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ABSTRACT. Previously, we introduced a duality transformation for Euler G-
Frobenius algebras. Using this transformation, we prove that the simple 
A, D, E singularities and Pham singularities of coprime powers are mirror self-
dual, where the mirror duality is implemented by orbifolding with respect to 
the symmetry group generated by the grading operator and dualizing. We 
furthermore calculate orbifolds and duals to other G-Frobenius algebras which 
relate different G-Frobenius algebras for singularities to each other. In partic-
ular, using orbifolding and the duality transformation we provide mirror pairs 
for the simple boundary singularities Bn and F4. Lastly, we relate our con-
structions to r spin-curves, classical singularity theory, and foldings of Dynkin 
diagrams. 

Introduction 

In (Ka03] we introduced a duality transformation for Euler G-Frobenius al-
gebras which are graded Frobenius algebras whose grading operator is realized by 
the action of a central element. Using this transformation in the setting of isolated 
singularities with symmetries, we prove that the simple singularities A, D, E and 
certain Pham singularities are mirror self-dual where the mirror duality is imple-
mented by orbifolding with respect to the symmetry group generated by the grading 
operator and dualizing. In particular, the invariants of the orbifold are A1 while 
the invariants of the dual are the simple singularities of type A, D, E one started 
out with. Thus orbifolding and dualizing provides a mirror dual pair to the pair 
(W, A1) which is naturally associated to W, for W one of the simple singularities 
An, Dn, E6, E7, Es. We also show that the same holds true for Pham singularities 
of co-prime powers. 

Furthermore, we calculate orbifolds and duals to other G-Frobenius algebras 
which relate different G-Frobenius algebras for singularities to each other. We 
thereby provide more mirror pairs, notably mirror pairs for the simple boundary 
singularities. In particular, ((Bn, 12 (4)), (12 (4), Bn)) is obtained by orbifolding and 
dualizing either A2n-1 or Dn+l by Z/2Z and Z/nZ. And ((F4, 12(4)), (h(4), F4)) is 
obtained by orbifolding E6 and dualizing with respect to Z/2Z and Z/3Z x Z/2Z. 
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68 RALPH M. KAUFMANN 

The invariants of the G-Frobenius algebras based on the singularities with 
symmetries are related to the singularities considered on the orbifold of en with 
respect to the symmetry group, while the duals conjecturally play a role in the 
analogs of r spin-curves built on quasi-homogeneous polynomials, of which special 
types have been studied by [F JR]. For the exact formulation of these conjectures 
we refer to §5.1. 

The operation of dualizing as defined in [Ka03] was inspired by the represen-
tation theory of N = 2 super-conformal field theory applied to orbifold Landau-
Ginzburg models [IV90]. Although the background is very elaborate and involves 
many highly complicated concepts, in the special case we are considering all can be 
stated in terms of G-Frobenius algebras or D(k[G])-modules and algebras, where 
D(k[G]) stands for the Drinfel'd double of the group ring k[G]. D(k[G])-modules 
are a special type of G-graded G-modules, namely those where the G-action acts 
by conjugation on the G-grading, cf. [Mo93, Ka02b, JKK03]. 

We will first review the background for this operation and then comment on 
its realization on the level of Euler G-Frobenius algebras. The reader not inclined 
to read about physics can thus skip the following two paragraphs and further com-
ments about physics which can be considered as motivation and continue to the 
purely algebraic part of the paper. 

A so-called (2, 2) super-conformal field theory has an N = 2 super-conformal 
symmetry for both the left and the right movers. This implies that there are 
four finite rings which are closed under the naive operator product. These rings 
are called (c, c), (a, c), (a, a) and (c, a), respectively. In terms of representation 
theory these rings are given by fields which are annihilated by certain operators 
or equivalently satisfy certain constraints for their eigenvalues with respect to the 
operators 10 , ] 0 , £ 0 , L0 of the two N = 2 super-conformal algebras, which are 
usually called q, ij, h and h, respectively. The left c or a stands for left chiral or 
anti-chiral and the letter a or c on the right for right chiral or right anti-chiral. An 
element 1¢) is left chiral if G~ 1 ; 2 1¢) = 0 or equivalently h = l It is called left anti-
chiral if G::: 1; 2 1¢) = 0 or equivalently h = -l Right chiral means that G~ 1 ; 2 1¢) = 

0 or equivalently h = 1, and finally right anti-chiral means that G~ 12 1¢) = 0 or 
equivalently h = -1. It turns out the rings (a, a) and ( c, a) can be recovered 
from (c, c) and (a, c) by charge conjugation. Thus one confines oneself to study the 
former two rings. Mirror symmetry as it was originally conceived in physics was an 
operation which takes one conformal field theory T and produces another conformal 
field theory T such that the (c, c) ring ofT is isomorphic to the (a, c)-ring ofT and 
vice versa. 

One special type of N = 2 theory is given by the so-called Landau-Ginzburg 
theory, which is the conformally invariant fixed point of the Lagrangian 

£ = j K(X,X)d2 zd4 B+ j(f(zi) +complex conjugate) d2 zd2 B, 

where f is a quasi-homogeneous function of fractional degree qi for zi. This model 
leads to a trivial (a, c)-ring and a (c, c)-ring which is given by C[z]/ Jf where Jf = 
UzJ is the Jacobian ideal. Moreover, the bi-degree (q, q) for Zi is given by (qi, qi)· 

The above considerations are the starting point for a purely algebraic consid-
eration. If the function f above has an isolated singularity at zero, the situation is 
one that has been studied for a long time by mathematicians. The (c, c)-ring is, in 
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this case, just the local, or Milnor, ring of the singularity. The only unusual thing 
is the hi-grading instead of the grading, but in fact the hi-grading is just a diagonal 
grading obtained from the usual grading in singularity theory and it contains no 
additional information. It will however play an important role later on. 

In the setup above, the quasi-homogeneity of the function f allows one to 
consider it as a function on a weighted projective space. In the case that the poly-
nomial describes a Calabi-Yau hypersurface, the claim that these two geometries 
(singularity /Calabi-Yau) should give the same Frobenius manifolds of field theories 
is the famous Landau-Ginzburg/Calabi-Yau correspondence. Thus by analyzing 
this correspondence one is naturally lead to consider the quotient of the theory 
by a finite symmetry group. In general, one can consider a group G C GL(C, n) 
which leaves f(z1 , ... , zn) invariant and consider the resulting orbifold. This par-
ticular situation and the general setup of global orbifolds was analyzed in [Ka03]. 
It turns out that the algebraic object one is dealing with is an extension of the 
Milnor ring, which by itself is a Frobenius algebra, to a G-Frobenius algebra in the 
sense of [Ka03]. A G-Frobenius algebra has a G-action and the invariants of this 
G-Frobenius are expected to form a Frobenius algebra. These will be bi-graded in 
a natural way. In physics terms this algebra of invariants is the (c, c)-ring of the 
orbifold model. Now again appealing to physics, the orbifold theory should also 
have an (a, c)-ring. This ring is what is computed by the duality transformation 
we gave in [Ka03]. To be precise, the ring (a, c) will be equal to the G-invariants 
of the dual D(k[G]) model. In order to define the full dual it is necessary for the 
group of symmetries to contain the symmetry provided by the exponential grading 
operator J = diag(exp(27riql), ... exp(27riqn)). 

We call the transformation a mirror transformation, since as we show below, 
the orbifold of the simple singularities of type A, D, E by the symmetry group 
generated by J has a trivial (c, c) and an (a, c)-ring that is isomorphic to the Milnor 
ring of the singularity and hence is mirror dual to the original Milnor ring. Thus 
for these singularities the operation of orbifolding and taking the invariants of the 
dual implements mirror symmetry. If one would like to phrase mirror symmetry in 
terms of A-models and B-models, the Landau-Ginzburg model is a B-model. In 
mathematical terms the B-Model is the Milnor ring with the diagonal hi-grading 
(q, q). The corresponding mirror model is an A-model (not to be confused with the 
A-type singularity) which would be given by the Milnor ring but with a grading 
of ( -q, q). This would be a "Landau-Ginzburg A-model." For the B-model the 
(a, c)-ring is trivial and for the A-model the (c, c)-ring is trivial. 

In [Ka03], we have made the case that for global orbifolds it is not enough to 
consider just the invariants of the G-action of the G-Frobenius algebra, but instead 
one needs to consider the whole G-Frobenius algebra. The fruitfulness of this point 
of view can be seen for instance in its application to symmetric products [Ka04]. 
Another instance where the relevance of the G-Frobenius algebras is apparent is in 
the tensor product which exists on the level of G-Frobenius algebras and not their 
invariants. The philosophy extends beyond the level of Frobenius algebras to their 
deformations, G-cohomological field theories, as demonstrated in [JKK03]. 

The dualization as we described it in [Ka03], and which we will review below, 
does not always provide a G-Frobenius algebra. In fact, generally the data of 
the D(k[G]) model with metric does not afford a G-Frobenius algebra structure, 
although it is expected that there is a Frobenius structure on the invariants. This 
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70 RALPH M. KAUFMANN 

leads us to define the notion of a degenerate G-Frobenius algebra below. Here one 
adds an additional metric which is equal to the original metric when restricted to 
the invariants, but is allowed to be degenerate on the non-invariant elements and is 
invariant with respect to a G-graded multiplication. This multiplication together 
with the metric descends to a Frobenius algebra on the invariants. 

It is this type of structure that arises in the theory of spin curves (JKVOl, 
PVOl, P02] and the construction of cohomological field theories from certain sin-
gularities with fixed Abelian groups H containing the grading symmetry J, which 
have recently started to be investigated (F JR]. We conjecture that the resulting 
theory is the deformation of the dual of the orbifold of the singularity with respect 
to the group H. Although the structures coincide on the invariant part, on the 
degenerate part the matching of non-invariant elements is only almost realized. 
There are additional elements which can be explained by interpreting the Milnor 
rings inside degenerate G-Frobenius algebras, as we discuss in §5.1. 

In these geometric settings the g-twisted sectors-this is another name for the 
group degree g part of the Frobenius algebra for g of. e-which have a degenerate 
metric are related to a certain behavior called Ramond type. In the case of the An 
singularities there is only one such sector and the entire sector is degenerate. In 
the cases of D and E, the structure is more complicated and there are invariant 
elements in g-twisted sectors which have a degenerate metric. The appearance 
of these degenerate elements is stunning and maybe a nuisance from the point of 
view of spin-curves, but is natural from the G-Frobenius point of view. Moreover, 
regarding our dualization on the level of G-Frobenius algebras as mirror symmetry, 
we expect this kind of behavior for the mirror dual "A-model" of a singularity, the 
construction of which was Witten's original motivation for considering the spin-
curve picture (W91, W92]. 

A note of caution about nomenclature. One would be inclined to call the sectors 
having degenerate pairings in the new metric Ramond sectors. This might however 
lead to confusion, since the term Ramond already has a meaning in the theory of 
G-Frobenius algebras (Ka03] and orbifold Landau-Ginzburg theory. Therefore we 
will call them sectors of Ramond type and hope to avoid the confusion. 

We recall that the Ramond-G-algebra, or state-space, for a G-Frobenius alge-
bra is a cyclic module for the G-Frobenius algebra whose G-action is determined 
by compatibility and the fact that the generator of the cyclic algebra is the one-
dimensional representation of G which is given by the character X which is part of 
the data of a G-Frobenius algebra. The component of this space of group degree 
g would be naturally called the g-twisted Ramond sector. The "Ramond" in this 
name stands for the Ramond ground states. This Ramond space plays a fundamen-
tal role in the theory of singularities as it corresponds as a D(k(G])-module to the 
middle dimensional cohomology of the Milnor fibers in an orbifold model, while the 
G-Frobenius algebra corresponds as a D(k(G])-module to the orbifold Milnor ring 
or universal deformation space (see the remarks in §5.2 below). For the untwisted 
sectors, i.e., the subalgebras of group degree e, this statement was first proved in 
(Wa80]. 

In the spirit of the mirror construction for simple singularities, one expects for 
a given theory T with a symmetry group G and a subgroup H C G of symmetries 
that (Tj H)H ~ (((Tj H)H j(Gj H))v)(G/H), where the superscript stands for taking 
the invariants and V stands for dualizing. This type of transformation was used by 
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[GP90] to produce the first mirror pairs. The general statement has to be taken 
as always cum grana salis, but as we show below, it is true in many instances in 
a suitable interpretation. For us T / H will signify a set of data including an H-
Frobenius subalgebra of a G-Frobenius algebra which is derived from a Frobenius 
algebra T with symmetry group G together with its V dual. 

Lastly, the untwisted sector of an orbifold associated to a singularity can, under 
certain conditions, be related to the folding of an associated Dynkin diagram. We 
emphasize that there are foldings and orbifoldings of diagrams. The Z/2Z folding 
of A2n-l yields Bn, while the Z/2Z orbifolding yields Dn+l· 

In order to understand the operation of folding, we also include section 5.3 
in this paper on groups of projective symmetries. This is a new construction for 
Frobenius algebras which we expect to be able to extend to the respective Frobenius 
manifolds and to a full theory of G-Frobenius algebras. On the algebra level, we 
obtain the classical folding results for Coxeter groups identifying the sub-Frobenius 
algebra with the Coxeter group of the folded diagram [StOl, St02]. The relation 
to singularity theory and the G-modules appearing in this setting is also briefly 
discussed. One could hope to extend the folding to all the diagrams of [Z98] and 
find the corresponding orbifold theory. 

We will work in the setting of G-Frobenius algebras over a field k of charac-
teristic zero (or prime to IGI) as it was established in [Ka03]. To understand the 
constructions of G-Frobenius algebras it is important to see that they are usually 
performed in four steps. 1. One constructs a G-graded k-module A = EB A9 with 
a non-degenerate pairing between A9 and A9 -1. Ae is usually called the untwisted 
sector and A9 is called the g-twisted sector. 2. One constructs a D(k[G])-module 
structure on A. This action has to respect certain axioms, among them the self-
invariance for the twisted sectors and the so-called restricted trace condition, which 
necessitates the introduction of a character x E Hom(G, k*). The D(k[G])-module 
property is equivalent to introducing an action of G, usually called cp, such that 
cp(g)(Ah) C A9h9 -1. 3. One enlarges the picture by introducing an Ae-module 
structure on A which is compatible with the D(k[G])-module structure. 4. Lastly 
one adds a multiplication which is compatible with the G-grading to make the 
D(k[G])-module into a G-Frobenius algebra. Comparing G-Frobenius algebras on 
different levels of this construction compares to the topological mirror symmetry of 
dimensions and vector spaces vs. that of full Frobenius manifolds. 

These are also the steps of the ( re )construction program as explained in [Ka03, 
Ka04]. Here the data for the first step is usually provided by the geometric setup. 
For the second step there are usually several different choices. This is, however, 
expected, since there is the phenomenon of discrete torsion for orbifolds. As we 
demonstrated in [Ka02b], for every G-Frobenius algebra there exists a family of G-
Frobenius algebras indexed by elements of a E Z 2 ( G, k*) with the same underlying 
data as mentioned in step 1 (up to a re-scaling of the metrics pairing the twisted 
sectors). In the last step there is an additional compatibility condition of the 
pairing, which might force one to again re-scale the pairings between the twisted 
sectors. For all the conditions, we refer to [Ka03]. We will, however, review the 
construction for singularities with symmetries below. 

The dualization is an involution on triples (A, j, x) of a D(k[G])-module A, an 
element j E Z (G), the center of G, and a one-dimensional representation of G, also 
known as a character. For a special type of graded G-Frobenius algebras, x is part 
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of the data while j corresponds to the grading operator. If one includes the other 
structures of a G-Frobenius algebra, then the operation ceases to be an involution, 
as, for instance, the metric will be compatible with the group grading only up to a 
shift. To compensate for the different behavior of the duals, we introduce the notion 
of a degenerate G-Frobenius algebra of group degree j for an element j E Z(G). 

The paper is organized as follows: In the first section, we review the con-
struction and basic properties of G-Frobenius algebras and consider special types 
of graded G-Frobenius algebras called Euler and G-Euler. The second section 
contains the definition for the dualization for Euler D(k[G])-modules. The third 
section applies the first two sections to the G-Frobenius algebras resulting from 
quasi-homogeneous polynomials in general. The fourth section contains explicit 
calculations for a large list of examples. From these examples we obtain the the-
orem about the mirror-self duality of the simple singularities, i.e., those of ADE 
type and the Pham singularities for coprime powers. The examples also provide 
mirror pairs for the simple boundary singularities Bn and F4 and produce G2 as the 
untwisted sector of a D 4 orbifold. In the last section, we connect our calculations 
to spin-curves, classical results in the theory of singularities and foldings of Dynkin 
diagrams. 
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Notation 

Throughout this paper, we will fix the ground field k to be C to avoid switching 
back and forth. Strictly speaking, this is necessary only for the considerations 
about singularities. In general, for finite a fixed finite group G, for the concept of 
G-Frobenius algebras, it is enough to consider fields of characteristic prime to the 
order G. In most examples, the natural setting would be a field of characteristic 
zero which contains all IGI-th roots of unity or a field k of characteristic zero with 
a fixed embedding of k ~ C. 

