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Abstract: Human whole-brain functional connectivity networks have been shown to exhibit both lo-
cal/quasilocal (e.g., a set of functional sub-circuits induced by node or edge attributes) and non-local
(e.g., higher-order functional coordination patterns) properties. Nonetheless, the non-local properties
of topological strata induced by local/quasilocal functional sub-circuits have yet to be addressed.
To that end, we proposed a homological formalism that enables the quantification of higher-order
characteristics of human brain functional sub-circuits. Our results indicate that each homological
order uniquely unravels diverse, complementary properties of human brain functional sub-circuits.
Noticeably, the H1 homological distance between rest and motor task was observed at both the whole-
brain and sub-circuit consolidated levels, which suggested the self-similarity property of human
brain functional connectivity unraveled by a homological kernel. Furthermore, at the whole-brain
level, the rest–task differentiation was found to be most prominent between rest and different tasks
at different homological orders: (i) Emotion task (H0), (ii) Motor task (H1), and (iii) Working memory
task (H2). At the functional sub-circuit level, the rest–task functional dichotomy of the default mode
network is found to be mostly prominent at the first and second homological scaffolds. Also at such
scale, we found that the limbic network plays a significant role in homological reconfiguration across
both the task and subject domains, which paves the way for subsequent investigations on the complex
neuro-physiological role of such network. From a wider perspective, our formalism can be applied,
beyond brain connectomics, to study the non-localized coordination patterns of localized structures
stretching across complex network fibers.
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1. Introduction

Network science sheds light on complex phenomena—from fake news spreading
mechanisms in a social network to the natural equilibrium in large-scale ecosystems with
competing species’ interactions. Graphs (networks), despite their convenience and power
to unravel many important phenomena from social and financial to biological networks,
lack the comprehensive ability to describe higher-order dynamics of complex systems [1].
Indeed, many real-world systems, although they can be described using diatic relation
(edges), have indeed polyadic functionality [2,3]. Prior studies have strongly suggested
the critical role of higher-order interactions in terms of explaining complex intertwined
dynamics such as phase transitions of emergent phenomena in networked systems [1].
For instance, higher-order effects which emerge from the neuronal population are shown
to be significant in both statistical, topological, and other domains [2,4–6]. Higher-order
interactions, as formalized by hyperedges (in hypergraphs) or simplicial complexes (in
homology), have shown to unravel many complementary functions, compared to node-
/edge-based investigations [1].

The human brain is a complex system exhibiting a multi-scale property wherein in-
teractions among its finest elements (e.g., neurons) orchestrate emergent phenomena (e.g.,
cognition, consciousness [7]). Besides exerting a hierarchical cytoarchitecture, human brain
functional organizations also display “modular” characteristics—also known as hierar-
chical modularity [8]. Bullmore and Sporns [9] were among the first investigators noting
that whole-brain functional connectivity can effectively be characterized into (functional)
modules whose elements (e.g., nodes/vertices in a functional connectome (FC)) are con-
tributed to by different distributed areas across the cortex. Specifically, the human brain
can be decomposed into specialized, yet highly interactive functional modules [7,10] (or
equivalently, communities in complex networks, see [11–13] among others). The modular
setting of the human brain into distinctive functional sub-circuits allows its function to
adapt flexibly to diverse cognitive requirements [14,15]. Moreover, functional modular-
ity can also explain human brain complexity [7], cognitive reconfiguration [14], rest–task
divergence [16], among other functionalities.

In 2011, the concept of intrinsic functional connectivity Magnetic Resonance Imaging
(fcMRI) network (also known as functional sub-circuits, functional network (FN) or resting-
state networks (RSNs)) was put forth by Yeo and colleagues [17]. FNs are essentially parallel
interdigitated sub-circuits in which each cortical lobe may contain multiple regions belong-
ing to one or more FNs. An a priori set of FNs (or equivalently, functional sub-circuits)
elucidates different executive functions of human brain in healthy, neurodegenerative
disease, or developmental conditions [18]. Mathematically, an a priori identification of
FNs is a partition of the whole-brain functional connectivity, which results in a functional
atlas (e.g., a guidance to which brain region(s) belong to which functional sub-circuit(s)).
Such partition can be used as a baseline reference to investigate physiological, functional,
and individual differences of (i) the same FN across different cognitive conditions [14] or
(ii) different FNs across the same task (e.g., fMRI). Specifically, the mapping of an a priori set
of FNs (to different individuals’ functional connectivity) allows the investigation of (i) the
functional differences among individuals under different cognitive demands [14,19,20];
(ii) aging [19,21,22]; or (iii) neurological dysfunctions [23–25]. Besides Yeo’s functional FN
atlas, other highly putative establishments of an a priori set of FNs were also featured in the
works by Power et al. [26], Glasser et al. [27], Gordon et al. [28], and most recently in the
work by Schaefer et al. [29]. The most recent review on the identification and applications
of an a priori set of FN mappings can be found in the work of Bryce and colleagues [18].
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In the case of human brain complex networks, higher-order interactions among neuron
populations, at the whole-brain level, have been shown to unravel complementary insights
that would otherwise not be fully appreciated by conventional node-based (zeroth-order)
or edge-based (first-order) investigations [2,4–6,30,31]. Nonetheless, the non-local prop-
erties of topological strata induced by local/quasilocal functional sub-circuits have yet
to be addressed. Specifically, higher-order characteristics induced from an a priori set
of functional sub-circuits have yet to be thoroughly investigated.In brain connectomics,
understanding complex behaviors arisen at a scale between the microscopic (brain regions)
and macroscopic (whole-brain) levels would set the stage for a deeper, more comprehensive
picture to better understand the human brain large-scale functional sub-circuitry, which,
in turns, may provide foundational support to investigate individualized or task-based
parcellations [32,33].

To that end, we formally explored and measured the topological invariant characteris-
tics of an a priori set of FNs (e.g., Yeo’s sub-circuitry [17]) through the first three homological
dimensions: H0 (connected components), H1 (first-order (graph-theoretical) cycles), and H2
(second-order cycles). These explorations on the homological properties of FNs are com-
puted on the 100 unrelated subjects from the Human Connectome Project (HCP) dataset
in which fMRI data were recorded, for each subject, in resting state and seven other fMRI
tasks. The fMRI data were processed and parcellated into 360 brain regions, according
to [34]. To investigate the higher-order mesoscopic properties of the constructed functional
connectomes (FCs), we used the seven a priori FNs, proposed by Yeo and colleagues [17],
the 14 sub-cortical regions of which were added for completeness. It is worth noting that
our proposed framework can be applied to other combinations of parcellations and func-
tional sub-circuitry partitions. Our results indicate that each homological order uniquely
unravels complementary properties of human brain functional sub-circuits. Noticeably, the
H1 homological distance between rest and motor tasks was observed at both the whole-
brain and sub-circuit consolidated levels, which suggested the self-similarity property of
human brain functional connectivity unraveled by a homological kernel. Furthermore,
at the whole-brain level, the rest–task differentiation was found to be most prominent
between rest and different tasks at different homological orders: (i) Emotion task (H0),
(ii) Motor task (H1), and (iii) Working memory task (H2). At the functional sub-circuit level,
the rest–task functional dichotomy of the default mode network was found to be mostly
prominent at the first and second homological scaffolds. Also at such scale, we found that
the limbic network plays a significant role in homological reconfiguration across both task
and subject domains, which paves the way for subsequent investigations on the complex
neuro-physiological role of such network. From a wider perspective, our framework can be
applied, beyond the brain connectomics field, to study non-localized coordination patterns
of localized structures stretching across complex network fibers.

