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Abstract: There are two interesting families of E2-operads, those that detect double loop spaces, and those
that solve Deligne’s conjecture on Hochschild cochains. The first family deformation retracts to Milgram’s
model obtained by gluing together permutohedra along their faces. We show how the second family can
be covered by permutohedra as well, shedding new light on several proposed solutions of Deligne’s conjec-
ture. In particular, our approach induces an explicit homotopy equivalence between the models of the two
families. The permutohedra and partial orders play a central role providing direct links to other fields of
mathematics. We for instance find a new cellular decomposition of permutohedra using partial orders and
that the permutohedra give the cells for the Dyer–Lashof operations.
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Introduction

Over several decades different models of E2-operads suitable for different purposes have been introduced:
the little 2-cubes operad C2 (see [8, 30]), the little 2-discs operadD2, the Steiner operadHℝ2 (see [31, 40])
which combines the good properties of C2 and D2, and more recently the Fulton–MacPherson operad FM2
(see [27]). Although as E2-operads they are all quasi-isomorphic, the individual homotopies are of interest.
These homotopies are established by realizing that, up to natural homotopy (e.g. contracting intervals), these
spaces are configuration spaces {F(ℝ2, n)}n≥1 of n distinct ordered points on ℝ2, whose homotopy type is
known to be that of a K(PBr, 1). Renewed interest in E2-operads stems from various solutions of Deligne’s
Hochschild cohomology conjecture [2, 6, 20, 27, 28, 32, 33, 41, 42, 46] and in the development of string
topology [10]. In this setting cactus-type operads were invented [18, 47].

On the topological level, as we discuss, these are basically all isomorphic to the E2-operad Cact of spine-
less cacti introduced in [18]. The arity n space Cact(n) roughly consists of isotopy classes of embeddings of
circles with positive radii into the plane such that the images form a planted rooted planar tree picture of
lobes modulo incidence parameters. For this operad and its other isomorphic versions, the proof of being an
E2-operad is rather indirect. It was shown using pure braid group technique of Fiedorowicz [13] and cellular
operad technique of Berger [4]. Here we offer a direct topological proof for the part of Fiedorowicz recognition
concerning the homotopy type.

Using the different perspective of permutohedral covers, we prove the homotopy equivalence between
F(ℝ2, n) and Cact(n) explicitly by constructing a single homotopy equivalence between them. Permutohedra
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are an essential tool in the detection of iterated loop spaces starting with Milgram [35], see also [11, 39] and
[3, 29] for nice reviews. They also appear in various other contexts, see e.g. [17, 43]. The full list would be too
long to reproduce. They are still an active topic of research, especially through their connection to configura-
tion spaces of points F(ℝ2, n),which is how they appear in the E2-operad story, see [3]. Froma totally different
motivation, it has recently been shownhow F(ℝ2, n) deformation retracts toMilgram’s permutohedralmodel
F(n) obtained by gluing n! copies of permutohedra Pn along their proper faces [7]. This applies directly to
all the E2-operads above based on configuration spaces, giving them all a permutohedral structure, i.e. they
appear as a quotient of permutohedral space ∐σ∈Sn Pn and are homotopy equivalent to Milgram’s model.
(Here and below, we write Sn for the symmetric group on n letters.) The exceptions are spineless cacti
Cact and the models related to it, which are of a different breed. While the configuration space models are
adapted to induce operad actions on iterated loop spaces, the spineless cacti models and its relatives are
adapted to induce operad actions on Hochschild cochain complexes or more generally on multiplicative
non-symmetric operads.

We will prove that spineless cacti and hence all of its incarnations, see Section 5, have a permutohedral
cover. The appearance of permutohedra in this model is very surprising, although the construction with
hindsight looks very natural. After passing to normalized spineless cacti, i.e. the spaces Cact1(n), we will
show that they admit a presentation C(n) as the quotient of n! copies of Pn. It is important to note that
here there is not only gluing along faces, but parts of the interior of the permutohedra are also identified.
We give an explicit description. Namely, Cact1(n) is a CW complex whose cells are indexed by a certain
type of labelled rooted (actually planted) planar trees. Each planar tree has an underlying poset structure
which transfers to the set of labels. We can succinctly state that each permutohedron corresponds to a pos-
sible total order on [n] = {1, . . . , n}, viz. a permutation, and it is comprised of the sub-CW complex of cells
indexed by partial orders on [n] that are compatible with the given total order. The gluing is then along
the cells that are indexed by non-total orders. Going beyond this, there is an explicit relation between the
codimension of the cells and a partial order on the partial orders. The highest codimension cells, that is cells
of dimension 0 are indexed by the partial order in which no elements are comparable. Since we are dealing
with planar trees, see [18], there are again orders on the sets of equal height, which means that there are
indeed n! dimension 0 cells, which are the vertices of the permutohedra. These combinatorics are all
explained in detail below.

Due to thenature of the quotient, there is a naturalmapF(n) → Cact(n), whose description already yields
aquasi-isomorphism.Wewill explicitly construct thehomotopy inverse induced fromcompatiblehomotopies
on the n! permutohedra Pn. In a sense, this map answers the question “where are the centers of the lobes in
cacti?”. This is not as straightforward as for the little discs, where the centers are given by the projection
onto the factor of configuration space. For spineless cacti, Cact1 corresponds to the centers. The quotient of
F shows how this is related to configuration.

