H ′, g′, I ′) and A′′ = (H ′′, g′′, I ′′) in terms of the potential functions ΦA′

and ΦA′′.

Due to the fact that not the functions themselves, but rather the CohFTs they
represent are tensored, the operation of forming the tensor product incorporates
a part of the geometry of the moduli spaces M 0n which will be explained below.

Using our results of Chapter I, we derive an explicit formula expressing the
potential of a tensor product via the potentials of the factors answering the above
question.

4.1. The diagonal of M 0n × M0n. Denote the class of the diagonal in
An−3(M 0n×M 0n) by ∆M0n

and choose an inverse image of this class in V (Γn)⊗
V (Γn) under the map mon of Section I.3.3.1 which we —by abuse of notation—
also denote by ∆M0n

. We can choose the inverse image in such a way that it has
an expansion:

∆M0n
=

∑

σ,τ∈Bn

σgστ ⊗ τ ∈ V (Γn)⊗ V (Γn) (4.1)

where the τ ∈ Bn are homogeneous elements of V (Γn), {mon(τ )|τ ∈ Bn} is a
basis of A∗(M 0n) and gστ =

∫
M0n

mon(σ) ∪mon(τ ). Notice that

gστ = 0 unless σ ⊗ τ ∈ V (Γn,e)⊗ V (Γn,n−3−e). (4.2)

We can and will use the basis Bn of Chapter I for this purpose.

4.1.1. Remark. Note that the τ need not be trees. However, they can be
chosen as a linear combination of trees of the same degree, and furthermore gen-
eralizing the spaces V (Γ) to trees with multiplicities V (Γmult) a basis of A∗(M 0n)
can even be chosen in basis elements of V (Γmult), as was shown in Chapter I.

4.1.2. Tensor product for CohFT. In the language of CohFT, the tensor
product of (H ′, g′, {I ′

n}) and (H ′′, g′′, {I ′′
n}) is given by the tensor product CohFT

on H ′ ⊗H ′′ which is naturally defined via the cup product in H∗(M 0n, k):

(I ′
n ⊗ I ′′

n)(γ′
1 ⊗ γ′′

1 ⊗ · · · ⊗ γ′
n ⊗ γ′′

n) :=

ε(γ′, γ′′)I ′
n(γ′

1 ⊗ · · · ⊗ γ′
n) ∧ I ′′

n(γ′′
1 ⊗ · · · ⊗ γ′′

n) (4.3)

where ε(γ′, γ′′) is the superalgebra sign.
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Using 1.3.2 and Theorem 1.1.6, one can formally transfer this definition of
the tensor product onto any of the other structures (Yn, Y (τ), Φ, ◦n, ◦(τ)).

4.2. The naive tensor product. For any two sets of ACFs {Y ′
n} and {Y ′′

n }
and any element τ ⊗ σ ∈ V (Γn)⊗ V (Γn) set:

(Y ′ ⊗ Y ′′)(τ ⊗ σ)((γ′
1 ⊗ γ′′

1 )⊗ · · · ⊗ (γ′
n ⊗ γ′′

n)) =

ε(γ′, γ′′)Y ′(τ )(γ′
1 ⊗ · · · ⊗ γ′

n)Y
′′(σ)(γ′′

1 ⊗ · · · ⊗ γ′′
n). (4.4)

4.3. Tensor product for ACFs. Translating (4.3) into the language of
ACFs, we obtain the following formula for the tensor product of Y ′

n and Y ′′
n :

(Y ′
n ⊗ Y ′′

n )(γ′
1 ⊗ γ′′

1 ⊗ · · · ⊗ γ′
n ⊗ γ′′

n) =

ε(γ′, γ′′)

∫

M0n

I ′
n(γ′

1 ⊗ · · · ⊗ γ′
n) ∧ I ′′

n(γ′′
1 ⊗ · · · ⊗ γ′′

n). (4.5)

4.3.1. Lemma. The tensor product for two systems of ACFs (T ′, ∆′, {Y ′
n})

and (T ′′, ∆′′, {Y ′′
n }) is the system of ACFs (T ′ ⊗ T ′′, ∆′ ⊗∆′′, {Yn}) where

Yn((γ′
1 ⊗ γ′′

1 )⊗ · · · ⊗ (γ′
n ⊗ γ′′

n)) :=

ε(γ′, γ′′)(Y ′ ⊗ Y ′′)(∆M0n
)((γ′

1 ⊗ γ′′
1 )⊗ · · · ⊗ (γ′

n ⊗ γ′′
n)). (4.6)

4.3.2. Definition. Given two formal Frobenius manifolds (H ′, g′, Φ′) and
(H ′′, g′′, Φ′′), let {Y ′

n} and {Y ′′
n } be the corresponding ACFs. The tensor product

(H, g, Φ) of (H ′, g′, Φ′) and (H ′′, g′′, Φ′′) is defined to be (H ′⊗H ′′, g′⊗g′′, Φ) where
the potential Φ is given by:

Φ(γ) =
∑

n≥3

1

n!
(Y ′ ⊗ Y ′′)(∆M0n

)(γ⊗n). (4.7)

As in 1.1.5, to make sense of (4.7) one should expand γ =
∑

xa′,a′′
∂a′a′′ in

terms of the tensor product basis (∂a′a′′ := ∂′
a′ ⊗ ∂′′

a′′) of the two basis {∂ ′
a′} and

{∂′′
a′′} and the dual coordinates xa′a′′

for this basis.

The results of Chapter I now allow us to calculate (4.7) explicitly:

4.3.3. Corollary. The explicit formal Frobenius manifold structure for the
tensor product of two formal Frobenius manifolds (H ′, g′, Φ′) and (H ′′, g′′, Φ′′) is
given by potential Φ on (H ′ ⊗H ′′, g′ ⊗ g′′) corresponding to the ACFs:

(Yn)(γ′
1 ⊗ γ′′

1 ⊗ · · · ⊗ γ′
n ⊗ γ′′

n) =

ε(γ′, γ′′)
∑

µ,ν∈Bn

Y ′(µ̌)(γ′
1 ⊗ · · · ⊗ γ′

n)mµνY
′′(ν̌)(γ′′

1 ⊗ · · · ⊗ γ′′
n), (4.8)

where Bn is the basis of Chapter I and the µ̌, ν̌ are the duals to µ, ν.
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4.4. Examples.

4.4.1. Higher order correlation functions. Using the calculations of the
Section I.7.4 and omitting the supersign, we obtain the following formulas for
the tensor product of the first higher order correlation functions and higher order
multiplications of (H ′, g′, Y ′

n) and (H ′′, g′′, Y ′′
n ).

Let
∑

a′b′ ∆
′
a′g′a′b′∆′

b′ and
∑

a′′b′′ ∆
′′
a′′g′′a′′b′′∆′′

b′′ the Casimir elements for g and
g′.

n=3

(Y ′
3 ⊗ Y ′′

3 )(γ′
1 ⊗ γ′′

1 ⊗ γ′
2 ⊗ γ′′

2 ⊗ γ′
3 ⊗ γ′′

3 ) = Y ′
3(γ

′
1 ⊗ γ′

2 ⊗ γ′
3)Y

′
3(γ

′′
1 ⊗ γ′′

2 ⊗ γ′′
3 )
(4.9)

n=4

(Y ′
4 ⊗ Y ′′

4 )(γ′
1 ⊗ γ′′

1 ⊗ · · · ⊗ γ′
4 ⊗ γ′′

4 ) =

Y ′
4(γ

′
1 ⊗ · · · ⊗ γ′

4)
∑

a′′,b′′

Y ′′
3 (γ′′

1 ⊗ γ′′
2 ⊗∆′′

a′′)g′′a′′b′′Y ′′
3 (∆′′

b′′ ⊗ γ′′
3 ⊗ γ′′

4 ) +

∑

a′,b′

Y ′
3(γ

′
1 ⊗ γ′

2 ⊗∆′
a′)g′a′b′Y ′

3(∆
′
b′ ⊗ γ′

3 ⊗ γ′
4)Y

′′
4 (γ′′

1 ⊗ · · · ⊗ γ′′
4 ) (4.10)

n=5

(Y ′
5 ⊗ Y ′′

5 )(γ′
1 ⊗ γ′′

1 ⊗ · · · ⊗ γ′
5 ⊗ γ′′

5 ) =
∑

a′′,b′′,c′′,d′′

Y ′′
3 (γ′′

1 ⊗ γ′′
2 ⊗∆′′

a′′)g′′a′′b′′Y ′′
3 (∆′′

b′′ ⊗ γ′′
3 ⊗∆′′

c′′)g
′′c′′d′′Y ′′

3 (∆′′
d′′ ⊗ γ′′

4 ⊗ γ′′
5 )

× Y ′
5(γ

′
1 ⊗ · · · ⊗ γ′

5)

−
∑

l∈{1,2,3,4}

∑

a′,b′

a′′,b′′

Y ′
4(

⊗

i∈{1,2,3,4}\{l}

γ′
i ⊗∆′

a′)g′a′b′Y ′
3(∆

′
b′ ⊗ γ′

l ⊗ γ′
5)

× Y ′′
4 (

⊗

i∈{1,2,3,4}\{l}

γ′′
i ⊗∆′′

a′′)g′′a′′b′′Y ′′
3 (∆′′

b′′ ⊗ γ′′
l ⊗ γ′′

5 )

+
∑

{1,2}⊆I⊂{1,2,3,4}

∑

a′,b′

Y ′
|I|+1(

⊗

i∈I

γ′
i ⊗∆′

a′)g′a′b′Y ′
6−|I|(∆

′
b′

⊗

j∈{1,2,3,4}\I

γ′
j ⊗ γ′

5)

×
∑

{1,2}⊆J⊂{1,2,3,4}

∑

a′′,b′′

Y ′′
|J |+1(

⊗

i∈J

γ′′
i ⊗∆′′

a′′)g′a′′b′′Y ′′
6−|I|(∆

′′
b′′

⊗

j∈{1,2,3,4}\J

γ′′
j ⊗ γ′′

5 )

+
∑

a′,b′,c′,d′

Y ′
3(γ

′
1 ⊗ γ′

2 ⊗∆′
a′)g′a′b′Y ′

3(∆
′
b′ ⊗ γ′

3 ⊗∆′
c′)g

′c′d′Y ′
3(∆

′
d′ ⊗ γ′

4 ⊗ γ′
5)

× Y ′′
5 (γ′′

1 ⊗ · · · ⊗ γ′′
5 ). (4.11)

4.4.2. Higher order multiplications. By applying equation (1.2), again
using the notation (γ1, . . . , γn) for ◦n(γ1 ⊗ · · · ⊗ γn), we find:

n=2

(γ′
1 ⊗ γ′′

1 , γ′
2 ⊗ γ′′

2 ) = (γ′
1, γ

′
2)⊗ (γ′′

1 , γ
′′
2 ) (4.12)
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n=3

(γ′
1 ⊗ γ′′

1 , γ
′
2 ⊗ γ′′

2 , γ
′
3 ⊗ γ′′

3 ) =

(γ′
1, γ

′
2, γ

′
3)⊗ ((γ′′

1 , γ′′
2 ), γ′′

3 ) + ((γ′
1, γ

′
2), γ

′
3)⊗ (γ′′

1 , γ
′′
2 , γ′′

3 ) (4.13)

n=4

(γ′
1 ⊗ γ′′

1 , . . . , γ
′
4 ⊗ γ′′

4 ) =

(γ′
1, . . . γ

′
4)⊗ (((γ′′

1 , γ
′′
2 ), γ′′

3 ), γ′′
4 ) + (((γ′

1, γ
′
2), γ

′
3), γ

′
4)⊗ (γ′′

1 , . . . γ′′
4 )

−
∑

{i,j,k}q{l}={1,2,3,4}

((γ′
i, γ

′
j, γ

′
k), γ

′
l)⊗ ((γ′′

i , γ′′
j , γ′′

k), γ′′
l )

+
∑

{1,2}⊆I⊂{1,2,3,4}

((γ′
I), γ

′
{1,2,3,4}\I)⊗

∑

{1,2}⊆J⊂{1,2,3,4}

((γ′′
J), γ′′

{1,2,3,4}\J), (4.14)

where in the last expression we have used the abbreviation (γI) to denote
◦|I|(⊗i∈Iγi).
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5. Potential of the invertible Cohomological Field Theories

We now make a digression to the space of formal Frobenius manifolds or
equivalently CohFTs of dimension one and the operation of forming the tensor
product in these theories following [KMZ]. In this special situation, there are
even more results with respect to the general problem of expressing the potential
function ΦA′⊗A′′ associated to the tensor product of two CohFTs A′ = (H ′, g′, I ′)
and A′′ = (H ′′, g′′, I ′′) in terms of the potential functions ΦA′ and ΦA′′. This is
achieved by using a connection to the theorems about the higher Weil–Petersson
volumes of Chapter I. In fact, see [KMK], the genus zero generating function for
higher WP–volumes is the third derivative of the potential of a generic invertible
CohFT of dimension one written in coordinates additive with respect to the tensor
multiplication.