1. Graded G-Frobenius algebras 

1.1. G-Frobenius algebras. We would like to recall the definition of a G-
Frobenius algebra of [Ka03]. Although it has now appeared in many places we 
think it convenient for the reader to display it here once more. 

DEFINITION 1.1. A G-Probenius algebra (GFA) over the field k is given by the 
data (G, A, o, 1, 77, cp, x), with 
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G a finite group 

A a finite dim G-graded k-vector space 

A= EtlgEGAg 

Ae is called the untwisted sector and 

the A 9 for g i- e are called the twisted sectors. 

o a multiplication on A which respects the grading: 

o : A 9 ® Ah ---+ A 9 h 

1 a fixed element in Ae-the unit 

77 a non-degenerate bilinear form 

which respects grading i.e., giA 9 ®Ah = 0 unless gh =e. 

'P an action of G on A (which will be by algebra automorphisms), 

'P E Hom(G, Aut(A)), such that ip9 (Ah) <;;; Aghg-1 

x a character x E Hom(G, k*) 

satisfying the following axioms: 
NOTATION: We use a subscript on an element of A to signify that it has homo-
geneous group degree, (e.g., a9 means a9 E A 9 ) and we write ip9 := ip(g) and 
Xg := x(g). 

(i) Associativity 
(a9 o ah) oak = a9 o (ah oak) 

(ii) Twisted commutativity 
a9 o ah = ip9 (ah) o a9 

(iii) G-Invariant Unit: 
1 o a9 = a9 o 1 = a9 

and 
'Pg(1) = 1 

(iv) Multiplicative invariance of the metric: 
17(a9 , ah oak) = 17(a9 o ah, ak) 

( v) Projective self-invariance of the twisted sectors 

'P9 IA9 = x;1id 
(vi) G-Invariance of the multiplication 

'Pk(a9 o ah) = 'Pk(a9 ) o 'Pk(ah) 
(vii) Projective G-invariance of the metric 

'P~(7J) = x;;277 
(viii) Projective trace axiom 

Vc E A[g,h] and lc left multiplication by c: 
Xh Tr(lc'PhiA 9 ) = X9 -1 Tr(ip9 -IiciAh) 

For the examples in §4 it is essential that we consider G-Frobenius algebras 
with non-trivial characters. 

REMARK 1.1. Instead of using a left action ofG on A, one can also use a right 
action as for instance is done in [JKK03]. Since if 'Pis a left action 7/J(g) := IP(g- 1 ) 

is a right action, it does not matter which choice is made. 

REMARK 1.2. Another way to characterize the G-grading and G-action is to 
say that it is a D(k[G])-module. This statement is equivalent to saying that A is 
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G-graded and the G-action is such that 

(1.1) cp(g)Ah ~ A 9h9 -1 or equivalently 'lj;(g)Ah ~ A 9 -1hg 

see e.g., [Ka02b]. We use the nomenclature of D(k[G])-module, rather than G-
graded G -module since it includes the condition ( 1.1). 

The compatibilities of the multiplication with the grading and the G-action can 
also be rephrased as: A is a D(k[G])-module algebra. 

1.2. Restriction. The operation of restriction of a G-Frobenius algebra to a 
H-Frobenius algebra for a subgroup H C G is discussed in [Ka03] and is given by 
res( A)~ := ffihEH Ah and restricting all structures. 

By forgetting or omitting the multiplicative structure and considering just the 
action of the subgroup H we obtain the restriction from a D(k[G]) to a D(k[H])-
module. 

1.3. Super-grading. We also need to enlarge the framework by considering 
super-algebras rather than algebras. This will introduce the standard signs. 

DEFINITION 1.2. A G-twisted Probenius super-algebra over k is a tuple (G, A, o, 
1, 7], cp, x)' with 

G a finite group 

A a finite dimensional G x Z/2Z-graded k-vector space 

A= Ao EEl A1 = EB9 Ea(A9 ,o EEl A 9 ,1) = EB9 EaA9 

Ae is called the untwisted sector and is even. 

The A 9 for g =/=- e are called the twisted sectors. 

o a multiplication on A which respects both gradings: 

o : A9 ,i ® Ah,j -t A 9h,i+j 

1 a fixed element in Ae -the unit 

7J a non-degenerate even bilinear form 

which respects grading i.e., giA9 ®Ah = 0 unless gh = e 

cp an action by even algebra automorphisms of G on A, 

cp E Hom(G, Aut( A)), such that cp9 (Ah) ~ A 9h9 -1 

X a character X E Hom(G, k*) 
satisfy the axioms (i)-(viii) of a G-Probenius algebra with the following alteration 
of (ii) and (viii): 

(ii)" Twisted super-commutativity 
a9 oah = (-1)agahcp9 (ah) oa9 

(viii)" Projective super-trace axiom 
Vc E A[g,h] and lc left multiplication by c: 
XhS'fr(lccphiA 9 ) = Xg-18'fr(cpy-llciAh) 

where S'fr is the super-trace. 

1.4. Graded G-Frobenius algebras. 

DEFINITION 1.3. We call a (super) G Probenius algebra A graded by an additive 
group I if it is graded as a (super) algebra by I and the metric is homogeneous of 
a fixed degree d, i.e., for homogeneous a, b the metric satisfies 7J(a, b) = 0 unless 
deg(a) +deg(b) = d, where we denote the !-degree of a homogeneous element a E A 
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by deg( a). If I = Q, we simply call A graded. We also call d the degree of the 
Frobenius algebra. 

1.5. The grading operator. Given a graded G-Frobenius algebra A, we de-
fine the grading operator Q to be given by 

(1.2) Q(a) := deg(a)a if a is homogeneous. 

Sometimes this type of operator is also called E. 
In the case that A is graded, we furthermore define the operator 

(1.3) J := exp(27riQ). 

This definition is also possible, if for instance, k is of characteristic 0 and an 
embedding of k C C has been fixed. 

DEFINITION 1.4. We call a graded D(k[G])-module A= ffigEG A9 Euler if the 
operator JIAe is described by the action of a central element j of the group G on 
Ae. i.e., there exists aj E Z(G), the center ofG, which satisfies cp(j)IAe = JIAe· 

We call a graded D(k[G])-module G-Euler if there exists a j E Z(G) such that 
cp(h- 1j)IAh = JIAh for all hE G. 

We call a graded D[k[H])-module A quasi-Euler (or quasi-G-Euler) if there is 
a group G, such that H is a subgroup of G (G ::J H) and there exists an Euler (or 
G-Euler) D(k[G])-module B such that the restriction of the D(k[G])-module B to 
its D[k[H])-sub module resH(B) is A. 

An Eulerization of a quasi-Euler D(k[H])-module is a fixed choice of D(k[G])-
module B as above. 

A G-Frobenius algebra is called Euler, G-Euler, quasi-Euler or quasi-G-Euler 
if its underlying D(k[G])-module is Euler, G-Euler, quasi-Euler or quasi-G-Euler, 
respectively. 

1.6. Hi-Graded G-Frobenius algebras. 

DEFINITION 1.5. We call a (super) G Frobenius algebra A hi-graded by an 
additive group I if it is bi-graded as a (super) algebra by I. If I = Q, we simply 
call A bi-graded. 

1.6.1. Notation. We will usually denote the two grading operators by Q and 
Q. Given a hi-homogeneous element a we will denote its degree with respect to Q 
by q(a) = Q(a) and its degree with respect to Q by ij(a) = Q(a). We will also use 
the notation ( q( a), ij( a)) to denote the hi-degree. 

DEFINITION 1.6. Fix a graded Frobenius algebra A with grading operator Q. 
We define its (c,c)-realization A(c,c) to be given by the Frobenius algebra A 

together with the bi-grading ( Q, Q), i.e., Q = Q. 
We define the (a, c)-realization of A, denoted by A(a,c), to be given by the 

Frobenius algebra A together with the bi-grading (Q, -Q), i.e., Q = -Q. 

REMARK 1.3. The terminology stems from the representation theory of the 
N = 2 super-conformal algebra, as explained in the introduction. 

In the case of quasi-homogeneous functions with an isolated singularity at zero, 
the above realizations will yield an A- and B-model for the singularity as follows. 
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Both the A- and the B-model will consist of a pair of Frobenius algebras, called 
the (c, c)-ring and the (a, c)-ring. 

The B-model for a singularity will have as a (c, c)-ring the (c, c)-realization of 
the Milnor ring and a trivial (a, c)-ring. 

The A-model for a singularity will have a non-trivial (a, c)-ring given by the 
(a, c) -realization of the Milnor ring and a trivial ( c, c) -ring. 

Notice that in the B-model realization there will only be elements of diagonal 
bi-grading in the ( c, c) -ring and in the A -model there will only be anti-diagonally 
graded (i.e., of bi-grading (q, -q)) elements in the (a, c)-ring. 

1. 7. Constructing G-Frobenius algebras. When one constructs G-Frob-
enius algebras from geometric or algebraic data, the different structures are usually 
introduced one after the other. A good example of this procedure is given by the 
construction of G-Frobenius algebras from isolated singularities with symmetries 
reviewed below in §3. Also, some operations like the duality discussed below are 
given on a certain level of structure. The usual order in which the structures are 
introduced is as follows. 

(1) The G-graded k-module. Usually the first structure to be given for 
any G-Frobenius algebra is its additive structure A := EBgEG A 9 . 

On this level it is also usual to introduce the non-degenerate pairing 
'TJ which pairs A9 with Ar'. 

(2) The G-graded G-module or D(k[G])-module structure. The next 
property which is usually introduced is a G-action on A, usually denoted 
by r.p for a left action (see e.g., [Ka03]) which makes A into a D(k[G])-
module cf. §1.2. 

Further data and conditions: 
(a) Along with the G-action, the function x : G ---+ k* is fixed since 

x can be derived from the G-action via the condition of projective 
self-in variance (axiom ( v)). 

(b) From the projective G-invariance of the metric (axiom (vii)), it fol-
lows that the function x2 has to be a character, i.e., a one-dimensional 
representation. 

(3) The D(k[G])-Ae-bi-module. Usually the untwisted sector Ae is natu-
rally a Frobenius algebra. The next step in constructing a G-Frobenius 
algebra is then the Ae-module structure for each A 9 : Ae (>9 A 9 ---+ A 9 , 

which will be a part of the algebra multiplication. These operations turn 
A into an Ae-module. They are usually already present in the geometry 
by functoriality [Ka04]. The Ae-module structure has to be compatible 
with the G-action so r.p9 (aebh) = r.p9 (ae)r.p9 (bh)· 

The Ae-module structure leads to a second compatibility condition of 
the G-action with the pairing which is given by restriction of the trace 
axiom to the case g = e, c = 1 E Ae. This condition is called the restricted 
trace axiom or condition. This condition effectively relates the dimension 
of the various twisted sectors A9 to the character x and G-action on the 
identity sector: 

XhSTrr.p(h)IAe = STridiAh = sdim(Ah)· 
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Also, the trace axiom puts constraints on the possible G-actions. The 
constraints can be quite effective, but they define the action at most up 
to discrete torsion [Ka02b]. 

( 4) The G-Frobenius algebra. The last step is to introduce the stringy 
multiplications: A 9 ®Ah ---+ A9 h , i.e., the algebra structure. This structure 
has to satisfy all axioms of a GFA. This means it has to be compatible 
with the G-action, the metric, and the full trace axiom. 

1.8. The metric and the grading. When constructing a G-Frobenius alge-
bra in the above fashion, the metric and the grading can be introduced at the end, 
but usually, there is a natural choice in each step, which may be modified in the 
next step. 

1.8.1. The metric. The metric, i.e., non-degenerate even symmetric pairing, 
is usually introduced in step ( 1) and may be re-scaled in step ( 4) by a factor 
to ensure the compatibility of the metric with the multiplication (multiplicative 
invariance of the metric, axiom (vi)). 

1.8.2. The grading. In step (1) first there is usually a grading Q( 1) inherent 
in the definition of each A9 when introducing the metric, which is usually also inher-
ent in the construction. Each of the pairings A 9 ® A 9 -1 ---+ k is usually homogeneous 
of some fixed degree d9 with d9 = d9 -1. 

The first alteration of the grading is a shift of the grading for each A9 by 
~s+(g) := ~(de- d9 ), i.e., the new grading for an element a9 E A9 is Q(2l(a9 ) = 

Q(ll(a9 ) + ~s+(g). This makes the metric homogeneous of degree d :=de on all of 
A. Notice that s+(g) = s+(g- 1 ). 

The second alteration appears in step (2). For physically inspired reasons, one 
often makes an additional shift ~s-(g) depending on g, which has to preserve the 
homogeneity of the metric. This condition then translates to the condition that the 
second shift is anti-symmetric s-(g) = -s-(g-1 ). 

Mathematically this shift is usually postulated in an ad hoc fashion. Never-
theless, its effectiveness in orbifold cohomology [CROO, CR02], for instance, is 
apparent. In the setting of singularities there is an interpretation in terms of the 
monodromy operator. This will be discussed elsewhere [Ka]. 

The final grading for an element a9 E A9 is 
1 1 Q(a9 ) = Q(2l(a9 ) + 2s-(g) = Q( 1)(a9 ) + 2(s+(g) + s-(g)). 

If the G-action of step (2) is induced by a linear G action, there is a standard 
choice for this shift, given by 

DEFINITION 1. 7. The standard grading shift for a G-Frobenius algebra with a 
choice of linear representation p: G---+ GLn(k) is given by 

1 
(1.4) s9 := 2(st +s;) 
with 

(1.5) 
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and 

s; := 2 ~i (tr(log(g))-tr(log(g-1))) ·- 2 ~i (~>.k(g)- ~>.k(g- 1 )) 
1 

= L (~2Ak(g)- 1), 
k:Ak#O 7Tt 

(1.6) 

where the Ak(g) are the logarithms of the eigenvalues of p(g) using the arguments 
in [0,2rr). 

This means that if p(g) = diag(exp(2rrivl), ... , exp(2rrivn)) with 0 S Vk < 1, 
then Ak = 2rrivk. 

REMARK 1.4. Notice that if p(g) = diag(exp(2rriv1(g)), ... ,exp(2rrivn(g))) 
with 0 S vk(g) < 1, then 

( _ 1) {0 if vk(g) = 0 
Vk g = 

1- vk(g) otherwise 

vk(gh) = vk(g) + vk(h)- e((vk(g) + vk(h))- 1), 
where e is the step function 

8(x)={~ ifx;:::: 0 
ifx < 0 

REMARK 1.5. In the case of orbifold cohomology [CROO, CR02], one starts 
with an action of G on the manifold M and induces an action on the tangent 
space M which defines the shifts- via (1.6), and the shift st is defined by d9 := 
dim(Fix(g) eM). For general orbifolds this reasoning is understood locally [CROO, 
CR02]. For global orbifolds the expressions can, however, be understood globally. 

If p(g) = diag(exp(2rri.>.l), ... , exp(2rri.>.n)), then d9 = Euk=O 1 and d- d9 = 
Ek:>.k#O 1, so s9 = Ek:>.k#O 2!-i>.k(g) = L:k Qk. yielding agreement with the defini-
tion (1.4) above and the one of[CROO, CR02] in that particular case. 

Notice that for the last expression of equation (1.6), we can use the branch of 
the logarithm obtained by cutting along [0, oo ). 

1.8.3. The super-grading. As for the grading, usually each A9 comes with 
an intrinsic super-grading. In step (1) one usually allows the freedom to shift the 
super-grading by a Z/2Z-valued function. The restrictions on this function come 
from the existence of an even, non-degenerate, quasi-homogeneous metric and in 
step (3) from the trace axiom. In step (4) there is a condition of the super-grading 
which is derived from the fact that X is a character and the trace condition. 

1.8.4. Bi-grading. 

DEFINITION 1.8. Set 89 := ~(st- s;). Since st = s:_ 1 and s; = -s;_1 , it 

follows that 89 = Sy-1. We define the bi-grading (Q, Q) by 

Q(a9 ) := Q(a9 ) + s9 Q(a9 ) := Q(a9 ) + 89 for a9 E A9 
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REMARK 1.6. This grading is physically motivated [IV90] and basically means 
that the natural bi-degree of the so-called "twist field" is (s9 , 89 ). As mentioned 
previously, without the background of representation theory of the N = 2 super-
conformal algebra, this grading seems ad hoc from a mathematical standpoint. Fur-
thermore, it has an interpretation in terms of a twisted monodromy operator in the 
theory of quasi-homogeneous isolated singularities [Ka]. 

The relevance of diagonally and anti-diagonally graded elements is that only 
elements of this kind should yield invariants under the G-action in the setting of 
the orbifold mirror philosophy when it is applied to construct A- and B-models for 
singularities. The grading condition is thus an internal consistency check on the 
operations used to yield Theorem 4.1 below. 

2. A mirror type transformation 

In the following, we will construct an involution for triples (A, j, x) of D(k[G])-
modules A, elements j of the center of G and characters x E Hom(G, k*). 

In the case of an Euler D(k[G])-module, we take the element j to be the element 
defined by the Euler property. 