Recall that Cact1 has a topological operad structure, which is associative up to homotopy. This already
induces an operad structure on the cellular level. No such structure is known for F. This also explains why
it was so difficult to find a proof of Deligne’s conjecture. One can say that the operad structure only becomes
apparent after taking quotients, see Section 5. This is astonishing, since instead of enlarging, wemake things
smaller by taking quotients.

Themethodswe use are classical maps and homotopies, but for the combinatorics, we use partial orders,
partitions and b/w planar trees. For these, we give a common treatment and introduce several new operators,
which link our work to that of Connes and Kreimer [12].

Another upshot of our treatment is a new cellular decomposition of permutohedra, which has a cube at
its core and n − 1 shells for each Pn. In the tree language, the kth shell is given by trees with initial branch-
ing number k. There is also a nice duality between the outer faces in this decomposition of Pn−1 and the
top-dimensional cells of Pn leading to a recursion. This is established via the operators mentioned above.

The decomposition of the Pn also allows us to recognize themas the cells responsible for theDyer–Lashof
operations.

In retrospect, spineless cacti are a natural geometric model for the sequence operad of [33] (respectively
the surjection operad of [6]), see [23]. We make this explicit in Section 5.1. This gives a way to show that
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the model of formulas [32] and hence sequences have the right homotopy type. Our topological result also
implies the result [44] on the quasi-isomorphism between the cellular chains of F(n) and the cellular chains
of Cact1(n). See Section 5 for more details on these remarks.

The paper uses the formalism of trees, which is the most natural way to present things here. For instance
the poset structures and the B±b/w operators become obvious in this language. Some readers might be more
familiar with some other encoding for the type of trees we use, such as sequences of formulas. For these
readers, we provide a dictionary between the different encodings of the same structures.

The organization of the paper is as follows. Section 1 fixes frequently used notations and introduces
the definition of unshuffles of a sequence. We also recall the definition and basic properties of the permuto-
hedron Pn and the permutohedral structure F(n) of F(ℝ2, n). Section 2 recalls the definition of spineless
cacti and makes explicit its polysimplicial structure. The permutohedral structure C(n) of Cact1(n) is given
in Section 3 using partial and total orders. This contains one direction of the homotopy equivalence. Here,
we also introduce four operators B±b/w acting on trees that are essential in keeping track of the combinatorics.
These operators are analogous to those used in [12]. The homotopy equivalence between F(n) and C(n) is
proven in Section 4, by giving an explicit homotopy inverse. Some of the more tedious details are relegated
to Appendix A. We give a more detailed discussion of E2-operads and applications in Section 5. Appendix B
contains the dictionary needed to translate the different ways to encode things, namely trees, sequences and
formulas.

1 Permutations, permutohedra and Milgram’s model

In this section, we start by recalling the definition of a permutohedron. We then set up the combinatorial
language, which we will use for indexing. This is unavoidably a bit complex, as we will have to deal with
lists of lists. Thus we will introduce a short hand notation for these lists andmanipulations on them. Besides
reducing clutter, an additional benefit is an easy description of a poset structure and a grading. This allows
us to encode the poset structure of the faces of permutohedra in this formalism.

1.1 Permutohedra

Before we recall the definition of our main actors, the permutohedra [35], we fix our notations for sequences
in general and elements in the symmetric group Sn in particular.

Definition 1.1. Letℕ+ the set of positive integers. For n ∈ ℕ+, set [n] = {1, 2, . . . , n}. A sequence of length n
is a functionϕ : [n] → ℕ+;ϕ is called a non-repeating sequence (nr-sequence) if this function is also injective.
We say the length |ϕ| of ϕ is n. By Seqn, we mean the set of all sequences of length n and Seqnrn , the set of all
nr-sequences of length n.

Notation 1.2. Any nr-sequence can be identified by a nonempty ordered list of distinct elements inℕ+ given
by its images. Denote by ϕi := ϕ(i) the image of i under ϕ. By abuse of notation, to specify ϕ, we will use
the following list notation, ϕ1ϕ2 ⋅ ⋅ ⋅ϕn, where we do not use commas to separate the terms if no confusion
arises. We write {ϕ} for the image of ϕ, which is the set {ϕ(1), ϕ(2), . . . , ϕ(n)}.
Example. The symmetric group Sn consists of n! bijective functions σ : [n] í→ [n], namely nr-sequences of
length nwhose domain and codomain coincide. Each σ can be identifiedwith the list of its images σ1σ2 ⋅ ⋅ ⋅ σn.
This is a short hand for the traditional notation( 1 2 3 . . . n

σ(1) σ(2) σ(3) . . . σ(n)).
For example 1234 is id ∈ S4 and 2143 is the product of the transpositions switching 1 and 2, and 3 and 4,
respectively.
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Figure 1. The permutohedra P1, P2 and P3. Each vertex is labelled σ on the left and vσ on the right.