5.1. The moduli space of one–dimensional CohFTs. We will consider
CohFT structures on one–dimensional spaces. In [KMK] such a theory was shown
to be invertible with respect to the tensor product, if the map I3 from H⊗3 ∼=
k to H∗(M 03, k) ∼= k is an isomorphism. A one–dimensional theory is called
normalized, if a basis of length one is fixed, H = k∆0, g(∆0, ∆0) = 1, and
I3(∆0 ⊗ ∆0 ⊗ ∆0) = 1. Equivalently, In(∆⊗n

0 ) = 1n + terms of dimension > 0
for all n ≥ 3, where 1n ∈ H0(M 0n, k) is the fundamental class. In this case, the
potential function has the form

ΦA(x) =
∞∑

n=3

Cn
xn

n!
(5.1)

where C3 = 1 and the other coefficients are arbitrary, since the associativity
equations are empty in this case and they are the only restriction by virtue of
Theorem 1.1.6. Regarding the space CohFT1(k) of all normalized and invertible
1–dimensional CohFTs, we thus see that it is canonically isomorphic to 1

6
x3 +

x4 k[[x]] and has canonical coordinates Cn (n ≥ 4). The goal is now to describe
the tensor product in terms of these coordinates which encode the potential.

In [KMK] where these 1–dimensional CohFT structures were previously stud-
ied, a different set of coordinates was given which behaves nicely with respect to
forming the tensor product.

Namely, for each sequence s1, s2, . . . ; si ∈ k there is an element A(s) ∈
CohFT1(k) given by

In(∆⊗n
0 ) = ωn[s1, s2, . . . ] := exp

( ∞∑

a=1

saωn(a)
)

(n ≥ 3). (5.2)

In [KMK] it was shown that the map s 7→ A(s) yields a bijection between kN and
CohFT1(k) and that A(s′)⊗A(s′′) ∼= A(s′ + s′′), i.e.:
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5.2. Theorem (3.2.1 of [KMK]). The parameters (s1, s2, . . . ) form a co-
ordinate system on the space of normalized 1–dimensional CohFTs. The tensor
product becomes addition in these coordinates.

Let Φ(x; s) denote the potential associated to the theory (5.2). The third
derivative of the potential Φ(x; s) associated to the theory (5.2) is just the gen-
erating function for higher WP–volumes, connecting the present consideration to
what has been presented in Section I.8.

Looking at the definition for the potential we see:

Φ(x; s1, s2, . . . ) =

∞∑

n=3

xn

n!

∫

M0n

∑
P

am(a)=n−3

∏

a≥1

ωn(a)m(a) s
m(a)
a

m(a)!
,

and the third derivative of this function Φ(x; s1, s2, . . . ) is obviously the function
F (x; s) =

∑
m

V (m)x|m|sm defined in II.8.5. This observation can be used to
describe both the tensor product and the coordinates on the space of invertible
1–dimensional CohFTs explicitly.

5.3. Theorem (3.4.2 of [KMZ]). Define the bijections

CohFT1(k) ←→
x3

6
+ x4 k[[x]] ←→ 1 + η k[[η]] , (5.3)

where the first map assigns to a theory A its potential ΦA(x) and the second map
is defined by

Φ(x) ↔ U(η) =

∫ ∞

0

e−Φ′′(ηx)/η dx (5.4)

or alternatively by assigning to Φ(x) = 1
6
x3 + . . . the power series U(η) =∑∞

n=0 Bnηn where x =
∑

Bn
yn+1

(n+1)!
= y + · · · is the inverse power series of

y = Φ′′(x) = x + · · · . Then the tensor product of 1–dimensional CohFTs corre-
sponds to multiplication in 1 + ηk[[η]] : UA′⊗A′′(η) = UA′(η) UA′′(η). The coeffi-
cients of − log UA(η) are the canonical coordinates of A .

5.4. Explicit formulas. The above theorem can be used to give explicit
formulas for the coefficients of U(η) in terms of the coefficients of Φ(x). Substi-
tuting (5.1) (with C3 = 1) into (5.4), expanding and integrating term by term
yields:

Bn =
∑

n4,n5,...≥0
n4+2n5+···=n

(2n4 + 3n5 + · · · )!

2!n4 3!n5 · · · n4! n5! · · ·
(−C4)

n4 (−C5)
n5 · · ·

Applying the same argument to the inverse power series yields the reciprocal
formula:

Cn =
∑

n1,n2,...≥0
n4+2n5+···=n−3

(2n1 + 3n2 + · · · )!

2!n1 3!n2 · · · n1! n2! · · ·
(−B1)

n1 (−B2)
n2 · · · .
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The explicit law for the tensor product of two normalized invertible CohFTs in
terms of the coefficients of their potential functions can be derived by combining
these formulas with the identity UA′⊗A′′(η) = UA′(η) UA′′(η):

C4 = C ′
4 + C ′′

4 ,

C5 = C ′
5 + 5C ′

4C
′′
4 + C ′′

5 ,

C6 = C ′
6 + (8 C ′

4
2
+ C ′

5) C ′′
4 + C ′

4 (8 C ′′
4

2
+ C ′′

5 ) + C ′′
6 ,

C7 = C ′
7 + (35 C ′

4 C ′
5 + 14 C ′

6) C ′′
4 + (61 C ′

4
2
C ′′

4
2
+ 33 C ′

4
2
C ′′

5 + 33 C ′
5 C ′′

4
2

+ 19 C ′
5 C ′′

5 ) + C ′
4 (35 C ′′

4 C ′′
5 + 14 C ′′

6 ) + C ′′
7 , . . .

Finally, the values of the genus zero Weil–Petersson volumes V (m) can be
calculated numerically alternatively from the recursion relation (II.8.5), the dif-
ferential equation (II.8.23), the closed formula (II.8.32) or the generating function
formula (II.8.33).

The generating function (II.8.22) up to |m| = 5 reads:

F (x, s) = 1 + s1 x +
(
5

s2
1

2
+ s1

) x2

2
+

(
61

s3
1

6
+ 9 s1s2 + s3

) x3

6

+
(
1379

s4
1

24
+ 161

s2
1s2

2
+ 14 s1s3 + 19

s2
2

2
+ s4

) x4

24

+
(
49946

s5
1

120
+ 4822

s3
1s2

6
+ 344

s2
1s3

2
+ 470

s1s
2
3

2
+ 20 s1s4 + 34 s2s3 + s5

) x5

120
+ O(x6) .

The coefficient
∫

M0,n
ω

m of
sm

m!

x|m|

|m|!
is integral for every m, because the co-

homology classes ωg,n(a) are integral for g = 0.
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6. The tensor product for Euler fields and flat identities

In this section, we extend the operation of forming the tensor product to the
additional structures of an Euler field and an identity. In order to achieve this,
we first rewrite the quasi–homogeneity condition and the defining relation for an
identity in terms of operadic correlation functions.

6.1. Quasi–homogeneity condition in terms of correlation functions.

6.1.1. Lemma. In terms of the abstract correlation functions Yn the quasi–
homogeneity condition (1.11) is given by

∑

a∈A

(

n∑

i=1

daiaYn(∂a1 ⊗ · · · ⊗ ∂̂ai
⊗ · · · ⊗ ∂an ⊗ ∂a) + raYn+1(∂a1 ⊗ · · · ⊗ ∂an ⊗ ∂a))

= (d0 + D)Yn(∂a1 ⊗ · · · ⊗ ∂an). (6.1)

Proof. Applying the vector field E in the form (1.8) to (1.6) and making a
coefficient check yields (6.1).

6.1.2. Lemma. The correlation functions (1.17) obey the following relation.
For a given n–tree τ :

∑

a∈A

(
∑

f∈Fτ

dfaY (τ)((
⊗

f ′∈Fτ\{f}

∂f ′)⊗ ∂a) + raY (π∗(τ))((
⊗

f∈Fτ

∂f )⊗ ∂a))

= |Vτ |(D + d0)Y (τ)(
⊗

f∈Fτ

∂f). (6.2)

Proof. Recall that by definition Y (π∗(τ)) =
∑

v∈Vτ
Y (τn+1

v ). By applying
(6.1) at every vertex v of τ , we obtain

∑

f∈Fτ

∑

a

dfa Y (τ)((
⊗

f ′∈Fτ\{f}

∂f )⊗ ∂a)

=
∑

v∈Vτ

[
∑

f∈Fτ (v)

dfa

⊗

v′∈Vτ

(Y|Fτ(v′)|)((
⊗

f ′∈Fτ\{f}

∂f ′)⊗ ∂a)]

=
∑

v∈Vτ

[(D + d0)Y (τ)(
⊗

f∈Fτ

∂f )−
∑

a∈A

raY (τn+1
v )((

⊗

f∈Fτ

∂f)⊗ ∂a)]

= |Vτ |(D + d0)Y (τ)(
⊗

f∈Fτ

∂f)−
∑

a∈A

raY (π∗(τ))((
⊗

f∈Fτ

∂f )⊗ ∂a).

(6.3)
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6.1.3. Proposition. For the operadic correlation functions {Y (τ)} the quasi–
homogeneity condition is equivalent to

n∑

i=1

∑

a∈A

daiaY (τ)(∂a1 ⊗ · · ·⊗ ∂̂ai
⊗ · · · ⊗ ∂an ⊗ ∂a)− |Eτ | d0Y (τ)(∂a1 ⊗ · · · ⊗ ∂an)

+
∑

a∈A

raY (π∗(τ))(∂a1 ⊗ · · · ⊗ ∂an ⊗ ∂a) = (d0 + D)Y (τ)(∂a1 ⊗ · · · ⊗ ∂an). (6.4)

Proof. Writing out the Casimir elements ∆ =
∑

∂pg
pq∂q and applying

Lemma 6.1.2 yields:

n∑

i=1

∑

a∈A

daiaY (τ)(∂a1 ⊗ · · · ⊗ ∂̂ai
⊗ · · · ⊗ ∂an ⊗ ∂a) + |Eτ |D Y (τ)(∂a1 ⊗ · · · ⊗ ∂an)

=

n∑

i=1

∑

a∈A

daiaY (τ)(∂a1 ⊗ · · · ⊗ ∂̂ai
⊗ · · · ⊗ ∂an ⊗ ∂a)

+ |Eτ |D
∑

(p1,...p|Eτ |)pi∈A

(q1,...q|Eτ |)qi∈A

(
⊗

v∈Vτ

YFv)(∂a1 ⊗ · · · ⊗ ∂an ⊗

|Eτ |⊗

j=1

(∂pj
gpjqj ⊗ ∂qi

))

(∗)
=

∑

(p1,...p|Eτ |)pi∈A

(q1,...q|Eτ |)qi∈A

[

n∑

i=1

∑

a∈A

daiaY (τ)(∂a1⊗· · ·⊗∂̂ai
⊗· · ·⊗∂an⊗∂a⊗

|Eτ |⊗

j=1

(∂pj
gpjqj⊗∂qi

))

+

|Eτ |∑

i=1

∑

a∈A

dpia(
⊗

v∈Vτ

YFv)(∂a1 ⊗ · · · ⊗ ∂an ⊗

|Eτ |⊗

j=1,j 6=i

(∂pj
gpjqj ⊗ ∂qi

)⊗ ∂̂pi
gpia∂qi

⊗ ∂a)

+

|Eτ |∑

i=1

∑

a∈A

dpja(
⊗

v∈Vτ

YFv)(∂a1 ⊗ · · · ⊗ ∂an ⊗

|Eτ |⊗

i=1,i6=j

(∂pi
gpiqi ⊗ ∂qi

)⊗ ∂pi
gpia∂̂qi

⊗ ∂a)]

= (|E|τ + 1)(D + d0)Y (τ)(∂a1 ⊗ · · · ⊗ ∂an)

−
∑

a∈A

raY (π∗(τ))(∂a1 ⊗ · · · ⊗ ∂an ⊗ ∂a). (6.5)

The equality (∗) holds due to (1.9). Rewriting (6.5), we obtain (6.4). Vice
versa postulating (6.4), we see that it reduces to (6.1) for the one–vertex tree
(ρn).

6.2. The identity in terms of correlation functions. As previously re-
marked, we will assume that the identity is a flat vector field e = ∂0. As the
semi–simplicity of E this restriction is satisfied in the case of quantum cohomol-
ogy.
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6.2.1. Remark. From Corollary 2.1.1 of [M2], we have that

Y3(∂a, ∂b, ∂0) = gab (6.6)

and

Yn(∂a1 ⊗ · · · ⊗ ∂an−1 ⊗ ∂0) = 0 ∀n > 3 (6.7)

are equivalent to the fact that ∂0 is a flat identity.