We also extend the operation to include a non-degenerate pairing and a hi-
grading. 

This involution induces via restriction a dualization on quasi-Euler D[k[H])-
modules (without pairing) with fixed Eulerization. 

In the case that A is an Euler Frobenius algebra or a quasi-Euler Frobenius 
algebra with a fixed Eulerization, we let Q be the grading operator and j E G, 
such that p(j) = exp(21rQ) = J. In this case the data (A, j, x) is fixed by the 
G-Frobenius algebra and the element j yielding the grading. 

Our operation conjecturally acts as a mirror transformation on the underlying 
Euler G-Frobenius algebras in the sense of the orbifold mirror philosophy, see §2.6. 

The additional hi-grading is conjecturally compatible with interchange of the B-
model-whose non-trivial ring is the (c,c)-ring and is given by the (c,c)-realization 
of the Milnor ring-and the A-model-whose non-trivial (a, c)-ring is given by the 
(a, c)-realization of the Milnor ring-for Landau-Ginzburg theories with respect to 
mirror symmetry. 

In fact, we will prove that the orbifold mirror philosophy is correct in the case 
of the simple singularities An, Dn, E6, E7, Es and yields mirror pairs for the simple 
boundary singularities Bn, F4 in a suitable interpretation. 

REMARK 2.1. The definition of the dual comes from physics [IV90, V89], 
where the dual D(k[G])-module is obtained by using an endofunctor in the category 
of representations of the N = 2 super-conformal algebra which translates in our 
case to an isomorphism of D(k[G])-modules. This endofunctor is generally known 
as spectral flow and has a particular realization discussed below in the case of G-
Probenius algebras. 

2.1. The G-graded k-module structure. 

DEFINITION 2.1. Given aG-graded k-module A and an element j E Z(G), we 
define the dual A to be the G-graded k-module 

(2.1) A9 := A9 j-1, A:= ffi A9 • 

gEG 
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REMARK 2.2. The above formula states that ask-modules A and A are isomor-
phic, it is only their G-grading which has changed. We denote the isomorphism by 
<I>: A---> A, with <I>(A9 ) = A 9 j. 

2.2. The metric. With the help of the map <I>-1 , we can pull back a given 
metric TJ from A to A. We set 

REMARK 2.3. Notice if 'T} is homogeneous with respect to the group degree, i.e., 
pairs A 9 with A 9 -1, then iJ pairs A 9 with A 9 -1 p and thus iJ is not group degree 
homogeneous, but of group degree j 2 as a tensor in A*® A*. 

2.3. The G-action or the D(k[G])-module structure. Given a triple (A, j, 
x) of a D(k[G])-module A, an element j of the center of G, and a character x E 
Hom(G, k*), we define rp := i.p ®k X· This is an action of G on the k-module 
A ®k k ~A and thus on the k-module A. 

We define the G-action <p on A to be the induced action of the action on A by 
rp. That is, for a E A, 

(2.2) <p(h)(a) = x(h)<l>(i.p(h)(<I>- 1 (a))). 

REMARK 2.4. We see that under this action <p(h)(A9 ) C Ahgj-1h-1j = Ahgh-1, 
since we made the assumption that j E Z(G). Thus we obtain a G-action, which 
makes A into a D(k[G]])-module. 

REMARK 2.5. The metric iJ is G-invariant and hence descends to the G-invar-
iants. 

2.4. The hi-grading of the dual. If A was initially graded by the operator 
Q(l) and Q( a9 ) = Q(1) (a9 ) + s9 , then set 89 := s9 j-1 - d and 89 := s9j-1, where we 
recall that dis the degree of the G-Frobenius algebra. We define a hi-grading on A 
by 

(2.3) Q(a) = Q( 1\a) + 89 Q := Q(1l(a) + .§9 for a9 E A9 . 

REMARK 2.6. An Euler G-Frobenius algebra A= (G, A, o, 1, TJ, i.p, x, j) naturally 
gives rise to a triple (A, j, x) and thus determines a dual D(k[G])-module with a 
non-degenerate pairing and a bi-grading. 

REMARK 2.7. The motivation for the dual bi-grading again comes from the 
physical interpretation of GMt as an orbifold Landau-Ginzburg model and the du-
alization being implemented by the spectral flow operator U(l,o) [IV90] which has 
the natural charge (d = c = ~' 0). 

2.4.1. The involution. 

DEFINITION 2.2. We define the dual of a triple (A, j, x) of a D(k[G])-module 
A, an element j of the center of G, and a character X E Hom( G, k*) to be the triple 
(A- ·-1 -1) ,J ,x . 

REMARK 2.8. Notice that the inclusion of the data j and x turns the operation 
on the D(k[G])-module into an involution. 
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2.4.2. The dual of a quasi-Euler D[k[H])-module with given Euleriza-
tion. 

DEFINITION 2.3. We define the dual of a quasi-Euler D[k[H])-module A (or 
H -Fro ben ius algebra) with given Eulerization B to be the restriction of f3 to H. 

A:= resH(B) 

REMARK 2.9. Notice that if j ¢:. H then we cannot pull back the metric, since 
if h E H then the element h - 1 j 2 need not be in H. If, however, for all h E H also 
h - 1 P E H, then we can also pull back the metric. 

2.5. A dual G-Frobenius algebra? We would like to remark that the du-
alizing process is only a process of dualizing for D(k[g])-modules with metric. 

One thing which prevents the resulting structure from being a G-Frobenius 
algebra is that the metric is not G-graded anymore, as remarked above in Remark 
2.3. Also the projective self-invariance might not hold. However, there might be 
choices of G-graded multiplication compatible with the G-action which are in some 
cases unique. 

What is actually expected by physics is that there is a Frobenius algebra struc-
ture on the G-invariants of A with the given metric. It is important to note that 
physics does not say there should be an algebra isomorphism, and in fact the in-
duced multiplication 1> o ci>- 1 will not be G-graded on A unless j = e and the 
grading and dualization are trivial. 

What we can expect is a Frobenius structure on the invariants, plus a lift of 
this :Frobenius structure to the G-graded equivariant level. This will provide some 
additional structure. This motivates the following definition. 

DEFINITION 2.4. A degenerate G-Frobenius algebra A of degree j E Z( G) is 
given by the data (G, A, o, 1, ry, r/, ifJ, x), where (G, A, o, 1, ry, ifJ, x) are the data of 
a G-Frobenius algebra, and ry' is a second pairing on A. These data satisfy the 
conditions of a G-Frobenius algebra with the following changes and additions: 

(1) The non-degenerate paring TJ and the pairing ry' pair A 9 j-1 with A 9 -1j-1. 

(2) TJIAa = TJ~a where A 0 are the G invariants of A. 
(iv)' Multiplicative In variance of the metric ry': 

ry'(a9 , ah oak)= ry'(a9 o ah, ak)· 
( v)' Self-in variance of the twisted sectors 

lfJ9 j-1IA9 = id. 
(vii)' G-invariance of the metric TJ 

I{J;(ry) = TJ· 
(viii)' j twisted trace axiom 

\:lc E A[g,h] and lc left multiplication by c: 
Tr(lcifJhj-11A 9 ) = Tr(I{J9 -1jlciAh). 

CoNJECTURE 2.1. We conjecture that there is a degenerate G-Frobenius algebra 
of degree j on the dual of a G-Euler G-Frobenius algebra. 

In the examples we consider, there is a certain uniqueness in the choice for the 
multiplication. In order to state this precisely we need the following two definitions. 

DEFINITION 2.5. Fix a D(k[G])-, Ae-bi-module A = EB A 9 together with two 
metrics TJ, ry' and a character X satisfying all the axioms pertaining to the metrics 
and the G-actions of a degenerate G-Frobenius algebra of degree j. We call a 
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degenerate G-Frobenius algebra A of degree j maximally non-degenerate if a9 o bh = 
0 in A implies that a9 o' bh = 0 in any other degenerate G-Frobenius algebra A' 
with the same underlying D(k[G])-, Ae-bi-module A'= ffiA9 , two metrics TJ, ry', 
and character X . 

We call a maximally non-degenerate G-Frobenius algebra projectively unique 
if it agrees with all other maximally non-degenerate G-Probenius stmctures when 
projected to Alk*. 

REMARK 2.10. As demonstrated in [Ka02b], twisting by discrete torsion ex-
actly 'realizes the universal (i.e., applicable to all G-Frobenius algebras) projective 
rescalings. This means, vice versa, that A and all its twists by discrete torsion are 
projectively the same. 

2.6. Orbifold mirror philosophy. There is an orbifold mirror philosophy 
which is motivated by physics (e.g., [GP90]) or representation theory which states 
the following 

PHILOSOPHY 2.1. LetT be aN= 2 theory (which for us at the moment means 
Frobenius algebra) and let H C G be symmetry groups with H normal in G, then 

(TIH)H ~ (((TIH)H I(GIH))v)(G/H). 

This is too vague to be called a conjecture, since most of the symbols in the 
statement have no fixed meaning. 

For us TIH will mean the pair consisting of a sub-H-Frobenius algebra of a 
G-Frobenius algebra derived from a Frobenius algebra T which is equipped with 
a G action and its v dual. Setting K = G I H if H is normal, we will interpret 
((TIH)H I(GIH)) to be the pair consisting of a K-Frobenius algebra derived from 
(T I H)H and its v dual. 

In this form we can apply the orbifold mirror philosophy to quasi-homogeneous 
singularities, where if G is Abelian, the operation of forming the quotient is well 
defined, up to fixing an additional finite set of data (a, E, !'),see §3 below. 

It turns out that even for different actions of H and G this orbifold mirror 
philosophy holds true and produces mirror pairs. For the precise correspondences 
derived from the orbifold mirror philosophy in the setting of quasi-homogeneous 
singularities with an isolated critical point at the origin, see §4. 

In order to elucidate the statement, we wish to point out that there is indeed 
an action of GIH on the H invariants of the sub-H-Frobenius algebra of a G-
Frobenius algebra A. For the action to be defined on the restriction resH(A) we 
need the additional assumption that H is normal. Then G acts on resH(A) and 
the subgroup H acts trivially on resH(A)H. Thus there is an induced action of 
GIH on resH(A)H. 

3. Quasi-homogeneous singularities with symmetries 

DEFINITION 3.1. Let f : Cn -----> C be a function which has an isolated singularity 
at zem. A symmetry off is an elementS E GL(n, C), such that f(S(z)) = f(z). 
An isolated singularity with symmetries is a function f : en ----. C which has an 
isolated singularity at zero together with a finite group G and a representation p( G) : 
G ----. GL(n, q such that G acts by symmetries on f, i.e., \:/g E G : g*(f)(z) 
f(p(g)(z)) = f(z). 

We denote by Gmax C GL(n, C) the maximal group of symmetries of f. 

Licensed to Max-Planck Institut fur Mathematik.  Prepared on Fri Jan 22 09:59:53 EST 2016for download from IP 195.37.209.180/130.44.104.100.

License or copyright restrictions may apply to redistribution; see http://www.ams.org/publications/ebooks/terms



SINGULARITIES, G-FROBENIUS ALGEBRAS AND MIRROR SYMMETRY 83 

DEFINITION-PROPOSITION 3.1. For a function f(z) with an isolated singularity 
at zero, we will denote by MJ the Milnor or local ring off, which is given by 0/ Jf, 

where 0 is the ring of germs of holomorphic functions at zero and Jf = ( U;) is 
the Jacobian ideal. This ring together with the Grothendieck residue paring 'f/ is a 
gmded Probenius algebm, see e.g., [AGLV93, M99]. 

3.1. The graded Frobenius algebra of a quasi-homogeneous func-
tion with an isolated singularity at zero. If the function f is also quasi-
homogeneous there is a natural grading operator which assigns to each zi its degree 
of quasi-homogeneity Qi· 

To define the Qi assume that 
J(A.Q1 Z1, .. ·, >,.Qn Zn) =AN f(zb · · ·, Zn) 

with Qi, N EN. Then we set Qi = ~ and define deg(zi) := Qi, which yields a map 
MJ-Q. 

The metric for the resulting Frobenius algebra is given by the element which is 
dual to the identity, and this element is represented by H :=Hess(!), the Hessian 
of f. For a quasi-homogeneous singularity, the degree of the Hessian is the degree 
of the form 'f/ and is denoted by d. By the general theory [AGLV93] a formula for 
dis given by 

d = ~)1- 2qi) 
i 

and the dimension or the Milnor number of the local algebra is 

p, := dim(MJ) = IT ( 2._ - 1). 
i Qi 

3.1.1. Examples. In the following examples, we took the liberty to re-scale 
the Grothendieck residue form, which amounts to multiplying the function f by an 
overall factor. 

(1) The An series: f(z) = zn+1 

MJ = C[z]/(zn) = (1, z, z 2, ... , zn-1) ry(zi, zj) = Oi+j,n-1 

q = n~1' f.1- = n, d = 1 - n!1 = ~:;:~ · 
(2) The Dn series: The Dn+1, n ;?: 3 singularity is given by the function 

f(x, y) = ~xn + xy2 

MJ ~ C[x, y]/(xn- 1 + y2, xy) ~ (1, x, x 2, ... , xn-1, y) 
ry(xi,xj) = 8i+j,n-1 1 'f/(y,y) = -1,ry(xi,y) = 0 

1 n-1 + 1 d n-1 
Qx = Q1 = n' Qy = Q2 = 2n' p, = n ' = --;:;;-. 

(3) The E1 singularity:f(x, y) = ~x 3 + xy3 

MJ = C[x,y]/(x2 +y3 ,xy2) = (1,x,x2,y,y2,xy,x2y) 
ry(xiyj, xky1) = 8i+k,2DJ+l,b ry(y2 , y2) = -1 

1 2 7 d 8 
Qx = Q1 = 3' Qy = Q2 = 9' f.1- = ' = 9 · 

3.1.2. Products. For two functions f and g with an isolated singularity at 
zero, as shown in [Ka99, M99] MJ+g = MJ ® M 9 , even on the level of Frobenius 
manifolds. 
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3.1.3. Stabilization. Notice that adding squares, an operation known as sta-
bilization, to a function with an isolated singularity (f ,___. f + w 2 ) leaves the Mil-
nor ring invariant. This fact, which is well known in singularity theory (see e.g., 
[AGLV93]), can also be seen as follows from the point of view of Frobenius alge-
bras. 

Since the Frobenius algebra of the singularity f(w) = w 2 is given by Mw2 = 
A1 = k and this is the unit in the monoidal category of Frobenius algebras [Ka99], 
we also find that Mf+w2 '=" MJ 0 A1 '=" Mf. 

DEFINITION 3.2. We define Mo := Mw2 = A1. 

REMARK 3.1. All the following definitions and constructions are invariant 
under stabilizations, if one extends the group action by the usual embedding of 
GL(n, C) to GL(n + 1, C). 

3.2. The G-Frobenius algebra for a singularity with symmetry group 
G. We would like to recall from [Ka02, Ka03, Ka04, Ka02a] that for the data 
(!, G, p), as above, there are several natural G-Frobenius algebras, whose underlying 
k-module structure and hi-grading are all the same, but whose D(k[G])-module 
structures are in one-to-one correspondence with twists by discrete torsion and 
whose G-Frobenius structures depend on the choice of a graded compatible cocycle 
for the quantum multiplication. We will review the construction below following 
the steps of § 1. 7. 

3.2.1. The G-graded k-module structure. First we show that for the data 
(!, G, p), as above, there is a naturally associated G-graded Mrmodule. 

Let Fix9 be the fixed point set of g in en, in other words the eigenspace to the 
eigenvalue 1 of p(g). Set f 9 := f1Fix 9 • 

We define 
Ag := Mfg GMJ := EB MJg· 

gEG 

REMARK 3.2. We would like to emphasize the following observations: 

1) Notice Ae = MJ. 
2) Each of the A 9 = MJ9 is, as a local ring of a quasi-homogeneous function 

with an isolated singularity at zero, a Frobenius algebra. We denote the 
metric for the Frobenius algebra A 9 by T/g, its unit by 19 , its degree by d9 , 

and its grading operator by Q 9 . 

The sum of the grading operators Q 9 defines a grading operator Q on 
A. 

3) We furthermore can use the ring structure of the individual MJ9 to define 
a natural l'vf f -module structure by inclusion of function germs. This Ae-
module structure is compatible with the grading [Ka03]. 

In the following examples the multiplication is simply given by: 

Mt X MJ9 ---+ MJ9 :(a, b),___. a1Fix9 b. 

The precise condition for when the Ae -module structure has the form above is 
as follows. Let's suppose g is diagonal in the basis ei : i E I corresponding to 
variables Zi, and let ei : i E h correspond to a basis of Fix(g), and set h := I\ h. 
The ei with i E h form a basis of a complement of the vector space of fixed points. 
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Set Z = (zi: i E h), let J9 = .TJ9 and .Jh = Uz; : i E h) be the respective ideals in 
0. Then the condition is that Jh + Z = J9 + Z. 

REMARK 3.3. All the A 9 are cyclic Ae-modules. In the terminology of [Ka03] 
GMJ is a special G-Frobenius algebra. Notice that the unit 19 is a cyclic generator 
for the Ae -module A 9 . 