The rest of this paper is organized as follows. In Section 2, we provide the formalism
describing the theoretical foundation to quantify higher-order relationships of multi-scale
networks. In Section 3, we present the results of applying the formalism in Section 2 to the
human brain connectomics data. In Section 4, we discuss further insights of our findings.
In Section 5, we conclude the paper and propose avenues for future research.

2. Formalism

The process to glean topological information for a set of data, which by itself is discrete,
consists in first turning it into a graph modeling the first-order interactions and then to
progress to a topological space by realizing its simplicial clique complex ∆(Γ), which
models simultaneous, and thereby higher-order, interactions. The topological construction
flow is as follows:

X⇝ Γ⇝ |∆(Γ)| (1)

We stress that the first-order information yielding the graph is an additional datum,
while the clique complex completes these data into a space. The topological space, which
is simplicial in nature, has topological invariants associated to it, such as the homology
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Hi(∆(Γ)) and Betti numbers bi. The 0th Betti number b0 counts the number of components
and the first Betti number b1 counts the number of independent loops (i.e., graph-theoretical
cycles). If the graph is connected, these satisfy b0 − b1 = # of vertices − # of edges. The next
higher interaction is b2, which counts the number of independent spheres, or more precisely
homology classes, in the realization. The realization is given by inserting a simplex for each
complete graph, as seen below.

Graphs in this setting are best understood as given by symmetric matrices, the entries
of which are given by the first-order interaction as witnessed by Pearson correlation
functions. Defining a cut-off parameter r for the interactions then determines a graph Γ(r)
and the homology becomes a function of this r. Scanning r from 0 to 1 homology is born
and annihilated. The sequence of these events is mathematically captured by persistence
homology and can be encoded and visualized in terms of bar codes.

When comparing different bar codes, one usually uses the Wasserstein distance, which
is a natural norm on the space of such diagram. It is not the only norm, however, and in
special situations other measures are more appropriate.

2.1. Graph, Induced Subgraph, Clique Complex

In the context of this study, the graph (network) quantifying the whole-brain functional
connectivity profile is called the functional connectome (FC). Induced subgraphs are utilized
to model functional sub-circuits (e.g., Yeo’s Functional Networks or FNs) of the FC. By
construction, an FC is a complete weighted graph (See Figure 1A). The mathematical and
computational setup is as follows:

Mathematically, it is a graph/network Γ with vertex set V and edge set of edges E where
an edge in E is a two-element set {u, v} of vertices. Enumerating the vertex set by 1, . . . n,
a graph is equivalently encoded by its symmetric adjacency matrix M(Γ) whose entries
are muv = 1 if the vertices u and v are connected by an edge and 0 if not. We make the
choice that the diagonal entries are 1. A graph is complete if there is an edge between any
two distinct nodes. The matrix M(Γ) is the matrix all of whose entries are 1. The number
of edges of a complete graph is |E| = (|V|

2 ) = 1
2 (|V||V − 1|), which is the same as the

number of non-diagonal independent entries in a symmetric |V| × |V| matrix. The two
main topological invariants of a graph are the number of connected components b0 and
the number of loops b1 = |E| − |V|+ b0, which are also called the first and second Betti
numbers, of which the combination χ = b0 − b1 = |V| − |E| is called the Euler characteristic
of the graph.

A subgraph is specified by a subset of nodes and a subset of edges connecting these
nodes. Each graph is a subgraph of the complete graph on its vertices. This can be
thought of as deleting the missing edges from a complete graph or equivalently setting the
corresponding matrix entries to 0. An induced subgraph is simply specified by a subset of
vertices. It contains all the edges connecting these vertices. If V′ is the vertex subset, the
matrix of the induced subgraph is given by the submatrix M(Γ)V′V′ . An induced subgraph
is a clique if it is itself a complete graph; in other words, all the entries of M(Γ)V′V′ are 1.

To use topological or simplicial methods such as homology, one promotes a graph Γ to
a simplicial space ∆(Γ). This is not simply the graph itself as glued together from points and
intervals, but is more involved. It is the realization of the clique complex. The construction
can be understood as an iteration of gluing in simplices. An n simplex is the topological
space of all vectors (t1, . . . tn+1) whose entries are non–negative ti ≥ 0 and whose sum
is t1 + · · ·+ tn+1 = 1. The dimension, which is the number of free parameters, is n. The
gluing procedure starts with the 0 simplices. These are the vertices of Γ viewed as points.
In the next step, one 1-simplex, which is an interval, is glued in for each edge by identifying
the endpoints of the interval with the vertices the edge connects. The higher-dimensional
simplices are glued in according to complete induced subgraphs. For instance, for any
three vertices that are pairwise connected by edges, one glues in a two simplex, which is
a triangle whose sides are the edges. At the next level, one glues in three simplices, that
is tetrahedra, for each complete graph on 4 verities, which has six edges identifying the
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four sides of the tetrahedron with the triangles corresponding to the three edge subsets
and so on. The gluing procedure is tantamount to giving the (semi)-simplicial structure
which specifies to what extent the n dimension n − 1 boundary simplices of an n simplex
are glued, in such a way that the gluing is consistent with all sub-simplices, regardless of
their dimension.

Figure 1. Topological landscape of human brain functional networks: (Panel A) is the schematic rep-
resentation of a graph (e.g., functional connectome) modeling first-order interactions (e.g., functional
couplings) with weight values wuv = d1, d2, e, b2, b1. (Panel B) is a sequence of induced subgraph
scaffolds (also referred to as filtration) by scanning across wuv (Note that the filtration is built on
duv = 1 − wuv); hence, the starting point Γ(wmax = 1) = Γ1 is an empty graph. (Panel C) repre-
sents the super-graph construction by merging all ROIs belonging to the same FN to one super-
node through the equivalence relation Γ̄ = Γ/γ, which is defined as follows: γ1 = 1 (e.g., FN1);
γ2 = 2, 3, 4, 5, 6 (e.g., FN2); and γ3 = 7, 8, 9, 10 (e.g., FN3). Notice that the super graph itself is a graph;
hence, homological computations that were applied in the original graph can also be applied to the
super graph itself. In this example, the super-/consolidated graph has 3 super-nodes. Additionally,
the weight matrix is re-scaled according to w̄i,j. (Panel D) is the corresponding persistent diagram for
the first homology which accounts for two first-order cycles in a network: (2, 3, 4, 5, 6) and (7, 8, 10, 9);
here, we see that cycle (2, 3, 4, 5, 6) lasts longer (more persistent) compared to cycle (7, 8, 10, 9).
Finally, when scanning across five distinct r parameters, we obtain the zeroth and first Betti numbers:
b0 = 10, 6, 3, 3, 3, 1 and b1 = 0, 1, 2, 1, 0, 0, respectively.

The complete graph on n vertices as space is realized to the full n simplex. Given an
arbitrary graph, the realization of the clique complex has such a simplex for each complete
induced subgraph and these simplices are glued together by the inclusion of subgraphs.
This identifies the simplex of a subgraph of a complete graph as a side of the simplex of
the graph and hence the space is glued together from maximal simplices corresponding
to maximal complete subgraphs along faces corresponding to common subgraphs. One
can iteratively construct this space by gluing in higher and higher simplices. This space
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is higher-dimensional and has more topological invariants, the higher Betti numbers bi of
which are the dimensions or ranks of the respective homology groups Hi. The number of
connected components is the same for the graph and the associated space. The first Betti
number b1 may differ depending on whether one is looking at the graph or the space. The
first graph’s Betti number for the complete graph is 1

2 (|V|(|V| − 3) + 1, while the first Betti
number of the corresponding space, the simplex, is 0.