In terms of operadic ACFs one obtains:

6.2.2. Proposition. For a flat identity e = ∂0 and for any stable n–tree τ
with n > 3

Y (τ)(∂a1 ⊗ · · · ⊗ ∂an−1 ⊗ ∂0) = Y (π∗(τ))(∂a1 ⊗ · · · ⊗ ∂an−1). (6.8)

Proof. From (6.7) we know that Y (τ)(∂a1⊗· · ·⊗∂an−1⊗∂0) = 0, if the valence
of the vertex v0 with the tail marked with n is greater than three or, in other
words, if the vertex remains stable after forgetting the tail n. Assume now that
the vertex has valence three. Noticing that for a flat identity Y3(∂a, ∂b, ∂0) = gab

the result follows by direct calculation. There are two cases: either v0 has two
tails marked n and i for some i and is joined to one other vertex v ′ by the edge e
or v0 just has one tail and is joined to two other vertices by the edges e1 and e2.
In the first case we get

Y (τ)(∂a1 ⊗ · · · ⊗ ∂an−1 ⊗ ∂0 ⊗∆⊗|Eτ |)

= (
⊗

v∈Vτ \{v0}

(
⊗

f∈Fτ (v)

YFτ (v))⊗ YFτ (v0))

(∂a1 ⊗ · · · ⊗ ∂̂ai
⊗ · · · ⊗ ∂an−1 ⊗∆⊗|Eτ |−1 ⊗∆e ⊗ ∂ai

⊗ ∂0)

=
∑

pq

(
⊗

v∈Vτ \{v0}

(
⊗

f∈Fτ (v)

YFτ (v)))

(∂a1 ⊗ · · · ⊗ ∂̂ai
⊗ · · · ⊗ ∂an−1 ⊗∆⊗|Eτ |−1 ⊗ ∂pg

pqgqai
)

= (
⊗

v∈Vτ \{v0}

(
⊗

f∈Fτ (v)

YFτ (v)))(∂a1 ⊗ · · · ⊗ ∂an−1 ⊗∆⊗|Eτ |−1)

= Y (π∗(τ))(∂a1 ⊗ · · · ⊗ ∂an−1)
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likewise in the second case

Y (τ)(∂a1 ⊗ · · · ⊗ ∂an−1 ⊗ ∂0 ⊗∆⊗|Eτ |)

= (
⊗

v∈Vτ \{v0}

(
⊗

f∈Fτ (v)

YFτ (v))⊗ YFτ (v0))

(∂a1 ⊗ · · · ⊗ ∂an−1 ⊗∆⊗|Eτ |−2 ⊗∆e1 ⊗∆e2 ⊗ ∂0)

=
∑

pq,rs

(
⊗

v∈Vτ \{v0}

(
⊗

f∈Fτ (v)

YFτ (v)))

(∂a1 ⊗ · · · ⊗ ∂an−1 ⊗∆⊗|Eτ |−2 ⊗ ∂pg
pqgqrg

rs ⊗ ∂s)

= (
⊗

v∈Vτ \{v0}

(
⊗

f∈Fτ (v)

YFτ (v)))(∂a1 ⊗ · · · ⊗ ∂an−1 ⊗∆⊗|Eτ |−1)

= Y (π∗(τ))(∂a1 ⊗ · · · ⊗ ∂an−1).

6.2.3. Remark. In the setting of operads and higher order multiplications
([Ge1],[GK]), the formulas (6.6) and (6.7) for a flat identity e = ∂0 correspond
to the statements that e is an identity for ◦2 and acts as a zero for all higher
multiplications ◦n, n ≥ 3. The contents of Proposition 6.2.2 is the extension of
these properties to any concatenation of these multiplications.

After these preparations, we come to the main result of this section:

6.3. Theorem. Given two formal Frobenius manifolds (H ′, g′, Φ′) and
(H ′′, g′′, Φ′′) with Euler fields

E ′ =
∑

a′b′∈A′

d′
a′b′x

′a′

∂′
b′ +

∑

a′∈A′

r′a
′

∂′
a′ of weight D′ and (6.9)

E ′′ =
∑

a′′b′′∈A′′

d′′
a′′b′′x

′′a′′

∂′′
b′′ +

∑

a′′∈A′′

r′′a
′′

∂′′
a′′ of weight D′′

(6.10)

and with flat identities e′, e′′ of the same weight d′
0 = d′′

0 = d, then

e = ∂′
00 = e′ ⊗ e′′ (6.11)

and

E =
∑

(b′,b′′)∈A′×A′′

[
∑

a′∈A′

(d′
a′b′x

a′b′′) +
∑

a′′∈A′′

(d′′
a′′b′′x

b′a′′

)− dxb′b′′] ∂b′b′′

+
∑

a′∈A′

r′a
′

∂a′0 +
∑

a′′∈A′′

r′′a
′′

∂0a′′ (6.12)

define a flat identity of weight d and an Euler field of weight D′ + D′′ − 2d on
the tensor product (H, g, Φ) of (H ′, g′, Φ′) and (H ′′, g′′, Φ′′).

Before we can prove the above theorem, we need one more Lemma about the
properties of the diagonal class ∆M 0n

.
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6.4. Lemma.

(id, π∗)(∆M0n
) = (π∗, id)(∆M0n−1

) (6.13)

and

(π∗, π∗)(∆M0n
) = 0. (6.14)

Proof. Consider two any strata classes Dτ ∈ A∗(M 0n), Dσ ∈ A∗(M 0n−1).
Using the projection formula twice, we obtain∫

M0n

Dτ ∪ π∗(Dσ) =

∫

M0n−1

π∗(Dτ ) ∪Dσ

⇔

∫

M0n×M0n

(Dτ � π∗(Dσ)) ∪∆M0n
=

∫

M0n−1×M0n−1

(π∗(Dτ ) � Dσ) ∪∆M0n−1

⇔

∫

M0n×M0n−1

(Dτ � Dσ) ∪ (id, π∗)∆M0n
=

∫

M0n×M0n−1

(Dτ � Dσ) ∪ (π∗, id)∆M0n−1
.

Since the intersection pairing is non–degenerate and the classes Dτ �Dσ generate
A∗(M0n−1 ×M 0n), the formula (6.13) follows. Using the same type of argument
for ∫

M0n−1×M0n−1

(Dτ � Dσ) ∪ (π∗, π∗)∆M0n

=

∫

M0n−1×M0n−1

(π∗, π∗)(Dτ � Dσ) ∪∆M0n

=

∫

M0n

π∗(Dτ ) ∪ π∗(Dσ) =

∫

M0n

π∗(Dτ ∪Dσ) = 0

where the last zero is due to dimensional reasons, we obtain the second claim
(6.14).

Proof of the Theorem.

As in 4.3.2, we choose the coordinates xa′a′′
corresponding to the basis ∂a′⊗∂a′′ .

The metric for the tensor product is given by

ga′b′,a′′b′′ := g(∂a′ ⊗ ∂a′′, ∂b′ ⊗ ∂b′′) = g′(∂a′ , ∂b′)g
′′(∂a′′ , ∂b′′) = g′

a′,b′g
′′
a′′,b′′.

(6.15)

Euler field.

First we check that E is conformal of weight D′ + D′′ − 2d. On the basis of
flat vector fields we calculate:

g([∂a′a′′ , E], ∂b′b′′) + g(∂a′a′′, [∂b′b′′ , E])

=
∑

c′

d′
a′c′g

′
c′b′g

′′
a′′b′′ +

∑

c′′

d′′
a′′c′′g

′
c′b′g

′′
c′′b′′ +

∑

c′

d′
b′c′g

′
a′c′g

′′
a′′b′′ +

∑

c′′

d′′
b′′c′′g

′
a′b′g

′′
a′′c′′

− 2dg′a′b′g′′
a′′b′′

= (D′ + D′′ − 2d)ga′a′′,b′b′′. (6.16)
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We will prove the fact that E is indeed an Euler field by verifying the quasi–
homogeneity condition (1.11).

Set D = D′ + D′′ − 2d and γ =
∑

xa′a′′
∂′

a′ ⊗ ∂′′
a′′ :

E1Φ(γ) = E1

∑

n≥3

1

n!
Yn(γ⊗n) = E1

∑

n≥3

1

n!
(Y ′ ⊗ Y ′′)(∆M0n

)(γ⊗n)

=
∑

n≥3

1

n!
xa′

na′′
n · · ·xa′

1a′′
1

( ∑

a′∈A′

n∑

i=1

d′
a′

ia
′(Y ′ ⊗ Y ′′)(∆M0n

)

((∂′
a′
1
⊗ ∂′′

a′′
1
)⊗ · · · ⊗ ̂(∂′

a′
i
⊗ ∂′′

a′′
i
)⊗ · · · ⊗ (∂′

a′
n
⊗ ∂′′

a′′
n
)⊗ (∂′

a′ ⊗ ∂′′
a′′

i
))

+
∑

a′′∈A′′

n∑

i=1

d′′
a′′

i a′′(Y ′ ⊗ Y ′′)(∆M0n
)

((∂′
a′
1
⊗ ∂′′

a′′
1
)⊗ · · · ⊗ ̂(∂′

a′
i
⊗ ∂′′

a′′
i
)⊗ · · · ⊗ (∂′

a′
n
⊗ ∂′′

a′′
n
)⊗ (∂′

a′
i
⊗ ∂′′

a′′))

− n d (Y ′ ⊗ Y ′′)(∆M0n
)((∂′

a′
1
⊗ ∂′′

a′′
1
)⊗ · · · ⊗ (∂′

a′
n
⊗ ∂′′

a′′
n
))

)

(∗)
=

∑

n≥3

1

n!
xa′

na′′
n · · ·xa′

1a′′
1

(
(D′ + D′′ − d)(Y ′ ⊗ Y ′′)(∆M0n

)

((∂′
a′
1
⊗ ∂′′

a′′
1
)⊗ · · · ⊗ (∂′

a′
n
⊗ ∂′′

a′′
n
))

−
∑

a′∈A′

r′a
′

(Y ′ ⊗ Y ′′)((π∗, id)(∆M0n
))((∂′

a′
1
⊗ ∂′′

a′′
1
)⊗ · · · ⊗ (∂′

a′
n
⊗ ∂′′

a′′
n
)⊗ ∂′

a′)

−
∑

a′′∈A′′

r′′a
′′

(Y ′ ⊗ Y ′′)((id, π∗)(∆M0n
))((∂′

a′
1
⊗ ∂′′

a′′
1
)⊗ · · · ⊗ (∂′

a′
n
⊗ ∂′′

a′′
n
)⊗ ∂′′

a′′)
)

=
∑

n≥3

1

n!

(
(D + d)(Y ′ ⊗ Y ′′)(∆M0n

)(γ⊗n)

−
∑

a′∈A′

r′a
′

(Y ′ ⊗ Y ′′)((π∗, id)(∆M0n
))(γ⊗n ⊗ ∂′

a′)

−
∑

a′′∈A′′

r′′a
′′

(Y ′ ⊗ Y ′′)((id, π∗)(∆M0n
))(γ⊗n ⊗ ∂′′

a′′)
)
. (6.17)

To obtain (∗) write ∆M0n
=

∑
τgτσ ⊗ σ as in 4.1 and apply Proposition 6.1.3

to both tensor factors of each summand. Furthermore, notice that the τ , σ are
homogeneous and gστ = 0 unless σ ⊗ τ ∈ V (Γn,e)⊗ V (Γn,n−3−e) (4.2).

On the other hand, applying Proposition 6.2.2, we obtain up to quadratic
terms
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E0Φ(γ) =
∑

n≥3

1

(n− 1)!

( ∑

a′∈A′

r′a
′

(Y ′ ⊗ Y ′′)(∆M0n
)(γ⊗n−1 ⊗ ∂′

a′ ⊗ ∂′′
0 )

+
∑

a′′∈A′′

r′′a
′′

(Y ′ ⊗ Y ′′)(∆M0n
)(γ⊗n−1 ⊗ ∂′

0 ⊗ ∂′′
a′′)

)

=
∑

n≥3

1

n!

( ∑

a′∈A′

r′a
′

(Y ′ ⊗ Y ′′)(id, π∗)(∆Mn+1
)(γ⊗n ⊗ ∂′

a′)

+
∑

a′′∈A′′

(Y ′ ⊗ Y ′′)(π∗, id)(∆Mn+1
)(γ⊗n ⊗ ∂′′

a′′)
)

(6.18)

Applying the formula (6.13), we see that the sum of (6.17) and (6.18) is just
the the quasi–homogeneity condition for E and therefore E is an Euler field.

Identity.

The proposed identity ∂ ′
0 ⊗ ∂′′

0 is a flat field by definition. Furthermore,

Y3(∂
′
a′ ⊗ ∂′′

a′′ ⊗ ∂′
b′ ⊗ ∂′′

b′′ ⊗ ∂′
0 ⊗ ∂′′

0 ) = Y ′
3(∂

′
a′ ⊗ ∂′

b′ ⊗ ∂′
0)Y

′′
3 (∂′′

a′′ ⊗ ∂′′
b′′ ⊗ ∂′′

0 )

= ga′b′,a′′b′′ (6.19)

and for n ≥ 3 by Proposition 6.2.2 and (6.14)

Yn((∂′
a′
1
⊗ ∂′′

a′′
1
)⊗ · · · ⊗ (∂′

a′
n−1
⊗ ∂′′

a′′
n−1

)⊗ (∂′
0 ⊗ ∂′′

0 ))

= (Y ′ ⊗ Y ′′)((π∗, π∗)∆M0n
)((∂′

a′
1
⊗ ∂′′

a′′
1
)⊗ · · · ⊗ (∂′

a′
n−1
⊗ ∂′′

a′′
n−1

))

= 0 (6.20)

which proves that ∂ ′
0 ⊗ ∂′′

0 is indeed an identity by Remark 6.2.1. The weight of
this identity can be read off the Euler field as d+d−d = d, proving the theorem.

6.5. Remarks. The condition that the weights of the identities are equal can
be met by a rescaling of the Euler fields as long as not only one of the weights
is 0. In the following, we will always assume this when considering the tensor
product.

Since, given a metric and the multiplication on the fibers of a Frobenius
manifold, the identity is uniquely determined —cf .[M2]—, the above identity is
the only identity compatible with the choice of the tensor metric (6.15).