3.2.2. The grading. The initial grading operator Q from above plays the role 
of the operator Q(1) of §1.8. The actual grading Q is determined by the degrees of 
the cyclic generators 19 . 

DEFINITION 3.3. We define the grading operator Q on GMJ by 

Q(a9 ) = Q(a) + s9 for a9 = a1 9 , 

with 
1 1 1 1 

Sg = 2(st + s;) = 2(d- dg) + L (27r/'k(g)- 2), 
k:vk#O 

where the >..k(g) are the logarithms of the eigenvalues of g using the branch with 
arguments in [0, 21r), i.e., cut along the positive real axis. 

This means that 

and we call s9 the grading shift. 

3.2.3. Notation. In practice, the choice of logarithms means that in a diag-
onal form p(g) = diag(exp(21riv1(g)), ... , exp(27rivn(9)) and 0 ~Vi~ 1. 

For the element j we have by definition vi(j) = Qi· Also due to choice of 
logarithm, vi(g) = 1- vi(g-1). Lastly, d9 = Li:v;(g)=O 1- 2qi and so 

(3.1) 
1 

2 I: (2- Qi), 
i:v;(g)#O 

(3.2) Sg = L (vi(g)- qi)· 
i:v;(g)#O 

3.2.4. The hi-grading. There is a natural hi-grading for the G-Frobenius 
algebras of the type GMJ which is given by 

(Q, Q)(ag) := (Q(ag) + Sg, Q(ag) + sg) for ag E Ag, 

where we used the notation 89 := ~(st- s;). 
In the notation above 

(3.3) 89 = L (1- vi(g)- Qi) = L (vi(g- 1)- qi) = s9 -1 = d- d9 - s9 . 

i:v;(g)#O 

LEMMA 3.1. An element a9 E A 9 has diagonal grading (q, q) if and only if 
s9 = s9 -1, i.e., s; = 0 or equivalently Li Vi= ~codim(Fix(g)). 

3.2.5. Super-grading. Recall that A9 are all cyclic Ae-modules and the nat-
ural parity for all of Ae is all even. Thus under the assumption that all elements 
of Ae are even, the possible super-gradings for the Mf module GMJ are given by 
maps "-'E Map(G, Z/2Z). Here l 9 =g. Here we use"' both for the grading on A 
and G, which is justified by the equation above. 
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3.2.6. The G-actions. The primary choice for a G-action on GMt would be 
the induced action via pullback. Since G acts on the collection of fixed point set, 
h : Fix9 --t Fixhgh -1, we get a right action 'ljJ on GMt which coincides with the 
notation of [JKK03]. On the other hand, if we take the associated left action ¢, 
we are in line with the definitions of [Ka03]-here ¢(g) := 7/J(g- 1 ). 

From the point of view of constructing GFAs, however, all actions of G which 
preserve the already constructed pieces of the data of a GFA are equally admissible. 
In particular, notice that each A 9 is a cyclic Ae-module and we denote the generator 
by 19 . We find that if G is acting via Ae-module automorphisms, then 

<p(g)1h = <p9,h1ghg-1 for some <fJg,h E k*. 

From the fact that this is indeed an action of G, we obtain a cocycle condition 
on the <pg,h· To be precise, they form a non-Abelian G 2-cocycle with values ink*, 
as defined below. 

DEFINITION 3.4. A non-Abelian G 2-cocycle with values in k* is a map <p : 
G x G --t k* which satisfies 

(3.4) <{Jgh,k = <fJg,hkh-1(/Jh,k, 

where <pg,h := <p(g, h) and 
'Pe,g = <{Jg,e = 1. 

3.2. 7. The super-grading. To define the super-grading we make an addi-
tional assumption. 

Assumption. Keeping the condition that all elements of Ae are even, we 
furthermore postulate that the G-action is an even action. 

This limits the possible super-gradings to functions of C( G) --t 71../271.. where 
C(G) are the conjugacy classes of G. 

3.2.8. The conditions from the trace axiom. As demonstrated in [Ka03], 
if we further demand that the restricted trace axiom holds for the above D(k[G])-
module, this means that the trace axiom holds under the condition [g, h] = e and 
the choice c = 1. Also certain conditions for the character, the super-grading and 
the cocycle <pg,h must hold [Ka03]. These are reviewed below. 

Recall p : G __, G L( n, C) is the linear representation fixed from the beginning. 

3.2.9. The trace axiom, the character and the super-grading. From 
the proof of the Theorem 5.1 [Ka03] we extract the following proposition: 

PROPOSITION 3.2. Let GMt be the D(k[G])-module with the G-action given by 
the cocycle <p9,h, and fix a super-grading"' and a character x E Hom(G, k*), then 
the trace axiom for g = e and arbitrary h is satisfied with respect to "' and x if and 
only if x satisfies 

Xg = ( -1)9( -1)n-dim(Fix9 )det(p(g)). 

REMARK 3.4. Notice that this entails a condition on the super-grading: 
Set 

(3.5) O'(g) := g + n- dim(Fix(g)) mod 2 
and call it the sign of g. Then 

X9 = ( -1)a(g) det(g), 
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and therefore a E Hom(G,Z/2Z). 
Thus the possible super-gradings"' are in 1-1 correspondence with elements a 

ofHom(G,Z/2Z). 

3.2.10. The trace axiom and discrete torsion. 

DEFINITION 3.5. A discrete torsion hi-character for a group G is a map from 
commuting pairs (g, h) E G x G: [g, h] = e to k* with the properties 

(3.6) E(g,h) = E(h-\g) E(g,g) = 1 E(g1g2,h) = E(g1,h)E(g2,h). 

DEFINITION 3.6. A non-Abelian 2-cocycle is said to satisfy the condition of dis-
crete torsion with respect to a given a E Hom( G, Z/2Z) and a linear representation 
p E Hom(G, GL(n)), if for all elements g, hE G: [g, h] = e, 

(3.7) E(g, h):= 'Pg,h( -l)a-(g)a-(h) det(g) det(g-1[Fix(h)) 

is a discrete torsion hi-character. 

REMARK 3.5. Due to the properties of cp as a non-Abelian cocycle, the sec-
ond and third condition of discrete torsion (3.6) are automatically satisfied. If, 
furthermore, /g,h =/= 0, then the first condition reduces to 

det(g) det(g- 1[Fix(h)) det(h) det(h-1[Fix(g)) = 1. 

3.2.11. The action of discrete torsion. In [Ka02b], we analyzed the phe-
nomenon of discrete torsion and showed that the different choices cp can by obtained 
from a fixed D(k[G])-module by tensoring with the twisted group algebra k 01 [G] with 
ex E Z 2 (G, k*). 

The corresponding discrete torsion hi-character to such an ex E Z2 ( G, k*) is 
given by 

[Ka02b]. 

ex(g, h) 
E(g, h)= ( h -l ) exgg ,g 

From the considerations of [Ka02b] one obtains 

LEMMA 3.2. For two choices of non-Abelian cocycles cp and cp', let A( cp) and 
A(cp') be the D(k[G]) modules based on the k-module GMJ, then there is a group 
cocycle ex E Z 2 (G, k*), such that that A(cp') ~ A(cp) ® k01 [G]. 

From the Proof of Theorem 5.1 of [Ka03] we can also extract the following: 

PROPOSITION 3.3. The D(k[G])-module GMt with the G-action given by the 
cocycle 'Pg,h satisfies the super-trace axiom if and only if there is a a E Hom( G, Z/2Z) 
such that 'Pg,h satisfies the condition of discrete torsion with respect to a a E 
Hom(G,Z/2Z) and the linear representation p E Hom(G,GL(n)). 

COROLLARY 3.1. If the group G is Abelian, then specifying a G action by a 
non-Abelian cocycle cp which satisfies the restricted trace axiom for the resulting 
D(k[G])-module is equivalent to specifying a discrete torsion hi-character E(g, h) 
and a group homomorphism a E Hom(G,Z/2Z) 

(3.8) 'Pg,h = E(g, h) ( -1 )a-(g)a-(h) det(g-1) det(g[Fix(h)) 
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3.2.12. The G-Frobenius algebra structures. As explained in [Ka03] and 
[Ka04] there is no fixed preferred G Frobenius structure on the Mt-module above 
in general, but rather a set depending on the choice of a so-called super-sign and a 
two cocycle. The main result of [Ka03] in this respect is 

THEOREM 3.1 ([Ka03]). Given a natural G action on a realization of a Ja-
cobian Probenius algebra (Ae, f) with a quasi-homogeneous function f, let A := 
ffi9 EG A 9 be as defined above, up to an isomorphism of Probenius algebras on the 
A 9 , then the structures of super G-Probenius algebra on A are in 1-1 correspondence 
with triples (a,"(, 'P) where a E Hom(G, Z/2Z), "(is aG-graded, section-independent 
cocycle compatible with the metric satisfying the condition of supergrading with re-
spect to the natural G action, and 'P is a non-Abelian two cocycle with values ink* 
which satisfies the condition of discrete torsion with respect to a and the natural G 
action, such that ( "(, 'P) is a compatible pair. 

In many cases the equations for the cocycles allow one to find a unique mul-
tiplication up to the twist by discrete torsion. We refer the reader to [Ka03] for 
details. 

The cocycle "( is a special type of Ae valued group 2-cocycle which defines 
multiplication on the cyclic generators via 

lg 0 lh := "((g, h)lgh; 

the extra conditions ensure that the extension of this multiplication using the cyclic 
Ae-module structures is well defined. We usually write "(g,h for "((g, h). 

The function a is related to the super-sign as follows. 

(3.9) a(g) := g + IN9 1 mod 2, 
where INgl := codim(Fix(g)) in en. 

Also, 

DEFINITION 3.7. A cocycle"' E Z 2(G,Ae) is said to satisfy the condition of 
supergrading with respect to a given a linear representation p E Hom(G, GL(n)), 
if "(g,h = 0 unless IN hi+ IN91 + IN9hl = 0(2). Here IN91 := codim(Fix(p(g)) is the 
codimension of the fixed point set of g. 

3.2.13. The metric. The metric is constructed in two steps. 
In the first step the metric is constructed from the metrics on the individual 

Frobenius algebras A9 := Mt9 • First notice that since Fix(g) = Fix(g-1 ), we have 
A 9 = A 9 -1. Now A 9 has a non-degenerate pairing ry9 which we wish to view as a 
pairing A9 18) A9 -1 ---> k. We set 

.,, := EB 'T/g E A* 18) A*. 
gEG 

In order to ensure the compatibility of the metric with the multiplication and the 
twisted commutativity "'g,g-' = ( -l)Ytp9 ,9 -q9 -',g we need to rescale the metric: 

., := ffi(( -1)9xg)lf2'T/g· 
gEG 

For a discussion of the choice of the square root we refer to [Ka03]. 
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3.3. The metric on the invariants. As shown in [Ka03] the G-invariants 
will be a Frobenius algebra with respect to the metric fJ if and only if x(g) = ±1. 

REMARK 3.6. In physics terms, this means that the spectral flow operatorU(l,l) 
survives in the projection. 

3.4. The dual of a quasi-Euler G-Frobenius algebra for a quasi-homo-
geneous singularity with symmetries. 

3.4.1. The grading operator and the Euler condition. Any non-trivial 
Frobenius algebra MJ stemming from a quasi-homogeneous singularity has a non-
trivial grading operator Q as discussed above, and 

J := exp(27riQ) = diag( exp(27riql), ... , exp(27riqn)) 

generates a non-trivial finite cyclic group (J) C GL(n) of order ord(J), the order of 
J. Moreover, fixing J as the generator we can identify this group with 7Ljord(J)7L 
with a fixed generator j acting via p(j) = J. 

REMARK 3.7. This means that Gmax is non-trivial. Since any symmetry has 
to preserve the grading j, it is in the center of Gmax and thus any of the Gmax 
Frobenius algebras constructed in §3.2 will be Euler. This will also be true for any 
subgroup H C Gmax which contains (J). 

LEMMA 3.3. If for all g: E(g,T 1 )( -1)"'(g)(O'(J)+l) = 1, then the corresponding 
G-Frobenius algebras of §3.2 will be G-Euler. This is, for instance, the case if 
'\IE(g, j) = 1 and CT(j) = 1 orO" = 0. 

PROOF. 

I.Ph-'J,h = E(hj, h)( -1)a(h-'J)a(h) exp(27ri L (vi- qi)) = exp(27ris9 ) 

i:v,#O 

0 

Assumption: We will assume that in the data (!, G, p), ( J) C p( G), when 
considering duals on the level of D(k[G])-modules. Going to the algebra level we 
postulate that the G-Frobenius algebra structures above are Euler or quasi-Euler 
with fixed Eulerization. 

REMARK 3.8. The assumption above holds for Gmax, so if it does not hold for a 
subgroup H C Gmax, then if we are in a quasi-Euler case with fixed Eulerization, we 
can enlarge H to Gmax and perform the dualization for the Gmax-Frobenius algebra 
and then reduce to the H -Frobenius sub-algebra or the respective D(k[H])-module. 

3.4.2. The dual k-module. Given the G-Frobenius algebra GM1, its dual 
k-module is defined as 

A9 = A · _, = M 11 9J Fix(gj-1)' 

where j is the group element defining the exponential of the grading operator Q 
via p(j) = exp(21riQ). 
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3.4.3. The dual D(k[G])-module. The G-module structure is given by pul-
ling back the action and scaling by X· In the case of a singularity the charac-
ter x is determined by a choice of sign function a E Hom( G, Z/2Z) given by 
x (g) = ( -1) CT(g) det (g). If we denote the G-action on A by cp, then using the 
k-module isomorphism M: A9 -+ A9j-1 

cp(g)(ah) := x(g)Mcp(g)M- 1 (ah) E Ah9 h-1, for ah E A9 ; 

or if we denote M(a) =:a and fix a E Hom(G,Z/2Z), then for a E Ah 

cp(g)(a) := ( -l)CT(g) det(g)(cp(g)(a)) E A9 hg-l. 

Using equation (3.8) for ah = M(a1hi-1) c Ah 

cp(g)(ah) 

(3.10) 

cp(g)M(a1hj-1) 

E(g, hF1) ( -1 )CT(g)(<T(h)+<T(j)+l) det(gjFix(hj-1) )M( a1ghg-1 j-1 ). 

REMARK 3.9. Ifdet(g) = (-1)CT(g), thenx is trivial. This means that the dual 
and the G-Frobenius algebra have the same invariants. 

LEMMA 3.4. ie is invariant if and only if GMt is G-Euler. 

PROOF. Since Fix(j) = 0, as f can be chosen to contain no linear terms (the 
linear terms would actually only add Eigenspaces of Eigenvalue one), the condition 

cp(g)(Ie) = ie 
reads 

(3.11) 

This is precisely the condition to be G-Euler of Lemma 3.3. 0 

COROLLARY 3.2. Unless 'Vg E G : E(g,F1 )( -1)CT(g)(<T(j)+l) det(gJFix(j)) = 1, 
there is no Frobenius structure on the G invariants of (GMt) v for GMt with these 
invariants. 

PROOF. Without this condition there will be no invariant unit for the (a, c)-ring 
since for non-trivial grading ie is the only element of hi-degree (0, 0). 0 

Assumption: Due to the content of the lemma, we will only consider taking 
the invariants of the dual of a fixed D(k[G])-module structure on GMt if it is 
G-Euler. 

3.4.4. The hi-grading for the dual. The hi-grading for the dual is given 
by the general formula (2.3) 

Q(a) = Q(a) + 89 Q := Q(a9 ) + :§9 for a9 E A9 . 

In the notation of 3.2.3 this reads as 
89 := s9 j-1- d = Ei:vi(gj-1)#0(vi(g) + (1- qi)- 8(vi(g)- qi)- Ei 1- 2qi 
and Sg := Bgj-1 = Ei:vi(gj-1)#0(1- (vi(g) + (1- qi)- e(vi(g)- qi)- qi) and thus 

(3.12) sg L: (vi(g)- e(vi(g)- qi))- dgj-1 
l/i(gj-1)#0 

(3.13) sg L: e(vi(g)- qi)- vi(g). 
l/i(gj- 1)#0 
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REMARK 3.10. An element in A9 has anti-diagonal grading ( -q, q) if and only 
if Q(a9 ) = ~d 9 j-1 

3.4.5. The metric. The metric is as in the general case the pulled back met-
ric. It will have group degree j 2 and will be homogeneous of bi-degree ( -d, d). 

3.4.6. The degenerate G-Frobenius structure. As remarked previously, 
for the dual D(k[G])-module one cannot expect a G-Frobenius structure, but what 
we called a degenerate G-Frobenius algebra of group degree j, which induces a 
C( G) graded Frobenius structure on the invariants, in the sense of [JKK03]. 

3.5. Mirror symmetry for singularities. In the framework of mirror sym-
metry a quasi-homogeneous function f with an isolated singularity is considered as 
a Landau-Ginzburg B-Model and hence has, as a (c, c) ring the (c, c) realization of 
Mf, and has a trivial (a, c) ring A1 . 