2.2. Filtration by Weights and Persistent Homology

Preface. A non-negatively weighted graph is a graph together with a weight function
w : E → [0, 1] on its edges. Again, after enumerating the vertices, this defines a symmetric
matrix W = W(Γ, w) with entries wuv = w({u, v}), i.e., the weight of the edge connecting
u and v. If there is no such edge, the entry is 0, and the diagonal entries are fixed to be 1.
Choosing a cut-off r defines the symmetric matrix W(r) whose entry w(r)uv = 1 if wuv ≥ r
and 0 if wuv < r. It has 1’s on the diagonal and defines the graph Γ(r). Note that Γ(0) is the
original graph and Γ(1) is the graph on the vertex set with no edges. Let W̄ be the order set
containing unique weight values, in decreasing order, in matrix W, varying the threshold
parameter r from 0 to 1, which defines a sequence of subgraphs as follows (See Figure 1B):

Γ(1) ⊂ Γ1 = Γ(r1) ⊂ Γ2 = Γ(r2) ⊂ · · · ⊂ ΓW̄ = Γ(r|W̄|) ⊂ Γ = Γ(0). (2)

with 1 > r1 · · · > r|W̄| > 0 and the Γj are the finitely many different graphs that appear.
At each stage j, some edges are added from the lower stage j − 1. The graph Γ(1) is the
subgraph with the full vertex set, whose edges are given by the non-diagonal entries 1. In
practice, if the weights are Pearson correlations functions, the only entries of 1 will be along
the diagonal and the graph Γ(1) is simply the discrete set of data.

Note that, since set W describes diatic functional couplings (e.g., similarity) between
two nodes of a network (or brain regions of interest (ROIs) in this formalism), this implies
that the “distance” (e.g., dissimilarity) between two nodes is defined as follows:

duv = 1 − wuv (3)

In other words, with this setup, we ensure that

• Γ1 is essential the 1-skeleton scaffold where all nodes are perfectly coupled (duv = 0),
which results in an empty graph.

• Γj1 is always an induced subgraph of Γj2 for all j1 < j2 ≤ |W̄|.
• The sequence {Γl | l ∈ [W̄]} starts with an empty graph (homeomorphic to Zn) and

ends with a complete graph (or a clique of n nodes) (homeomorphic to simplicial
complex of size n, i.e., Kn).

Given a filtered system, that is, a sequence of inclusions of spaces as (2), one can utilize the
tool of persistence homology to track the changes in the fundamental topological invariants
of homology and Betti numbers. This supplies a characteristic for the whole sequence. We
wish to stress that it is the sequence that is of importance here. The two endpoints have rather
trivial topological properties. If the start is just the data, then this is a discrete set, and at
the other end the space is just a full simplex corresponding to the complete graph, which is
contractible. The transition from one to the other and the appearance—and disappearance—of
higher homology is what is kept track of by persistent homology.

Bar codes and distances between them. The fingerprint is the variation which is
quantified by the bar codes. The variation parameter is the parameter r introduced above.
A bar code is a type of signature for the variation. For each persistent homology class,
it records the value of the parameter rini when a representative appears (birth) and the
value r f in when it disappears (death) (See Figure 1D). This is an interval (or bar) [b(c) =
rint, d(c) = r f in]. At any given r, the homology is given by those classes c for which
r ∈ [b(c), d(c)]. In the variation, all higher-homology classes are born and eventually
die. The 0-th homology starts with as many classes as data points and then eventually
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decreases (classes die) until there is only one class left, which implies that the space is
connected. The bar code is equivalently encoded by the persistence diagram which the set
with multiplicity (multiset) of all the endpoints of the bars {(b(c), d(c))}. This is in fact a
multi-set, since some of the classes may appear and die at the same parameter values and
these multiplicities are recorded, e.g., (0.2, 0.8) with multiplicity 2, which means that there
are two bars of this type. Its pth part, Dgmp, is given by a bar corresponding to classes of
homological dimension p.

Topological distance formulation. The Wasserstein distance is the natural norm on
the diagram space, e.g., the birth–death diagram of topological features. The Wasserstein
distance is the right measure for processes, taking one diagram to another in a varying
family—now of persistence diagrams. This is well suited for analyzing a basic underlying
setup with variations. This is commonly viewed and addressed as the stability theorem. In
our case, we use Wasserstein distance to compute the distance between two diagrams for
the first and second-order homology (e.g., p = 1, 2) in various scenarios (e.g., comparing
topological behaviors between the same functional networks at resting conditions).

Specifically, for a fixed homological order p (in this paper, p = 1, 2), the q−Wasserstein
distance DW,q (∀q > 1) for two persistent diagrams Dgmp(X) and Dgmp(Y) for two
datasets X, Y can be defined as follows [35]. For a single interval I = [x, y], set d(I) =
1
2 (y − x), which is the distance to the diagonal of the point (x, y) in R2. For two intervals
I = [x1, y1], J = [x2, y2], define their distance as d(I, J) = max(|x2 − x1|, |y2 − y1|). This is
the max norm distance for the two points (x1, y1), (x2, y2) in R2. A partial pairing between
two sets S and T is a choice of subsets S0 ⊂ S, T0 ⊂ T and a 1-1 correspondence between the
two subsets π : S0 ⇐⇒ T0. This extends to sets with multiplicity by choosing multiplicities
of elements and matching them with multiplicity. Given diagrams Dgmp(X), Dgmp(Y), let
Π be the set of all partial pairings then. The Wasserstein distance minimizes the sum of
three contributions: the distances between intervals that are paired and two contributions
of the distance to the diagonal for intervals that are not paired. It minimizes over two
possible scenarios, namely points moving and points moving in and out of the diagonal.
The first means that the classes shift in their rates and the second means that the classes
vanish from the diagram and new classes are introduced. Given π, let Dgmp(X)1 =
Dgmp(X) \ Dgmp(X)0 and Dgmp(Y)=Dgmp(Y) \ Dgmp(Y)0)

q be the complements.

DW,q(Dgmp(X), Dgmp(Y))) = min
π∈Π

[ ∑
I∈Dgmp(X)0

d(I, π(I))q+

∑
I∈Dgmp(X)1

d(I)q + ∑
J∈Dgmp(Y)1

d(J)q]
1
q

(4)

In the zeroth-order homology, the Wasserstein distance becomes an unnatural choice.
This is due to the fact that the data points are the 0–classes and they are all born at r = 0.
Thus, a contribution as disappearing or appearing from the diagonal which signifies being
born at different times is not a possible scenario.

It is better to consider Dgm0(X) just as the multiset of endpoints of the bars [0, d(x)]
where x ∈ X and use the classical Hausdorff distance to measure the (dis-)similarity
between two point clouds living in R. This specialized to:

DH(Dgm0(X), Dgm0(Y)) = maxmax
x∈X

min
y∈Y

|d(x)− d(y)|, max
y∈Y

min
x∈X

|d(x)− d(y)| (5)

2.3. Functional Connectomes and Mesoscopic Structures

Mesoscopic structures are typically referred to as structures whose elements are proper
subsets of a system’s elements. In the brain connectomics domain, there are two types
of mesoscopic structures: localized/quasilocalized and non-localized (topological strata).
In this section, we provide an overview and definition of each type in the context of
brain connectivity.
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2.3.1. Localized Mesoscopic Structures

Localized mesoscopic structures are sub-systems that are learned from local network
properties such as nodes or edges, or correlations among neighboring nodes. In brain
connectomics, these sub-structures are induced from a wide array of techniques, including
but not limited to clustering [17,26] or low-dimensional approximation of high-dimensional
dynamics [36–39,39]. The most commonly known localized mesoscopic structures in brain
networks are often referred to as functional sub-circuits or functional networks [10].

