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Abstract. We define re–gaugings and enhanced symmetries for graphs with group labels
on their edges. These give rise to interesting projective representations of subgroups of the
automorphism groups of the graphs. We furthermore embed this construction into several
higher levels of generalization using category theory and show that they are natural in that
language. These include projective representations of the re–gauging groupoid and a novel
generalization to all symmetries of the graph.

Introduction
In [4], we developed a method of re–gaugings and actions of enhanced graphs symmetries for
labelled graphs. The upshot were projective representations that are of interest in condensed
matter physics. In those applications there is an underlying geometry at work, but the method
itself is more general and can be generalized or reduced to a combinatorial group theoretic
framework, which we will present. Presently, we will label the edges of a graph by elements
of a group G and we give a presentation of the actions that is precise and concise. The
precision is needed, since there are several actions (both left and right) at work which need
to be disentangled. We present a new result on the action of general symmetries.

We will also recall the particular projective representations we found in [4] since their
occurrence “in nature” as natural symmetries might be of interest to group theorists as well
as physicists and give an example of the new result on the action of general symmetries. Lastly,
we give a new presentation of our constructions in the language of categories and show that they
become very natural.

This paper is at the same time more general and more specific than [4]. In loc. cit. the
labels were invertible elements of a C∗–algebra, here they live in a general group. The geometry
of [4] is then recovered by specializing the group to invertible functions on tori, or more generally
invertible elements in a not necessarily commutative C∗ algebra. We also give a more technically
precise account of the actions. On the other hand, [4] deals with the possibility of an actual
groupoid representation, that is invertible morphisms between different vector spaces, while
here, we work in the situation where there is only one underlying vector space. The categorical
interpretation is entirely new.



1. Combinatorics and graphs
In this section, we give the details of the following construction of representations: Fix a
connected graph Γ with k vertices and a labelling lab of its directed edges by group elements of
a fixed group G such that edges in opposite orientation are labelled by inverse group elements.
We define a group of quantum automorphisms Autq(Γ, lab) of such a Γ–labelled graph. This
is a subgroup of the automorphisms of the graph, which preserves the labels up to re-gauging,
defined below. We show that after fixing an ordered rooted spanning tree (ORST) τ of the
graph, there is a natural way to attach a k × k matrix with coefficients in G to each quantum
automorphism. In the case that G is Abelian these matrices give a projective representation of
the group of quantum automorphisms of (Γ, lab), into the group of k×k matrix with coefficients

in G. The co–cycle is explicitly given and defines a group extension Âutq(Γ, lab). Thus applying
any representation to G, we get a projective representation of Autq(Γ, lab) and a representation

of Âutq(Γ, lab). A different choice of ORST gives rise to a projective representation.

1.1. Graphs, paths and spanning trees
In this paragraph, we fix the notations we will be using. This is necessary to be able to be precise
later on. A graph is a collection of vertices V , flags or half–edges F , a boundary map ∂ : F → V
which attaches to each half–edge its vertex and a fixed point free involution ı : F → F on F . An
edge is then a pair of half–edges {f1, f2} constituting an orbit of ı: f1 = ı(f2). We denote the set
of edges by E. Then ∂ associates to each edge the set of its endpoints. An orientation of an edge
is the choice of ordering of its two flags. Each edge has two possible orientations, which we call

opposite. For an oriented edge
→
e= (f1, f2) we set s(e) = ∂(f1) and t(e) = ∂(f2) and call them

source and target. Notice that for small loops, whose flags are incident to the same vertex, both
orientations have the same sources and targets. This is why we chose to use the more elaborate
way to present graphs above. We can also identify an orientation of an edge by the choice of the
first half edge. In this way the set F is naturally the set of all oriented edges. The bijection is
given by f ↔ (f, ı(f)). Using this bijection, we define s(f) = f and t(f) = ı(f) and from now

on think of flags as oriented edges. In this notation ı flips the orientation if f ↔ (f, ı(f)) =
→
e

then ı(f)↔ (ı(f), f) =: ı(
→
e ) =:

←
e .

1.1.1. Spanning trees, orders and action of the permutation groups A spanning tree of a graph
is a subgraph that is a tree (i.e. its realization is contractible) whose vertices are all the vertices
of the tree. A rooted spanning tree (RST) is such a spanning tree together with the choice of
a root. The edges in a rooted tree have a natural orientation by directing the edges away from
the root; see Figure 1. In any rooted tree τ , any vertex v has a unique shortest path to and
from the root vertex vrt, which we will call γτvrtv and γτvvrt = (γτvrtv)

−1.
An order on a graph is a bijection ord : V → {1, . . . , |V |}. A compatible order for a rooted

spanning tree has to have ord(vrt) = 1. Denote v = ord−1 and write v(i) = vi then ord(vi) = i,
and for a rooted spanning tree with a compatible order vrt = v1

1. An ordered rooted spanning
tree (ORST) is a spanning tree together with a compatible order. Notice that an order for a
spanning tree gives an order for the graph. The permutation group Sk, k = |V |, naturally acts
on orders and inverse orders via σ(v) = v ◦ σ−1. Setting v′ = σ(v) this means that v′i = vσ−1(i).
Furthermore, σ ∈ Sn induces a bijection σV : V → V on the set of vertices via

σV ◦ v = v ◦ σ−1 (1.1)

that is σV = v ◦ σ−1 ◦ ord. In other words, σV (vi) = v′i = vσ−1(i). And vice–versa given

ΣV : V → V a bijection, it determines an element σ of Sk via σ = ord ◦ σ−1
V ◦ v.