Definition 1.3. Given σ ∈ Sn, we define the vector vσ inℝn as follows:
vσ := (σ−1(1), σ−1(2), . . . , σ−1(n)).

Remark 1.4. Here, we follow the convention of labelling the vertices by the inverse permutations, see
e.g. [17], which has the effect that the faces of permutohedra will be conveniently labelled by unshuffles
(see below). This is the formalism we will work with.

Alternatively, see [37], one can look at the list of coordinates as a surjection and then the faces are also
labelled by surjections. The passage from σ to σ−1 also has the effect changing the action from a left to a right
action and accordingly from the left weak Bruhat order to the right weak Bruhat order.

Example. If σ = 3241, then σ−1 = 4213 and thus vσ = (4, 2, 1, 3) ∈ ℝ4.
Definition 1.5. The permutohedron Pn is the convex hull of the set of points {vσ ∈ ℝn : σ ∈ Sn}, i.e.

Pn = { ∑
σ∈Sn

tσvσ ∈ ℝn : ∑
σ∈Sn

tσ = 1, tσ ≥ 0}.
See Figure 1 for examples.

The permutohedron Pn enjoys the following features which are readily checked:
(1) Pn is a polytope of dimension n − 1.
(2) The vertex set of Pn is {vσ ∈ ℝn : σ ∈ Sn}.
(3) Pn is contained in the hyperplane {(x1, . . . , xn) ∈ ℝn : x1 + ⋅ ⋅ ⋅ + xn = (n+1)n

2 }.
(4) Two vertices vσ, vτ of Pn, n ≥ 2, are adjacent if and only if vτ is obtained from vσ by switching two

coordinate values differing by 1 (or τ is obtained from σ by switching two adjacent numbers in their
image lists). In this case the Euclidean distance from vσ to vτ is the minimal distance between two
vertices, which is√2.

(5) Its dimension n − k faces are affinely isomorphic to Pm1 × Pm2 × ⋅ ⋅ ⋅ × Pmk .

1.2 Notation for subsequences and unshuffles

1.2.1 Subsequences

Definition 1.6. A subsequence of length k (k ≤ n) of the sequence ϕ : [n] → ℕ+ is a composite of func-
tions ϕ ∘ ψ, where ψ : [k] í→ [n] is strictly increasing. In the short hand notation, ϕ ∘ ψ is simply written
as ϕψ1ϕψ2 ⋅ ⋅ ⋅ϕψk . In particular, for n ≥ 2 and σ ∈ Sn, we define σ\σ1 to be the subsequence σ ∘ δ1, where
δ1 : [n − 1] → [n] is the first face map δ1(i) = i + 1.
So σ\σ1 can also be written σ2σ3 ⋅ ⋅ ⋅ σn. Thus, σ\σ1 is obtained by removing the first term in the sequence
σ1σ2 ⋅ ⋅ ⋅ σn.
Example. If σ ∈ S4 is the sequence 2341, then σ\σ1 is 341.
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1.2.2 Shuffles and unshuffles

Definition 1.7. An unshuffle (or deshuffle) of a sequence ϕ into k subsequences of lengths m1,m2, . . . ,mk
is an ordered list of subsequences l1, l2, . . . , lk of ϕ such that |li| = mi and the disjoint union ∐k

i=1{li}
equals {ϕ}. We also call ϕ a shuffle of l1, l2, . . . , lk.

WedefinedShϕ[m1, . . . ,mk] to be the set of all unshufflesof the sequenceϕ into subsequences of lengths
m1, . . . ,mk, dShϕ(k) = ∐(m1 ,...,mk) dShϕ[m1, . . . ,mk] to be the set of all unshuffles of ϕ into k subsequences
and dShϕ = ∐k dShϕ(k) to be the set of all unshuffles of ϕ.

Notation 1.8. Wewill use the following bar notation to give elements of dShϕ(k). We write l1|l2| ⋅ ⋅ ⋅ |lk, k ≥ 1,
for the list l1, l2, . . . , lk, i.e. when ϕ is a shuffle of l1, l2, . . . , lk.

Example. Let 3214 ∈ S4. Then dSh3214[3, 1] consists of the four elements 321|4, 324|1, 314|2 and 214|3,
and dSh3214[2, 2] consists of 32|14, 31|24, 34|21, 21|34, 24|31 and 14|32.
1.2.3 Grading and poset structure

We define the degree (deg) of elements in dShϕ(k) to be |ϕ| − k. This is the length of ϕ minus 1, minus the
number of bars (k − 1). It lies between |ϕ| − 1 and 0.

On lists there is the operationofmerging lists. Given two sequences l1, l2withdisjoint images {l1}and {l2},
we define l1l2 : [|l1| + |l2|] → ℕ+ by

l1l2(i) = {{{(l1)i if i = 1, . . . , |l1|,(l2)i−|l1| if i = |l1| + 1, . . . , |l1| + |l2|.
Note that in our shorthand notation the merging of two lists is exactly the juxtaposition given by removing
a bar.