The theorem, however, contains no such uniqueness property for the Euler
field, but there are several reasons for the choice of this particular type of Euler
field. If the E1–part is regarded as providing the operator V of (1.10), then our
choice of E1 for the tensor product is equivalent up to the shift by d which is
necessary to accommodate the dependence of the tensor product on the diagonal
in H∗(M0n ×M 0n) to the natural definition:

V := V ′ ⊗ id + id⊗ V ′′. (6.21)

As remarked in [M2], if the action of ad(E) is semi–simple on H, there is a
natural grading of H induced by the action of ad(E), shifted by d0. This grading
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basically fixes the E1 component. In the setting of quantum cohomology, this
grading is just (half) the usual grading for the cohomology groups. The additivity
is just the fact that under the Künneth formula the total degree of a class is the
sum of the degrees of the two components. The natural grading on the space
of H ′ ⊗H ′′ is consequently given by the grading operator ad(E ′ ⊗ id + id⊗ E ′′)
shifted by d, so that the tensor product of ∂ ′

a and ∂′′
b of degrees δ′a′ and δ′′a′′ is of

degree δ′a′ + d + δ′′a′′ + d− d. Recalling that da was the eigenvalue of −ad(E), we
obtain da′a′′ = d′

a′ + d′′
a′′ − d.

In the physical realm of topological field theories [DVV], the above argument
for the choice of E1 just reflects the additivity of a U(1) charge.

The choice for E0 is motivated by quantum cohomology where the E0–part
corresponds to the canonical class. Thus, the definition of E0 = E ′

0⊗∂′′
0 +∂′

0⊗E ′′
0

corresponds to the formula KX×Y = KX ⊗ 1 + 1 ⊗ KY . More generally, it
corresponds to the map H∗(V )×H∗(W )→ H∗(V ×W ) : (v, w)→ pr∗1(v)+pr∗2(w)
which can be extended to the Frobenius structure, cf. Section 7.2.

Furthermore, in view of (6.17) and Lemma 6.4, E0 seems to be the only
possible choice, if one postulates (6.21).
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7. Germs of pointed Frobenius manifolds and the tensor product

First, we consider the definition of the tensor product of two germs of pointed
Frobenius manifolds by the passage via formal Frobenius manifolds and the pos-
sible obstructions. Then assuming convergence, we investigate the dependence of
this procedure on the chosen base–points.

7.1. The tensor product. Given two germs of pointed Frobenius mani-
folds, we can define their tensor product in the category of formal Frobenius
manifolds. To retrieve an honest germ again, however, we additionally have to
postulate the convergence of the tensor potential.

7.1.1. Definition. Given two germs of pointed Frobenius manifolds (M′, m′
0)

and (M′′, m′′
0), let (H ′, g′, Φ′) and (H ′′, g′′, Φ′′) be the associated formal Frobenius

manifolds. If the tensor product (H, g, Φ) of (H ′, g′, Φ′) and (H ′′, g′′, Φ′′) has
a convergent potential, we define the tensor product (M, m0) of (M′, m′

0) and
(M′′, m′′

0) as the associated germ of a pointed Frobenius manifold.

7.1.2. Remark. As will be discussed in the next paragraph, the convergence
condition is automatic in the case of semi–simple Frobenius manifolds, if the base–
point is tame, i.e. the spectrum of the multiplication with E is non–degenerate
at this point.

7.2. Base–point dependence of the tensor product. The above defini-
tion of tensor product depends on the choice of the base–point, since this choice
determines the ACFs which will be tensored and, as we already noted in Section
2.3, the choice of a different zero in flat coordinates will lead to a different system
of ACFs (see (2.3)) and thus to a different germ.

7.2.1. Lemma. Let {Yn} be the ACFs corresponding to the base–point m0

as zero in x–coordinates and {Ŷn} be the ACFs corresponding to a new base–point
m̂0 which lies inside the domain of convergence of the potential with x–coordinates
xa(m̂0) = xa

0, see (2.3), then the operadic correlation functions transform in the
following way:

For any stable n–tree τ :

Ŷ (τ)(∂a1 ⊗ · · · ⊗ ∂an) =
∑

N≥0

1

N !

∑

(b1,...,bN ):bi∈A

ε(b|a) xbN

0 · · ·x
b1
0

Y (π∗
{n+1,...,n+N}(τ))(∂a1 ⊗ · · · ⊗ ∂an ⊗ ∂b1 ⊗ · · · ⊗ ∂bN

). (7.1)

Proof. Inserting (2.3) into the definition of Y (τ) (1.15), we see that the

correlation functions having a prefactor xbN

0 · · ·x
b1
0 are those belonging to trees

with N − n tails added in an arbitrary fashion to τ . The sum over all of these
trees is just π∗

{n+1,...,n+N}(τ), whence the Lemma follows.
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In order to investigate the base–point dependence of the tensor product, we
need a Lemma about the diagonal ∆M 0S

which extends Lemma 6.4.

7.2.2. Lemma. For any two disjoint subsets S, T ⊂ {1, . . . , n}

(π∗
S, π∗

T )(∆M0{1,... ,n}\(S∪T )
) = (πT∗, πS∗)(∆M0n

). (7.2)

Proof. Writing (π∗
S, π∗

T ) as (π∗
S, id) ◦ (id, π∗

T ), we obtain, after repeated ap-
plication of Lemma 6.4 in an appropriate version, that

(π∗
S, π∗

T )(∆M0{1,... ,n}\(S∪T )
) = (π∗

S ◦ πT∗, id)(∆M0{1,... ,n}\S
).

Since πS and πT commute if T ∩ S = ∅, we can prove the equality (7.2) again by
Lemma 6.4.

This Lemma enables us to prove that tensoring at the points m′
0 and m′′

0

and then shifting the base–point to m̂0 with non–zero x–coordinates x0a′′
(m̂0) =

x′′a′′

0 , xa′0(m̂0) = x′a′

0 corresponds to tensoring at the shifted base–points m̂′
0 with

m′
0–coordinates x′a′

0 and m̂′′
0 with m′′

0–coordinates x′′a′′

0 .

More precisely, let (M′, m′
0) and (M′′, m′′

0) be two germs of pointed Frobenius
manifolds. Assume that their tensor product as germs of pointed Frobenius man-
ifolds according to 7.1.1 exists and denote it by (M, m0). Additionally, consider
the two germs of pointed Frobenius manifolds (M′, m̂′

0) and (M′′, m̂′′
0) obtained

from (M′, m′
0) and (M′′, m′′

0) by shifting the base–points to m̂′
0 and m̂′′

0 inside the
domain of convergence of Φ′ and Φ′′ respectively and assume that their tensor

product (M̃, m̃0) exists. Let the shifted base–point m̂′
0 have the coordinates x′a′

0

in (M′, m′
0) and m̂′′

0 have coordinates x′′a′′

0 in (M′′, m′′
0). Finally, let (M, m̂0) be

the germ obtained from (M, m0) by shifting the base–point to the point m̂0 whose
non–zero coordinates are x0a′′

(m̂0) = x′′a′′

0 and xa′0(m̂0) = x′a′

0 for a′, a′′ 6= 0 and
x00(m̂0) = x′0

0 + x′′0
0 , if this point is inside the domain of convergence of Φ.

7.2.3. Theorem. With the notations and conditions as stated above, the

two germs of pointed Frobenius manifolds (M, m̂0) and (M̃, m̃0) are isomorphic.
Furthermore, if (M′, m′

0) and (M′′, m′′
0) also carry Euler fields and flat identi-

ties, then the corresponding structures Ê, ê on (M, m̂0) and Ẽ, ẽ on (M̃, m̃0) are
identified under the isomorphism.

Proof. Denote the ACFs corresponding to (M′, m′
0) by {Y ′

n} and the appro-
priate coordinates by x′. Likewise denote the ACFs corresponding to (M′′, m′′

0)
by {Y ′′

n } and the appropriate coordinates by x′′. Using the Definition 7.1.1 and
then shifting to the new base–point with non–zero coordinates x0a′′

(m̂0) = x′′a′′

0

and xa′0(m̂0) = x′a′

0 in the coordinates x of the tensor product denoting the cor-
relation functions of the tensor product by {Yn}, we obtain the following formula

for the shifted ACFs {Ŷn} given by the new base–point:
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Ŷn(∂a′
1a′′

1
⊗ · · · ⊗ ∂a′

na′′
n
)

=
∑

N≥0

1

N !

N∑

l=0

∑

(b′1,...,b′l)|b
′∈A′

(b′′1 ,...,b′′N−l)|b
′′∈A′′

(
N

l

)
ε(b′0|a′a′′)ε(0b′′|a′a′′) x

′′b′′N−l

0 · · ·x
′′b′′1
0 x

′b′
l

0 · · ·x
′b′1
0

(Y ′ ⊗ Y ′′)(∆M0,N+n
)(∂a′

1a′′
1
⊗ · · · ⊗ ∂a′

na′′
n
⊗ ∂b′10 ⊗ . . . ∂b′

l
0 ⊗ ∂0b′′1

⊗ · · · ⊗ ∂0b′′
N−l

)

=
∑

N≥0

1

N !

N∑

l=0

∑

(b′1 ,...,b′l)|b
′∈A′

(b′′1 ,...,b′′N−l)|b
′′∈A′′

(
N

l

)
ε(b′|a′)ε(b′′|a′′)ε(b′|a′′)ε(b′′|a′)

x
′′b′′N−l

0 · · ·x
′′b′′1
0 x

′b′l
0 · · ·x

′b′1
0 (Y ′ ⊗ Y ′′)((π{n+l+1,...,n+N}∗, π{n+1,...,n+l}∗)(∆M0,N+n

))

(∂a′
1a′′

1
⊗ · · · ⊗ ∂a′

na′′
n
⊗ ∂b′1

⊗ . . . ∂b′l
⊗ ∂b′′1

⊗ · · · ⊗ ∂b′′N−l
) (7.3)

due to Proposition 6.2.2. On the other hand, tensoring the ACFs {Ŷ ′
n} and {Ŷ ′′

n }
which corresponds to shifting to the points m̂′

0 and m̂′′
0 and then performing the

tensor product, and then utilizing Lemma 7.2.1 yields the result:

Ỹn(∂a′
1a′′

1
⊗ · · · ⊗ ∂a′

na′′
n
) = (Ŷ ′ ⊗ Ŷ ′′)(∆M0n

)(∂a′
1a′′

1
⊗ · · · ⊗ ∂a′

na′′
n
)

=
∑

N≥0

N∑

l=0

∑

(b′1,...,b′l)|b
′∈A′

(b′′1 ,...,b′′N−l)|b
′′∈A′′

1

N !(N − l)!
ε(b′|a′)ε(b′′|a′′)ε(b′|a′′)ε(b′′|a′)

× x
′′b′′

N−l

0 · · ·x
′′b′′1
0 x

′b′l
0 · · ·x

′b′1
0 (Y ′ ⊗ Y ′′)((π∗

{n+1,...,n+l}, π
∗
{n+l+1,...,n+N})(∆M0,N+n

))

(∂a′
1a′′

1
⊗ · · · ⊗ ∂a′

na′′
n
⊗ ∂b′1

⊗ . . . ∂b′
l
⊗ ∂b′′1

⊗ · · · ⊗ ∂b′′
N−l

). (7.4)

Applying Lemma 7.2.2 with S = {n = 1, . . . , n + l}, T = {n + l + 1, . . . , n +
N}, we see that (7.3) and (7.4) and thus the multiplications, respectively the
potentials up to quadratic terms, coincide. Since the flat structures and the
metrics are not altered by a shift in the base–point, the first part of the theorem
follows.

The equation for the identities is clear, since flat vector fields remain invariant
under a different choice of zero.

For the Euler fields, we find, keeping the notation of Theorem 6.3 and iden-

tifying the coordinates of (M, m̂0) and (M̃, m̃0):
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Ê =
∑

(b′,b′′)∈A′×A′′

[
∑

a′∈A′

(d′
a′b′x

a′b′′) +
∑

a′′∈A′′

(d′′
a′′b′′x

b′a′′

)− dxb′b′′] ∂b′b′′

+
∑

a′∈A′

r′a
′

∂a′0 +
∑

a′′∈A′′

r′′a
′′

∂0a′′

−
∑

a′∈A′

dx′a
0 ∂a′0 −

∑

a′′∈A′′

dx′′a
0 ∂0a′′

+
∑

a′∈A′

b′∈A′

d′
a′,b′x

′a
0 ∂b′0 +

∑

a′′∈A′′

b′′∈A′′

d′′
a′′,b′′x

′′a
0 ∂0b′′

= Ẽ. � (7.5)

7.2.4. Remark. Looking at the Theorem 7.2.3 from the viewpoint of defor-
mations of the algebra structure over the base–point, it identifies the possible
deformation parameters from the two factors of two tensored multiplications as
special directions in the tensor product. We point out that in the presence of
a flat identity, the number of possible deformation parameters for a Frobenius
manifold M is dim(M)− 1 where possible deformation parameters are those for
which it is not a priori clear that all third derivatives of the potential including a
derivative with respect to this parameter are constant. The theorem hence identi-
fies n+m−2 of the nm−1 possible deformation parameters of the tensor product
of Mn and M′m as deformations coming from deforming the algebras before ten-
soring. In the direction of the identity the multiplication itself is not deformed.
The coordinate x00

0 = x′0
0 +x′′0

0 is determined by the Euler fields which do depend
on the direction corresponding to the identity. The rest of the parameters are
new parameters and correspond to “coupling” the algebras.