1 In [4] we used v0 for the root, which would mean that v0 = v1.



GP
n

A

A

B

A B

C D

D
n

Figure 1. Graphs with spanning trees. The root is A. The petal graphs Pn, the graphs Dn

and the graph G

Remark 1.1. Given any order on Γ, one can obtain a map Aut(V )→ Sk. The way the action
is set up is that composition in Sk corresponds to composition of σV . In particular, if v′ = σ(v)
and v′′ = σ′(v′) then v′′i = v′(σ′)−1(i) = vσ−1(σ′)−1(i) = v(σ′σ)−1(i). Notice that the order used at

each step is the induced order.

1.1.2. π1 of a graph An (edge)-path on a graph is a sequence of oriented edges,
→
e i: i = 1 . . . n

together with an orientation of each ei such that for any two consecutive
→
e i,
→
e i+1: t(

→
e i) =

s(
→
e i+1). An edge path is called reduced, if no two consecutive oriented edges are opposites of

each other. Concatenation of paths and inverting a path makes the set of all reduced paths into
the so–called path groupoid π1(Γ). If in the concatenation of reduced paths there is a pair of
adjacent opposite edges, they are simply deleted in the product of π1. The reduced loops at a
fixed vertex π1(Γ, v) form a group, the fundamental group at v.2

Contracting all of the edges of a spanning tree of Γ leaves a graph with one vertex whose
realization is a bouquet of n S1s, we call such a graph a petal graph Pn. It is well known that
π1(Γ) ' π1(Pn) = Fn, the free group in n generators. Each spanning tree τ gives a different
isomorphism. The inverse map is given by associating the following path to a small loop l around

a petal of Pn. Let
→
e be the unique oriented edge of the preimage of l that is not in the spanning

tree and let s(e) = v, t(e) = w. Then the inverse image of l is the path γτvrtw◦
→
e ◦γτvvrt . Here

and below, we use the concatenation of paths ◦ in the order of functions, that is p ◦ q is: first
go through q then through p.

1.2. Labelled graphs, gauging and spanning tree gauge.
A G–labelling for a graph Γ is a morphism lab : F → G such that lab(ı(f)) = lab(f)−1. Or

identifying flags with oriented edges in the notation of §1.1: lab(
→
e ) = lab(

←
e )−1. A Γ–labelling

lab extends to paths in the following way: let p = (
→
e 1, . . . ,

→
e n) be a path in Γ, then we define

lab(p) := lab(en) . . . lab(e1). Since going back and forth along an edge yields the identity in G,
this descends to lab : π(Γ)→ G. A G–labelled graph is a pair of a graph and a G–labelling.

A G–labelled graph with a RST τ is in spanning tree gauge, if labφ(
→
e ) = 1 for all oriented

edges/flags
→
e in τ . Two labellings lab and lab′ are called gauge–equivalent if they differ by a

gauging φ, i.e. ∃φ : lab′ = labφ.

Remark 1.2. Of course by composing a G–labelleing by a group homomorphism G → H
one obtains an H–labelleing and all constructions below will push–forward. The most general

2 The data of vertices and edges and ∂ define a 1–dimensional CW complex. If Γ is a graph we denote by |Γ|
its realization, given by gluing together intervals (one for each edges) at their end points if these correspond to
shared vertices. An edge path gives an actual path on |Γ| starting and ending at a vertex. A path is reduced if the
realization does not go back and forth through an edge. It is a fact that π(|G|) = π(Γ) and π1(|G|, v) = π1(Γ, v)
are the topological fundamental groupoid and group.



labelling one can have in a spanning tree gauge is to label the edges by the elements of a
free group. This will then be the free group on 1 − χ(Γ) generators, where χ(Γ) is the Euler
characteristic of Γ. Another useful example for physics is when G = U(1). This is of course also
the universal receptacle of characters.

Definition 1.3. A gauge element φ is a map φ : V → G. The gauging of a G-labelling lab by a

gauge element φ is defined to be the labelling labφ given by labφ(
→
e ) = φ(t(

→
e ))lab(

→
e )φ(s(

→
e ))−1,

for any oriented edge
→
e . The gauge elements form a group, via point–wise multiplication, the

gauge group of Γ. It is isomorphic to GV and after the choice of an order to Gk where k = |V |.
Lemma 1.4. Given a G–labelled graph (Γ, lab) and a rooted spanning tree (τ, vrt), then there is
a gauge element φ such that (Γ, labφ) is in spanning tree gauge w.r.t. τ . Explicitly, φ(v) = lab(p),
where p is the shortest edge path from v to vrt along τ , will be such an element and it is the
unique such element satisfying he condition φ(vrt) = 1 ∈ G.

Proof. If one sets φ(v′rt) = 1 ∈ G then one can iteratively solve for φ of all the other vertices
using the distance from the root as determined by the RST. The result is the above explicit
gauge element.

To make all dependencies clear, we will sometimes write φ = φlab(→ τ). Given lab, we will
write labτ := labφ(→τ) and write φlabτ (τ → τ ′) for the re–gauging of labτ into spanning tree
gauge w.r.t. τ ′.

There is some ambiguity in the choice of φ above. One parameter is the initial condition
φ(v′rt) = 1 ∈ G.

Lemma 1.5. Given any lab in spanning tree gauge, its stabilizer subgroup under gauging will
be the constant functions φ : V → Z(H), where H is the subgroup of G generated by all the

lab(
→
e ) and Z(H) is its centralizer in G. If G is Abelian this subgroup is isomorphic to G in

the diagonal embedding into GV and the different choices of φ of Lemma 1.4 are distinguished
by their value on the root φ(vrt). For any lab its stabilizer subgroup is conjugate (inside GV ) to
such a subgroup.