The partial order ≺ on dShϕ is generated by removing bars and shuffling the lists. More precisely, ≺ is the
transitive closure of the relation

l1 ⋅ ⋅ ⋅ |li−1|li|li+1|li+2| ⋅ ⋅ ⋅ |lk ≺ l1| ⋅ ⋅ ⋅ |li−1|h|li+2| ⋅ ⋅ ⋅ |lk , (1.1)

where li|li+1 ∈ dShh(2) or simply h is a shuffle of li , li+1. It follows that the partial order decreases degree;
that is if two elements that are in the relation a ≺ b, then deg(a) < deg(b).
Notation 1.9. Let Jϕ denote the poset (dShϕ , ≺) and let Jiϕ, i = 0, 1, . . . , |ϕ| − 1, be the subset consisting of
elements of degree i in Jϕ.

Example. For σ = 145372896 ∈ S9, we have 153|49|76|28 ≺ 153|4796|28, which are elements in J5σ and J6σ,
respectively.

Remark 1.10. Notice that any poset Jϕ represents a category by setting Hom(a, b) = {(a, b)} if (a ⪯ b). The
category has a terminal element ϕ1 ⋅ ⋅ ⋅ϕn. One can formally add the one element set J−1ϕ and obtain an initial
object.

Remark 1.11. Another way to understand the poset structure is that for ϕ = 12 ⋅ ⋅ ⋅ n, the elements of the set
dShϕ[m1, . . . ,mk] can be seen as the cosets of Sn with respect to the Young subgroups Sm1 × ⋅ ⋅ ⋅ × Smk , par-
tially orderedby inclusion. For this identificationone should choose the representative in the coset that agrees
with the original order given by ϕ.

1.2.4 Geometric realization

We define the geometric realization of Jϕ which is formally a functor F from Jϕ to the category of topological
spaces and inclusions – in fact, polytopes and face inclusions, which are inclusions of ℝn → ℝm and affine
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transformations. Although it would bemore natural to order using ϕ, to match the conventions of faces given
by lists, instead of surjections, we will use the inverse ordering.

Let ϕ ∈ Seqnrn . Now ϕ is injective and hence restricting it to its image, we get a map ϕ−1 : Im(ϕ) → [n].
We let ϕ−11 , . . . , ϕ−1n be the ordered preimage, that is ϕ−11 is ϕ−1 applied to the smallest image of ϕ. In par-
ticular, if ϕ = σ a permutation, then ϕ−1 = σ−1, the inverse permutation and the notation agrees with the
previous one.

Define vϕ = (ϕ−11 , ϕ−12 , . . . , ϕ−1n ) ∈ ℝn. Then F is defined by

F(ϕ1|ϕ2| ⋅ ⋅ ⋅ |ϕn) = vϕ
ondegree 0 elements andF(a) is defined to be the convexhull of {F(b) ∈ Rn : b ∈ J0ϕ , b ⪯ a} for generala ∈ Jf .
Finally, we define F on ≺ to be face inclusions.
Proposition 1.12. If ϕ ∈ Seqnrn , thenF(ϕ) is a (|ϕ| − 1 = n − 1)-dimensional polytope, whose dimension i faces
correspond to elements of Jiϕ. In particular, for a permutation σ : [n] í→ [n], we have

F(Jσ) = Pn .
In the latter equality the data of σ is present in the labellings.

Proof. One can reduce to σ = id and then we refer the reader to [3, 9, 17, 29, 35, 49] for a proof.
The example of the labelling of Pσ for σ = 1234 ∈ S4 is given in Figure 2.

Figure 2. The codimension 1 faces of P4 and their indexing elements in J21234. Visible faces are labelled by bold-faced numbers.
The faces of the types abc|d, ab|cd and a|bcd are affinely isomorphic to P3 × P1, P2 × P2 and P1 × P3, respectively.

Note that F(ℝ2, n) deformation retracts to a space which is obtained by gluing n! copies of Pn. We first
describe the gluing data through a poset Jn which contains all the n! posets Jσ introduced in the previous
section.

1.3 Milgram’s model via the poset J(n)
Definition 1.13. As a set, the poset J(n) equals the union ⋃σ∈Sn Jσ. The partial order of J(n) is defined the
same way as that in (1.1).

Notice that we are dealing with the union and not the disjoint union. So elements of Jσ and Jσ� can become
identified. The poset structure on the union is still given by removing bars and shuffling the lists, such that
resulting partial orderings are compatible with restriction to subsequences.

Example. Note that 1234 is the only element in J1234 that is greater than 13|24. But in J(4), the elements
greater than 13|24 are 1324, 1234, 1243, 2134, 2143 and 2413.
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Definition 1.14. We extend F from Jσ, σ ∈ Sn to J(n) naturally by setting
F(n) := colim

J(n)
F.

This means that as a topological space F(n) is obtained by gluing n! copies of Pn along their proper faces
according to the partially order set J(n). Alternatively, we can write

F(n) = (∐
σ∈Sn

Pn)/∼F ,
where for x ∈ Pn indexed by σ and y ∈ Pn indexed by τ, x ∼F y if there is a ∈ Jσ ∩ Jτ such that x and y have
the same coordinates in Fa (we simply write x = y ∈ Fa in the future).