Definition 1 (Definition adapted from [40]). An a priori set of functional networks (FNs)
represents sub-circuits (or equivalently, sub-networks) that are highly reproducible across individuals
at resting condition (absence of task-induced cognitive demand). Hence, FNs are also known as
resting-state networks (RSNs).

Special collections of induced subgraphs are used to group brain regions of interest
(ROIs) into localized/quasilocalized mesoscopic structures of brain functions denoted
as functional sub-circuits or, equivalently, functional networks (FNs). A collection of k
subgraphs (of graph Γ) is denoted as {γi ⊂ Γ | i ∈ [k]}. A collection of induced subgraphs
is a vertex covering if in the graphs each vertex of Γ is a vertex of one of the γi.Such a
vertex covering is disjoint if the γi have disjoint vertices. After enumerating all nodes by
1, . . . , n = |V|, the collection of induced subgraphs is fixed by the membership assignment.
This is specified by a partition vector denoted as σ ∈ [k]n, where σ = [σu] = i ∈ [k],
indicating that u belongs to γi | i = {1, 2, ..., k}. Note that, in network science, FNs are
equivalent to the term “communities” [11–13,41]. The problem of identifying the set of
communities {γi ⊂ Γ | i ∈ [k]} for a given complex network is called the community
detection problem [11–13,41].

2.3.2. Non-Localized Mesoscopic Structures

While studies of network properties and dynamics using locally featured properties
(nodes, edge attributes) provided a well-grounded approach, these methods were proven
to be cumbersome in describing and quantifying heterogeneity existing across network dy-
namical fabrics. These structures usually encompass many body interactions or encapsulate
topological sub-structures that cannot be mathematically described using local attributes.
To that end, homology [42] offers a unique capability to capture the so-called non-localized
mesoscopic structures which, otherwise, cannot be reduced to local or quasilocal network
properties. In the context of weighted complex networks, persistent homology is used to
identify how long (the persistence of) a hole (at any given dimension) lasts from its birth
(the weight scale w∗

B ∈ [0, 1] at which the hole is observed) to its death (the weight scale
w∗

D ∈ [0, 1] at which the hole is filled).
In the context of functional brain connectivity, non-localized mesoscopic structures

in an FC represent the encapsulated area wherein there is less functional connectivity
collectively formed among brain regions encapsulating these structures [43]. Such structure
characterizes the notion of hole; the boundary that wraps around these structures are the
non-localized mesoscopic fabrics characterized by the so-called cycles. These cycles exist in
different homological dimensions for a given networked system, which can be described
in the language of a manifold. The hollow structures (holes) could be seen as overarching
wraps around special hollow structures in a manifold with different characteristics and
properties, compared to functional networks [17,44–46] or communities [11,12,41,47] in
complex networks.

2.4. Consolidated/Super Graph

The system under consideration is naturally regarded as a two-level system given
by the ROIs and their connections. The first level is made up of the individual ROIs
and the second level is given by the connections between the ROIs. In graph theoretical
language, the full graph Γ(r) containing all the nodes naturally has a subgraph γi(r) ⊂ Γ(r).
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These subgraphs form a supergraph, which has the subgraphs as new vertices and has
the edges between two vertices if there are edges between the subgraphs (See Figure 1C).
There are two versions, the first is the multi-edged graph that is described theoretically
by contracting all the edges of the subgraphs γi, that is, if γ = ∪iγi is the union of
subgraphs, then Γ̄ = Γ/γ. Reducing possible multiple edges to just one edge on has
the reduced graph Γ̄red, which is again an ordinary graph described by a matrix. For a
weighted graph, assuming that the subgraphs are not connected, the graphs γi correspond
to block matrices along the diagonal and the edges of the quotient graph are the off-block
entries. To obtain a matrix, one can consolidate the weights into one weight by choosing a
function Wi,j = f (wuk ,vl ), wu1,v2 , . . . , wu1,vk , wu2,v1 . . . , wul ,vk where u1, . . . ul are the vertices
of γi and v1, . . . , vl are the vertices of γj. One such choice is Wi,j = ∑u∈γi ,v∈γj

wu,v and then
it is normalized to

w̄i,j = Wi,j/max(Wi,j) (6)

In the case under consideration, the graph Γ̄ has eight (super-)vertices corresponding
to each FN. The basic topological invariant of the loop number is of great interest as it is a
measure of the inter-connectivity of these “super-regions”. The persistent homology for
the normalized super graph, that is, the consolidated graph, will then complement this
information to show clusters of correlations between FNs.

3. Results
3.1. Data

Human Connectome Project (HCP) Dataset. We used the master data release extracted
from the HCP Young Adult (HCP-YA) subject release [48]. Specifically, the fMRI dataset was
obtained from the HCP repository (https://www.humanconnectome.org/, accessed on 1
September 2021), with Released Q3. The full release of the Q3 HCP dataset has 889 subjects
with complete data for all four 3T MRI modalities following the HCP protocol. While many
of them are from the same family, we only collected 100 genetically independent subjects
for this study. In general, all MRI neuroimaging modalities were acquired in two different
days, with two different scanning patterns (e.g., phase acquisitions: left-to-right or LR and
right-to-left or RL). The detailed description is in the next section and Figure 2.
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Figure 2. fMRI whole-brain connectome multi-level analysis workflow. For each task, we started
with individual-level functional connectome. On the global (macroscopic) level, we conduct indi-
vidual analysis as well as group-averaged analysis, and the functional network (mesoscopic) level
extracts functional networks from either the individual or group-averaged macroscopic graph. The
consolidated graph is constructed by aggregating the nodes from the group-averaged macroscopic
level connectome. The scales in each panel represent the strength scale of functional connectivity.

https://www.humanconnectome.org/
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HCP Functional Data. The fMRI data from the 100 unrelated subjects in the HCP Q3
release were employed in this study [48,49]. Following the HCP protocol, all subjects had
provided written consent to the HCP consortium. The two resting-state functional MRI
acquisitions with HCP filenames: r f MRI_REST1 and r f MRI_REST2 were collected in two
separate sessions (on two different days), with two distinct scanning acquisitions (LR and
RL) for each day, see [34,48,49] for further details. Besides the resting state, the dataset
also includes fMRI data from seven (07) fMRI tasks: gambling (t f MRI_GAMBLING), rela-
tional or reasoning (t f MRI_RELATIONAL), social (t f MRI_SOCIAL), working memory
(t f MRI_WM), motor (t f MRI_MOTOR), language (t f MRI_LANGUAGE), and emotion
(t f MRI_EMOTION). Per [34,50], three following fMRI tasks were obtained on the first
day: working memory, motor, and gambling; the rest were obtained on the second day.
The local Institutional Review Board at Washington University in St. Louis (scan site)
approves all the scanning protocols used during the HCP dataset acquisition process used
in this paper. Please refer to [34,50,51] for a further detailed description of the HCP-YA
dataset. The data were pre-processed following the HCP functional pre-processing guide-
lines [34,51]. In summary, the processing steps included the removal of artifacts, motion
correction, and registration to the standard Montreal Neurological Institute space. Addi-
tionally, weak high-pass temporal filtering (at least 2000s full width at half maximum) was
applied to both formats to remove slow drift. Furthermore, artifacts and motion-related
time courses (including the six rigid-body parameter time series, their backward-looking
temporal derivatives, plus all 12 resulting regressors squared) were regressed out from
both volumetric and grayordinate data [51]. Note that all tasks and resting functional
MRIs were treated with equal importance. In this work, we denote seven fMRI tasks
as gambling (GAM), relational (REL), social (SOC), working memory (WM), language
processing (LANG), emotion (EMOT), and motor (MOT). The abbreviations for these tasks
are used in the tables and figures for the following macroscopic, consolidated, as well as
mesoscopic analyses.