Proof. Fix φ(vrt) = g then along any edge of the spanning tree the label is 1, so that invariance
of lab means that the function φ must be constant φ(v) ≡ g. Furthermore for lab to be invariant,

we need that for any non–spanning tree edge
→
e : g lab(

→
e )g−1 = lab(

→
e ), so that indeed g ∈ Z(H).

The other statements follow from this.

Corollary 1.6. If the image of lab generates G then GV /Z(G) acts as the effective gauge
group. If G is Abelian, then for any lab its stabilizer group is G and the quotient GV /G acts
effectively.

Corollary 1.7. If lab and lab′ are gauge equivalent, and lab is in spanning tree gauge w.r.t. the
RST τ and lab′ is in spanning tree gauge w.r.t. τ ′, then there is a gauge element φ of the form
given in Lemma 1.4 such that lab′ = labφ◦ψ, where ψ is a constant regauging that is unique up
to Z(H). In particular if G is Abelian we can choose ψ = id.

Proof. The assumption is that there exists a φ, such that lab′ = labφ. Any other gauging element
φ′ satisfying lab ◦ σ−1

E = labφ
′

would differ by an element in the stabilizer of lab which by the
above lemma is a constant function to G. So, by using such a function, we can (a) normalize
the given φ to the one of Lemma 1.4 and (b) obtain any other φ that solves the problem from
this one via elements in the stabilizer of lab.

Corollary 1.8. Up to a constant regauging ψ, lab
φlabτ (τ→τ ′)
τ = labψτ ′ and if G is Abelian

lab
φlabτ (τ→τ ′)
τ = labτ ′.



Proof. Obviously the two labellings are gauge equivalent, so since they are both in spanning
tree gauge w.r.t. τ ′ they agree up to a constant regauging, which acts trivially in the Abelian
case.

1.2.1. Re–gauging matrices For any triple (lab, τ, τ ′), with τ, τ ′ ORSTs and lab in spanning
tree gauge with respect to τ , let σ ∈ Sk be the permutation, such that ord′ = σ ◦ord or, in other
words, v′i = vσ−1(i). Let φ = φlab(τ → τ ′) be the gauge element of Lemma 1.4 that re–gauges lab
for spanning tree gauge τ to spanning tree gauge τ ′ and set Φ = diag(φ(v′1), . . . , φ(v′k)). Then
define

Mlabτ (τ → τ ′) := ΦPσ (1.2)

here we added the subscript τ merely as a reminder that lab is in spanning tree gauge w.r.t. τ .

1.2.2. Cocycle and re–gauging groupoid action For any ordered pair of RST, (τ, τ ′) with roots
vrt and v′rt, we define p(τ, τ ′) := γτv′rtvrt

to be the shortest path from vrt to v′rt in τ ′ and for any

triple of RSTs (τ, τ ′, τ ′′) with roots vrt, v
′
rt, v

′′
rt set:

l(τ, τ ′, τ ′′) := p−1(τ, τ ′)p(τ ′, τ ′′)p(τ, τ ′′) = γτvrtv′rt
γτ
′

v′rtv
′′
rt
γτv′′rtvrt

(1.3)

which is a loop at vrt.

Proposition 1.9. [4] The matrices above satisfy

Mlabτ ′ (τ
′ → τ ′′)Mlabτ (τ → τ ′) = C(τ, τ ′, τ ′′)Mlabτ (τ → τ ′) (1.4)

where C(τ, τ ′, τ ′′) = labτ (l(τ, τ ′, τ ′′)).

1.3. Quantum enhanced symmetries for labelled graphs
A symmetry σΓ of a graph Γ as above is a pair (σV , σF ) of a bijection of the set of vertices σV :
V → V and a bijection of set of flags σF which is compatible with ∂, i.e. ∂(σF (f)) = σF (∂(f)).
These symmetries from the group Aut(Γ). The map on flags induces a map on directed edges
which we denote by σE .

Any element σΓ of Aut(Γ) pushes forward RSTs. If τ is an RST, then τ ′ = σV (τ), the image
of τ , is again an RST, with root σV (vrt). Symmetries of the graph act on a G–labelling as
follows: σΓ(lab) = lab ◦ σ−1

E . On orders they act according to σΓ(ord) = ord ◦ σ−1
V , so that

ord′(vi) = σ(i), and v′i = vσ−1(i) give the induced order on τ ′.

Remark 1.10. Given an order ord there is a map Aut(Γ) → Sk. The composition of
automorphisms on vertices corresponds to the composition of elements of symmetric group as
in Remark 1.1. An element of Sk is liftable if it is in the image of this map. A symmetric graph
is a graph where this map is bijective.

A classical symmetry for a labelled graph (Γ, lab) is a symmetry of the graph that also satisfies
σΓ(lab) = lab ◦ σE = lab. These from the group Aut(Γ, lab). If the labelling is constant this is
the symmetry group of the graph. In general this will be a subgroup of it.

Definition 1.11. A quantum enhanced symmetry of a labelled graph is a symmetry σΓ of the
underlying graph, such that there is a gauge group element φ for which (lab ◦ σE)φ = lab. If lab
is in spanning tree gauge w.r.t. τ , then a quantum enhanced symmetry is strict if the φ can be
chosen to be φlab◦σ(σ−1(τ)→ τ).3

3 Notice we switched to a right action since spanning trees will push–forward and we will get a representation of
these groups in this fashion.