DEFINITION 3.8. We call a G-Euler G-Frobenius algebra A, together with a 
degenerate G-Frobenius algebra of degree j on A, a model for the mirror dual of a 
singularity Mt if the G invariants of A are spanned by 1 E A and the G-invariants 
of A are the (a, c)-realization. We also just say in short (A) 0 is the mirror dual to 

Mt. 
We call a pair consisting of a G-Euler G-Frobenius algebra A and an H -Euler 

H- Frobenius algebra B, together with a degenerate G-Fro ben ius algebra of degree j 
on A and a degenerate H-Frobenius algebra of degree j' on B, a mirror dual pair 
if (i) A 0 = (B)H and (ii} (A) 0 = BH. In short, we say A and B are mirror dual. 

Constructions for mirror pairs come from the orbifold mirror philosophy. 

4. A mirror theorem for simple singularities and other examples 

In this section, we calculate the orbifolds and duals in several examples. We 
will consider the first example in the greatest detail and then leave slightly more 
details to the reader as we continue to make the text more concise. 

The main result of this is the following theorem, whose proof follows from the 
calculations below which are collected in Table 1. 

REMARK 4.1. In order to explain all the entries in Tables 1 and 2, we recall that 
according to [Du96] for a given Coxeter group W from the list An, Bn, Dn, E6, E7, 
E 8 , H3 , H4 , F4 , G2 and h(k), there is a definition for an associated Frobenius man-
ifold. We denote by W the Frobenius algebra for the corresponding Coxeter group. 

THEOREM 4.1. Let f be one of the simple singularities An, Dn, E6, E7 and 
E 8 or a Pham singularity with coprime powers, let J be the exponential grading 
operator and r := (j) with p(j) = J. Then there is a projectively unique, maximally 
non-degenerate, degenerate r-Frobenius algebra structure of degree j on (r M f) v. 
Moreover the invariants of the r -Frobenius algebra r Mt are one-dimensional and 
yield the Frobenius algebra A1 , while the invariants of the (r Mt t are isomorphic 

as a bi-graded Frobenius algebra to Mja,c). 
In short, the A, D, and E singularities are mirror self dual, in the sense that 

( (r M 9 ) v )r is the mirror dual. 

It would be tempting to conjecture that if r is the group generated by the 
grading operator, then ( (r M 1) v)r is the mirror dual. This is, however, not true 
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MJ restriction G u GMf ((GMJ)v)G 

An Z/(n + 1)Z 0 A1 An 

A2n-1 Z/(n + 1)Z 1 A1 Bn 

A2n-1 Z/2Z 0 Bn /2(4) 
A2n-1 n odd for dual Z/2Z 1 Dn+1 A1 
A2n-1 Z/nZ 0 /2(4) Bn 

Dn+1 Z/(2nZ) 0 A1 A2n-1 
Dn+1 n even Z/(2nZ) 1 A1 Dn+1 

Dn+1 n odd Z/nZ 0 A1 Dn+1 

Dn+1 n even Z/nZ 0 h(4) Bn 

Dn+1 Z/2Z 0 Bn h(4) 
Dn+1 n odd for dual Z/2Z 1 A2n-1 h(4) 

Ak1-1 ® .. . Akn-1 k; coprime Z/k1Z x ... Z/knZ 0 A1 Ak1-1 ® · · .Akn-1 
E6 Z/3Z x Z/4Z 0 A1 E6 
E7 Z/9Z 0 A1 E7 
Es Z/3Z x Z/5Z 0 A1 Es 

TABLE 1. Since all groups are cyclic, and E = 0, Hom(G, Z/2Z) = 
e or Hom(G, Z/2Z) = Z/2Z, defining the entry in the column a. 
The conditions for the duals are the conditions to be quasi-Euler. 

as the example of the elliptic singularity P8 or a Pham singularity of non-coprime 
exponents such as xg + · · · + x~ below shows. One obstruction is that r MJ is more 
than one-dimensional. IfrMJ ~ A1 we would, however, expect that ((rMJ)v)r is 
the dual. 

CONJECTURE 4.1. For an isolated singularity f, let r be the group generated 
by the exponential grading operator J. Ifr MJ ~ A1 , then ((r M 1 )v)r is the mirror 
dual. 

Also, from the explicit calculations below, we obtain the following. 

THEOREM 4.2. The orbifold mirror philosophy produces mirror pairs for the 
self-dual cases listed in Table 1, with the group G = r being the group generated by 
the exponential grading operator and H = e. 

The orbifold mirror philosophy holds exactly for the case ofT = A2n-1, G = 
Z/(2nZ), H = Z/2Z, with n odd, and the choice of a = 1 for Z/(2nZ) which 
restricts to a= 1 for Z/2Z and a= 0 for G/H = Z/nZ. 

PROOF. The first statement follows from Theorem 4.1. For the second state-
ment, first notice using Table 1 that indeed with the indicated choice of a for n 
odd, the pair ((T/H)H, ((T/H)v)H) is given by (Dn+ 1 ,Al). Furthermore, using 
the description of the action of G = Z/(2nZ) on A2n-1 of §4.3, we see that the 
induced action of G / H = Z/nZ on the H invariants given by Dn is exactly given 
by the action of Z/nZ used in §4.8. Thus again using Table 1, we obtain that 
the pair (T/H)H j(G/H)) 0 fH, ((T/H)H /(G/H))t) 0 1H is indeed the mirror dual 
(A1, Dn+l)· 

0 

4.1. Orbifold mirror philosophy for self-dual theories. We would like 
to extend our orbifold mirror philosophy to include some of the cases involving 
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T G H K=G/H ( (TjH)H, ) 
((TjH)v)H 

CT/H)j(K))K, J 
(((TjH)jK)v)K) 

A2n-l Z/(2nZ) Z/2Z ZjnZ (Dn+l, Al) (A1, Dn+l) 
n odd 
A2n-l Z/(2nZ) Z/2Z ZjnZ (Bn,h(4)) (h(4), Bn) 

Dn+l Z/(2nZ) Z/2Z ZjnZ (En, h(4)) (h( 4), Bn) 
n even 

E6 Z/3Z x Z/4Z ex Z/2Z Z/3Z x Z/2Z (hh(4)) (h(4),F4) 
TABLE 2. Mirror pairs from orbifold mirror philosophy 

Coxeter groups which are not simply laced. This requires some new definitions, 
since so far we have only defined how to construct a G-Frobenius algebra based on 
singularities. 

We call a theory T with symmetries G self-dual if T ~ ((TIG)v)c, and for 
these theories we generalize the orbifold mirror philosophy in the following way. 

PHILOSOPHY 4.1. Given a self-dual theory T with symmetries G and subgroups 
H, K of G such that G I H ~ K there should be actions of H and K such that there 
is an isomorphism 

(TIH)H ~ ((TIKt)K. 

This means that in the orbifold mirror philosophy we should substitute T I K 
for (T I H)H I ( G I H). In view of the self-duality condition, the orbifold mirror phi-
losophy 4.1 amounts to a type of associativity for successive quotients, namely 

"(((TIG) 0 )1H)H ~ (TI(GIH)) 0 1H = (TIK)K". 
Here we put quotation marks around the equation to indicate that unless suitably 
interpreted, this is not a mathematically strict statement, but rather a background 
philosophy. 

Nevertheless, using the extended orbifold mirror philosophy 4.1 together with 
the calculations listed in Table 1 and the forming of tensor products (see §4.6.3) we 
obtain 

THEOREM 4.3. The extended orbifold mirror philosophy holds for the entries 
in Table 2 and produces the additional mirror pairs ((Bn,h(4)),(I2 (4),Bn)) and 
( (F4, h( 4) ), (h( 4), F4)). 

4.2. Boundary singularities. Another approach to the entries of Table 2 
is to interpret the orbifold mirror philosophy in the setting of boundary singular-
ities. This requires some new definitions, since so far we have only defined how 
to construct a G-Frobenius algebra based on singularities and on the boundary 
singularities. 

Recall that a boundary singularity is a function f : cn+l ----+ C which has an 
isolated singularity at zero, and if x is the first coordinate, the restriction of f to 
the hypersurface x = 0 is again a function with an isolated singularity at zero. 

Like for singularities, there is a classification of boundary singularities [AGV85, 
AGV88]. The simple boundary singularities are 

Licensed to Max-Planck Institut fur Mathematik.  Prepared on Fri Jan 22 09:59:53 EST 2016for download from IP 195.37.209.180/130.44.104.100.

License or copyright restrictions may apply to redistribution; see http://www.ams.org/publications/ebooks/terms



94 RALPH M. KAUFMANN 

Bn: f(x,y)=xn+y2. 
Cn: f(x, y) = xy + yn. 
F4 : f ( x, y) = x 2 + y3 . 

The role of the Milnor ring is played by M(f,x) = Ocn+ll(xfx, fy 11 ... fyJ, 
where x, Y1, ... , Yn are the coordinates of Cn+l. Again a quasi-homogeneity of f 
also determines a grading of M(f,x), and there is again a pairing making M(f,x) into 
a (graded) Frobenius algebra. 

REMARK 4.2. From the point of view of the Frobenius algebras, the cases Bn 
and Cn coincide. The difference is subtle and manifests itself only in the inter-
section pairing on the cohomology [A78, AGV85, AGV88]. Also, there is an 
identification B2 = C2. 

To study the geometry of a boundary singularity one passes to the two-sheeted 
ramified cover of cn+l with ramification on the boundary X = 0. One then lifts 
f to j [AGV85, AGV88], which we will call the ambient singularity. In other 
words, one studies }(x, fJ1, ... fln) = f(x2, fJ1, ... Yn)· 

For the simple boundary singularities the lifts are 
Bn : }(x, y) = x 2n + y2 and the ambient singularity is A2n-l· 

Cn : f(x, y) = x 2y + yn and the ambient singularity is Dn+l· 
F4 : f(x, y) = x 4 + y3 and the ambient singularity is E 6 . 

In order to deal with orbifolding of the mentioned boundary singularities, we 
will adopt either one of the following conventions. 

CONVENTION 4.1. Given a group K acting by symmetries on a boundary sin-
gularity T, we will take Tl K to mean a pair consisting of a K-Frobenius algebra 
together with its V dual for 9- lift of the action K to the ambient singularity. 

CONVENTION 4.2. Given a group K acting by symmetries on a boundary sin------gularity T, let T I K be a K-Proben ius algebra together with its V dual obtained by 

forgetting the boundary structure. If (fjR) K is given by a singularity which is again 
a boundary singularity, we will take (T I K)K to mean that boundary singularity. 

REMARK 4.3. Both the conventions are legitimate in terms of unfoldings of sin-
gularities and of boundary singularities with symmetries as we will show elsewhere 
[Ka]. 

THEOREM 4.4. With either one of the Conventions 4.1 or 4.2, we obtain mirror 
pairs from the orbifold mirror philosophy for the cases involving boundary singular-
ities listed in Table 2. 

PROOF. First notice that the last case involving F4 follows from the previous 
ones by using the tensor product, see §4.6.3. 

For Convention 4.1 we remark that we obtain the boundary singularity of the 
invariants by substituting x = z2 in the case of An+l . The induced action on the 
invariants generated by x = z2 is according to §4.3 by multiplication by (~, which 
lifts to the action of ZlnZ on A2n-1 as indicated in Table 1. In the case of Dn+l the 
substitution to obtain the boundary singularity is z1 = y2 and z2 = x. According 
to §4.7 the induced action of K = ZlnZ on z2 = x which generates the invariants 
is by(~, which again lifts to the action of ZlnZ discussed in Table 1. 

Lastly, for Convention 4.2, we see that indeed the invariants are given by the 
boundary singularity Bn. Forgetting the boundary structure leads to treating Bn as 
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An-l· Now the claims again follow by inspection of Table 1 and noticing vice-versa 
that treating An-l as a boundary singularity results in the boundary singularity 
Bn. D 

REMARK 4.4. The connection between the boundary singularities and the Cox-
eter groups is as follows. After making the identifications of Remark 4.2, the 
Probenius algebras from the boundary singularities Bn, Cn and F4 coincide with 
the Probenius algebras coming from Coxeter groups [Du96]. Notice that in this 
notation B2 = C2 = I2(4). 

REMARK 4.5. In the third line we would expect the boundary singularity Cn from 
the point of view of the ambient singularity. In terms of the Probenius algebras Bn 
and Cn are of course the same. This distinction can only be made by inspecting the 
intersection form which we plan to do in [Ka]. 

REMARK 4.6. It is interesting to note that for Bn in either of its usual descrip-
tions of folding, A2n-l or Dn+l, we obtain a non-trivial (a, c)-ring, which is I2(4). 
The same holds true for F4. This feature seems to distinguish Bn and F4 as simple 
boundary singularities. 

4.3. The case of An. The An singularity is given by the function f := xn+l. 
The maximal symmetry group is given by G :~ Gmax = Z/(n + 1)Z. Set (n+l := 
exp(2rrin~ 1 ). The exponential grading operator is J = (n+lid and G = (j) with 
p(j) = J. 

4.3.1. The G-graded k-module GMt· Since 

p· { C if i = 0 
ZXji = 0 otherwise, 

as k-modules Mt = An and Mtlo = k = A1, where Ak denotes the Frobenius 
algebra of the Ak singularity. 

The k-module GMt is given by 

n {A i = 0 
GMt==E9MtiP Mti;:= An

1 
, GMt=AnE9AlE9···E9Al. 

i=O i = 1, ... , n 

We denote the generator of the ji twisted sector Mti; by 1j; and have the repre-
sentation 

4.3.2. The grading. The grading is determined by the shifts 

{ 0 
s+ = 
j' n-1 

n+l 
Thus 

if i = 0 {0 if i = 0 
ifi E {1, ... ,n}' sj; = 2 i~~1 1 ifi E {1, ... ,n}. 

if i = 0 
if i # 0. 
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4.3.3. The super-grading. The choices of super-gradings - are determined 
by a choice of a E Hom(Z/(n + 1)Z,Z/2Z) by 

19 = IN9 1 + a(g), 

where 

if i = 0 
if 1 :::; i :::; n. 

Now if n =2m is even, Hom(Z/(2m + 1)Z, Z/2Z) = e, so aV) = 0. 
If n =2m -1 is odd, Hom(Z/(2m)Z, Z/2Z) = Z/2Z, and there are two choices 

for a: either a(ji) = 0 or aV) = i mod 2. 
Let us fix a E Hom(Z/(n + 1)Z,Z/2Z). 

4.3.4. The hi-grading. 

- { (0, 0) 
(Q,Q)(1ji)= (i-1 n-i) 

n+1'n+1 

fori= 0 
otherwise 

REMARK 4. 7. The elements with a ( q, q) -grading are the elements 
1, z, ... , zn- 1 E Ae, and additionally 1.!!.±..! in the case that n =2m- 1 is odd. The 

2 

latter element is not invariant under the whole group Z/(2m)Z, but is invariant 
under the subgroup Z/2Z, see below. 

4.3.5. The G-action. We have already fixed a E Hom(Z/(n + 1)Z, Z/2Z). 
Since Z/(n + 1)Z is Abelian, its action is determined by a choice of discrete 

torsion E by the trace axiom 

E(g, h):= ({!g,h( -1)a(g)a(h} det(g) det(g- 1 IFix(h}); 

now since E(ji,jk) = E(j,j)ik = 1ik = 1, we find that E = 1, and this implies that 

if k = 0 
ifkE{l, ... ,n}. 

4.3.6. The metric. After the necessary re-scaling, the metric is given by 
i k i 1/2 ry(z , Z ) = b"i+k,n-1 ry(1j', 1jk) = b"i+k,n+l ( -( ) . 

4.3.7. The G-Frobenius structure. Using Theorem 3.1, we have to find a 
cocycle 'Y compatible with the action defined by if! above and the grading. 

From the general considerations we know 'YJ',Jn-1-i E Ae and deg('Yj',Jn-1-i) = 
d- d1, = ~+~,which yields 

'YJ',jn-1-i = (-(i) 112zn -lfori-!=- 0 
for the other values of "f, which has been partially defined above. Notice that 
deg(11,) + deg(11k) = i~~J: 2 , while deg(1j<+1) = it~J: 1 if i + k -!=- n + 1, but there 
is no element of degree n~ 1 in A1,+k for i + k -!=- n + 1, so that the respective 
multiplication must yield zero if the condition is not met. 

Hence 
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4.3.8. The G-invariants. Regardless of the choice of a, the only invariant of 
(Z/(n + l)Z)Mzn+l is the identity 1 E Ae. 

PROPOSITION 4.1. The Zj(n + 1)Z invariants of the D(k[G])-module (Zj(n + 
1)Z)Mzn+' are spanned by 1 E Ae, and thus any Z/(n+ 1)Z-Frobenius algebra built 
on Z/ ( n + 1 )ZMzn+l has as its invariants the Frobenius algebra A1 . 

REMARK 4.8. This is the expected result since the dual of (An, Ar) is (A1, An) 
according to [V89, IV90]. 

4.3.9. The dual G-graded k-module. The dual G-graded k-module 

EB 
gEZ/(n+l)Z 

is given by 

i E {0, ... , n- 1} 

i = n 

REMARK 4.9. Notice that it is convenient to choose the generator j-1 for the 
group Z/(n + l)Z instead of j. 