Table 1 depicts basic information about the fMRI conditions’ run time and the number
of time points for each task. Subsequently, along with Table 1, a brief description of
each fMRI condition is provided below. An extended description is provided in the HCP
manual (https://www.humanconnectome.org/storage/app/media/documentation/s1
200/HCP_S1200_Release_Reference_Manual.pdf, accessed on 1 September 2021).

1. REST: Eye open with relaxed fixation on a bright cross-hair with dark background. A
total of 1200 time points were obtained with 720 ms TR.

2. EMOTION: Subject was instructed to match two faces (or shapes) shown from the
bottom to the top of the screen. Faces were shown with angry/fearful expressions.
Each scan involved three face blocks and three shape blocks with eight seconds
of fixation.

3. GAMBLING: Implied a card-playing game wherein the subject needed to guess a
number of cards in order to win or lose money. At each trial, the subject was instructed
to guess whether a card had a value greater or smaller than 5, given that the numerical
range of the cards was between 1 and 9. The subjects had 1.5 s to respond and 1 s
of feedback.

4. LANGUAGE: At each scan, four blocks of story tasks and four blocks of math tasks
were presented to the subject. The stories contained brief auditory information
followed by a choice of questions about the story topics. The math tasks contained
arithmetic questions with a similar level of difficulty compared to the story task.

5. MOTOR: The subjects were shown various cues and instructed to either tap (left and
right) fingers, squeeze (left or right) toes, or move their tongue in response to different
areas of the human brain motor cortex. The task contained a total of 10 movements
(12 s per movement), preceded by a 3-s cue.

6. RELATIONAL: The subjects were presented with six shapes along with six different
textures. Given two pairs of objects (one on the top and the other one at the bottom of
the screen), the subject had to decide whether the shape (or texture) differed across

https://www.humanconnectome.org/storage/app/media/documentation/s1200/HCP_S1200_Release_Reference_Manual.pdf
https://www.humanconnectome.org/storage/app/media/documentation/s1200/HCP_S1200_Release_Reference_Manual.pdf
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the pair on the top screen. In addition, they had to decide whether the same difference
was carried over to the bottom pair.

7. SOCIAL: The subjects were shown a 20-s video clip containing randomly moving
objects of various geometrical shapes (squares, circles, triangles, etc.). After that,
the subjects were instructed to respond to whether these objects had any mental
interactions (shapes took into account feelings and thoughts), and respond by either
Undecided or No Interactions.

8. WORKING MEMORY: The subjects were presented with trials of tools, faces, and
body parts. Four different stimulus types were presented in each run. In addition,
at each run, two types of memory tasks were presented: two-back and zero-back
memory tasks.

Table 1. fMRI task scanning length and number of frames description. All fMRI task run times were
reported in order of minutes and seconds. Except for the resting state (for which each subject was
scanned twice per day for a total of 2 × 2 = 4 sessions), all other tasks had two scans (RL and LR). TR
is the time between two consecutive readings.

fMRI Conditions Run Time (min:s) # of Time Points

REST1 (and REST2) 14:33 1200
EMOTION (EMOT) 2:16 176
GAMBLING (GAM) 3:12 253

MOTOR (MOT) 3:34 284
LANGUAGE (LANG) 3:57 316
RELATIONAL (REL) 2:56 232

SOCIAL (SOC) 3:27 274
WORKING MEMORY (WM) 5:01 405

Brain atlas. The brain atlas used in this work is based on the cortical parcellation
of 360 brain regions proposed by Glasser and colleagues [27]. Similarly to the descrip-
tion in [14,52,53], 14 sub-cortical regions were added for completeness, as provided by
the HCP release (filename Atlas_ROI2.nii.gz). We accomplish this by converting this
file from the NIFTI to the CIFTI format, using the HCP workbench software (https:
//www.humanconnectome.org/software/connectome-workbench, version 1.5.0, accessed
on 1 September 2021) through the command -cifti- create-label. We then obtained a brain
atlas of 374 brain regions (360 cortical + 14 sub-cortical nodes) registered to a common
space which allowed us to parcellate fMRI voxel-level BOLD time series into the brain
region of interest for the level time series (command: -cifti-parcellate). Time series were
z-scored by using the command -cifti-math.

Estimation of functional connectomes. Parcellated time series were then used to
construct the whole-brain functional connectivity by computing the Pearson’s correlation
coefficients for each pair of brain regions. This operation can be completed using the Matlab
command -corr, which results in a symmetric matrix. All entries in the whole-brain FCs
were applied the absolute values so that the threshold parameter was r = [0, 1].

The mapping of functional networks onto FCs. After each subject was registered to the
appropriate common space and properly parcellated according to Glasser’s parcellation,
we explored the topological features of human brain functional connectivity (FC) by further
subdividing whole-brain FC into resting-state networks (equivalently referred to as func-
tional networks/communities), as seen in [17]. Yeo’s seven functional networks create a
many-to-one mapping that clusters a subset of brain regions into a single region of interest,
which in total results in seven ROIs in the brain cortical region. The parcellation was devel-
oped by clustering the functional coupling for each subject separately [54] and finds the
maximum agreement on the cluster label membership. This particular partition includes
seven functional networks (FNs): Visual (VIS), SomatoMotor (SM), Dorsal Attention (DA),
Ventral Attention (VA), Limbic (LIM), Frontoparietal (FP), Default Mode Network (DMN);
and Sub-cortical (SUBC) region which is, as mentioned above, added into this atlas for

https://www.humanconnectome.org/software/connectome-workbench
https://www.humanconnectome.org/software/connectome-workbench
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completeness. Consequently, the parcellation comprised eight (8) FNs for each subject/task
(the abbreviation of those functional networks will be used in the following figures with
the mesoscopic analysis).

3.2. Group Analysis: Macroscopic WHOLE-BRAIN LEVEL

Topological differences between rest and fMRI tasks. We first explored the topological
distances at the group-average whole-brain connectivity level between resting state and
fMRI task activation states (see Figure 3 and see Figure S1 for the persistent diagram at
the macroscopic level). Each homological group consists of three figures; the first one is
the bottom left heatmap, representing the pair-wise Wasserstein distance. The bottom
right bar plots show the average distance between one task to all other tasks; thus, the
task with the highest average distance will indicate its high differentiation to other tasks.
Finally, the top right plot shows the variance of each task looking at their distance from the
other tasks. Specifically, the zeroth homology suggests that the relational task is the most
different from the emotion task. Indeed, other studies, such as [14] through the network
morphospace mechanism, have also suggested that relational and emotion tasks activate
minimally-to-none overlapping functional circuits of the human brain. In terms of H0 (i.e.,
connected components), the relational task is also the most distinctive task, compared with
others (highest average); the relational task is followed by the resting state on the average
difference with other tasks.
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Figure 3. Group-average macroscopic homological distances between fMRI tasks and rest. Specifi-
cally, three panels (e.g., left, middle, and right) represent the zeroth (Panel A), first (Panel B), and
second (Panel C) homological distance, respectively, between fMRI tasks and resting condition.
Group-average FCs are computed by taking the average of all subjects in the 100 unrelated subjects
dataset sampled from the HCP project. The zeroth homological distance is computed using the Haus-
dorff formula (measured between persistent diagrams of two FNs extracted from group average FC),
while the first and second homology distances are computed using the Wasserstein formula. Each
panel in the graph is composed of three different components, the left triangular heatmap represents
the distance, with its color bar indicating the scale above the heatmap; the bar plots represent the
average distance to other tasks; and the circular plots represent the variance among all fMRI tasks.
Complete names of each task include resting (REST), emotion (EMOT), gambling (GAM), language
processing (LANG), motor (MOT), relational (REL), social (SOC), and working memory (WM).