If one does not deform into these new directions, the resulting multiplication
has the simple structure

∂a′ ⊗ ∂b′ ◦γ′⊗e′′+e′⊗γ′′ ∂a′′ ⊗ ∂b′′ = (∂a′ ◦γ′ ∂b′)⊗ (∂a′′ ◦γ′′ ∂b′′). (7.6)

7.2.5. Corollary. In the setting of Theorem 7.2.3, let γ ′ and γ′′ be points
inside the domain of convergence of the potentials of the factors and γ = γ ′ ⊗
e′′ + e′ ⊗ γ′′ be a point inside the domain of convergence of the tensor potential,
then the multiplication over the point γ is simply the tensor product of the
multiplications over the points γ ′ and γ′′.
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8. The tensor product for semi–simple Frobenius manifolds

8.1. The tensor product for semi–simple Frobenius manifolds with
Euler field and flat identity. In Section 7, the operation of forming the ten-
sor product was introduced for germs of pointed Frobenius manifolds under the
condition of the convergence of the tensor potential. More precisely, it is stated
that in the case of semi–simple Frobenius manifolds with an Euler field and a flat
identity, the split cover of the subspace of tame points M is already determined
by any germ near any given tame point m0 ∈M in terms of initial conditions for
Schlesinger’s equations. In particular, given such a tame point we may extend the
potential to a neighborhood of this point. Thus, we may define the tensor prod-
uct for two germs of tame semi–simple Frobenius manifolds M′,M′′ depending on
the choice of two tame base–points m′

0, m
′′
0, if the tensor product provides special

initial conditions. Since the algebra in the tangent space over the base–point of
the tensor product is just the tensor product of two semi–simple algebras, it is
itself semi–simple, so the only possible obstruction to obtaining special initial
conditions is that the new base–point may not be tame. This condition, however,
is not very restrictive, as we will show later. But first, we conditionally define:

8.1.1. Definition. The tensor product of two germs of semi–simple Frobe-
nius manifolds M′,M′′ relative to the tame points m′

0, m
′′
0 is defined to be the

semi–simple Frobenius manifold given by the initial conditions corresponding to
the germ of pointed Frobenius manifold given by the tensor product of (M′, m′

0)
and (M′′, m′′

0), if the base–point of the tensor product is tame.

8.1.2. Remarks.

(i) The dependence on the points relative to which the operation of tensor
product is performed, is explicitly described in Section 7.2. In particular,
when we pass to a split cover of the subset of tame points, the solution
of the Schlesinger equations will be independent of the chosen points due
the uniqueness statement of Theorem 3.7.

(ii) In 8.1.4 we will show that it is always possible to perturb the base–
points in such a manner that the base–point of the tensor product is
indeed tame.

8.1.3. Canonical coordinates. Since the definition of the tensor product,
as introduced in Section 7, makes extensive use of the flat coordinates, a natural
question to ask in the setting of semi–simple Frobenius manifolds is: Is there a
nice formulation in terms of canonical coordinates? Generally, one can not expect
simple formulas, since the algebra in the tangent space over a given point in the
tensor product manifold is generally not a tensor product of algebras, see 7.2,
and the “coupling” of algebras results in a destruction of the pure tensor form of
the idempotents.

Using the definitions of the tensor product for formal Frobenius manifolds,
we can, however, calculate the idempotents of the tensor product in terms of flat
coordinates in the formal situation. They are given by the following Lemma up
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to terms of order two in flat coordinates which is the precision needed to calculate
the special initial conditions.

8.1.4. Lemma. Given two semi–simple Frobenius manifolds M′,M′′ let the
idempotents near the base–points m′

0, m
′′
0 have the expansions e′i = e′0i +

∑
x′a′

e′a
′

i +
O(x′2), and e′′i = e′′0i +

∑
x′′a′′

e′′a
′′

i +O(x′′2) in the flat coordinates x′ and x′′, then
the idempotents eij of the tensor product of (M′, m′

0) and (M′′, m′′
0) in the formal

sense have the following expansion in the flat coordinates x of Definition 2.4:

eij(x) = e′0i ⊗ e′′0j +
∑

a′,a′′

xa′a′′

(λa′′

j e′a
′

i ⊗ e′′0j + λa′

i e′0i ⊗ e′′a
′′

j ) + O(x2)
(8.1)

where ∂′
a′ =

∑
λa′

i e′0i and ∂′′
a′′ =

∑
λa′′

j e′′0j .
Furthermore, the respective coordinate functions for the tensor metric ηij :=

η(eij, eij) have the expansions:

ηij(x) = η′
i(m

′
0)η

′′
j (m

′′
0) +

∑

a′,a′′

xa′a′′

(λa′′

j (∂′
a′η′

i)(m
′
0)η

′′
j (m

′′
0) + λa′

i η′
i(m

′
0)(∂

′′
a′′η′′

j (m
′′
0)))

(8.2)

and their derivatives ηij,kl := eklηij have the following values at the base–point
m0:

ηij,kl(m0) = δj,lη
′
ik(m

′
0)η

′′
j (m

′′
0) + δi,kη

′
i(m

′
0)∂

′′
a′′η′′

jl(m
′′
0) (8.3)

where δi,k is the Kronecker delta symbol.

The canonical coordinates of m0 are:

uij(m0) = u′i(m′
0) + u′′j(m′′

0). (8.4)

Proof. To check the formula (8.1), expand the potential Φ up to order four
in the flat coordinates and verify the idempotency by direct calculation. The
formulas (8.2) and (8.3) then follow by substitution into the definition of the
tensor metric. Finally, (8.4) can be derived from the expansion of the equation
E =

∑
uijeij with the Euler field E given by Theorem 7.1.1. Since the calculation

is lengthy, but fairly straightforward, we omit it.

8.2. Tensor product of special initial conditions. In the Lemma 8.1.4,
we have calculated all of the structures (3.17) necessary for the determination of
the special initial condition. Another approach using the Euler field is given by
the following observation:

8.2.1. Remark. To give the special initial conditions for a tensor product
with the choice of tensor metric and the Euler field (6.12), it suffices to determine
the operator

V : V(X) = ∇0,X(E)−
D

2
X (8.5)

in the tangent space to the base–point TM,m0 . Since V is an OM–linear tensor,
its value on a vector field X is already determined by X

∣∣
m0
∈ TM,m0 , so that,
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if we are only interested in the operator V restricted to TM,m0 , we can use any
extension of the vector X

∣∣
m0

to a vector field in a neighborhood of m0. Choosing

a flat extension Xf , the formula (8.5) simplifies to

V(X)
∣∣
m0

= ([Xf , E]−
D

2
Xf)

∣∣
m0

. (8.6)

In particular, in the situation of Theorem 6.3, we can extend the idempotents
eij

∣∣
m0

to flat vector fields ef
i,j and use the formula (8.6) to calculate the special

initial conditions via the operator V for the semi–simple tensor Euler field. Now
it is clear that (eij)

∣∣
m0

= e′i
∣∣
m′

0
⊗ e′′j

∣∣
m′′

0
, since the algebra over m0 is just the

tensor of the algebras at the chosen zeros m′
0 and m′′

0. Recalling the form of E
given by (6.12), we find for flat X, Y

[X ⊗ Y, E] = [X, E ′]⊗ Y + X ⊗ [Y, E ′′]− dX ⊗ Y. (8.7)

Thus,

V(ef
ij) = [ef

i,j, E]−
D

2
ef

i,j =

([e′fi , E ′]−
D′

2
e′fi )⊗ e′′fj + e′fi ⊗ ([e′′fj , E ′′]−

D′′

2
e′′fj ). (8.8)

Using the explicit formulas of Lemma 8.1.4 or the Remark 8.2.1, we obtain:

8.2.2. Theorem. Let (M′, m′
0) and (M′′, m′′

0) be two germs of semi–simple
Frobenius manifolds with tame base–points which satisfy u′i(m′

0) + u′′j(m′′
0) 6=

u′k(m′
0) + u′′l(m′′

0) for i 6= k and j 6= l and let the corresponding special initial
conditions be given by (V ′, η′) and (V ′′, η′′), then the special initial conditions for
the Schlesinger equations corresponding to the tensor product with the flat identity
and the Euler field of the product chosen as in Theorem 6.3 are given by:

ηij = η′
iη

′
j (8.9)

vij,kl = δjlv
′
ik + δikv

′′
jl. � (8.10)



CHAPTER 3

Quantum Cohomology

As we will explain below, one can regard quantum cohomology as a formal
Frobenius manifold structure with Euler field and identity. Taking this viewpoint,
we can apply the results of the previous chapter to this situation. In particu-
lar, the formula for the tensor product of two formal Frobenius manifolds turns
into the explicit Künneth formula for quantum cohomology. Furthermore, if the
H1’s of the factors are zero, we find a particularly simple structure for the small
quantum cohomology ring using the results on the base–point dependence. In
the semi–simple case, we can calculate the special initial conditions for a product
manifold and, if the H1’s of the factors are zero, we can calculate the special
initial conditions in a first order neighborhood of H2 if the respective data is
given for the factors, again using the results on the base–point dependence.

In the last section we will present some examples. First, we calculate the
special initial conditions of a product of projective spaces by combining the results
of [M2] with the ones from the previous chapter. And as a final example, we
study the product of two and three three–dimensional Calabi–Yaus and give
their potentials.

1. Gromov–Witten invariants and quantum cohomology

1.1. GW–invariants. The Gromov–Witten invariants are defined for any
smooth projective variety V over C by means of the space of stable maps. We
will not go into details here, since they can be found in [KM, K2, Be1, BM,
FP]. We take the viewpoint of [KM] and regard the GW–invariants of a variety
V as maps, depending on the parameters g (genus), n (number of points) with
2g − 2 + n > 0 and the choice of a class β ∈ H2(V, Z):

IV
g,n,β : H∗(V )⊗n → H∗(Mg,n). (1.1)

These maps satisfy certain properties which were called axioms in [KM].

1.2. GW–numbers. Given a set of GW–invariants, the GW–numbers are
defined by

〈IV
g,n,β〉(γ) :=

∫

Mg,n

IV
g,n,β(γ). (1.2)

Using the Second Reconstruction Theorem [KM], it can be shown that the
GW–numbers already suffice to define the whole set of GW–classes.

75
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1.3. Quantum Cohomology. Restricting to genus zero invariants, one can
encode the information of GW–invariants into an algebra structure. The quantum
cohomology of a projective manifold V will be regarded as a formal deformation
of its cohomology ring with the coordinates of the space H∗(V ) being the param-
eters. The structure constants are given by a formal series ΦV which is defined in
terms of Gromov–Witten invariants [KM]. One can regard the quantum cohomol-
ogy as a structure of a Frobenius manifold on (H∗(V ), g) where g is the Poincaré
pairing with the GW–invariants playing the role of the In and the potential ΦV

being the potential of (II.1.20).

1.4. Preparation. Let Λ be a Q–algebra of and choose a character

B → Λ; β → qβ (1.3)

where B is the closure of the cone of effective algebraic curves.

The choices for Λ are basically

(i) Λ = C, qβ = e−
R

β
ω, for a choice of ω ∈ H2(V, C)

(ii) Λ = the Novikov ring and qβ = qβ1

1 . . . qβr
r for (β = β1, . . . , βr).

1.5. CohFT. Summing over all β ∈ B ⊂ H2(V, Z), set

IV
0n :=

∑

β

qβIV
0,n,β (1.4)

if (1.4) is convergent as a map

H∗(V )→ H∗(M 0n, Λ). (1.5)

In this case the IV
0n (1.4) form a CohFT see [KM].

1.6. GW–potential. According to the general framework, we can associate
the potential

ΦV (γ) :=
∑

n≥3

1

n!
〈IV

0n〉(γ
⊗n) (1.6)

to the above CohFT, cf. 1.3.

1.7. Quantum multiplication. Since the IV
0n form a CohFT, we equiva-

lently have that the above potential satisfies the associativity (WDVV) equations
and thus defines a formal Frobenius manifold structure on (H∗(V ), g) where g is
the Poincaré pairing. This structure is called the big quantum cohomology ring.
Explicitly, let (∆a) be a basis of H∗(V ) and xa the dual basis. Write out the GW–
potential (1.6) for a generic γ =

∑
a xa∆a = γ0 + δ where δ =

∑
a|∆a∈H2 xa∆a

and set

∆a ◦∆b =
∑

c

Φc
ab∆c (1.7)

with

Φc
ab ∈ K = Λ[[xa]]. (1.8)
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1.8. A more explicit form of the potential. Due to the identity and the
divisor “axiom” for GW–classes one can give a more precise description of the
potential for quantum cohomology.

First, we decompose γ into its H0, H2 and H i, i 6= 0, 2 components:

γ = γ0 + γ2 + γ′ = x0[V ] +

r∑

i=1

xi∆i +

k∑

i=r+1

yi∆r+i (1.9)

where ∆i, i = 1, . . . r is a basis for H2.

Let β1, . . . βr be a dual basis of H2, then we can write the potential as

ΦV (γ) =
1

6
(γ3) +

∑

β∈B\{0}

qβeβ1x1+···+βrxrΦβ (1.10)

where

Φβ =
∑

n≥0

∑

(a1 ,...,an)

yan · · · ya1

n!
〈IV

0,n,β〉(∆r+a1 ⊗ · · · ⊗∆r+an) (1.11)

and the IV
0,n,β for n ≤ 3 are defined as

IV
0,n,β(α) = (β, δ)−mIV

0,n+m,β(α⊗ δ⊗m) (1.12)

for any δ ∈ H2 with (β, δ) 6= 0.