4.3.10. The dual D(k[G])-module. The G-action on the Mt -k is given by 
J 

. {( -l)"W'l(-i fork= n = -1 (n + 1) 
'Pj-i,j-k = 'Pj-i,j-<k+'lx(j-') = (-1)""(j-i)(a(r<k+'l)+l) otherwise. 

4.3.11. The hi-grading. The bi-grading is given by 

(Q,Q)(ij-k)={ (=~~~,n~ 1 ) kE{~1, ... ,n-1} 
( n+l'O) fork- n. 

PROPOSITION 4.2. In the case that a= 0 the Z/(n+1)Z-invariants of ((Z/(n+ 
1 )Z)Mzn+l) v = ( (Z/ ( n + 1 )Z)Ant form the linear subspace 

(ie, · · ·, lj-(n-1)). 
This subspace is isomorphic as a graded k-module to An. 

In the case that n 2m- 1 is odd and a(ji) = i mod 2 the Z/(n + 1)Z 
invariant subspace is 

(le, lj-2, ... , lj-2=). 
This subspace is isomorphic as a graded k-module to the (a, c)-realization of the 
sub-k-module Bm C A2m-1· 

4.3.12. The metric on the dual D(k[G]) algebra. The metric is, after 
re-scaling the generators by a non-zero factor, given by the formulas 

i](1j-,,1j-k) Ji+k,n-1 for i,j E {O, ... ,n-1} 

i](zi1j-n' zk1j-n) 

i](1j-i' zk1j-n) 

Ji+k,n-1 

i](zk1j-n, 1j-i) = 0 fori E {0, ... ,n -1}. 
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4.3.13. The degenerate G-Frobenius algebra structure. There is a mul-
tiplication compatible with the bi-grading. It is unique up to scaling of the gener-
ators and is given by 

( 4.1) { 0
1j-<Hk) if i + k:::; n- 1 

if i + k ~ n 

(4.2) 0 for i E { 0, ... , n - 1} 

(4.3) n-1-if n-1-kf Z j-nZ j-n 

The following statement is straightforward. 

if i + k:::; n- 1 
if i + k ~ n. 

LEMMA 4.1. This multiplication renders the metric i7 invariant, i.e., it satisfies 
i/( a, be) = i/( a, be). Furthermore, i7 is the projectively unique non-degenerate pair-
ing compatible with the bi-grading, and the above multiplication is the projectively 
unique maximally non-degenerate multiplication rendering the metric invariant. 

REMARK 4.10. The multiplication above is not compatible with the grading and 
group grading. But changing the equation (4.3) to 

(4.4) n-l-i1- n-1-k1- _ 0 
Z j-nZ j-n -

yields a multiplication that is (a) compatible with the bi-grading (b) compatible 
with the group grading and (c) compatible with the G-module structure and thus is 
compatible with the D(k[G])-module. This multiplication does not, however, render 
the pairing i7 invariant. 

LEMMA 4.2. The multiplication of Remark 4.10 is the projectively unique max-
imally non-degenerate multiplication which is compatible with the D(k[G])-module 
structure; in other words, the multiplication turns the D(k[G])-module into a D(k[G])-
module and co-module algebra. 

REMARK 4.11. The metric i/ 1 given by 

il'(a, b):= {'f/
0
-(a, b) for a E A1-i, bE A1-k 

otherwise 

i,kE{O, ... ,n-1} 

is invariant with respect to the multiplication of Remark 4.1 0. 

REMARK 4.12. The multiplication of Remark 4.10 together with the metric of 
Remark 4.11, which contains degenerate elements and has a non- trivial annihilator 
of the whole algebra, is reminiscent of the appearance of so-called Ramond sectors 
in the theory of spin-curves [JKVOl, PVOl, P02]. For a discussion, see §5.1 
below. 

Collecting the results from above yields 

PROPOSITION 4.3. In the case CJ = 0, the dual ((Z/(n + 1)7L)Mzn+l)v = 
((Z/(n + 1)7L)An)v together with the multiplication of Remark 4.10 and the metric 
of Remark 4.11 forms a degenerate G-Frobenius algebra of charge j which is a pro-
jectively unique maximally non-degenerate algebra. The Frobenius algebra given by 
the invariants with the grading Q is isomorphic to An as graded Probenius algebras. 

As bi-graded Frobenius algebras, the invariants of the dual are the (a, c)-real-
ization of An: (Z/(n + 1)ZAn)vyic/(n+l)Z = A~a,c). 
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In this sense, ((Z/(n+ 1)ZAn)vrl/(n+1)z =An is the mirror and An is mirror 
self-dual. 

In the case n = 2m- 1 and a(ji) = i mod 2 the dual (Z/(n + 1)ZAn)v 
together with the multiplication of Remark 4.10 and the metric of Remark 4.11 
forms a degenerate G-Frobenius algebra of degree j which is the projectively unique 
maximally non-degenerate algebra. This Frobenius algebra of the group invariants is 
isomorphic to the Frobenius sub-algebra Bm C An as graded Frobenius algebras. In 
terms of the bi-grading, the invariants of the dual of Z/(n + 1)ZAn with non-trivial 
a are B~,c). 

4.4. The case of A2n-1 with a Z/2Z action. In the case of A2n-1, we can 
restrict ourselves to the action of the subgroup Z/2Z c Z/(2nZ), generated by 
jn = -1 which acts on z by z ~----+ -z. 

We now consider the singularity A2n-1 with the group of symmetries Z/2Z. 

4.4.1. The G-Frobenius algebras. The data of the hi-graded D(k[G])-mod-
ule can be read off by restricting the data of 4.3. 

There is a unique twisted sector for the element jn and the algebra 

MJ = A2n-1, MJ_ 1 = A1 = k (Z/2Z)Mz2n = A2n-1 EB k. 

The G action is again determined by the fact that Z/2Z is cyclic, forcing E = 1 
and a choice of a E Hom(Z/2Z, Z/2Z) 

rn = (-1)a(-1)+1 T-1,-1 • 
The hi-grading is given by 

n-1 n-1 
s+1 - -- s=1 = 0, s-1 = s-1 = --. - - n ' 2n 

The super-grading is given by L 1 =a( -1) mod 2. 
The metric is 

i k . . 
ry(z , z ) = 8i+k,2n-2, ry(l-1, Ll) = 1, ry(z', Ll) = ry(L1, z') = 0. 

Taking into account the results of [Ka03, Ka04], there is a unique Z/2Z-
Frobenius algebra structure with the multiplication 

zi o zk = zi+k for i + k :S 2n- 2, zi o zk = 0 for i + k > 2n - 2 
i 1 > 1 1 1 2n-2 Z 0 -1 = Ui,O -1, -1 0 -1 = Z • 

This multiplication and the metric are compatible with the hi-grading and yield 
a Z/2Z Frobenius algebra for both choices of a. 

Notice that since det(g) = ±1 the metric will make the invariants into a Frobe-
nius algebra. 

In the case of a(jn) = 1 mod 2 we obtain as invariants 
(1 2 2(n-1) 1 ) 

'Z ',., Z , jn , 

The hi-grading of the invariants is diagonal and given by 

(( _!_ _!_) (n-1 n-1) (n-1 n-1)) 
n ' n ' · · · ' n ' n ' 2n ' 2n · 

In the case a(jn) = 0 the space of invariants is 
(1, z2, . .. z2(n-1)) 
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and the multiplication, the metric, and the hi-grading are the restrictions of the 
ones above. 

PROPOSITION 4.4. In total we obtain 

(1) The Z/27L invariants of (Z/2Z)Mz2n-2 with the choice a(jn) = 1 mod 2 
are isomorphic as a bi-graded Frobenius algebra to the ( c, c) -realization of 
Jvfxn+xy2 = Dn. 

(2) The 7L/2Z invariants of Zj27LMz2n-2 with the choice a(jn) = 0 mod 2 
are isomorphic as a bi-graded Frobenius algebra to B~c,c). 

REMARK 4.13. The result above, in which the invariants of the untwisted sector 
of A 2n- 1 yield Bn, is an instance of what is called folding (see [Z98] and §5.3 below). 

4.4.2. The dual D(k[G])-module. For the dual, we obtain two sectors 

NJJe = 'f>(Mj -1) ~ A1, 
J 

The dual hi-grading is given by 

REMARK 4.14. In the case that a = 0 or the case that n is odd and a(j) = 
a( -1) = -1, the action is the restriction of the Euler G-Frobenius algebra of §4.3, 
and is thus quasi-Euler. 

In both these cases the dual action is defined and is given by 

if'-1,1 = (-1)cr(-1)(cr(j)+1) = 1, if'-1,-1 = (-1f(-1)(cr(-1)+cr(j)+1) = (-lf(-1). 

Since (A2n_ 1 , Z/2Z) is not Euler, but only quasi-Euler, we cannot pull back 
the metric, but due to the grading there is projectively only one compatible homo-
geneous metric. 

PROPOSITION 4.5. Projectively there is a Frobenius algebra structure on the 
duals compatible with the group grading. This Frobenius algebra structure is iso-
morphic, as a bi-graded Frobenius algebra, to the (a, c) -realization of the algebra 
h ( 4). In the case that a = 0 the invariants are h ( 4), and in the case that n is odd 
and a( -1) = -1 the invariants are A 1 . 

4.5. The case of A 2n- 1 with symmetry group Z/nZ. In the case of A2n-1, 
we can also consider the symmetry group Z/nZ c Z/(2nZ) which is generated by 
j2. 

Again the group is cyclic and E = 1. In the case that n is even, there is only one 
possible choice of a = 0. In the case that n is odd, there are two possible choices 
a = 0 or a(j 2k) = k. The latter choice is not quasi-Euler, however. 

4.5.1. The G-Frobenius algebras. The invariants can be read off from §4.3. 
For a = 0 or for a(j2k) = k, there are no invariants in the twisted sector and the 
invariants in the untwisted sector are 

The hi-degrees are (0, 0), ( ~, ~). 

Licensed to Max-Planck Institut fur Mathematik.  Prepared on Fri Jan 22 09:59:53 EST 2016for download from IP 195.37.209.180/130.44.104.100.

License or copyright restrictions may apply to redistribution; see http://www.ams.org/publications/ebooks/terms



SINGULARITIES, G-FROBENIUS ALGEBRAS AND MIRROR SYMMETRY 101 

PROPOSITION 4.6. Projectively there is only one Frobenius algebra structure 
on these invariants compatible with the group grading. The resulting Frobenius 
algebra is isomorphic as a bi-graded Frobenius algebra to the ( c, c) -realization of the 
algebra for the Coxeter group h ( 4). This is also the restriction of the respective 
multiplication on the unique Z/(2nZ) Frobenius algebra Z/(2nZ)Mz2n. 

4.5.2. The dual. We can only consider the quasi-Euler choice CJ = 0. 
The linear spaces for the dual D(k[G])-module are all one dimensional Apk = 

(ipk), and are all invariant. 
The bi-degrees are 

- - k k -(Q, Q)(1pk) = ( --,- )(1pk) k E {1, ... , n- 1}. 
n n 

PROPOSITION 4. 7. The dual ( (Z/ nZ)A2n- I) v affords a projectively unique grad-
ed Z/nZ-Frobenius algebra structure with trivial Z/nZ action which is equal to the 
Probenius algebra of its invariants and is isomorphic to the (a, c) -realization of En. 

4.6. The case of Ap- 1 0 Aq-ll especially E 6 and E 8 • We will consider the 
tensor product Ap_ 1 0 Aq-1 for coprime p, q. 

The corresponding quasi-homogeneous singularity is given by f = xP + yq. For 
these singularities, Qx = ~' qy = *' d = 2(pq;:-q), JL = (p- 1)(q- 1). 

Since p and q are coprime, Gmax = Zj(pqZ) = ZjpZ x ZjqZ, which is generated 
by the grading operator J = (Jp, Jq) in the tensor representation for the symmetry 
groups of the An factors: 

J = ( ') = ((p 0) 
p J 0 (q ' 

where as usual (p = exp(27ri~) and (q = exp(27ri*). 

4.6.1. The G-Frobenius algebras. We have 

if i = 0 
if i = rp, r E { 1, ... , q - 1} 
if i = rq, r E { 1, ... , p - 1} 

otherwise. 

In these cases, we get the twisted sectors linearly isomorphic to Ap_ 1 0Aq_ 1 , Ap_ 1 , 

Aq_1 and A1 . The group is cyclic and hence E = 1. In the case that pq is odd, 
we only have the trivial choice CJ = 0. In the case that it is even, we also have the 
possibility of setting CJ(ji) = i. We will leave the latter case to the reader. 

The action is given by 

if i = 0 
if i = rp, r E { 1, ... , q - 1} 
if i = rq, r E {1, ... ,p- 1} 

otherwise, 

and we see that only 1 E Ae is invariant. 
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The grading is given by 

if i = 0 
if i = rp = kq + j, r E {1, ... , q- 1} 
ifi=rq=kp+j, rE{1, ... ,p-1} 
if i = rp + j = kq + l 

if i = 0 
if i = rp = kq + j, r E { 1, ... , q - 1} 
ifi=rq=kp+j, rE{1, ... ,p-1} 
if i = rp + j = kq + l. 

PROPOSITION 4.8. The 7ljpq7l invariants of the unique D(k[G])-module 
7ljpq7l(Ap-l ®Aq-d are one-dimensional and are thus isomorphic to the Frobenius 
algebra A1. 

4.6.2. The dual. The dual action is given by 

{
c;;kc;k if i- 1 = o 

_ (; if i- 1 = rp, r E {1, ... , q- 1} 
I.Pjk,ji = iqk ., if i- 1 = rq, r E {1, ... ,p- 1} 

otherwise. 

From this we obtain a pq- p- q + 1 = (p- 1) ( q- 1) dimensional space of invariants 
spanned by 

(ij,) i- 1 ¢=0 mod p and i- 1 ¢=0 mod q. 
The grading is given by 

0 
2(pq-q-p) 

pq 

if i = 0 
if i = 1 

Sji= j~ 1 +~-2 ifi-1=rp=kq+j,rE{1, ... ,q-1} 

0 
0 

j;1 ~ - 2 if i- 1 = rq = kp + j, r E {1, ... , p- 1} 
j- 1 + 1. - 2 if i- 1 = rp + j = kq + l 

p q 

if i = 0 
if i = 1 

1 - j-1 sj' = q if i - 1 = rp = kq + j, r E { 1, ... , q - 1} 
1- j-1 

p if i- 1 = rq = kp + j, r E {1, ... ,p- 1} 
2- j- 1 - 1- 1 if i - 1 = rp + j = kq + l, 

p q 

where we choose i E {0, ... ,pq- 1}. 
By comparing degrees we arrive at 

LEMMA 4.3. Let i =. j mod p,j E 2, .. . p and i =. k mod q, k E {2, ... ,q}. 
The map 

iji f--+ xp-jyq-l 

induces an isomorphism of graded vector spaces between the 7ljpq7l invariants of 
(7ljpq'llMxP+yq) v = (7ljpq7lAP_ 1 ® Aq_l) v graded by Q and the graded Milnor ring 
Ap-1 ® Aq-1· 
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Moreover, as bi-graded space ((ZjpqZAp_ 1 ® Aq_I))v)Zfpq:Z is the (a, c)-real-
ization or the A-model of Ap-1 ® Aq-1· 

By comparing the degrees and group degrees, one obtains 

PROPOSITION 4.9. There is a projectively unique, maximally non-degenerate, 
degenerate G-Frobenius structure on ((Z/pqZ)(Ap_ 1 ® Aq_I))v whose invariants 
are the mirror dual to Ap-1 ® Aq-1· 

COROLLARY 4.1. If we restrict ourselves to the case p = 3, q = 4, we obtain the 
mirror to the E6 singularity, and for p = 3, q = 5 the mirror for the Es singularity. 

In the first case the invariants are 

ij,, i E {0, 2, 3, 6, 8, 11} corresponding to 1, xy2 , y, y 2 , x, xy 

with bi-degrees 

55 11 11 11 77 
(O,O), (-6, 6), (-4, 4), (-2, 2), (-3, 3), (-12' 12). 

In the second case the invariants are 

ij,, i E {0, 2, 3, 5, 8, 9, 12, 14} corresponding to 1, xy3, y2, x, xy2 , y, y3, xy 

with bi-degrees 

14 14 2 2 1 1 11 11 1 1 3 3 8 8 
(0,0),(-15' 15),(-5'5),(-3'3),(-15' 15),(-5'5),(-5'5),(-15' 15). 

4.6.3. The case of E6 and the relation to F4 • Using the above calculations 
we can obtain a mirror pair for F4 from E 6 via the tensor product. For this we use 
that E6 = (A2 ® A3) and Gmax = Z/3Z x Z/4Z. 

PROPOSITION 4.10. (F4 , h(4)) and (h(4), F4 ) are a mirror dual pair obtained 
from the orbifold mirror philosophy for E6 with Gmax = Z/3ZxZ/4Z, H = exZ/2Z 
and G / H = Z/3Z x Z/2Z, adopting one of the conventions 4.1-4.2 or the extended 
orbifold mirror philosophy 4.1. 