Moreover (see Figure 3B), the first homology exhibits the highest degree of differentia-
tion between the resting state and the task-positive state, as measured by the average of the
first homological Wasserstein distance between rest and task bar codes. The first homology
also suggests that the motor task is the most topologically different task, compared to the
resting state. This finding was consistent with the current literature (e.g., Amico and col-
leagues [16]) which stated that the motor task exhibited the most distant “within-functional
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network” edges, relative to other fMRI tasks in the HCP dataset. This result also suggests
that, at a global scale, the motor cortex, whose brain regions are largely employed by the
motor task, modulates increasing functional activities through forming global transduction
pathways with “loop-like” feedbacks (e.g., first-order cycles).

3.3. Group Analysis: Consolidated Graph Γ̄ = Γ/γ

With the construction of consolidated graphs, we generated a smaller-scale repre-
sentation of the brain connectome to eight super nodes, which includes seven Yeo func-
tional networks and one node for subcortical regions. Here, the super graph is con-
structed using the equivalence relation at the node level. As such, Γ̄ = Γ/γ such that
γ = u ∼ v | σu = σv, ∀u, v ∈ V. In other words, all brain ROIs which belong to the same
functional network are contractible.

Since the graph is much smaller, no birth was detected for a 2D simplicial complex in
the filtration process; thus, only zeroth and first homology were included in the analysis
(see Figure 4 and see Figure S2 for the persistent diagram at the consolidated level). In
the consolidated setting, we found that the social–resting task pair had the highest dis-
tance with the zeroth homology, indicating that, at the Yeo functional network level, the
connectivity representation captured more differences in the social task and resting states
(see Figure 4A). By the nature of zeroth homology, where we are looking at connected
components, the different most-distinct task pair between the global level and consolidated
level indicates that the choice of representation could impact the topological configuration
in brain connectivity. However, the Wasserstein distance between different tasks in the
first homology-revealed topological invariant among both the global scale as well as the
node-aggregation scale, as the resting state and motor task pair also have the highest
distance measure (see Figure 4B).This consistency validated the robustness of the first
persistent homology class in disentangling the brain’s functional circuits. In addition to the
consistency in the most distinct task pair, the resting state task also consistently appears as
the most differentiated task compared to other tasks based on the average distance for each
task [55,56]. This indicates that there is a significant reorganization in brain connectivity
when people engage in activities from a resting state. Especially for motor tasks, it engages
more different brain regions than other tasks, and thus it is also the second distinct task as
it is the task that requires responses involving movement.

3.4. Group Analysis: Functional Network (Mesoscopic) Level

In previous sections, we calculated the Wasserstein distance between different tasks,
where all of the nodes in the brain connectome were included. In order to assess for a given
task, how the brain connectivity shifts from one functional network to another, we also
conducted mesoscopic level analysis by extracting the eight functional networks from the
group-averaged global graph. Since previous discoveries showed that the resting state
task involves brain regions that are most distinct from other tasks, and the Yeo functional
network was also optimized on the resting-state fMRI, we focused our analysis on the
distance between functional networks in the resting-state task and the mesoscopic level’s
topological configuration (see Figures S3–S9 for the analysis of the remaining seven tasks).

3.4.1. Resting State Analysis

Fixing the task and extracting functional networks enabled the characterization of
within-brain connectivity and the identification of unique topological patterns in functional
networks. Particularly, the default mode is present in the pair with the largest Wasserstein
distance in H0, H1, and H2 homology, and it also has the largest average Wasserstein
distance in H1 and H2 analysis (see Figure 5), suggesting a significant level of functional
specialization within the default mode during the resting state. Extensive studies in the
literature have validated that the default mode is more active and involved in introspective
processes and is typically deactivated in the engagement of goal-oriented tasks, which is
referred to as the “resting state dichotomy” of default mode network [57–59]. This finding
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further reassured the robustness of the capability of the topological system to detect unique
features in certain activities.
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corresponding topological space.
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Figure 5. Group-averaged homological distances between brain circuits (FNs) at rest (e.g., resting-
state networks). Three panels are positioned similarly to previous figures where they represent the
distance of zeroth homology (Panel A), first homology (Panel B), and second homology (Panel C)
between pairs of FNs. Group-averaged FNs are extracted based on Yeo’s parcellation. The zeroth
homological distance is computed using the Hausdorff formula while the first and second homology
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heatmap, the average distance bar plot, and the variance circular plots among functional networks.
Complete names for functional sub-circuit include Visual (VIS), SomatoMotor (SM), Dorsal Attention
(DA), Ventral Attention (VA), Limbic (LIM), Frontoparietal (FP), Default Mode Network (DMN), and
Sub-cortical (SUBC).
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In addition, we also discovered that the limbic system has the highest average Wasserstein
distance in the zeroth homology, indicating that it is the most distinct functional network
when we compare the pattern of connected components between functional networks [16,60]
(see Figure 5A). The limbic system is known for its role in memory- and emotion-related
activities [61–63], and the distinct connectivity pattern discovered reveals that there may still
be some memory or emotional processing even during the resting state. Furthermore, the
results can also serve as an indication of the individual heterogeneity in their resting-state
behavior, which may involve slight mind activities. The high level of differentiation in the H0
task pair with the limbic system is also reconfirmed in the mesoscopic level analysis in the
emotion task and working memory task (see Figures S3A and S9A).

3.5. Individual Subject Analysis

While the group-averaged level connectomes (global level, consolidated level, and
mesoscopic level) provide topological insights into a collective pattern, transitioning to the
individual level could further offer a more personalized perspective with after-persistent-
homology group insights. Moving beyond the aggregation of group data, individual-level
analysis would also allow the consideration of inter-individual variability and consistency
across different scales to bring even more robustness to the experimental design. Similar to
the previous setting, we investigated the individual global level with consensus voting as
well as the individual mesoscopic level with Kullback–Leibler divergence (KL divergence),
respectively [64].

3.5.1. Macroscopic Whole-Brain Level

With 100 unrelated subjects from the HCP database, the individual macroscopic
level analysis contains 100 independent persistent homology results with pair-wise task
distances.At the individual macroscopic analysis, we still used the Hausdorff distance for
the zeroth homology and the Wasserstein distance for the first and second homology. We
evaluated the most distinct pair of tasks in each individual and Figure 6 shows the number
of times each pair of tasks appeared as the most differentiated task pair.
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Figure 6. Individual consensus heatmap between tasks at the macroscopic level. Distance matrices
between functional networks in 100 unrelated subjects were collected, and for each pair of functional
networks, the frequency of it appearing as the most distinct pair among 100 subjects was counted,
resulting in a majority voting heatmap for 3 homology groups ((Panel A) is the zeroth homology,
(Panel B) is the second homology, and (Panel C) is the third homology). The number in the voting
matrix represents the number of times the corresponding pair revealed the highest distance in one
subject, and all numbers in one heatmap triangle should sum up to 100 for 100 subjects.