The summands contributing to Φβ are constrained by the condition that the
virtual dimension should be zero:∑

(|∆r+ai
| − 2) = 2(−KV · β + dimCV − 3). (1.13)

In particular, in case H1 = 0 we see that ΦV is a polynomial in exi and yj, if
KV is ample or V is a Calabi–Yau with dim ≥ 3. In the latter case, the restriction
reads: ∑

(|∆r+ai
| − 2) = 2(dimCV − 3). (1.14)

On the other hand, the left hand side of (1.14) is greater or equal to n, so that
we find the following restriction for n:

n ≤ 2(dimCV − 3). (1.15)

1.9. Quantum cohomology as a formal pointed Frobenius mani-
fold. As shown above, when we are considering the case of quantum cohomol-
ogy of a projective manifold V from the vantage point of Frobenius manifolds,
the Poincaré pairing and the GW–potential define a formal Frobenius manifold.
This formal Frobenius manifold comes equipped with the natural base–point
0 ∈ H∗(V ) whose tangent space is identified with H∗(V ). We will denote this
formal Frobenius manifold by (H∗

quant(V ), 0).

(H∗
quant(V ), 0) also has a flat identity e provided by the identity in the usual

cohomology ring 1 = ˇ[V ], the Poincaré dual of the fundamental class, and a semi–
simple Euler–field E of weight D = 2− dim(V ); cf [M2]. Choose a homogeneous
basis {∆a} of H∗(V ) with ∆0 = 1 and let xa be the dual coordinates. These
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coordinates define the flat vector fields ∂a. The degree da of ∂a being da = 1− |∆a|
2

where | . | is the usual grading of H∗. Let KV denote the canonical class of V and
expand −KV =

∑
b:|∆b|=2 rb∆b. Then

e = ∂0 := ˇ[V ], E =
∑

a

dax
a∂a +

∑
rb∂b. (1.16)

1.9.1. The small quantum cohomology ring. Restricting the formal
Frobenius manifold to the subspace H2 ⊂ H, we obtain a multiplication on
H with parameters in H2. To give an explicit formula decompose γ = γ0 + δ
where δ =

∑
a|∆a∈H2 xa∆a and set

∆a ◦∆b =
∑

c

Φc
ab|γ0=0∆c (1.17)

with

Φc
ab ∈ K = Λ[[xa|∆a ∈ H2]]. (1.18)
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2. The Künneth formula in quantum cohomology

2.1. Quantum cohomology of a product. The quantum cohomology of
a product V ×W regarded as a Frobenius manifold is just the tensor product of
the formal Frobenius manifolds: (H∗(V ) ⊗ H∗(W ), Poincaré pairing, ΦV ×W ) as
can be shown [Be2] using [Be1].

More precisely, in terms of formal pointed Frobenius manifolds

(H∗
quant(V ×W ), 0) = the tensor product of (H∗

quant(V ), 0) and (H∗
quant(W ), 0).

(2.1)

Furthermore, as already mentioned, the canonical Euler field and the identity
for the quantum cohomology of a product coincide with the ones given in Theorem
II.6.3.

2.2. The explicit Künneth formula in quantum cohomology. Putting
together the formula for the potential (II.1.6) and Corollary II.4.3.3, we obtain
the explicit Künneth formula:

2.3. Corollary. The potential ΦV ×W of the quantum cohomology of V ×W
is given by the formula:

ΦV ×W (γ′ ⊗ γ′′) =
∑

n≥3

1

n!

∑

µ,ν∈Bn

Y ′(µ̌)(γ′⊗n)mµνY
′′(ν̌)(γ′′⊗n). (2.2)

2.4. The small quantum cohomology of a product. In the case that

(∗) H1(V ) = H1(W ) = 0

we can apply the results of Section II.7.2 to find a particularly simple struc-
ture for the small quantum cohomology of a product. Recall that the small
quantum cohomology ring is the restriction of the deformation space of quantum
cohomology to H2. From the general theory we know that the small quantum
cohomology ring of a product is the tensor product of the CohFT, and since
H2(V ×W, k) = (H2(V, k)⊗H0(W, k))⊕ (H0(V, k)⊗H2(W, k)) if (∗) holds, we
may apply Theorem II.7.2.3. Specializing Corollary II.7.2.5, we obtain:

2.4.1. Corollary. If H1(V ) = H1(W ) = 0 then the small quantum coho-
mology ring of the product V ×W is the tensor product of the small quantum
cohomology rings of V and W as k–modules.
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2.5. Semi–simplicity and quantum cohomology. Over the canonical
base–point 0 of H∗

quant(V ) the multiplication is always nilpotent, since it is just
the usual cohomology with cup product. But if the potential Φ of H∗

quant(V ) con-
verges in some domain, one can look at different base–points and in some cases
the multiplication is generically semi–simple in this domain. This is the case for
complete intersections, [TXu]. In this situation, we can change the base–point
to a tame semi–simple point and continue the potential analytically, using the
formalism of Schlesinger equations.

2.6. Semi–simplicity and the Künneth formula. The Künneth formula
(2.1) involves a priori non–semi–simple base–points. If, however, we have conver-
gence of all of the potentials in some big enough domain, we can use the Theorem
II.7.2.3 to move the base–points of the factors into tame semi–simple points, if
they exist, and then tensor. In fact, we can then even analytically continue after
forming the tensor product, if the base–point of the tensor product is tame, using
the Schlesinger equations due to the uniqueness statement of Theorem II.3.7.

2.6.1. Special initial conditions in the first order neighborhood of
H2. When considering the special initial conditions given by the quantum coho-
mology of a manifold, it is usually sufficient to move the base–point only into
the space generated by H2. In order to consider an arbitrary base–point in H2,
one can calculate the relevant structure in the first infinitesimal neighborhood of
H2. Recall that the formal Frobenius structure restricted to H2 is just the small
quantum cohomology.

If we again assume that H1(V ) = H1(W ) = 0 then we see that the dependence
on H0(V × W ) and H2(V × W ) = (H0(V ) ⊗ H2(W )) ⊕ (H2(V ) ⊗ H0(W )) is
given by Theorem II.7.2.3 respectively Corollary II.2.4.1.

As an illustration, we give the formula for the idempotents of the tensor prod-
uct in a first order neighborhood of H2 under the condition H1(V ) = H1(W ) = 0.
Denote the ideal generated by the xab|dab 6= 0, 2 by J and define J ′ and J ′′ anal-
ogously, then decompose the idempotents

e′i = e′0i +
∑

a′|x′a′∈J ′

x′a′

e′a
′

i + O(J ′2)

and
e′′i = e′′0i +

∑

a′′|x′′a′′∈J ′′

x′′a′′

e′′a
′′

i + O(J ′′2).

Then the idempotents of the tensor product are given by:

eij(x) = e′0i ⊗ e′′0j +
∑

a′,a′′|xa′a′′∈J

xa′a′′

(λa′′

j e′a
′

i ⊗ e′′0j + λa′

i e′0i ⊗ e′′a
′′

j ) + O(J2).
(2.3)
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3. Examples

3.1. Special initial conditions for Pn × Pm. Using Section II.8.2, we can
calculate the special initial conditions for Pn×Pm using the results of [MM]. Set
ζn = exp( 2πi

n+1
).

3.1.1. Proposition. The point (x00, x10, x01, 0, . . . ) has canonical coordinates

uij = x00 + ζ i
n(n + 1)e

x10

n+1 + ζ i
m(m + 1)e

x01

m+1

The special initial conditions at this point corresponding to Hquant(P
n × Pm)

are given by

vij,kl = −(
ζ i−k
n

1− ζ i−k
n

δjl +
ζj−l
m

1− ζj−l
m

δik) (3.1)

and

ηij =
ζ i
nζ

j
m

(n + 1)(m + 1)
e−x10 n

n+1
−x01 m

m+1 (3.2)

Proof. Taking the results of [MM], we can use Theorem II.7.2.3 to move the
base–point in an appropriate way and then apply Theorem II.8.2.2 to calculate the
special initial conditions. The formula for the canonical coordinates is contained
in Lemma II.8.1.4 and the fact that in the presence of an Euler field x00 = x′0+x′′0,
is again given by Theorem II.7.2.3.

3.2. The potential for a product of Calabi–Yaus. From (1.15) we see
that, if we are considering a Calabi–Yau manifold which is a product of two
Calabi–Yau manifolds, we only need to consider a finite number of n’s in order
to calculate the potential. Thus, if the potentials of the factors are known, we
can use the explicit computations of the previous chapter in order to calculate
the potential of the product.

3.2.1. Restrictions for a product of Calabi–Yaus. In the case of a prod-
uct of Calabi–Yaus, there are additional restrictions besides the restriction (1.13)
for the Calabi–Yau W on the total degree of the cohomology classes. We choose
the basis (∆i) of H∗(W ) in such a way that ∆i ∈ Hj(V1)⊗Hk(V2), k+ l = |∆i| :=
di and consider the bidegrees (d1

i , d
2
i ) := (k, l).

Since KV = 0, we find that Φ is homogeneous and the homogeneity condition
for the naive tensor product of abstract correlation functions for a bihomogeneous
element σ ⊗ τ ∈ V (Γn,e1) ⊗ V (Γn,e2) —where we used the notation of Chapter
I.3.1— reads:

(Y1 ⊗ Y2)(σ ⊗ τ)(∆i1 ⊗ · · · ⊗∆in) = 0

unless∑

j

(d1
ij
− 2) = 2(dimC V1 − 3− e1) and

∑

j

(d2
ij
− 2) = 2(dimC V2 − 3− e2).

(3.3)
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3.2.2. The product of two three–dimensional Calabi–Yaus. As an
example of a higher dimensional Calabi–Yau we will consider a product of two
three–dimensional Calabi–Yaus W = V1 × V2 with H2(V1) = H2(V0) = 1 for
simplicity. In this situation H2 is generated by π∗

1(β1) and π∗
2(β2) and B =

{(d1, d2)|d1, d2 ≥ 0}. We will consider the basis formed by the elements ∆ij =

∆
(1)
i ⊗ ∆

(2)
j and denote the respective dual coordinates by x01, x10 and yij for

i + j > 2. Let ki := dim H∗(Vi).

Using the formula for the potential (1.10) and the restriction (1.15) we find
for V1 and V2:

ΦVi(γ) =
1

6
(γ3) +

∑

d≥1
β=d c1(O(1))

qdedxi
1〈IVi

0,0,β〉(∗). (3.4)

where (∗) denotes the empty product and

〈IVi

0,0,β〉(∗) :=
〈IVi

0,3,d c1(O(1))〉(∆
⊗3
1 )

d3
=

Ni(d)

d3
(3.5)

with Ni(d) = 〈IVi

0,3,d c1(O(1))〉 for all d ≥ 0.

First, we list the summands of Φβ which may contribute. Using the restriction
(1.13) we find that independent of β, n ≤ 6. The following tuples of dai

’s might
lead to nonzero contributions:

{da1 , . . . , dan} ∈ {{8}, {3, 7}, {4, 6}, {5, 5}, {3, 3, 6}, {3, 4, 5}, {4, 4, 4}

{3, 3, 3, 5}, {3, 3, 4, 4}, {3, 3, 3, 3, 4}{3, 3, 3, 3, 3, 3}}. (3.6)

Furthermore, we have the conditions on the bidegree imposed by the homo-
geneity (KV = 0) condition for ΦW which are given by:

∑

j

d1
ij

= 2(n− e1) and
∑

j

d2
ij

= 2(n− e2). (3.7)

For n ≤ 3 we find the following table of bidegrees where we have expanded
the cases with n ≤ 2, and possible β for which 〈IW

0,3,β〉(∆a1 ⊗ ∆a2 ⊗ ∆a3) is not
necessarily zero:
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Let {i, j, k} = {1, 2, 3}

dai
, daj

, dak
d1

ai
, d1

aj
, d1

ak
d2

ai
, d2

aj
, d2

ak
β

2, 2, 8 0, 2, 4 2, 0, 4 0
0, 0, 6 2, 2, 2 (0, d)
2, 2, 2 0, 0, 6 (d, 0)

2, 3, 7 0, 3, 3 2, 0, 4 0
2, 0, 4 0, 3, 3 0

2, 4, 6 2, 4, 0 0, 0, 6 0
0, 0, 6 2, 4, 0 0
2, 0, 4 0, 4, 2 0
0, 4, 2 2, 0, 4 0
0, 2, 4 2, 2, 2 (0, d)
2, 2, 2 0, 2, 4 (d, 0)

2, 5, 5 0, 3, 3 2, 2, 2 (0, d)
2, 2, 2 0, 3, 3 (d, 0)

3, 3, 6 0, 0, 6 3, 3, 0 0
3, 3, 0 0, 0, 6 0
0, 3, 3 3, 0, 3 0

3, 4, 5 3, 0, 3 0, 4, 2 0
0, 4, 2 3, 0, 3 0

4, 4, 4 2, 4, 0 2, 0, 4 0
2, 2, 2 2, 2, 2 (d1, d2)

The cases where β = 0 is the only possibility for a non–zero contribution are
not relevant, since we have the condition β 6= 0 in the sum over the Φβ. These
cases are only listed for completeness and future reference.

In the case n = 4 and {i, j, k, l} = {1, . . . , 4} the possible list reads:

dai
, daj

, dak
, dal

d1
ai

, d1
aj

, d1
ak

, d1
al

d2
ai

, d2
aj

, d2
ak

, d2
al

e1, e2

3, 3, 3, 5 0, 3, 3, 2 3, 0, 0, 3 0, 1
3, 0, 0, 3 0, 3, 3, 2 1, 0

3, 3, 4, 4 3, 3, 0, 0 0, 0, 4, 4 0, 1
0, 0, 4, 4 3, 3, 0, 0 1, 0
0, 0, 2, 4 3, 3, 2, 0 0, 1
3, 3, 2, 0 0, 0, 2, 4 1, 0

All these cases yield zero contributions due to Proposition 6.2.2, since π∗(H
0(M 0,4)) =

0.