The quantum enhanced symmetry group of the labelled graph will be a subgroup
Autq(Γ, lab) ⊂ Aut(Γ) of the symmetry group of the underlying graph which contains the
classical symmetry group of the labelled graph Autq(Γ, lab) ⊃ Aut(Γ, lab). It usually is
strictly bigger, see §3.4 For a lab in spanning tree gauge w.r.t. the strict quantum enhanced
symmetry group Aut0q(Γ, lab) is a subgroup of Autq(Γ, lab). Notice that if G is Abelian

Aut0q(Γ, lab) = Autq(Γ, lab).

Remark 1.12. Notice that if lab is in spanning tree gauge w.r.t. τ , then σV (lab) is in spanning
tree gauge w.r.t. σV (τ). Thus to check if σΓ is an enhanced quantum symmetry, for a lab in
spanning tree gauge w.r.t. a tree τ , by Corollary 1.7, we only have to check if lab ◦ σE = labφ◦ψ

for the preferred quantum enhanced symmetry φ given in Lemma 1.4 up to a constant ψ that
transforms lab ◦ σ−1

V into spanning tree gauge w.r.t. to τ . If G is Abelian or σV is strict, then
we can choose ψ ≡ 1.

1.4. Projective representation for quantum enhanced symmetries
Fix a G–labelled graph (Γ, lab) and an ORST τ . Assume that lab is in spanning tree gauge
with respect to τ . This is without loss of generality, since by Lemma 1.4, for any RST τ there
is an invertible gauge element φ(τ) such that labφ(τ) is in spanning tree gauge w.r.t. τ . For
σΓ ∈ Autq(Γ, lab), set

ρlabτ (σΓ) := Mlabτ (τ → σ(τ))

Theorem 1.13. [4] Let labτ be in spanning tree gauge w.r.t. the ORST τ , then ρlabτ is a
projective representation of Aut0q(Γ, lab) with cocycle C(σ′Γ, σΓ) = ρ(l(σ′Γ◦σΓ(τ0), σΓ(τ0), τ0).

Recall that if G is Abelian, then Aut0q = Autq.

Remark 1.14. The concrete form of the action depends on the choice of the preferred gauge
elements. If one would consistently use the normalisation φ(vrt) = g then one would get an
equivalent representation. The fact that this is a projective representation is, however, due
exactly to this choice of normalisation. When performing several of these gaugings monodromy
can appear from the movement of the root of the spanning trees, this is what is captured by the
cocyle.

1.4.1. The action as pre–gauging or re–gauging The relationship between the actions on lab
and the spanning trees is as follows. Given the data (lab, τ, σΓ) with lab in spanning tree gauge
w.r.t. τ , and σΓ strict, there are the two ways to check whether lab and σ−1

Γ (lab) = lab ◦ σ are
gauge equivalent, provided by Corollary 1.7.

The first is to act by σ−1 sending lab to lab ◦ σ which is in spanning tree gauge σ−1(τ) and
then to re–gauge to τ .

lab
act by σ−1

Γ−→ lab ◦ σ re–gauge−→ (lab ◦ σ)φ
lab◦σ(σ−1(τ)→τ)

The second pre–gauges lab from τ to σ(τ), so that then applying σΓ will put it back into
spanning tree gauge w.r.t. τ :

lab
pre–gauge−→ labφ

lab(τ→σ(τ)) act by σ−1
Γ−→ labφ

lab(τ→σ(τ)) ◦ σ
4 These quantum enhanced symmetries naturally appear in quantum contexts, where the labelling by is U(1)
and the re–gauging is a choice of phase–shifts. The stabilizer is then an overall phase–shift, so that the effective
phase shifts are in U(1)k/U(1).



Lemma 1.15. There is the following symmetry between pre–gauging and re–gauging:

Mlabτ (τ → σΓ(τ)) = M(lab◦σ)
σ−1

Γ
(τ)

(σ−1
Γ (τ)→ τ) (1.5)

Proof. The proof is a tedious but straightforward unraveling of definitions.

This equation (1.5) states that the two matrices obtained from the two gaugings above
coincide. We used the latter version above. In the situation where σΓ ∈ Aut0q(Γ, lab), we
furthermore know that in both cases the final labelling is again lab due to Corollary 1.7. This is
why there is an action. The cocycle stems from the fact that the normalisation of two repeated
pre– or re–gaugings need not be 1 on the original root vrt.

1.4.2. Liftings and extensions We can actually take any triple of an element σ ∈ Aut(Γ), an
ORST τ and a labelling lab and associate to it the matrix ρlab,τ (σΓ), if σ is not in Autq(Γ, lab)

then the re–gauged (lab ◦ σ)φ
lab◦σ(σ−1(τ)→τ) will not equal lab and there is no obvious group

action.
There is however an action of a certain groupoid and if the action of Aut(Γ) is liftable there

is a fixed point group that acts. These will be described in the next section. In this section, we
do however define the relevant matrices and matrix products.

Definition 1.16. σ ∈ Aut(Γ) is liftable for lab if there is an element Ψ = Ψ(σ) ∈ Aut(G) such
that

(lab ◦ σ)
φlab◦σ(σ−1(τ)→τ)
σ−1(τ)

= (lab ◦ σ)τ = (Ψ ◦ lab)τ (1.6)

Consider the composition of two re–gaugings induced by σΓ, σ
′
Γ ∈ Aut(Γ).

τ → σΓ(τ)→ σσ′Γ(τ)

Theorem 1.17. If all σ are liftable for lab, then Ψ(ρlabτ )(σ′Γ)ρlabτ (σΓ) = C(σ′, σ)ρlabτ (σ′ΓσΓ).