Particularly, the zeroth homology displayed the largest variability with the max count
of the task pair being the smallest among the three homology groups, thus resulting in
a more diffused pattern in the consensus-voting heatmap (see Figure 6A). This serves as
another explanation for the impact of the choice of graph representation on the zeroth
homology analysis that is relatively more varied. However, we also see the resting–motor
task pair as one of the task pairs that have a high frequency at the individual level H0
results. Furthermore, the first homology still demonstrates the consistency with the group-
averaged macroscopic level as well as consolidated level analysis, where it not only has
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the motor task–resting state as the most frequent task pair, but the max count is also the
highest, indicating the robustness of the first homology in identifying a brain connectivity
pattern with different activities (see Figure 6B). The second homology also shows the motor
task–resting state pair as the most frequent task pair, which further validates our findings
shown above (see Figure 6C). The individual level analysis on the macroscopic level adds
another layer to the group-averaged level analysis, where either the variability in the zeroth
homology or the consistency in the first and second homology both further agree with the
interpretation from previous sections.

3.5.2. All-to-REST, Mesoscopic Analysis

At the individual mesoscopic level, the amount of analysis increased dramatically,
with 100 individuals, eight tasks, eight functional networks, and three homological classes.
In this case, it is difficult to analyze the distance between homology groups as we did at the
group-averaged level. As validated in previous studies as well as our macroscopic level
analysis, the resting state analysis tends to be the most distinct task compared to other
tasks that include some activity engagement [16]. Therefore, we collected individual level
all-to-REST distances and compared them across the functional network dimension and
task dimension.

For the mesoscopic level in an all-to-REST setting, we picked three functional network
pairs that have the highest distance measure from the group-averaged results (Section 3.4.1)
for all three homology groups. For each pair of functional networks, we collected 14 vectors,
with each FN having seven vectors containing 100 individual level distance measures
between the seven non-resting-state tasks and resting-state tasks (see Figure S10), and then
we compared the KL divergence between the two functional networks with vectors from
the same non-resting-state task (Figure 7). In other words, the KL divergence measures the
difference between two distributions (two functional networks, respectively, for all subjects)
of the distance measure between the non-resting-state task and the resting-state task.

For zeroth homology, we find that the social task is more differentiated from the resting
state compared to others when we consider functional network pairs of dorsal attention and
subcortical, as well as the visual network with the limbic system (see Figure 7, panel B,C).
These results take into consideration both task activities and interactions between functional
networks at the same time, indicating that the selected pair of functional networks has very
different brain connectivity configurations in social tasks compared to the resting state. The
default mode is still involved in the most selected pair of functional networks in the resting
state, and the relational task has a very high KL divergence compared to the resting state
in many functional pairs for the first and second homology, including default mode with
limbic, subcortical, visual, dorsal, and ventral attention (see Figure 7, panel D–I).

3.5.3. All-to-REST, Task Analysis

The task analysis in an all-to-REST setting provided another perspective from which
the observation of functional network reconfiguration from resting state to other tasks is
highlighted. In this case, we fixed the task that compared with the resting state and focused
on the KL divergence between all pairs of functional networks in the first phonological
order (see Figure 8 and see Figures S11 and S12 for the zeroth and second homology). To
demonstrate the reconfiguration from resting to other tasks, we selected the top five largest
KL divergences for each task and ranked them by the line strength in the circular plot.
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Figure 7. KL divergence plot for the top three functional network pairs in all-to-RESTING setting.
Rows represent homological groups ((Panels A–C) are the zeroth homology, (Panels D–F) are the
first homology, and (Panels G–I) are the second homology) and each has three panels consisting of
the top three most distinct pairs of functional networks inferred from the group-averaged mesoscopic
analysis. The bar plot demonstrates the KL divergence between the selected pair of functional
networks, in terms of the 100 individual-level distance between the resting state with other tasks.
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Some of the tasks displayed very unified patterns, such as the emotion task and
the working memory task, where all the highest KL divergences included one functional
network (see Figure 8, emotion, and working memory panel). The observation drawn from
those two tasks showed that the reconfiguration from resting state to emotion task actually
involves a significant amount of activities for somatomotor, and shifts to the working
memory task will require the subcortical region to take the most response. The somatomotor
network includes most of the somatosensory area, which is closely related to emotional
regulation, and the subcortical region is known to be involved in complex activities such as
memory-related activities. In addition, we also observed that the somatomotor network also
has the strongest link in the motor task, and the subcortical region is present as the dense
connectivity hub in many task plots, which is an indication of the common underlying
mechanism of brain circuit shifts from resting states to any other activities (see Figure 8,
gambling, motor, relational, and social panel).

4. Discussion

At the heart of many complex systems resides a set of fine-tuned mesoscopic structures
whose roles have been linked with complex orchestrations of emergent phenomena. Under-
standing complex higher-order behaviors arisen at a scale between the mesoscopic (brain
regions) and macroscopic (whole-brain) level would set the stage for a more comprehensive
understanding of the human brain large-scale functional circuitry. There are two kinds of
mesoscopic structures: (i) local/quasilocal (e.g., ground-truth communities) and (ii) non-
local such as topological strata of complex networks. In this work, we proposed a TDA
formalism to disentangle the higher-order properties of brain sub-circuits (FNs) among
different fMRI tasks. The major contributions of our framework on higher-order brain
systems over other existing ones [6,39,65,66] are that (i) this framework allows for the study
of non-localized properties of an a priori set of localized/quasilocalized sub-networks;
(ii) through this innovative mesoscopic kernel proposal, we observed various results that
align well with the current knowledge in network neuroscience and also highlighted the
resting-state dichotomy of default mode network as well as the role of the limbic system
in the process of functional (re)configuration; (iii) we included not only within-task and
within-FN scenarios, but also investigated the bi-level analysis that considered both task
and FN levels at the same time. The construction of fMRI brain connectivity and Yeo’s ROI-
to-FN mappings enabled multi-level homological group calculation and corresponding
graph-based analysis. With seven different tasks in addition to the resting state, previous
studies found that the brain functional reconfiguration in macroscopic (global) level is
hard to observe, while different tasks will rather trigger more shifts in the mesoscopic
structure (brain functional networks level) [14,67,68].Hence, we organized our framework
into five settings: (a) group-averaged global level, (b) group-averaged consolidated level,
(c) group-averaged mesoscopic level, (d) individual global level, and (e) individual all-to-
REST level with functional network analysis and task analysis. At the first three levels,
we conducted the topological data analysis at the group-representative level, which gives
a broader view of the homological landscape between tasks and functional networks.
When we looked at the individual level (each subject’s FCs), we took a different approach
from other existing brain connectivity fingerprint frameworks [14,69]. Specifically, in the
first step, we used consensus analysis to infer group-level behavior, as opposed to using
simple averages. In the first step, we computed the distance measures on an individual
basis by using the KL divergence to compare the distribution of individual-level distance.
Through this setting, we found that three homological groups provided complementary
insights into both task and subject domains. More specifically, the zeroth homology mea-
sures the connected components; the first homology measures the two-dimensional hole
encapsulated by one-dimensional functional edges; the second homology measures the
three-dimensional cavities encapsulated by two-dimensional triangles. These homolog-
ical groups and their algebraic structures are hypothesized in our paper to characterize
topological spaces parameterized by the brain connectivity network.
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Noticeably, in the work led by Fox and colleagues [70], the authors suggested that
the emotion task may be regulated by the reduced functional activity attenuated by self-
referential aspects of such task. In general, “harder” tasks (i.e., relational) require an
increasing level of global integration which should reflect through a relatively small number
of connected components (smaller Betti number 0). It is worth noting that the motor cortex
was identified as the hub of broadcasting transduction [16], which contains brain regions
that are critical to broadcast information to other regions of the brain. Compared to the
resting state, the absence of cognitive requirement from fMRI tasks, such as the motor task,
which employs motor cortex brain regions, modulates global integrative cooperation among
brain regions by forming first-order cycles across FNs.Combining both zeroth (connected
components) and first homological (graph-theoretical cycles) distance results, we see that
there exists a cognitive “switch” taking place at a global level to form connectivities that
result in (i) a lesser number of connected components and (ii) more globally integrated FNs
as reflected by first-order cycles.