PROOF. Using the group Z/2Z acting via e x Z/2Z we have E 6/(Z/2Z) = 
(A2 ® A3 )j(e x Z/2Z) = (A2/e ® A3/(Z/2Z)). Thus by the previous calculations 

(((Z/2Z)E6)2/22 , (((Z/2Z)E6t)2/ 22) = (A2 ® h(4), A1 ® h(4)) = (F4, h(4)). 

For the dual pair with Gmax = Z/3Z x Z/4Z, H =ex Z/2Z and K = G/H = 
Z/3Z X Z/2Z, 

( (A2 ® A3/(Z/2Z) )2/2:2: /(Z/3Z) X Z/2Z) )K = 
(A2/(Z/3Z))2/32 ® ((A3/(Z/2Z))/(Z/2Z))2; 2:z = A1 ® I2(4) c::: h(4) 

and 

((A2 ® A3/(Z/2Z)):z;n /(Z/(3Z) x Z/2Z)t)K 

= ((A2/(Z/3Z)t)2/ 3Z ® (((A3/(Z/2Z))2; 2:z /(Z/2Z))v):z;n = A2 ® h(4)) c::: F4. 

In the last two calculations, we used one of the conventions 4.1 or 4.2. 
Alternatively, we could use the extended orbifold mirror philosophy 4.1. For 

this, notice that (A2/(Z/3Z))2132 = A1 and ((A2/(Z/3Z))v)ZI32 = A2 . Further-
more, (A3/(Z/2Z)) 2122 = ((A3/(Z/2Z))v) 2122 = h(4) by the previous calcula-
tions. 

D 
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4.6.4. Certain Pham singularities. The same reasoning holds true for the 
Pham singularities of coprime powers: 

f = x~ 1 + ... x~n with k; pairwise coprime M f = Ak, -1 0 · · · 0 Akn -1· 
Let r be the group generated by the grading operator, so that r = Z/k1Z X ... X 

Z/knZ. 

PROPOSITION 4.11. The f-invariants of the fMJ with the choice of trivial CJ 

are A 1 , and there is a degenerate, maximally non-degenerate multiplication on the 
dual (r MJ) v which is projectively unique, and the r -invariants of the dual are the 
(a, c)-realization of MJ. 

In other words, ( (r M 1 t)r is the mirror to M 1. 

4. 7. The case of Dno Recall that Dn+1 = Mxn+y2z with q1 = qx = ~, q2 = 
qy = n 2~ 1 , d = n,-;- 1. For n > 3 the maximal symmetry group is Gmax = Z/2nZ = 
(A). The maximal symmetry group in the case of D4 is larger-Gmax = Z/3Zx§3-
but also contains the group Z/6Z generated by A. We will make further comments 
about the case D 4 below in §4.9.3. 

If we fix (2n := exp(27ri 2 ~), then 

A= (C?n 0 ) 0 ;--1 '>2n 
N = (~n ( 

2i 

A n+1 = n . -1 = exp(27riQ) = p(j) = J. (
exp(27ril) 0 ) 

0 exp(27rln2n) 
This implies that Gmax = (J) if and only if n is even. 
Since e fixes both x and y, N fixes neither x nor y for l -j. 0, n and An fixes x 

but not y, we see that the orbifold data is as follows: 
g E Z/(2nZ) fg MJ" dg ll1(g) ll2(g) ~st 1 -

2 8 9 Sg sg 

g = e = A 0 xn + xy2 Dn+1 ~ 0 0 0 0 0 0 n 
g = Az,o < l < n 0 A1 0 l 2n-l n-1 _l._ l+n-1 n-1-l 

n 2n 2n 2n ~ ~ 
g =An xn An-1 n-2 0 1 1 0 1 1 

n 2 2n 2n 2n 
g = Az,n < l < 2n -1 0 A1 0 l-n 2n-l n-1 l-2n l-n-1 3n-1-l 

n ~ 2n ~ 2n 2n 

Comparing the degrees, we arrive at 

PROPOSITION 4.12. The only elements of bi-degree (q, q) of the bi-graded D(k[G])-
module (Z/(2nZ))Dn+1 are the elements of the untwisted sector and those of the 
An -twisted sector. 

4. 7.1. The G action. Since Z/(2nZ) is cyclic, there is only one choice of dis-
crete torsion, which fixes the choice of r..p to be 

and so 
l=O 
l "1- 0, n 

l = n. 
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4. 7.2. The metric. The pairing on the twisted sectors is given by 

fork:::; n 

fork> n' 

all other pairings are zero, except for the pairing on the untwisted sector, which 
remains the pairing of Dn, 

LEMMA 4.4. The 7l/(2n'll)-invariant subspace is (1), thus 

(Dn+I/(7l/(2n'll)))Z/(2nZ) = Al 

as a graded Frobenius algebra. 

4. 7.3. The G-Frobenius structure. A straightforward calculation shows 
that 

PROPOSITION 4.13. There is projectively only one G-Frobenius algebra struc-
ture compatible with the bi-grading, which is given by 

fork< n 

fork> n 

fork= n. 

4.7.4. The dual D(k[G])-module. The hi-grading is given by 

if k E {0, 1, 2, ... , n- 2, n, ... , 2n- 1} 
if k = n- 1 
if k = 2n- 1 

if k E {0, 1, 2, ... , n- 2, n, ... , 2n- 1} 
if k = n- 1 
if k = 2n- 1. 

LEMMA 4.5. In the case that n is even, the only elements of bi-grading ( -q, q) 
of the dual D(k[G])-module (7l/(2n'll)Dn+It are 

"' "' ~ "' "' "' n-2 "' 
(le, 1A -1, ... , 1A -(n-2), y1A-(n-1), 1A -n, ... , 1A -(2n-2), X-2-1A -(2n-1)), 

and in the case that n is odd, the elements of degree ( -q, q) of the dual D(k[G])-
module ((7l/(2n'll))Dn+I)v are 

" "' "' n-1 "' "' "' ... 
(le, 1A -1, ... , 1 A-(n-2), X-2-1 A -Cn-1), y1 A -Cn-1), 1A -n, . .. , 1A -(2n-2)). 

4. 7.5. The dual G-action. The dual G-action is given by 

{

( -1)"(Ak)(u(A1)+u(An+1)+l) for l tj. {n- 1, 2n- 1} 

<PA-k,A-l = ( -l)""(A•)(~n for l = n- 1 
( -1)"(Ak)(u(A)+u(An+1)+1)(~ for l = 2n- 1. 

A longer but straightforward calculation shows 

PROPOSITION 4.14. For the different choices of(]' we obtain: 
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(1) In the case a= 0, the 7l/(2n7L) invariants of (7l/(2n7L)Dn+I)v are 

\ie, iA -1, ... , iA -(n-2), yiA-(n-1), iA-n, ... 1 iA-(2n-2) ). 

Their bi-degrees are Q(iA-k) = - 2~iA-k, Q(iA-k) = 2~iA-k 
- - n-1 -fork E {0, 1, ... , 2n- 1} \ {n- 1} and Q(y1A-Cn-1J) = -z:ny1A-Cn-1J, 

Q"'( · ) n 1 -y1A-(n-1) = 2-;, y1A-(n-1). 
This is the spectrum of the (a, c)-realization of A2n- 1 , and there is 

a projectively unique maximally non-degenerate G-Frobenius structure on 
the dual whose invariants are the (a, c) -realization of A2n-1. 

(2) In the case that a(Ak) = k mod 2 and n is even, then a(j) = 1 and the 
invariants are 

~ ...- "' n-2 "' 
(1e, 1A-2 1 ••• , 1A-(2n-2),X_2_1A-(2n-1J). 

-(- ) k- Q"'(- ) k-Their bi-degrees are Q 1A-2k = - 71 1A-2k, 1A-2k = :;;-1A-2k 
"' n-2 "' l n-2 "' 

fork E {0, 1, ... , n- 1} and Q(x-2-1A2n-2) = - n2-;, X-2-1A2n-2, 
"0' ( n-2 "' ) 1 n-2 "' Q X-2-1A-(2n-I) = n2-;, X-2-1A-(2n-I). 

This is the spectrum of Dn+ 1. Furthermore, there is a unique maxi-
mally non-degenerate 7l/(2n7l)-Frobenius algebra structure of charge j on 
((Z/(2n7L))Dn+ 1 )v which has as invariants the (a, c)-realization of Dn+1· 
So for n even, Dn+l is self-dual with the choice of non-trivial a. 

(3) In the case that a(Ak) = k mod 2 and n is odd, then a(j) = 0 and the 
invariants are 

"' "' "' n-1"' 
(1A-I, 1A-s, ... , 1A-(2n-s),X_2_1A-(n-t)). 

. . - - 2k+1-
Thezr bz-degrees are Q(1A-C2k+tJ) = -~1A-C2k+t), 
""' - - 2k+1-Q(1A-2k)- -n-1A-C2k+IJ fork E {0, 1, ... ,n -1}, 
- ( n-1 "' ) 1 n-1 "' Q"' ( n-2 "' ) n 1 Q X-2-1An-2 = - n2-;, X-2-1An-2 and X-2-1A2n-2 = 2-;, . 

This case is non G-Euler, and we see that there is no Frobenius algebra 
structure on the invariants, since the unit is missing. This means that the 
prospective unit ie is not invariant and there is not even a degenerate 
G-Frobenius algebra structure on the dual. 

4.8. The case of Dn+1 with the symmetry group Z/n'll. Let 'll/n'll C 
Z/(2n7L) be the subgroup of even powers Z/n'll = (A2k). 

REMARK 4.15. Notice that this subgroup is Euler if and only if n is odd. Also 
in this case Gmax -=1- (j) and Zjn'll ~ (j). 

Since most calculations are obtained via restriction from those of the previous 
section, we handle both the G-Frobenius algebras and the duals at the same time. 

4.8.1. The bi-gradings. The calculations above for the hi-grading for the G-
Frobenius algebra and its dual just restrict to sectors corresponding to the subgroup 
'lljn'll. 

4.8.2. The D(k[G])-modules. Since 'lljn'll is a cyclic group the discrete-
torsion hi-character is trivial: E = 1. In the case that n is odd, there is only one 
choice for a: a = 0. In the case that n is even, there are two choices for a: a = 0 
and a(A2k) = k mod 2. In the first case the resulting structure is quasi-Euler, 
while in the second case it is not. 
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PROPOSITION 4.15. For n even and any choice of a the invariants of the re-
sulting D(k[G])-module on (Z/nZ)Dn+l are two-dimensional and are generated by 
(1e, x~). There is a projectively unique Frobenius structure for the invariants which 
is the structure of the Frobenius algebra I2 (4). 

If n is odd, the invariants of (Z/nZ)Dn+ 1 are one-dimensional and generated 
by 1e. Hence they are isomorphic to A1 as a Frobenius algebra. 

In the case that n is even, for the choice of a= 0 the resulting D(k[G])-module 
structure on the dual (Z/nZDn+d v has invariants 

(le, lA-2 1 ••• , lA-(2n-2)). 

Their bi-grading is consistent with the (a, c) -realization of Bn, and the respective 
Frobenius algebra structure is compatible with the group grading. Also, there is a 
degenerate G-Frobenius structure of charge j on the dual (Z/nZDn+ 1t which has 
as invariants precisely the (a, c) -realization of Bn. 

In the case that n is odd, the invariants are 
,., "' "' n-l"' "' "' "' 

(1e, 1A -2, ... , 1 A -(n-3), X-2-1A -(n-1), y1 A -(n-1), 1 A -(n+1), ... , 1 A -(2n-2)), 

with bi-degrees matching the (a, c)-realization of Dn+1, and there a degenerate G-
Frobenius structure of charge j whose invariants are precisely the (a, c) -realization 
of Dn+1· 

So in the case ofn odd, Dn+1 is mirror self dual, with respect to the orbifolding 
by the symmetry group generated by the grading operator. 

4.9. Dn with the symmetry group Z/2Z. In this subsection, we restrict 
the action of Gmax = Z/(2nZ) to the subgroup Z/2Z C Z/(2nZ) generated by 
An= -1. 

4.9.1. The algebras (Z/2Z)Dn+l· There are two twisted sectors which as 
k-modules, are 

c/J-1,-1 = ( -1)0'(-1)+1. 
There are two choices for a: a( -1) = 0 or a(1) = 1. The first choice always 

yields a quasi-Euler Z/2Z-Frobenius algebra, while the latter choice is quasi-Euler 
only in the case of n odd. 

The hi-grading and Z/2Z-action can be read off from the tables in the previous 
section. 

After fixing a there 1s a unique Z/2Z-Frobenius algebra structure [Ka03, 
Ka04] which is given by 

1-1 0 1-1 = X. 

4.9.2. The duals. For the dual both MJe and MJ_ 1 are one-dimensional and 
have degrees (0, 0), ( -1/2, 1/2). Since this is at most a quasi-Euler we cannot pull 
back the metric, but there is projectively only one metric compatible with the group 
grading. 

The action is given by 

<P-1,1 = 1 <P-1,1 = ( -1t(-1). 
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PROPOSITION 4.16. In the case that u(-1) = 0, the invariants are given by 

(1, x, ... , xn- 1 ). 

The bi-grading and metric and multiplication are the same as those of the (c, c)-
realization of Bn. The dual algebra has a projectively unique Frobenius algebra 
structure compatible with the bi-grading, that is isomorphic to h ( 4), and the invar-
iants are A1. 

In the case that n is odd and u(-1) = -1, the invariants are 

(1, x, ... , xn- 1 , 1_1, xl-1, ... , xn- 11_1)· 

The algebra of invariants is isomorphic to the ( c, c) -realization of A 2n- 1 as a bi-
graded Frobenius algebra. 

The dual algebra affords the structure of the (a, c) -realization of I 2 ( 4) with triv-
ial 7l/27l-action. 

4.9.3. The case of D4 and(~h 1e relation to G2 • In the case of D 4 the 

maximal symmetry group is (A, ~ . 
-3z 

~)) c GL(2,C). 

Let 

j = (~ b=-0 ) 1 ( -1 
-1 ' 2 -3i ~). 

Then a2 = b2 = id, aba = bab and (a, b) "" § 3 the symmetric group on three 
elements. Also A= aj and (A) = 7l/67l = 7l/37l x Z/27l. Finally Gmax = 7l/37l x §3. 

We do not want to present the full calculation, which is quite involved, but 
note that the G-Frobenius algebra for D4/§3 is given as a k-module by MJe = D4, 
and Mia = Mh = M!aba = A2, and M!ab = Mha = A1. There are three conjugacy 
classes, and the invariants are 1, x 2 , lab± lba where the sign is + if one uses u = 0 
or- if u(g) = length(g) mod 2. 

For the invariance of x 2 notice that in the Milnor ring, without using an isomor-
phism, y2 = -3x2 and thus (~( -1 + iy)) 2 = ~x 2 - h 2 + ~ixy = ~x 2 - 4_3 y2 = x 2 . 

In the case of the group Z/37l generated by ab, the k-module is given by MJ = 
D4, and M!ab = M!ba = A1. The invariants are 1, x 2 , lab, lba· 

LEMMA 4.6. The invariants in the untwisted sector of D4/('ll/37l) and D4jS3 
are isomorphic to G2 as graded Frobenius algebras. 

4.10. The case E 7 • Recall that for E 7 : x 3 + xy3 , we have the following 
d 1 2 d 8 egrees Q1 = Qx = 3, Q2 = Qy = 9, = 9 · 

Fix ( 9 := exp(27ri~), then the E7 singularity has the exponential grading oper-
ator J = exp(27riQ) 

J=(~ ~)· 
This operator generates a subgroup (J) C GL(n, q, which is isomorphic to 'll/97l. 
We fix a generator j of 7l/97l and regard the representation p: 7l/97l--+ GL(n, q 
as given by p(j) = J. 

This is also the maximal symmetry group Gmax = (A) 
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and J = A7. 

4.10.1. The Z/9Z-graded k-module (Z/9Z)Mt· The representation is given 
by 

g E Z/9Z fg Mtg dg v1(g) v2(g) s+ g s; Sg sg 

e =jo x3 + xy3 E7 8 0 0 0 0 0 0 9 
l 0 A1 0 1 2 8 8 0 8 

3 9 9 -9 9 
j2 0 A1 0 2 4 8 2 5 1 

3 9 9 9 9 3 
j3 x3 A2 

1 0 2 5 1 4 1 
3 3 9 3 9 9 

j4 0 A1 0 1 8 8 4 2 2 
3 9 9 9 3 9 

j5 0 A1 0 2 1 8 4 2 2 
3 9 9 -9 9 3 

j6 x3 A2 1 0 1 5 1 1 4 
3 3 9 -3 9 9 

j7 0 A1 0 1 5 8 2 1 5 
3 9 9 -9 3 9 

j8 0 A1 0 2 7 8 8 8 0 3 9 9 9 9 

LEMMA 4.7. The elements of bi-degree (q,q) of (Z/9Z)E7 are exactly the ele-
ments in the untwisted sector Ae. 