1.4 Permutohedral structure of F(ℝ2, n): A theorem of Blagojević and Ziegler

Theorem 1.15 ([7]). The space F(n) is homeomorphic to a strong deformation retract of F(ℝ2, n).
Remark. ThatF(n) and F(ℝ2, n) have the same homotopy typewas known before this theorem. For example,
Berger [3] showed this by establishing a zig-zag connecting F(n) and F(ℝ2, n). But this theorem is stronger:
it shows that one is actually the deformation retract of the other. In fact, [7] described regular CW complex
models which are homeomorphic to deformation retracts of the configuration spaces F(ℝk , n) for all k, n ≥ 1,
which were used in their proof when n is a prime power of the conjecture of Nandakumar and Ramana Rao
that every polygon can be partitioned into n convex parts of equal area and perimeter. The same CW complex
models were also studied in [3] and [16] and they were called the Milgram’s permutohedral model in [3].

Historically, the first reference dealing with a combinatorial stratification of F(ℝ2, n) is Fox–Neuwirth [14]
and the connection to hyperplane arrangements was given by Salvetti [38]. A main contribution of [7] and
[38] consists in having well understood that the duals of the Fox–Neuwirth posets can be realized themselves
as certain deformation retracts of F(ℝ2, n). This dualization process is important because it yields precisely
the Milgram posets J(n).

We briefly review the proof of the above theorem here.

Sketch of proof according to [7]. First, ℝ2n deformation retracts to the subspace W⊕2n in which the geomet-
ric center of each configuration is shifted to the origin. We denote this retraction by r1. Then W⊕2n \0n is
partitioned into relatively open infinite polyhedral cones. These cones give the Fox-Neuwirth stratifica-
tion of W⊕2n \0n and they constitute a partially ordered set. Next, a relative interior point for each cone
is chosen. These points yield the vertices of a star-shaped PL cell. Then W⊕2n \0n radially deformation
retracts to the boundary of this PL cell. We denote this retraction by r2. Finally, the Poincaré-Alexander
dual complex of r2 ∘ r1(F(ℝ2, n)) relative to r2(W⊕2n \0n\r1(F(ℝ2, n))) is constructed, which is a deforma-
tion retract of r2 ∘ r1(F(ℝ2, n)). Let this third retraction be r3. In conclusion, F(ℝ2, n) deformation retracts
to r3 ∘ r2 ∘ r1(F(ℝ2, n)), which has a partially ordered set structure with the partial order the reverse of that
of the Fox-Neuwirth stratification. This partially ordered set is precisely J(n) and F(n) is homeomorphic
to r3 ∘ r2 ∘ r1(F(ℝ2, n)).
2 The operad of spineless cacti

2.1 The spineless cacti operad Cact and its normalized version Cact1(n)
The operad of spineless cacti Cact was introduced in [18]. We first briefly review Cact = {Cact(n)}n≥1 using
the intuitive picture of cacti from [47]. Although very intuitive, this description is unexpectedly hard to make
precise topologically. A better way to define the spaces is to first define CW complexes Cact1, the spaces of
normalized spineless cacti, which correspond to the restriction to lobes of radius 1 and then extend to all
positive radii by taking products withℝn+ (see [18]).
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8 | R.M. Kaufmann and Y. Zhang, Permutohedral structures on E2-operads

Figure 3. A representative of an element in Cact(5) representing isotopy class of orientation and intersection parameter
preserving embeddings of the five standard circles of radii 2, 3, 3730 , 1,

3
2 such that the images form a rooted planted tree-like

configuration of circles. The local zeros are denoted by black dots. The global zero is denoted by a black square.

2.1.1 Pictorial description

Roughly a cactus [47] is an isotopy class of tree-like configuration of circles in the plane with a given base
point. Here a circle is an orientation preserving embedding S1r → ℝ2, where S1r = {x2 + y2 = r2} and the iso-
topies should preserve the incidence relations. The circles are also called lobes. The images of the base points
are called local roots or zeros and the root is called a global zero. To be a spineless cactusmeans that any local
zero is the unique intersection point of the lobe with the lobe closer to the global zero (this exists due to the
tree-like structure). An element of Cact(5) is given in Figure 3.

Notice that for any c ∈ Cact(n), if one starts from the root vertex (the black square) and travel around the
perimeter of the configuration, then onewill eventually come back to the root vertex. The path travelled gives
a map from S1 to the configuration and is called the outside circle.

2.1.2 CW-complex

First notice that a configuration as described above gives rise to a b/w rooted bipartite graph τ. The white
vertices are the lobes and the black vertices are the zeros, with the global zero being the root. A black vertex
is joinedby an edge to awhite vertex if the correspondingpoint lies on the lobe. Tree-likemeans that the graph
is a tree. This tree is also planar, since the configuration was planar. A cactus is spineless if the local zero is
at the unique intersection point nearest the root, and hence can be ignored. We now turn this observation
around to make a precise definition.