In the case n = 5 we get

dai
, daj

, dak
, dal

, dam d1
ai

, d1
aj

, d1
ak

, d1
al
, d1

am
d2

ai
, d2

aj
, d2

ak
, d2

al
, d2

am
e1, e2

3, 3, 3, 3, 4 0, 0, 3, 3, 4 3, 3, 0, 0, 0 0, 2
0, 0, 3, 3, 2 3, 3, 0, 0, 2 1, 1
3, 3, 0, 0, 0 0, 0, 3, 3, 4 2, 0

All these cases also only yield zero contributions, since π∗(H
0(M 0,5)) = 0 and

π{i,j}∗(H
1(M 0,5)) = 0.
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And finally for n = 6 the possible bidegrees for {dai
, daj

, dak
, dal

, dam , dap} =
{3, 3, 3, 3, 3, 3} are:

d1
ai

, d1
aj

, d1
ak

, d1
al
, d1

am
, d1

ap
d2

ai
, d2

aj
, d2

ak
, d2

al
, d2

am
, d2

ap
e1, e2

0, 0, 3, 3, 3, 3 3, 3, 0, 0, 0, 0 0, 3
3, 3, 0, 0, 0, 0 0, 0, 3, 3, 3, 3 3, 0

which also just give zero contributions, since π∗(H
0(M 0,5)) = 0.

Collecting the results, we see that there are only contributions for n ≤ 3 and
with the notation introduced above the potential reads:

ΦW (γ) =
1

6
(γ3) +

∑

d≥1
β=(d,0)

[
1

6
y1,k2

N1(d)

d2
+

1

3
y1,1y1,k2−1

N1(d)

d

+
∑

(i,j)∈{2,...,k2−1}

1

6
y1,jy1,ig

(2)
ij

N2(d)

d
+

1

6
y3

1,1N1(d)]q(0,d)edx1,0

+
∑

d≥1
β=(0,d)

[
1

6
yk1,1

N2(d)

d2
+

1

3
y1,1yk1−1,1

N2(d)

d

+
∑

(i,j)∈{2,...,k1−1}

1

6
yj,1yi,1g

(1)
ij

N1(d)

d
+

1

6
y3

1,1N2(d)]q(d,0)edx0,1

+
∑

d1,d2≥0,(d1,d2)6=(0,0)
β=(d1 ,d2)

1

6
y3

1,1N1(d1)N2(d2)q
(d1 ,d2)ed1x1,0+d2x0,1 .

(3.8)

3.2.3. Remark. Regarding (3.8) we notice that the quantum multiplica-
tion is still only dependent on H2 and is thus completely determined by the
small quantum cohomology ring. In comparison to the case of a single three–
dimensional Calabi–Yau, a new feature emerges, however. Although there are no
deformation parameters outside H2, there are instanton or quantum corrections
to the multiplication of odd dimensional classes. Of course, there are no such
corrections in the case of classes from H3, since due to the fact that H1 = 0 the
dependence on these classes is already determined by Corollary II.7.2.5.

3.3. The product of three three–dimensional Calabi–Yaus. Since there
were no contributions in the last example for n > 3 and therefore no difference
between the information carried by the small and the big quantum cohomology
ring appears, we will consider the product of three three–dimensional Calabi–
Yaus W = ((V × V ) × V ) with the same conditions as above H2(V ) = 1 for
simplicity. The basis of H∗(W ) is again chosen to be the triple tensor product of
the basis for H∗(V ) with dual coordinates x100, x010, x001 and yijl for i+ j + l > 2
and B = {(d1, d2, d3}|di ≥ 0}. As indicated by the parentheses, we will view W
as the product of a six–dimensional Calabi–Yau U = V ×V whose GW–numbers
were calculated above and a three–dimensional Calabi–Yau V .
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3.3.1. The classes IW
0,3,β. From the general theory we see that

〈IW
0,3,β=(d1,d2,d3)〉(γi1,j1,k1 ⊗ γi2,j2,k2 ⊗ γi3,j3,k3) =

〈IV
0,3,d1
〉(γi1 ⊗ γj1 ⊗ γk1)〈I

V
0,3,d2
〉(γi2 ⊗ γj2 ⊗ γk2)〈I

V
0,3,d3
〉(γi3 ⊗ γj3 ⊗ γk3) (3.9)

and the list for the 〈IV
0,3,d〉 (up to permutations) is simply:

di1, di2 , di3 β 〈IV
0,3,β〉(γi1 ⊗ γi2 ⊗ γi3)

0, 0, 6 0 1
0, 2, 4 0 1
0, 3, 3 0 gi2,i3

2, 2, 2 0 1
2, 2, 2 d c1(O(1)), d > 0 N(d)

Inserting the table into (3.9), we get the contributions to Φβ with n ≤ 3.
Note that the condition β 6= 0 implies that at least one of the triples has to be
2, 2, 2. The final list is rather long and is obtained by simple combinatorics; thus
we omit it. The list for only two factors was given in the previous paragraph.

Since the restrictions for U and V provide a rather lengthy list of possibilities
for n > 3, we work out an additional restriction.

3.3.2. Claim. Let γ be a class in H3(W ) then

IW
0,n,β(γ ⊗ α) = 0 ∀n > 3. (3.10)

Proof. First we remark that since H1(V ) = H1(U) = 0: H3(W ) = H0(U)⊗
H3(V )⊕H3(U)⊗H0(V ) and we decompose γ = γ ′ ⊗∆0 + ∆0 ⊗ γ′′ accordingly.
From the previous calculation we know that for γ ′ ∈ H3(U)

IU
0,n,β(γ

′ ⊗ α) = 0 ∀n > 3 (3.11)

and by (1.13) for γ ′′ ∈ H3(V )

IV
0,n,β(γ′′ ⊗ α) = 0 ∀n > 3 (3.12)

as well. Now for n > 3 using the results of the last chapter we find:

IW
0,n,β(γ ⊗ α) =

(Y ′ ⊗ Y ′′)(∆M0n
)(γ′ ⊗∆0 ⊗ α) + (Y ′ ⊗ Y ′′)(∆M0n

)(∆0 ⊗ γ′′ ⊗ α)

= (Y ′ ⊗ Y ′′)(π∗
1, id)(∆M0,{2,...,n}

)(γ′ ⊗ α) + (Y ′ ⊗ Y ′′)(id, π∗
1)(∆M0,{2,...,n}

)(γ′′ ⊗ α)

(3.13)

By the previous remarks (3.11) and (3.12) Y ′(τ)(γ′ ⊗ α) and Y ′′(τ)(γ′′ ⊗ α) can
only be nonzero, if γ′ or respectively γ ′′ is assigned to a three–valent vertex by
(3.11) or (3.12). On the other hand, due to stability no summand of the pull–
back τ = π∗

s(σ) contains a three–valent vertex with the flag s emanating from
it. Thus we find that IW

0,n,β(γ ⊗ α) = 0 which proves the claim. Alternatively we
could have also used Corollary II.7.2.5.
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3.3.3. The possible list of degrees for n > 3. If we use all restrictions,
we see that we should not have any classes of degrees 1, 2, 3 for n > 3 and n ≤ 12.
Putting everything together, we obtain the following list of possible degrees in
ΦW

β for n > 3 with
∑n

i dai = 12 + 2n:

{da1 , . . . , dan} = {{4, 4, 4, 8}, {4, 4, 5, 7}, {4, 4, 6, 6}, {4, 5, 5, 6}, {5, 5, 5, 5},

{4, 4, 4, 4, 6}, {4, 4, 4, 5, 5}, {4, 4, 4, 4, 4, 4}}. (3.14)

Looking at (3.14), we see that effectively we only have to deal with n ≤ 6. As in
the previous example we will tabulate the possible bidegrees. The conditions on
the bidegrees are given by:

∑

j

d1
ij

= 2(n + 3− e1) and
∑

j

d2
ij

= 2(n− e2) (3.15)

From the previous calculation we know that for n > 3 the IU
0,n,β are not zero

for degrees

{d1
a1

, . . . , d1
an
} ∈ {{2, . . . , 2, 8}, {2, . . . , 2, 4, 6}, {2, . . . , 2, 5, 5}, {2, . . . , 2, 4, 4, 4}}

(3.16)

and the IV
0,n,β are not zero only for degrees

{d2
a1

, . . . , d2
an
} = {2, . . . , 2}. (3.17)

A last restriction is given by the inequality for the degrees of the classes in
H∗(V ): #{γ′′| deg(γ′′) = 0} ≤ e2 for e2 < n − 3. This is due to the property
that Y (τ)(α⊗∆0) = Y (π∗(τ))(α) for any τ with more than three tails. Recalling
that 2(n − e2) =

∑
deg(γ′′), we see that the only possibility for the degrees of

the arguments of IV
0,n,β(τ) with |Eτ | = e < n− 3 is e2 times zero and n− e2 times

two.

3.3.4. Claim. For V as above and any τ in V (Γn,e), e < n− 3:

IV
0,n,β(τ)(γ1 ⊗ · · · ⊗ γn) 6= 0 (3.18)

only if

{|γ1|, . . . , |γn|} = {

e times︷ ︸︸ ︷
0, . . . , 0,

n−e times︷ ︸︸ ︷
2, . . . , 2}. (3.19)
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3.3.5. The tables for n = 4, 5, 6. Since the formula for the whole potential
is very long we will also list the contribution to Φβ with each case.

In the case n = 4, we have the following possibilities:

dai
d1

ai
d2

ai
e1 e2 β contribution to Φβ

4, 4, 4, 8 2, 2, 2, 8 2, 2, 2, 0 0 1 (d1, 0, d3)
1
6
y3

101y1k0d1N(d1)N(d3)
(0, d2, d3)

1
6
y3

011yk10d2N(d2)N(d3)
2, 2, 4, 6 2, 2, 0, 2 0 1 (d1, 0, d3)

1
2
y101y

2
110y1k−11d1N(d1)N(d3)

(0, d2, d3)
1
2
y011y

2
110y1k−11d2N(d2)N(d3)

2, 4, 4, 4 2, 0, 0, 4 0 1 (d1, d2, 0) 1
2
(d1y101 + d2y011)y

2
110y11k−1N(d1)N(d2)

4, 4, 4, 2 0, 0, 0, 6 0 1 (d1, d2, 0) 1
6
(d1y10k + d2y01k)y

3
110N(d1)N(d2)

2, 2, 2, 6 2, 2, 2, 2 1 0 (d1, 0, d3) d3(
1
6
y3

101y0k1 + 1
2
y2

101y011y1k−11)N(d1)N(d3)
(0, d2, d3) d3(

1
6
y3

011yk01 + 1
2
y2

011y101yk−111)N(d2)N(d3)
4, 4, 5, 7 2, 2, 5, 5 2, 2, 0, 2 0 1 (d1, 0, d3)

1
2
d1

∑
i,j∈{2,...k−2} y2

101y1i0y1j0gjiN(d1)N(d3)

(0, d2, d3)
1
2
d2

∑
i,j∈{2,...k−2} y2

011yi10yj10gjiN(d2)N(d3)

4, 4, 2, 4 0, 0, 3, 3 0 1 (d1, d2, 0) 1
2

∑
i,j∈{2,...k−2}(d1y10i + d2y01i)y

2
110y11jgji

N(d1)N(d2)
2, 2, 3, 5 2, 2, 2, 2 1 0 (d1, 0, d3)

1
2
d3

∑
i,j∈{2,...k−2} y2

101y0i1y1j1gjiN(d1)N(d3)

(0, d2, d3)
1
2
d3

∑
i,j∈{2,...k−2} y2

011yi01yj11gjiN(d2)N(d3)

4, 4, 6, 6 2, 4, 6, 2 2, 0, 0, 4 0 1 (d1, 0, 0) d1y101y110y1k−10y10k−1N(d1)
(0, d2, 0) d2y011y110yk−110y01k−1N(d2)

2, 2, 4, 6 2, 2, 2, 0 0 1 (d1, 0, d3)
1
2
d1y

2
101y111y1k−10N(d1)N(d3)

(0, d2, d3)
1
2
d2y

2
011y111yk−110N(d2)N(d3)

4, 4, 4, 2 0, 0, 2, 4 0 1 (d1, d2, 0) 1
2
(d1y10k−1 + d2y01k−1)y

2
110y111N(d1)N(d2)

2, 4, 4, 4 2, 0, 2, 2 0 1 (d1, d2, d3)
1
2
(d1y101 + d2y011)y110y

2
111N(d1)N(d2)N(d3)

2, 2, 4, 4 2, 2, 2, 2 1 0 (0, 0, d3) d3y101y011y0k−11yk−101N(d3)
(d1, 0, d3)

1
2
d3y

2
101y111y0k−11N(d1)N(d3)

(0, d2, d3)
1
2
d3y

2
011y111yk−101N(d2)N(d3)

(d1, d2, d3)
1
2
d3y101y010y

2
111N(d1)N(d2)N(d3)

4, 5, 5, 6 4, 2, 2, 6 0, 3, 3, 0 0 1 (d1, 0, 0) d1

∑
i,j∈{2,...k−2} y10iy110y10jy1k−10gjiN(d1)

(0, d2, 0) d2

∑
i,j∈{2,...k−2} y01iy110y01jyk−110gjiN(d2)

2, 5, 5, 2 2, 0, 0, 4 0 1 (d1, 0, 0) d1

∑
i,j∈{2,...k−2} y101y1i0y1j0y10k−1gjiN(d1)