Proof. There is the following chain of equalities

Ψ ◦ (Mlabτ (τ → σ′(τ))) = MΨ◦labτ (τ → σ′(τ))

= M
(lab◦σ)

φlab◦σ(σ−1(τ)→τ)

σ−1τ

(τ → σ′(τ))

= Mlabσ(τ)
(σ(τ)→ σ′(σ(τ))

where the first equality is by definition, the second equality is due to (1.5) and the last equation is
a straightforward, but tedious check along the lines of [1]. The claim now follows from (1.4).

1.5. Remark on Quivers

Instead of graphs, one can use quivers. A quiver or a directed graph
−→
Γ is a graph Γ in which

all edges are oriented, this means that we have two maps s, t : E → V . Given a quiver there is a
natural forgetful map which forgets the orientation of the edges. We call two quivers groupoid

equivalent, if they have the same underlying graph. We will use the notation
−→
Γ for quivers and

Γ for the underlying graph. A (directed–edge) path on a quiver is a sequence of directed edges
ei : i = 1 . . . n, such that for two consecutive directed edges ei, ei+1: t(ei) = s(ei+1).

Fix a monoid G. A G–labelled quiver is a quiver
−→
Γ together with a map lab : E → G. There

is an obvious extension of ρ to all directed edge paths.
If G is a group, we can extend the definition of ρ to the full path groupoid as follows:. Given

an edge path on the underlying graph p = (e1, . . . , en), we define εi = 1 if the orientation of



ei in the path agrees with that of Γ and εi = −1 if the orientations are opposite. The formula
ˆlab(p) = lab(en)εn . . . lab(e1)ε1 defines a morphism of the path groupoid into G. We call two G–

labelled quivers (Γ, lab) and (Γ′, lab′) groupoid equivalent, if the underlying graphs are equivalent
and lab(e) = lab′(e) whenever their orientations agree and lab(e) = lab−1(e) if the orientations
differ in the two graphs. A Γ labelled graph is equivalence class of G–labelled quivers under
groupoid equvialence.

2. Categorical formulation and extension of the actions and representations
The notions become totally natural in the language of categories and it is possible to generalize
the actions by the individual enhanced quantum automorphisms groups of fixed labellings into
an action of a bigger groupoid.

2.1. Categories and fundamental groups
A category C is a collection/class of objects and for each pair of objects X,Y a collection
of morphisms HomC(X,Y ), called morphisms from X to Y , together with an associative

composition morphism HomC(X,Y ) × HomC(Y, Z)
◦→ Hom(CX,Y ), and identities idx ∈

Hom(X,X). Writing g ◦ f := ◦(f, g), being an identity means that idX ◦ f = f, g ◦ idX = g for
f any morphism into X and g any morphism out of X. A category is small if the objects and
all the HomC(X,Y ) are sets. If f is a map from X to Y , then X is called the source of f and

Y is called the target of f , and one writes X
f→ Y .5

Maps between categories are called functors. Functors from a category C to a category D
again form a category Fun(C,D) whose morphisms are called natural transformations. To keep
track for two functors F,G : C → D one writes Nat(F,G) for HomFun(C,D)(F,G).

2.2. Groupoids
A groupoid is a category whose morphisms are all isomorphisms. A group correspondes to a
groupoid with only one object and vice–versa via the following identification: Hom(∗, ∗) = G,
where ∗ is the unique object and with composition of morphisms given by group multiplication.
For any object x in a groupoid, Hom(x, x) = End(x) = Aut(x) is a group called the
automorphisms group of x. A groupoid has a natural (contravariant) auto–equivalence op which
is the identity on objects and sends any morphism to its inverse.

In this language a group representation becomes a functor G → V ectk to the category of
k-vector spaces.6 A functor from a groupoid to Vectk is given by a collection of vector spaces
and isomorphisms between them — one for every morphism in the groupoid. We consider not
only functors to Vectk but also functors of groupoids from a groupoid Γ to a fixed G.

A set X determines a groupoid in several ways. One is the discrete groupoid, which just has
idx for x ∈ X as its morphisms. There is another canonical groupoid, which we call K(X), the
complete groupoid. It has as morphisms pairs of elements (x, y) which we write x→ y with the
composition (y → z) ◦ (x→ y) = x→ z. This makes (x, x) = idx and y → x = (x→ y)−1.7

A set X with an action of a group G determines a groupoid in the following fashion. The
objects are the set X the morphisms are X ×G with the source map s given by s(x, g) = x and

5 A slick way to give a small category is as a pair of sets, M,O (morphisms and objects) with two maps M ⇒s
t O,

the source and target maps, together with a composition morphism ◦ : M s×tM →M and a section id : O →M
of both s and t such that idX = id(X) is an identity. Here M s×t M → M ⊂ M ×M is the relative product
consisting of elements (f, g) with t(f) = s(g) and being an identity means the same thing as above.
6 A general groupoid can have many components, but is is equivalent as a category to a disjoint union of group
categories. In our case the groupoids have one component and hence all of them are equivalent to some G.
7 This is the same as using a morphismX×X ⇒s=p1

t=p2
X with composition given by the map (X×X) s×t(X×X)→

X ×X ×X ×X p14→ X ×X where p14 is the projection to the first and fourth component.



target map t(x, g) = g(x). This becomes clear in the notation x
g→ or x

g→ g(x). Composition

is defined for x
g→ and y

h→ if g(x) = y then (x
g→) ◦ (y

h→) = x
hg→, this groupoid is called

the action groupoid. It is also a semi–direct product and this is why we write X oG with the
underline to stress that it is a groupoid. This groupoid coincides with K(X) if the action is
regular, that is X is a G–torsor.