Each Cact1(n) is a regular CW complex whose cells are indexed by planted planar black and white
bipartite trees with a black root and white leaves and a total of n labelled white vertices. The open cell

∘
Cτ

indexed by the tree τ is defined as the product of open simplices ∏n
i=1
∘
∆|vi |−1, where |vi| is the number of

incident edges of the white vertex labelled i. The number of incoming edges or the arity is then |vi| − 1. The
closure C(τ) equals∏n

i=1 ∆|vi |−1 and it is attached by collapsing angles at white vertices, see [18] and Figure 4
for details. This angle collapse corresponds to the contraction of an arc of a lobe, e.g. the arc labelled by 1

2 or
2
5 in Figure 3. These arc-labels correspond to the barycentric coordinates of the simplices. The attaching map
can then be understood as sending one of these coordinates to zero, removing this coordinate and identifying
the result with the barycentric coordinates of the tree obtained by collapsing the angle.
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Figure 4. Example of angle collapses having the same target τ.

The space Cact(n) is the product Cact1(n) × ℝn>0 with the product topology. Note that Cact(n) naturally
deformation retracts to Cact1(n).
2.1.3 Grading

For a tree τ we define its degree as i = dim(C(τ)) = ∑i(|vi| − 1). It follows from the fact that τ is a b/w
bipartite tree that the maximal dimension of cells in Cact1(n) is n − 1 and the codimension of a cell C(τ)
is codim(C(τ)) = ∑v:black vertex(ar(v) − 1), where ar(v) is the arity of v, that is the number of incoming edges
ar(v) = |v| − 1. This is also the number of angle collapses, as each angle collapse reduces the number of
black vertices by one and adds the arities. Let T in be the subset of Tn of degree i. The set T0n consists of the
minimal degree elements in Tn and Tn−1n the maximal degree elements; T0n is also the set of trees indexing
the spineless corolla cacti SCC(n) [18]. We let scc(σ) be the element in T0n shown in Figure 5.

Figure 5. The spineless corolla cactus element scc(σ) for σ ∈ Sn.

2.1.4 Operadic structure

Although not strictly needed for the present discussion, we give the operad structure of this E2-operad using
the intuitive picture. Given c1 ∈ Cact(m) and c2 ∈ Cact(n), c1 ∘i c2 ∈ Cact(m + n − 1) is obtained by rescaling
the outside circle of c2 to that of the ith circle of c1 and then identifying the outside circle of the resultant
configuration to the ith lobe of c1. Note that Sn acts on Cact(n) by permuting the labels.

One can check that the above structures make Cact an operad (more precisely, pseudo-operad).

Figure 6. An example of operadic insertion ∘2 : Cact(3) × Cact(2) → Cact(4).
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10 | R.M. Kaufmann and Y. Zhang, Permutohedral structures on E2-operads

2.1.5 Summary

Let Tn denote the partially ordered set of planar planted bipartite (black and white) trees with white leaves,
a black root, and n white vertices labelled from 1 to n. Denote by T in the subset of trees with degree i. Then as
a stratified set

Cact1(n) = ∐
τ∈Tn

∘
Cτ (2.1)

and as a space
Cact1(n) = ∐

τ∈Tn
C(τ)/∼ = ∐

τ∈Tn−1
n

C(τ)/∼, (2.2)

where x ∼ y is in the closure of the relation induced by the attachingmaps. The last equation is true, since all
points are included in some top-dimensional cell.

2.2 Reformulation of Cact1(n) as the colimit of a poset
The main result in this subsection is that the angle collapse actually gives a poset structure to Tn. Moreover,
since gluing procedures are alternatively described by relative coproducts, we can ultimately describe Cact1

as the colimit of a realization functor over a poset category.
We say that τ∠τ� if τ can be obtained from τ� by an angle collapse.

Definition 2.1. Let ≺T be the partial order obtained from the transitive closure of the relation ∠ on Tn induced
by angle collapse.

Again, τ ≺T τ� implies deg(τ) < deg(τ�) and the minimal elements form the set SCC(n) and the maximal ele-
ments are those of Tn−1n .

Let C be the following functor from the poset category (Tn , ≺T) to the category of topological spaces. That
is for each pair τ ⪯T τ� there is a unique arrow τ → τ�.
(1) For τ ∈ Tn, C(τ) is defined as before: C(τ) = ∆w1 × ∆w2 × ⋅ ⋅ ⋅ × ∆wn , where wi is the number of incoming

edges to the white vertex labelled by i.
(2) If τ∠τ�, and τ is obtained from τ� by collapsing the angle between the jth and the (j + 1)th incoming edges

of the white vertex i (where we define the 0th and the (wi + 1)st incoming edges to be the outgoing edge
of this white vertex), then

C(τ∠τ�) = id∆w1 × ⋅ ⋅ ⋅ × id∆wi−1 × sj × id∆wi+1 × ⋅ ⋅ ⋅ × id∆wn ,
where sj is the jth degeneracy map

sj : ∆wi−1 → ∆wi , (t0, t1, . . . , twi−1) Ü→ (t0, t1, . . . , tj−1, 0, tj , . . . , twi−1).
Then it follows from (2.2) that:

Proposition 2.2. We have Cact1(n) = colimTn C.

An example of the gluing is given in Figure 7.