(0, d2, 0) d2

∑
i,j∈{2,...k−2} y011yi10yj10y01k−1gjiN(d2)

2, 3, 3, 4 2, 2, 2, 2 1 0 (0, 0, d3) d3

∑
i,j∈{2,...k−2} yi01yj01y011y0k−11gjiN(d3)+

d3

∑
i,j∈{2,...k−2} y0i1y0j1y101yk−101gjiN(d3)

5, 5, 5, 5 2, 2, 5, 5 3, 3, 0, 0 0 1 (d1, 0, 0) d1

∑
i,j,r,s∈{2,...k−2} y10iy10jy1r0y1s0gjigsrN(d1)

(0, d2, 0) d2

∑
i,j,r,s∈{2,...k−2} y01iy01jyr10ys10gjigsrN(d2)

3, 3, 3, 3 2, 2, 2, 2 1 0 (0, 0, d3) d3

∑
i,j,r,s∈{2,...k−2} yi01yj01y0r1y0s1gjigsrN(d3)
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In the case n = 5, we obtain the following table in which we omitted the
summations of the type

∑
i,j∈{2,...k−2} due to lack of space.

dai
d1

ai
d2

ai
e1 e2 β contribution to Φβ

4, 4, 4, 4, 6 2, 2, 2, 4, 6 2, 2, 2, 0, 0 0 2 (d1, 0, d3)
1
6
d2

1y
3
101y110y1k−10N(d1)N(d3)

(0, d2, d3)
1
6
d2

2y
3
011y110yk−110N(d2)N(d3)

2, 2, 4, 4, 4 2, 2, 0, 0, 2 0 2 (d1, d2, d3)
1
2
(1

2
d2

1y
2
101 + d1d2y101y010 + 1

2
d2

2y
2
010)

×y2
110y111N(d1)N(d2)N(d3)

4, 4, 4, 2, 2 0, 0, 0, 2, 4 0 2 (d1, d2, 0) 1
6
(d2

1y101y10k−1 + d2
2y011y01k−1+

+d1d2(y101y01k−1 + y011y10k−1))
×y3

110N(d1)N(d2)
4, 2, 2, 2, 4 0, 2, 2, 2, 2 1 1 (d1, d2, d3)

1
2
d3(d1y101 + d2y011)y101y110y111y011

×N(d1)N(d2)N(d3)
(d1, 0, d3)

1
6
d1d3y

3
101y110y0k−11N(d1)N(d3)

(0, d2, d3)
1
6
d2d3y

3
011y110yk−101N(d2)N(d3)

2, 2, 2, 2, 6 2, 2, 2, 2, 0 1 1 (d1, 0, d3)
1
6
d1y

3
101y1k−10y011d3N(d1)N(d3)

(0, d2, d3)
1
6
d2y

3
011yk−110y101d3N(d2)N(d3)

2, 2, 2, 2, 4 2, 2, 2, 2, 2 2 0 (d1, 0, d3)
1
6
y3

101y011y0k−11d
2
3N(d1)N(d3)

(0, d2, d3)
1
6
y3

101y011y0k−11d
2
3N(d2)N(d3)

(d1, d2, d3)
1
4
y2

101y
2
011y111d

2
3N(d1)N(d2)N(d3)

4, 4, 4, 5, 5 2, 2, 2, 5, 5 2, 2, 2, 0, 0 0 2 (d1, 0, d3)
1
6
d2

1y
3
101y1i0y1j0gjiN(d1)N(d3)

(0, d2, d3)
1
6
d2

2y
3
011yi10yj10gjiN(d2)N(d3)

4, 4, 4, 3, 3 0, 0, 0, 2, 2 0 2 (d1, d2, 0) 1
6
(d2

1y10iy10j + d1d2y10iy01j+
+d2

2y01iy01j)y
3
110gjiN(d1)N(d2)

2, 2, 2, 3, 5 2, 2, 2, 2, 0 1 1 (d1, 0, d3)
1
6
d1y

3
101y1i1y1j1gjid3N(d1)N(d3)

(0, d2, d3)
1
6
d2y

3
011yi11yj11gjid3N(d2)N(d3)

4, 2, 2, 3, 3 0, 2, 2, 2, 2 1 1 0
2, 2, 2, 3, 3 2, 2, 2, 2, 2 2 0 (d1, 0, d3)

1
6
d2

3y
3
101y1i1y1j1gjiN(d1)N(d3)

(0, d2, d3)
1
6
d2

3y
3
011yi11yj11gjiN(d2)N(d3)

The last case n = 6 renders {dai
} = {4, 4, 4, 4, 4, 4}:

d1
ai

d2
ai

e1 e2 β contribution to Φβ

2, 2, 2, 4, 4, 4 2, 2, 2, 0, 0, 0 0 3 (d1, d2, d3)
1
6
(1

6
d3

1y
3
101 + 1

2
d2

1d2y
2
101y011 + 1

2
d1d

2
2y101y

2
011+

+1
6
d3

2y
3
011)y

3
110N(d1)N(d2)N(d3)

2, 2, 2, 2, 4, 4 2, 2, 2, 2, 0, 0 1 2 (d1, d2, d3)
1
2
(1

6
d2

1y
3
101y011 + 1

4
2d1d2y

2
101y

2
011+

+1
6
d2

2y101y
3
011)y

2
110d3N(d1)N(d2)N(d3)

2, 2, 2, 2, 2, 4 2, 2, 2, 2, 2, 0 2 1 (d1, d2, d3)
1
12

(d1y101 + d2y011)y
2
101y

2
011y110

×d2
3N(d1)N(d2)N(d3)

2, 2, 2, 2, 2, 2 2, 2, 2, 2, 2, 2 3 0 (d1, d2, d3)
1
36

y3
101y

3
011d

3
3N(d1)N(d2)N(d3)



3. EXAMPLES 89

Summing up all n = 4 contributions:
β contribution to Φβ

(d1, 0, 0) d1y101y110y1k−10y10k−1N(d1)+
d1

∑
i,j∈{2,...k−2} y10iy110y10jy1k−10gjiN(d1)+

d1

∑
i,j∈{2,...k−2} y101y1i0y1j0y10k−1gjiN(d1)+

d1

∑
i,j,r,s∈{2,...k−2} y10iy10jy1r0y1s0gjigsrN(d1)

(0, d2, 0) d2y011y110yk−110y01k−1N(d2)+
d2

∑
i,j∈{2,...k−2} y01iy110y01jyk−110gjiN(d2)+

d2

∑
i,j∈{2,...k−2} y011yi10yj10y01k−1gjiN(d2)+

d2

∑
i,j,r,s∈{2,...k−2} y01iy01jyr10ys10gjigsrN(d2)

(0, 0, d3) d3y101y011y0k−11yk−101N(d3)+
d3

∑
i,j∈{2,...k−2} yi01yj01y011y0k−11N(d3)+

d3

∑
i,j∈{2,...k−2} y0i1y0j1y101yk−101gjiN(d3)+

d3

∑
i,j,r,s∈{2,...k−2} yi01yj01y0r1y0s1gjigsrN(d3)

(d1, d2, 0) 1
6
d1y10ky

3
110N(d1)N(d2)+

1
2
d1y101y

2
110y11k−1N(d1)N(d2)+

1
2
d1y10k−1y

2
110y111N(d1)N(d2)+

1
6
d2y01ky

3
110N(d1)N(d2)+

1
2
d2y011y

2
110y11k−1N(d1)N(d2)+

1
2
d2y01k−1y

2
110y111N(d1)N(d2)+

1
2

∑
i,j∈{2,...k−2} d1y10iy

2
110y11jgjiN(d1)N(d2)+

1
2

∑
i,j∈{2,...k−2} d2y01iy

2
110y11jgjiN(d1)N(d2)

(d1, 0, d3)
1
6
d1y

3
101y1k0N(d1)N(d3)+

1
2
d1y101y

2
110y1k−11N(d1)N(d3)+

1
2
d1y

2
101y111y1k−10N(d1)N(d3)+

1
6
d3y

3
101y0k1N(d1)N(d3)+

1
2
d3y

2
101y011y1k−11)N(d1)N(d3)+

1
2
d3y

2
101y111y0k−11N(d1)N(d3)+

1
2
d1

∑
i,j∈{2,...k−2} y2

101y1i0y1j0gjiN(d1)N(d3)+
1
2
d3

∑
i,j∈{2,...k−2} y2

101y0i1y1j1gjiN(d1)N(d3)

(0, d2, d3)
1
6
d2y

3
011yk10N(d2)N(d3)+

1
2
d2y011y

2
110y1k−11N(d2)N(d3)+

1
2
d2y

2
011y111yk−110N(d2)N(d3)+

1
6
d3y

3
011yk01N(d2)N(d3)+

1
2
d3y

2
011y101yk−111)N(d2)N(d3)+

1
2
d3y

2
011y111yk−101N(d2)N(d3)+

1
2
d2

∑
i,j∈{2,...k−2} y2

011yi10yj10gjiN(d2)N(d3)+
1
2
d3

∑
i,j∈{2,...k−2} y2

011yi01yj11gjiN(d2)N(d3)

(d1, d2, d3)
1
2
d1y101y110y

2
111N(d1)N(d2)N(d3)+

1
2
d2y011y110y

2
111N(d1)N(d2)N(d3)+

1
2
d3y101y010y

2
111N(d1)N(d2)N(d3)
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Summing up all n = 5 contributions:
β contribution to Φβ

(d1, d2, 0) 1
6
d2

1y101y10k−1y
3
110N(d1)N(d2)+∑

i,j∈{2,...k−2}
1
6
d2

1y10iy10jy
3
110gjiN(d1)N(d2)+

1
6
d2

2y011y01k−1y101y01k−1y
3
110N(d1)N(d2)+∑

i,j∈{2,...k−2}
1
6
d2

2y01iy01jy
3
110gjiN(d1)N(d2)+

1
6
d1d2y101y01k−1y

3
110N(d1)N(d2)+

1
6
d1d2y011y10k−1y

3
110N(d1)N(d2)+∑

i,j∈{2,...k−2}
1
6
d1d2y10iy01jy

3
110gjiN(d1)N(d2)

(d1, 0, d3)
1
6
d2

1y
3
101y110y1k−10N(d1)N(d3)+∑

i,j∈{2,...k−2}
1
6
d2

1y
3
101y1i0y1j0gjiN(d1)N(d3)+

1
6
d2

3y
3
101y011y0k−11N(d1)N(d3)+∑

i,j∈{2,...k−2}
1
6
d2

3y
3
101y1i1y1j1gjiN(d1)N(d3)+

1
6
d1d3y

3
101y110y0k−11N(d1)N(d3)+

1
6
d1d3y

3
101y1k−10y011N(d1)N(d3)+∑

i,j∈{2,...k−2}
1
6
d1d3y

3
101y1i1y1j1gjiN(d1)N(d3)

(0, d2, d3)
1
6
d2

2y
3
011y110yk−110N(d2)N(d3)+∑

i,j∈{2,...k−2}
1
6
d2

2y
3
011yi10yj10gjiN(d2)N(d3)+

1
6
d2

3y
3
101y011y0k−11N(d2)N(d3)+∑

i,j∈{2,...k−2}
1
6
d2

3y
3
011yi11yj11gjiN(d2)N(d3)+

1
6
d2d3y

3
011yk−110y101N(d2)N(d3)+

1
6
d2d3y

3
011y110yk−101N(d2)N(d3)+∑

i,j∈{2,...k−2}
1
6
d2d3y

3
011yi11yj11gjiN(d2)N(d3)

(d1, d2, d3)
1
4
d2

1y
2
101y

2
110y111N(d1)N(d2)N(d3)+

1
4
d2

2y
2
010y

2
110y111N(d1)N(d2)N(d3)+

1
4
d2

3y
2
101y

2
011y111N(d1)N(d2)N(d3)+

1
2
d1d2y101y010y

2
110y111N(d1)N(d2)N(d3)+

1
2
d1d3y101y101y110y111y011N(d1)N(d2)N(d3)+

1
2
d2d3y011)y101y110y111y011N(d1)N(d2)N(d3)+

Finally the contribution to Φβ for β = (d1, d2, d3) and n = 6 is:

( 1
36

(d3
1y

3
101y

3
110 + d3

2y
3
011y

3
110y

3
110)y

3
101y

3
011d

3
3+

1
12

(d2
1d2y

2
101y011y

3
110 + d2

1d3y
3
101y011y

2
110 + d1d

2
3y101y

2
101y

2
011y110+

d1d
2
2y101y

2
011y

3
110 + d2

2d3y101y
3
011y

2
110 + d2d

2
3y011)y

2
101y

2
011y110)+

1
4
d1d2d3y

2
101y

2
011y

2
110)N(d1)N(d2)N(d3)

3.3.6. Remark. Since the final formula for the potential is rather long, we
refrain from writing it down explicitly. It can, however, be easily produced from
the presented tables.

We would like to emphasize that the above example shows that the product
of two manifolds, whose quantum cohomology is already determined by the small
quantum cohomology ring, may have a quantum cohomology ring which cannot
be read off from the small one.
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[M2] Yu. Manin. Frobenius manifolds, quantum cohomology, and moduli spaces
(Chapters I,II,III). Preprint 1996, MPI–96–113.

[M3] Yu. Manin. Gauge Field Theory and Complex Geometry. Springer, Berlin–
Heidelberg–New York, 1988.

[Ma] M. Matone. Nonperturbative model of Liouville gravity. Preprint 1994, hep–
th/9402081.
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