There is a canonical functor st : X oG → K(X) which is identity on objects and on

morphisms is defined as st(x
g→ g(x)) = x→ g(x) or in other notation st(φ) = (s(φ), t(φ)). The

functor st is bijective on objects, but does not need to be surjective on morphisms. It will usually
partition X into components X = X1 q · · · qXn, such that st(X oG) = K(X1)q · · · q K(Xn)

2.3. The constructions above in category theoretical language

A quiver
−→
Γ , determines a category P (

−→
Γ ), whose objects are vertices and whose morphisms are

paths on the quiver. This is also the free category on the morphisms given by
−→
Γ . A graph Γ

determines a groupoid π(Γ), its path–groupoid, in the following way. Choose any quiver whose
underlying graph is the given graph and consider the category it defines. Now add additional
morphisms which are inverses to the morphisms given by the directed edges. This is equivalent
to saying that the morphisms are the reduced paths on Γ. A functor on such a groupoid is given
by the values on the vertices and on the directed edges of any quiver representing the graph. A

G–labelling of a quiver is a functor lab from the quiver
−→
Γ to the groupoid G. Such a functor,

by a universal property, factors through the groupoid π(Γ). Groupoid equivalence of labellings
then means that the induced functors from π(Γ) to G agree.

In other workds, a G–labelling of Γ is equivalent to a functor lab : π(Γ) → G. lab is in
spanning tree gauge with respect to τ if lab|π(τ) is trivial, i.e. maps all morphisms to the id∗.

Regauging in this language is a natural transformation from one labelling functor to another.
Such a natural transformation is given by a collection of maps: φ(v) ∈ HomG(F (v), F ′(v)) = G,

one for each vertex v, which for each directed edge
→
e form v to w satisfy φ(w)−1 ◦F (

→
e ) = F ′(

→
e

) ◦ φ(v). These natural transformations are invertible and yield isomorphisms of functors. In
other words, lab and lab′ are gauge equivalent if they are representatives of the same isomorphism
class of functors [lab] = [lab′].

Proposition 2.1. Nat(lab,−) = Map(V,G) and each such map φ gives an invertible natural
transformation lab → labφ. Thus, Fun(π(Γ), G) is a groupoid and re–gaugings φ ∈ Map(V,G)
act transitively on the elements of a given isomorphism class [lab].

In the case that the image of lab generates G, the group of automorphisms of lab is G and
hence the group GV /G acts simply transitively on the functors in a given equivalence class
lab.

An auto–equivalence of π(Γ) is a functor from π(Γ)→ π(Γ) that is isomorphic to the identity
functor. Any graph symmetry σ ∈ Aut(Γ) yields an auto–equivalence on π(Γ), which we also

denote by σ. On objects it is given by σ(v) = σV (v) and on morphisms as follows. Pick
→
e with

orientation s(e) = v and t(e) = w then define σ(
→
e ) = σF (

→
e ) which has the orientation given

by the source σV (v) and target σV (w). This gives an action of Aut(Γ) on Fun(π(Γ),Γ) given
by lab 7→ lab ◦ σ−1. Note if lab is in spanning tree gauge w.r.t. τ then σ(lab) = lab ◦ σ−1 is in
spanning tree gauge w.r.t. the push–forward σ(τ). To check that [lab] = [lab◦σ−1] we can apply
Corollary 1.7.

Lemma 2.2. A quantum enhanced symmetry of G–labelled graph, that is a functor lab : π(Γ)→
G, is an element σ ∈ Aut(Γ) which satisfies that [lab] = [lab ◦σ], i.e. there exists an equivalence
φ: (lab ◦ σ−1)φ ' lab. If lab is in spanning tree gauge w.r.t. τ then σ ∈ Aut(Γ) is a strict
quantum enhanced symmetry if lab = σ(lab)φ in the notation above.



The group of auto–equivalences ψ of G, which correspond to automorphisms of G, also acts
on Fun(π(Γ), G) via lab→ ψ ◦ lab.

Definition 2.3. An element of σ ∈ Aut(Γ) is called transferable via lab if there exists a

ψ ∈ Aut(G) such that (lab ◦ σ)φ
lab◦σ(σ−1(τ)→τ) = ψ ◦ lab.

There are usually many more auto–equivalences of G than those transferred from symmetries
of the underlying graph. As an example lets look at the n–petal graph with a functor to the
free group Fn which associates one generator to each (directed) edge. The auto–equivalences
correspond to automorphism of the free group, while the graph symmetries only give the
permutations of the generators.

2.4. Groupoid extensions and representations
With this language in place, we can also enlarge the setting of Theorem 1.13.

Fix a graph Γ and let X be the set of all ORSTs of Γ. The re–gauging groupoid is by
definition K = K(X). With this notation we can translate the results of

Theorem 2.4. Let G be Abelian Fix a G–labelling lab and assume it is in spanning tree gauge
with respect to some ORST τ then then the matrices Mlabτ (τ → τ ′) of equation (1.2) yield
projective representation of K in M|V |(G) with cocycles lab(l) with l defined in equation (1.3).
Moreover this lifts to the groupoid extension of K by π(Γ) given by L = qv∈V π1(π(Γ), v) defined
in Proposition 2.5 below.

Moreover via st this yields a projective representation of X oAut(Γ), which induce the
projective representations of 1.13.

2.4.1. Groupoid extensions Even in the case that G is not Abelian, there is a Groupoid
extension, which in the Abelian case lift the projective action to an honest action. There
are functors pop : Kop → π(Γ) and lop : Kop1 t ×s Kop1 → L

pop(gop) := γτvrtv′rt
, lop(gop, hop) := l(h, g) (2.1)

Proposition 2.5. [4] The pair (pop, lop) are an element of C2
π(Γ)(K,L) that is a π(Γ)–crossed K

2–cocycle with values in L. By general theory, [7, 9, 10] the noncommutative cocycle (p, l) gives
rise to a groupoid extension (Σ, b) over π(Γ)

Σ : 1→ L → K̂ → K → 1 b : K̂ → π(Γ) (2.2)

2.5. Choice of spanning tree gauges as functors
One can add one more layer of functoriality to the choices of spanning tree gauges to understand
how the action of Autq(Γ, lab) is induced as well as its generalization to Aut(G).