2.3 Cact1(n) as a multi-simplicial set
What is actually obvious from this reformulation, but not stated explicitly in [18] is that Cact1 is not only
a regular CWcomplex, but the realization of amulti-semi-simplicial set. This becomes obvious by the descrip-
tion of the cells as products of simplices: C(τ) = ∆w1 × ∆w2 × ⋅ ⋅ ⋅ × ∆wn . The multi-degeneracy maps are given
by angle collapses.

Proposition 2.3. The set Tn is multi-semi-simplicial and Cact1(n) = |Tn|.
In a different language, this has been observed explicitly in [2].
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Figure 7. A subposet of Tn and its image under the functor C.

3 A permutohedral cover for Cact1(n)
3.1 Tools and setup

Herewe provide the necessary combinatorial tools for the statements and proofs.We introduce several partial
and total orders in order to define n! sub-posets, each of which corresponds to a permutohedron Pn.

3.1.1 Total and partial orders

For a given finite set S with |S| = n the linear orders on S are in bijection with the set of bijective maps
ϕ : [n] → S. In particular, the linear orders on [n] are in bijection with permutations σ ∈ Sn, the order
being explicitly given by σ1 < ⋅ ⋅ ⋅ < σn. We denote this linear order (total order) by <σ.

Every rooted tree τ yields a partial order on its vertices by the height where the root is considered to be
the lowest vertex. The root is the unique minimal element and the leaves are the maximal elements. For the
trees in Tn, by abuse of notation, we denote by ≺τ the induced partial order on the set of labels [n] of thewhite
vertices. We say v ≺τ w if w is above v. This is especially easy to read off the cactus picture.

Definition 3.1. On a given set S a partial order ≺ is coarser than ≺�, if a ≺ b implies a ≺� b. If ≺� is a total
order <, then we also say that ≺ is compatible with <.
Notice that if S is finite to show that ≺ is coarser that ≺� one can simply check along all maximal intervals[s1, s2] with respect to ≺.
3.1.2 The posets for Pn

To describe the permutohedral structure of Cact1(n), for any σ ∈ Sn, we introduce the sub-poset (Tσ , ≺T) of(Tn , ≺T) as follows.
Definition 3.2. The elements of Tσ are the trees in Tn such that ≺τ is compatible with <σ. The partial order
of Tσ is the restriction of that of Tn. These sets inherit the degree splitting T iσ, i = 0, 1, . . . , n − 1, of trees of
degree i.
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Figure 8. Examples of trees in T53214 and the associated cacti pictures.

Recall that for the trees the set S is the set of white vertices. This means that the trees in Tσ are those whose
white vertices are labelled by S, such that the partial tree order on S, seen as the white vertices, is compatible
with the one given by σ.

The maximal intervals of ≺τ correspond the leaf vertices and are given by the sequence of labels on the
white vertices along the shortest path from the root vertex to this leaf vertex. Thus ≺τ is compatible with <σ
if all these sequences are subsequence of σ1 ⋅ ⋅ ⋅ σn. Some examples of trees in T53214 are given in Figure 8.

Notice that in Tσ there is a unique element which we call τσ such that the partial order ≺τσ = <σ.
Collapsing an angle between the leftmost (or rightmost) incoming edge with the outgoing edge of a white

vertex makes the partial order on a tree coarser. Collapsing an angle between two adjacent incoming edges
does not change the partial order on a tree. Thus, we have that:

Lemma 3.3. The sub-posets Tσ are closed under angle collapses. That is if τ ∈ Tσ and τ� ≺ τ, then τ� is also
in Tσ.

In our later proofs, we also need trees whose white vertices are labelled with an arbitrary subset S ofℕ+ and
the corresponding orders, the generalization is intuitively clear from the example in Figure 9.

Figure 9. The sets T2572, T
1
572, T

0
572.
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To be precise, we give the technical version. If Vw is the set of white vertices, then a labelling lab : S ⊂ ℕ+
is a bijection ϕ : S ↔→ Vw. We let TS be the set of S-labelled planted planer b/w bipartite trees with a black
root and white leaves. If |Vw| = n, let ϕ : [n] → S be a linear order on S.

Definition 3.4. Given S and an order ϕ on it we define the set Tϕ to be the subset of TS of trees τwhose partial
order ≺τ is compatible with the order <ϕ.
This directly generalizes Definition 3.2 and Lemma 3.3 holds accordingly.

Example. If ϕ : [3] → S = {2, 5, 7} ⊂ ℕ+maps 1 Ü→ 5, 2 Ü→ 7 and 3 Ü→ 2, then we can consider the S-labelled
trees τ such that ≺τ is compatible with <ϕ. This is depicted in Figure 9.
3.1.3 Cutting and grafting trees: B± operators
There are two types of trees, those that have a unique lowest (i.e. closest to the root) white vertex, which we
will call the white root. The set of these tree will be called the white rooted trees T∘. The other type of tree has
several white vertices adjacent to the black root. These are, by slight abuse of notation, called black rooted
trees T∙. We will call ordered collections of such trees “forests” in T, T∙ or T∘. Here, we allow arbitrary labels
on the white vertices.