By consolidating the global view of the group-averaged connectome, we found that
the H1 homology displayed stable topological invariants with its consistency in the most
distinct pair of tasks as well as pertaining to a clear block diagonal structure on the distance
heatmap. Both global and consolidated views displayed significant signals that the resting
state and motor task are the most different task pairs [55,56], while they are also the first and
second distinct tasks in terms of the average distance (see Figure 4A,B). In this case, a simple
observation we can draw from the analysis is that the brain takes some reconfiguration from
resting state to other non-motor tasks, and then it requires further shifts in connectivity
to get to the motor task. In addition, we further studied the individual-level homological
scaffolds and performed group-level consensus voting on the most differentiated pair of
tasks over 100 unrelated subjects (see Figure 6B,C). The H1 and H2 majority voting results
again showed that the motor task is the most distant task from the resting state, and H1
also has the highest frequency count on the largest count among all three homological
groups, indicating that it has the most consistent and robust capability to understand the
homological scaffold in brain connectivity topological space.

Noticeably, the strong topological invariant of the H1 homology between the macro-
scopic (whole-brain) level with the consolidated (super-graph) level demonstrated the
existence of a self-similarity property unraveled by the higher-order properties of the brain
functional sub-circuit [71–73]. Regarding the macroscopic level of the brain connectome as
the “zoomed-in” representation of the consolidated graph, the overall pattern of the Wasser-
stein distance between tasks still holds. While both the macroscopic level and consolidated
level have the resting-state task and motor task pair as the most differentiated task pair,
further information was found by looking at the row in the distance heatmap that involves
the resting state task and motor task as all having a high Wasserstein distance, together
forming a block pattern that separates the resting-state task as well as the motor task from
the other tasks.This phenomenon guarantees the “parcellation-invariant” property of the
first homological group on the complex brain system and provides a consistent potential
for this topological framework for other higher-order complex network systems [71,73].
In addition, we can also view the Glasser parcellation of 360 nodes and Yeo functional
network of seven regions of interests as two different representations with a many-to-one
relationship, and thus the robustness between the macroscopic level and consolidated
level in the first homology showed great potential for this framework in its consistency
across different brain parcellations. Therefore, this homological setup can help learn the
brain’s functional behavior in a robust and trustworthy manner for clinical exploratory
and discovery.

We partitioned the brain connectome with the seven Yeo functional networks as well
as a subcortical structure, resulting in eight separate sub-networks. Since the resting
state brain connectivity structure is the closest to Yeo’s partition, the first assessment that
we conducted at the mesoscopic level was to fix the resting-state task and compare the
distance between two functional networks. The mesoscopic level analysis captured the
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“functional dichotomy” of the default mode network in the resting state by both the most
differentiated task pairs as well as the highest average distance (see Figure 5B,C), where
default mode is the most dominant network [14,70,74]. Thus, with such versatility, the
same framework setup can be used to learn both (re)configuration across tasks, functional
networks, and neurological conditions. The brain network studies typically focus on either
the within-task configuration or within-network configuration [15,16,65,75,76], and the
individual-level functional network partition further revealed patterns in the brain that are
shifted between the resting state to other tasks as well as between two functional networks.
The individual all-to-rest mesoscopic analysis considered both task and functional network
“switches”. Such bi-level perspective allows for the investigation of the most distinct
functional network pairs in the resting state on their reconfiguration from resting state
to other tasks (see Figure 7). While maintaining the bi-level design of the experiments,
we flipped the two-level in the all-to-rest task analysis to investigate, from the resting
state to each task, how pairs of functional networks are shifted (see Figure 8). The unique
patterns in the top five pairs of functional networks also enabled hub identification in the
process of the task switch, and closer tasks also displayed similar patterns, indicating that
they underwent similar reconfiguration from the resting state. The KL-divergence of two
individual-level distance distributions brought additional insights into how shifts between
tasks and reconfiguration among two functional networks can be related together in their
functional behaviors.

This study has certain limitations. In the consolidation process from the global-
level graph, we specifically opted for max normalization to construct the super graph.
Since altering the normalization method may potentially modify the inter-connectivity of
functional networks, future research could investigate different normalization techniques.
For instance, using average connectivity to define the consolidated graph may impact
not only the topological structure of the super graph but also its self-similarity properties
from the homological kernels. Moreover, not only does the choice of the homological
group influence the distance measure between tasks or functional networks, but the graph
itself also plays a crucial role. Our experiments were solely conducted on the Glasser
parcellation with 374 nodes (360 cortical regions + 14 sub-cortical regions). Exploring
alternative parcellations in both brain cortical and subcortical regions ([29,77,78]) and
incorporating multiple parcellation scales could offer additional insights into mesoscopic
cognitive reconfiguration and its scaling-related properties. Another limitation of this
study is that the study was conducted exclusively on healthy subjects, so our findings are
limited to healthy conditions. Future studies will address the homological landscape of
different neurological or psychiatric disorders as well as neurodegeneration diseases. In
this case, we can not only compare across functional networks and different tasks, but
we can also investigate how the macroscopic level brain and mesoscopic level functional
network configures across different disease statuses (e.g., cognitive normal (CN), mild
cognitive impairment (MCI), and Alzheimer’s disease (AD).

5. Conclusions and Future Work

In summary, we presented a novel framework that uses persistent homology to
characterize brain connectivity in the topological space. Based on the nature of each
homological group, we selected different distance measures correspondingly. The zeroth
persistent homology is all born at 0 so the Wasserstein distance is not a good fit, but
the Haursdorff distance is more appropriate for measuring the 1D distribution of the
point cloud. However, the first and second homology are closer to the diagonal in the
persistent homology diagram, and thus the Wasserstein distance with partial mapping
which serves as a simulation of moving one distribution to another in a geodesic setting
would become better in this case. We validated that the first homology gives very consistent
and topological invariant findings at different levels of analysis, which offers a scaling
invariant perspective. In addition, we find that the framework is capable of capturing
signals that are well-studied in the literature, which is reassuring for the validity of the
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discoveries, but also discovered additional unique patterns in the brain circuit triggering
diverse processes among different fMRI tasks and resting conditions. Future applications
could design more brain tasks to study the brain’s behavior and (re)configuration for
a more complex task sequence or even in continuous time [39,79,80], such that we can
explore how different subjects behave differently and how their brain (re)configuration
is triggered with the same series of tasks. This could also be extended to study the brain
functional trajectory in a cascade sequence of tasks and investigate the dynamic of how
those functional sub-circuits are coupled during the process. From a wider perspective, our
formalism can be applied, beyond brain connectomics, to study non-localized coordination
patterns induced by localized, pre-defined structures stretching across different complex
network fibers.
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Abbreviations
The following abbreviations are used in this manuscript:

TDA Topological data analysis
FCs Functional connectomes
FN Functional network
VIS Visual
SM SomatoMotor
DA Dorsal atention
VA Ventral attention
LIM Limbic
FP Frontopatietal
DMN Default mode network
SUBC Sub-cortical regions
KL divergence Kullback–Leibler divergence
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