4.10.2. The G-action. For Z/9Z we have € = 1 and 0' = 0, so the G-action 
is given by 

and the character is 

{
1 ifk=O 

'Pji,jk = (g2i if k E {3, 6} 
(95' otherwise 

xV) = (gi. 

LEMMA 4.8. The Z/9Z-invariants of the only compatible D(k[Z/9Z])-module 
structure are given by the unit 1e. 

4.10.3. The dual hi-grading. The dual grading is given by 

0 1 2 3 4 5 6 7 8 
sj; 0 8 8 1 4 2 2 7 5 -9 -9 -3 -9 -9 -3 -9 -9 
Bji 0 0 8 1 1 2 2 4 5 

9 3 9 9 3 9 9 
The elements of hi-degree ( -q, q) are 

v 2. v v v v v 

(1e, Y 1j, 1p, 1p, 1js, 1ja, 1js). 

4.10.4. The dual Z/9Z-action. The dual Z/9Z-action is given by 

if k = 1 
if k E {4, 7} 
otherwise. 
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LEMMA 4.9. The Z/9Z-invariants of the dual ((Z/9Z)E7) v are given by 
y 2' y y y y y 

(le,Y lj, lp, 1j3, 1js, 1j6, 1js); 
they are all of diagonal bi-degree, and their degrees are 

4 4 -8 8 1 1 2 2 2 2 5 5 
(O,O), (-9, 9), (---g, 9), (-3, 3), (-9, 9), (-3, 3), (-9, 9). 

The pairing, the bi-grading, and the group grading are the same as those of the anti-
chiral realization of E 7 under the association Ie f---+ 1, ij f---+ y2 , ip f---+ x 2 y, ip f---+ 

y y 2 y 

x, 1js f---+ y, 1j6 f---+ x , 1js f---+ xy, so that E7 is self dual. 

Again by inspecting the grading and group grading we have 

PROPOSITION 4.17. There is a unique maximally degenerate G-Frobenius struc-
ture of charge j on ((Z/9Z)E7 )v whose invariants form the (a, c)-realization of E7. 
Hence (((Z/9Z)E7 )v)z;gz is the mirror dual to E7 . 

4.11. The case P8 or E7 • We briefly digress to singularities of higher modu-
larity. The first singularity of this type is P8 = x 3 + y3 + z 3 - axyz with a3 + 27 =1- 0 
which is also known as E7 . The Milnor ring of this singularity is generated by 
(1, x, y, z, xy, yz, xz, xyz). It is quasi-homogeneous of degrees qx = qy = qz = ~ and 
d = 1. 

This singularity is not self-dual. Moreover, in the case that a =1- 0 there is 
no symmetry group which has only A1 as invariants of the G-Frobenius algebra, 
since the term xyz always has to remain invariant. So it is impossible for a G-
Frobenius algebra built from this singularity to be mirror-dual for any orbifolding 
group to another singularity. Also the invariants cease to have the diagonal (q, q) 
or anti-diagonal ( -q, q) grading. 

Let us calculate P8 /f for the group f generated by the grading operator J = 
diag((3 , ( 3 , ( 3 ). There are two one-dimensional twisted sectors. 

The shifts for the twisted sectors i = 1, 2 are SJ = 0, SJ = 1; SJ2 = 1, sp = 0. 
Since det(Ji) = 1 and necessarily a = 0, E = 1, all elements in the twisted sector 
are invariant. In total, the invariant elements are 

1, xyz, 1J, 1J2 of degrees (0, 0), (1, 1), (1, 0) and (0, 1). 
For the dual, the action does not change since a= 0 and hence x = 1, and we 

obtain the same invariants, only with a shifted group grading. 

REMARK 4.16. Notice that the spectrum is such that it looks like the Hodge 
diamond of a manifold. 

Although the singularity P8 is not mirror dual to any other singularity, its orb-
ifold version (Z/3Z)P8 yields a self-dual mirror pair ((Z/3ZP8 ) 2 f 3Z, ((Z/3ZP8)v)Zf3Z). 

PROPOSITION 4.18. The G-Euler G-Frobenius algebra (Z/3Z)P8 is mirror self-
dual: (Z/3ZP8 )2 13Z c::: ( (Z/3ZP8) v)Z/3Z. 

5. Remarks on the relation to spin curves, the geometry of 
singularities and folding 

5.1. Remarks on the relation tor-spin curves and A-models for quasi-
homogeneous polynomials. The r-spin curve picture was conceived by Witten 
as an A-model or a-Model counterpart for the Ar-l Landau-Ginzburg B-model 
[W91, W92]. In his construction and the mathematical constructions of [JKVOl, 
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PVOl, P02] this was achieved. It turns out, however, that in the formulation 
there are two types of behaviors at given marked points called Ramond or Neveu-
Schwarz. The appearance of the Ramond case introduces an additional element in 
the state space, which is n + 1 dimensional in the An case. If this element appears 
in a correlation function the value of the correlation function becomes zero. So the 
algebra is what we called a degenerate Frobenius algebra of degree j if one assigns 
the group degree j-1 to z and identifies the Ramond element with z-n. 

This is the projectively unique maximally degenerate G-Frobenius algebra one 
obtains from (pt/(Z/(n+1)Z))v [Ka03]. If one considers A1 as the (a, c)-ring of An, 
then by self duality of An one could expect that ((A1 = pt)/Z/(n+1)Z)v?::f(n+l)Z = 
An (cf. [Ka03]), which is indeed the structure found above. In this interpretation 
the hi-grading is, however, not straightforward, although the grading could be re-
covered from the Qi and Vi by considering the action of Z/(n + 1)Z on C by roots 
of unity. 

It would be desirable to consider not only this altered version of our duality 
applied to the (a, c)-ring, but to see it directly on the (c, c) side. 

For this, we would like to give another interpretation of our previous remark 
on the Ar-l model. In the spin-curve picture one considers the equation 
(5.1) c®r ~ w(twisted), 

where w(twisted) is a suitably twisted version of the canonical line bundle on the 
curve, see [JKVOl, JKVOO, W91, W92]. In terms of the singularity and the 
forming of the Milnor ring, this equation (5.1) is mimicked by setting zr = 0, 
that is by passing to the quotient C[z]/(zr). In this ring, zr-l is not zero and 
corresponds to the Ramond sector of the spin curves. But any element of the 
Ramond sector produces a zero value in all the correlation functions. In other 
words it appears only as a degenerate state. As we project to the invariants the 
equation zr-l = 0 is implemented, which in the spin-curve picture is enforced 
by the virtual fundamental class. In algebraic terms for Ar-l, first one considers 
R := C[z]/(zr) and then R/(zr- 1 ). The first quotient also manifests itself in the 
spin picture as the periodicity obtained from w(twisted) ~ c®r. 

Now our degenerate Ramond sector is in fact n-dimensional for An and not 
one-dimensional. Here one should remark that for the construction of an operad in 
the Ramond case, one would actually have to fix a choice of isomorphism of the line 
bundle with w(twisted). The space of choices for this isomorphism is a principal 
Z/(n + 1)Z space and thus if one includes this data in the moduli problem, the 
state space for the Ramond sector becomes (n + 1) dimensional for An[J]. So 
indeed the Ramond sector seems to be intrinsically higher-dimensional. The fact 
that the dimension is not n, but n + 1, can be understood by the reasoning above. 
In our description, the singularity in this sector is the singularity An· In the Milnor 
ring interpretation, this produces a Frobenius algebra which has n states. In the 
spin-representation as discussed above one would expect n + 1 states, one of which 
is degenerate. 

The musings on this subject are at the moment only on the level of the un-
deformed algebra, but we hope to make them into more solid statements. 

There is a straightforward way to build a spin-curve like picture for any quasi-
homogeneous polynomial f. For this one considers a line bundle Ci for each of the 
variables Zi and imposes the equations obtained by substituting the line bundles 
Ci into the of monomials of the polynomials f and equating these expression to 
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w(twisted). This defines the moduli problem. This approach is being seriously 
discussed by [F JR]. When the polynomial f is such that its maximal symmetry 
group Gmax is Abelian and each variable appears by itself, the corresponding virtual 
fundamental class is constructed in [F JR]. The hope is to be able to lift these 
conditions [J]. We would like to point out that the condition on the variables 
appearing alone in a monomial ensures that C[[ zi]] I ( mj) is finite dimensional. Here 
the mj are the monomials of f. 

Further evidence for our interpretation of "Landau-Ginzburg A-models" arises 
from these constructions. For each element g E Gmax there are again two types 
of behaviors at the marked point which are either of Ramond or of Neveu-Schwarz 
type. The Ramond means that the isotropy at a marked point is not the full 
symmetry group while in the Neveu-Schwarz case it is. 

Again to turn the resulting moduli spaces into operads it is necessary to include 
additional data for the Ramond case which is isomorphic to the reduced symmetry 
group of f 9 [J]. 

CONJECTURE 5.1. We conjecture that the Neveu-Schwarz sectors are in 1-1 
correspondence with the one-dimensional twisted sectors and the Ramond sectors 
are in one-one correspondence with the sectors that are more than one-dimensional, 
i.e., GM19 'f. <C. 

This conjecture has been checked against the preliminary results of [F JR]. 

CONJECTURE 5.2. We expect that the non-degenerate part of the cohomological 
field theory described by a quasi-homogeneous polynomial is the deformation of the 
Frobenius algebra of the invariants of ( GmaxMJ t. Moreover, we expect that the 
behavior of the correlation functions is modeled by the deformations of a degenerate 
G-Frobenius algebra of charge j given by ( GmaxMJ) v, possibly adding more degen-
erate elements. More precisely, let mj be the monomials off and qi = ,;, be the 

quasi-homogeneous degrees of the zi. In the case that the ring MJ9 := 0 I ( m J9 ,j) 
is finite dimensional, the extra elements should correspond to the extension of basis 
from MJ9 to MJ9 for each higher-dimensional sector. 

Our calculations predict that this procedure yields the right result in the case 
of Pham singularities with coprime powers, such as E6 and E8 , and indeed this is 
true by taking tensor products of spin-curves [JKVOO]. 

5.2. Orbifolding and the geometry of singularities with symmetries. 
There is a relationship between our constructions of G-Frobenius algebras for a 
singularity f as well as the the Ramond state space of [Ka03] (not to be confused 
with the Ramond notation for spin-curves) and classic singularity theory. 

For a singularity there are classically two objects which are studied; one is the 
Milnor ring M 1, which also provides a basis for the miniversal unfolding which can 
be written as 

F: (cn+l x Mf, 0) --> (C, 0). 
This fact affords an extension by the choice of a primitive form [S82, S83] to 

a construction of a Frobenius manifold on the flat space M 1 [Du96]. 
The other object of interest is obtained from the fibration which is given by 

(5.2) f : (cn+l, 0) --> (C, 0) 
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restricted to X:= {z E cn+l: llzll :s; t:,O < f(z) :s; 8} for sufficiently small t: and 
8 « t:, so that the restriction is a smooth fibration with fibers Xt = X n f- 1(t) 
[AGV85, AGV88]. The fibers are homotopic to bouquets of spheres and the Betti 
number of the middle dimensional cohomology of the fibers is the Milnor number 
J.L. The isomorphism between MJ and H := Hn(F*, C) can be given by a choice of 
primitive form. Here F* denotes a generic fiber. 

Now suppose G C GL(n + 1, C) is a group of symmetries. This will act on 
the total space of the fibration (5.2) and trivially on the base, and thus there is an 
induced action on H. 

Let det be the one-dimensional representation of G given by the determinant. 
The main result of [Wa80] is 

THEOREM 5.1 ([Wa80]). In the situation described above the C[GJ-modules H 
and M f ® det are isomorphic. 

This implies that while the untwisted sector of the G-Frobenius algebra is 
isomorphic as a C[GJ-module to Mt, the untwisted sector of the Ramond state space 
is isomorphic as a C[GJ-module to H. This untwisted Ramond sector corresponds 
to the j-twisted sector of the dual. 

In exactly the case that the symmetries generate a Coxeter group G, the quo-
tient of cn+l by G is smooth: cn+l /G ~ cn+l. In this situation, one can regard 
the germ fc on the quotient. Let J.Lc denote the Milnor number of fc and J.Lg 
those of f 9 := fiFix(G)· Here we need to assume that this restriction is again an 
isolated singularity, which is automatic in the quasi-homogeneous case. Also, fix 
d9 = codim(Fix(g)). 

The results of [Wa80] are 

1 "' d J.LG = TGT L.) -1) g J.lg· 
gEG 

Furthermore, in [Wa80J the equivariant Euler characteristic of the C[GJ-mod-
ules Mt and His used to compute the Milnor numbers J.Lg· Let M = Hn(F*, C) 
and consider its class [M] in the representation ring of G. We can identify this with 
the ring of class functions and evaluate at elements g. 

The formula is [Wa80J 

J.L9 = ( -1)d9 [M](g). 
This gives a way to compute the invariants of the untwisted Ramond state 

space, which is isomorphic as a G-module to the j twisted sector of (GM1)Y. It is 
interesting to note that the twisted sectors contribute to this calculation through 
the equivariant Euler characteristic. 

One could adapt these techniques to the restrictions of the singularity to the 
various fixed point sets and obtain formulas for the dimension of the whole space 
(Mt)v. 

5.3. Folding. For Dynkin diagrams of the simple singularities, and more gen-
erally for the generalized Dynkin diagrams of [Z98J, there is an operation known 
as folding. 

In this section we show that the folding can be described as a non-stringy 
orbifolding with respect to a group of projective symmetries. 
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Diagram/group Folded diagram/ group Folding group representation 
An I2(n + 1) Z/(n- 1)Z Z f-+ (n-1Z 

A2n-1 Bn Z/2Z z f-+ -z 

Dn+l Bn Z/2Z (x, y) f-+ (x, -y) 

D4 G2 Z/2Z 1l (x, y) f-+ ( -x, -y) 

D6 H3 Z/2Z (x, y) f-+ ( -x, -y) 

E6 F4 Z/2Z (x, y) f-+ (x, -y) 

Es H4 ex Z/3Z (x, y) f-+ (x, (3y) 
l) This is the simplest group. Other folding groups are 7l/37l and §3 as discussed in §4.9.3. 

TABLE 3. The Foldings and their Projective Symmetry Groups. 

DEFINITION 5.1. A projective symmetry for a singularity f : en ---+ c with an 
isolated critical point at zero is an elementS E GL(n, C), such that f(S(z)) = >..f(z) 
for some>.. E C*. 

A projective folding group for a quasi-homogeneous singularity f is group G 
together with a representation of G in G L( n, C) which acts by projective symmetries 
with the same fixed>.. and preserves the unique (up to scalar multiples) element of 
highest degree. 

These type of symmetries act on the Milnor ring, since the local ring f(z) = 0 
is equal to that of >..f(z) = 0. 

REMARK 5.1. For a sum of two singularities f + g, the product of two projective 
symmetry groups for f and g, respectively, also acts on the Milnor ring MJ+g = 
MJ®M9 • 

THEOREM 5.2. For each of the classical foldings for Coxeter groups there is a 
group of projective symmetries or a product of two groups of projective symmetries 
which has as its invariants the Probenius algebra of the folded graph. The foldings 
and groups are contained in table 5. 3. 

REMARK 5.2. The utilization of projective symmetries is necessary, since not 
all foldings can be realized with >.. = 1; in particular, the element of highest degree 
transforms in the representation det(p(g))-2 (see e.g., [Ka03]} so that the only 
folding groups with>..= 1 will be those whose determinants lie in ±1. In particular, 
the Z/27l-foldings of A2n-l and Dn+l, yielding Bn, as discussed above, and also 
E6 to F4, can be realized by orbifolding. For G2 the folding can only be obtained via 
orbifolding by restricting to the classical level, i.e., disregarding the twisted sectors. 

REMARK 5.3. The folding of E6 and E 8 can also be understood as the tensor 
products of the folding on the factors: A2 ® !2(4) = F4 and A2 ® !2(5). 

REMARK 5.4. Unlike in the case of the operation of symmetries, the group 
action of projective symmetries does not act on the fibration (5.2} fiberwise and 
hence not obviously on the vanishing cohomology bundle. But on the other hand, 
it leaves the central fiber invariant and furthermore acts by homothety on the base 
via f(z) = t f-+ f(z) = ±t, so we obtain an equivariant action. 
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REMARK 5.5. The relation of folding to the miniversal unfolding space is known 
and is given in [Stol, Sto2]. In fact the foldings provide submanifolds of Frobenius 
manifolds or so-called F -manifolds. 

REMARK 5.6. It would be desirable to extend the theory of G-Frobenius algebras 
to these quotients. In fact it seems to be straightforward to generalize some of the 
construction of [Ka03] for Jacobian Frobenius algebras with symmetries to those 
with projective symmetries. Here the twisted sectors would again just be obtained 
from the function by restriction to the fixed subspace. There is also no obstruction 
to keeping the grading shifts and dualization processes. One would expect to be able 
to apply this type of orbifolding to the calculations and definition of [Z98]. We 
leave the more careful analysis of this possibility for the future. 
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