Fix lab, then this defines a functor gauge : K → Fun(π(Γ), G). On objects it is defined
by gauge(τ) = labτ where labτ is the re–gauging of lab into spanning tree gauge w.r.t. τ . On
morphisms we set gauge(τ → τ ′) to be the natural transformation given by re–gauing labτ to
be in spanning tree gauge w.r.t. τ ′ using the re–gauging of Lemma 1.4. Even more is true,
gauge is a projective functor gauge : Fun(π(Γ), G)→ Fun(K, Fun(π(Γ), G)). Given a natural
transformation φ : lab → labφ on the left, it maps to id. It is a strict functor if G is Abelian,
otherwise there might be a 2–morphism according to Corollary 1.7. The exact behaviour is the
content of Theorem 1.13.

Now Aut(π(Γ)) acts on Fun(π(Γ), G) and this action gets transferred by gauge. The content
of Theorem 1.13 is that if one restricts to strict quantum enhanced automorphisms, one again
obtains an action by projective functors.
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Figure 2. Calculation of the action of (23) on T 3. The original graph, the pushed forward
order and the move into the old position to read off the morphism

2.6. Lifts
Finally to explain Theorem 1.17 we notice that there is also an action of Aut(G) on
Fun(π(Γ), G). If one takes both actions together, one obtains the bi–groupoid ρ, s, λ :
Aut(π(Γ)) n Fun(π(Γ), G) o Aut(G) → Fun(π(Γ), G). By restricting to liftable enhanced
symmetries and letting (ψ, lab) be the inverse of (lab, σ), we get automorphisms of lab, which
are sequences of ψ’s and σ which via gauge get transferred to projective functors.

3. Representations
We will now give the details for the example of the tetrahedral graph or the full square. It has
symmetry group S4. It acts transitively on all ORST. The subgroup of S3 acts transitively on all
orders for a fixed RST. Fix G = F3 the free group on three generators. We will denote inverses by
∗ to keep with the application in physics, where we apply a character to U(1). We fix an initial
rooted spanning tree and order as in the first picture of Figure 2 and fix the G = F3–labelling
as indicated.

We will use the following graphical calculation technique:

1. Write down the graph together with the initial spanning tree and order.

2. Push–forward the spanning tree and the order. This is given by replacing i by σ(i).

3. Write the re–gauging at the vertices. They are given by going along the new spanning tree
to the root and multiplying the labels in order.

(a) Read off the matrix Φ by putting the G label of a vertex onto the diagonal in the place
indicated by the label σ(i).

(b) Obtain M = ΦPσ

4. Perform the regauging, by multiplying the label of an ordered edge from the left by the
label of its target and on the right by the inverse label of its source.

5. Rearrange the vertices with σV . Formally, this is done by writing vi next to σ(i), but one
can just use the new numbering to move the graph back into its old position and read off
the transformation ψ.

3.1. Lifts of the action
The lift of the action of S4 on F3 is fixed once we know the action of the generators (12), (23)
and (34).

The action of (23) is graphically calculated in Figure 2, from which one reads off
Ψ((23))(A,B,C) = (A∗, C∗, B∗). Here (A,B,C) is the notation for the initially chosen basis of
T3.

A similar calculation shows that Ψ((34))(A,B,C) = (B∗, A∗, C∗). A consequence is that the
cycle (234) = (23)(34) acts as Ψ((234))(A,B,C) = Ψ((23))(B∗, A∗, C∗) = (B,C,A) and is the
cyclic permutation.
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Figure 3. Calculation of the action of (12) on T 3

The action of (12) is more complicated as the root is moved. For this we calculate graphically,
see Figure 3, and read off Ψ as: (A,B,C) 7→ (A∗, B∗, ACB).

This allows us to compute fixed points and stabilizer groups if we take a character. This is
equivalent to treating A,B,C as variables in U(1). We will first concentrate on non–Abelian
stabilizer groups. There are only two fixed points under the full S4 action and these are (1, 1, 1)
and (−1,−1,−1). The group A4, the subgroup of all even permutations, is the stabilizer group
of the two points (i, i, i) and (−i,−i,−i). One can readily check that these are the only non–
Abelian stabilizer groups. The other possibility would be S3, but a short calculation shows that
anything that is stabilized by any S3 subgroup is stabilized by all of S4.

3.1.1. Representations We collect together the matrices M needed for further calculation.
Again, we fix our initial ordered rooted spanning tree as before.

Using short hand notation, the matrix for the re–gauging induced by the transpositions
(12), (13), (14) from the initial spanning tree to the pushed forward one are

ρ12 =


0 1
1 0

A
B∗

 , ρ13 =


0 1

A∗

1 0
C

 , ρ14 =


0 1

B 0
0 C∗

1 0


The calculation for ρ12 can be read off from Figure 3. For this we read off the matrix Φ from
the re–gauging parameter and the matrix Mσ is given by the permutation we are considering.
The other calculations are similar. All other transpositions, viz. those not involving 1, simply
yield permutation matrices as there is no re–gauging involved. It is convenient to also have the
following matrices as a reference:

ρ(12)(34) =


0 1
1 0

0 B∗

A 0

 , ρ(14)(23) =


1

C∗

B
1


and finally

ρ(132) =


0 1 0
0 0 A
1 0 0

B∗





3.1.2. The point (1, 1, 1). At (1, 1, 1), the matrices ρ12, ρ23, ρ34 give the usual representation of
S4 on C4. As is well known this representation decomposes into the trivial representation and
an irreducible 3–dim representation.

3.1.3. The point (−1,−1,−1). In this case, the matrices ρ12, ρ23, ρ34 only give a projective
representation. As one can check ρ12ρ23ρ12 = −ρ13 while ρ23ρ12ρ23 = ρ13 for instance. Define
the 1–cocycle λ by λ(σ) = (−1) if 1 appears in a cycle of length > 1 and 1 else. So that
λ((12)) = λ((13)) = λ((123)) = −1 while λ((23)) = λ((24)) = λ((234)) = 1. Then one calculates
that ρ̃ := ρ ◦ λ has a trivial cocycle c and thus ρ is isomorphic to a true linear representation of
S4. Checking the characters, one sees again that in this case the irreducible components of ρ̃ are
again the one–dimensional trivial representation and the 3–dimensional standard representation.
The trivial representation is spanned by (−1, 1, 1, 1).

Remark 3.1. We would like to remark that the choice of λ amounts to choosing a different
gauge for the root vertex, namely −1 instead of 1.

3.1.4. The points (i, i, i) and (−i,−i,−i). These points are similar to each other. We will treat
the first one in detail. Again, we have only a projective representation of A4 aka. the tetrahedral
group T . Namely, ρ(12)(34)ρ(13)(24) = −iρ(14)(23). Again we can scale by a 1–cocycle λ. This
time λ(id) = 1, λ((ij)(kl)) = i, λ(ijk) = 1 if 1 /∈ {i, j, k}, and λ((ijk)) = i if 1 ∈ {i, j, k}. The
resulting representation ρ̃ = ρ◦λ is then still a projective representation, but is it a representation
of the unique non–trivial Z/2Z extension of A4, which goes by the names 2T, 2A4, SL(2, 3) or
the binary tetrahedral group. This group is well known. It is presented by generators s and t
with the relations s3 = t3 = (st)2. In SL(2, 3) (that is the special linear group of 2× 2 matrices

over the field with three elements F3), one can choose s =

(
−1 −1
0 −1

)
and t =

(
−1 0
−1 −1

)
.

For 2A4 using a set theoretic section ∧ of the extension sequence

1 // Z/2Z // 2A4
//
A4

∧
oo // 1 (3.1)

and z as a generator for Z/2Z, we can pick s = z(̂123), t = z(̂234) as generators. Now we can
check the character table, Table 1, and find that the representation ρ̃ over the complex numbers
decomposes as the sum of two irreducible two–dimensional representations χ5⊕χ6. In fact, these
are the two representations into which the unique real irreducible 4–dimensional representation
of complex type splits over C.

The explicit computation for the representation

ρ̃(s) = −λ((123))ρ(123) =


0 0 −i 0
−i 0 0 0
0 1 0 0
0 0 0 −1



ρ̃(t) = −λ((234))ρ(234) = −


1 0 0 0
0 0 0 1
0 1 0 0
0 0 1 0

 (3.2)

is as follows. Suppose the ρ̃ =
⊕7

i=1 aiρi, where ρi is the irrep with character χi. Now
tr(id) = 4, tr(−1) = −4 , using the character table this implies that the coefficients a1 =
a2 = a3 = a7 = 0 and furthermore (∗) a4 +a5 +a6 = 2. We furthermore have that tr(s) = −1 so
that a4 + ωa5 + ω2a6 = −1 which together with (*) implies that a4 = 0, a5 = a6 = 1. This fixes



Representative 1 −1 s3 t2 s2 t s
Elts in Conj. Class 1 1 6 4 4 4 4

Order 1 2 3 3 4 4 6

χ1 1 1 1 1 1 1 1
χ2 1 1 1 ω ω2 ω2 ω
χ3 1 1 1 ω2 ω ω ω2

χ4 2 −2 0 −1 −1 1 1
χ5 2 −2 0 −ω −ω2 ω2 ω
χ6 2 −2 0 −ω2 −ω ω ω2

χ7 3 3 −1 0 0 0 0

Table 1. Character table of 2 ·A4 [14], where ω = e
2πi
3 .

a, b, c Group Iso class of type Dim of
of extension Irreps

(0, 0, 0) S4 S4 trivial 1,3
(π, π, π) S4 S4 trivialisable 1,3
(π2 ,

π
2 ,

π
2 ) A4 2A4 isomorphic 2,2

(3π
2 ,

3π
2 ,

3π
2 ) extension

Table 2. Possible choices of parameters (a, b, c) leading to non–Abelian enhanced symmetry
groups

the decomposition into irreps. As a double check one can verify that the rest of the equations
are also satisfied.

The analysis of the complex conjugate point (−π/2,−π/2,−π/2) is analogous.
We would briefly like to remark that these special points have a meaning in the study of real

materials which are in the form of a Gyroid. In these materials, band sticking is forced by the
presence of the symmetries and leads to special properties of the material [2].

3.2. Groupoid calculation
Here we calculate one example of Theorem 1.17:

ρ(12)(34) =


0 1
1 0

0 A
B∗ 0

 , ρ(13)(24) =


1 0
0 A∗

1 0
0 C


Using the substitution ρ′(13)(24) = ρ(13)(24)(A→ B,C → ABC), we indeed obtain

ρ(1234)ρ
′
(13)(24) = B∗ρ(14)(23) = B∗


1

B
C∗

1
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