In the proof of Theorem 3.9, the white rooted trees will play the role of indecomposables, and the black
rooted trees that of decomposables. Combinatorially, however, the choice of the colours is arbitrary. And
there are grafting operators, definedbelow, forwhich the role of decomposable and indecomposable becomes
interchanged.

Definition 3.5. The initial branching number of a tree τ ∈ T∘ is the number of incoming edges of the unique
white root.

We will now define four operators:
(1) B+b : ordered forests of T → T. This operation simply identifies all the black roots of the trees in the

ordered forest into one black root. The linear order being the one coming from the trees and the order in
the forrest. See Figure 10 for an example.

(2) B−b : T → ordered forests in T∘. This operations cuts all edges to the root vertex, takes the ordered collec-
tion of branches and puts one new black root on each branch. For an example, see Figure 11.

(3) B−w : T∘ → ordered forests in T. Cut off all the edges above the unique white root vertex. Collect the
branches in the order given by this white vertex, and add a black root to each of them. (NB: If one
starts with an {σ}-labelled τ ∈ Tσ ∩ T∘ and the white root is labelled by σ1, then for some elements
l1, . . . , lk ∈ dShσ\σ1 [m1, . . . ,mk]we have B−w(τ) ∈ Tl1 × ⋅ ⋅ ⋅ ×Tlk , where k is the initial branching number
of τ and mi is the number of white vertices on the ith branch.)

(4) B+s : TS1 × ⋅ ⋅ ⋅ × TSk → TS ∩ T∘ whenever the Si are pairwise disjoint and none of them contain the single-
ton {s}. Here S = ∐i Si ⨿ {s}.

B+s (τ1, τ2, . . . , τk) = {τ obtained by grafting τ1, . . . , τk to scc(s)} ⊂ Tn ,
where scc(s) is only element in T{s}. Here grafting means that each τi is connected to the unique white
vertex of scc(s) by an additional edge in the order starting with τ1. This is illustrated in Figure 12.Wewill
use this operator when (S1, . . . , Sn) is a partition of the set [n] \ {s}.

Notation 3.6. To make contact with the permutohedra, especially the notation of Section 1, we will use
a vertical bar notation for the B+b operator. That is, we will denote B

+
b(τ1, τ2, . . . , τk) by τ1|τ2| . . . |τk. See

Figure 10.

Remark 3.7. It is clear that B+b and B
−
b are inverses of each other. Since a label is forgotten by B

−
w, B+s is a left

inverse for B−w on the subset of T∘, whose white roots are labelled by s. Furthermore, B−w is a left inverse for
B+s on the domain of definition of B+s .
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14 | R.M. Kaufmann and Y. Zhang, Permutohedral structures on E2-operads

Figure 10. An example of B+b and the bar notation.

Figure 11. An example of B−b.

Figure 12. Two examples of B+s .

Lastly if s is not in the labelling set of τ: B+s B−b switches the color of the root from black to white, labels it
by s and adds a new black root.

3.1.4 Decompositions and filtrations

The set Tn−1n consists of the maximal elements in Tn, i.e. exactly those elements that index the top-dimen-
sional cells in Cact1(n). By (2.2), these cover Cact1. These trees are all in T∘, since otherwise, the tree would
not have maximal degree.

To provide the setup for later inductive proofs, for each σ ∈ Sn, we will partition and then filter Tn−1σ
according to the initial branching number k. For trees in Tn−1σ , k can take values from 1 to n − 1. Let
Tn−1σ (k) ⊂ Tn−1σ be the subset containing all the trees with initial branching number k. Then we have the
following decomposition:

Tn−1σ = n−1∐
k=1

Tn−1σ (k). (3.1)

This decomposition gives rise to an ascending filtration of Tn−1σ :

Tn−1σ (1) = Tn−1σ,1 ⊂ Tn−1σ,2 ⊂ ⋅ ⋅ ⋅ ⊂ Tn−1σ,n−2 ⊂ Tn−1σ,n−1 = Tn−1σ , (3.2)

where
Tn−1σ,k = ∐

q≤k
Tn−1σ (q). (3.3)

We can further decompose each Tn−1σ (k) using the B−w or the B+σ1 operator. The following observation
is the key: since the B+σ1 operator lands in T∘, it is in general not surjective, but it is surjective on the top
degree trees.

Definition 3.8. Fix σ ∈ Sn, k ∈ ℕ+ with 1 ≤ k ≤ n − 1, and letm1,m2, . . . ,mk be k positive integers such that
m1 + ⋅ ⋅ ⋅ + mk = n − 1. Let l = l1, l2, . . . , lk ∈ dShσ\σ1 [m1,m2, . . . ,mk].

We define Tn−1σ [l] to be the set of all trees B+σ1 (τ1, τ2, . . . , τk) in Tσ obtained by grafting τ1, . . . , τk, with
τi ∈ Tmi−1

li to scc(σ1). Since, the order of the branches is recorded, it follows that indeed the image under
B+σ1 is in Tn−1σ and furthermore τ ∈ Tn−1σ [l] if and only if B−w(τ) ∈ Tm1−1

l1 × ⋅ ⋅ ⋅ × Tmk−1
lk .
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Figure 13. The elements of T5532146[l] where l = l1 , l2 and l1 = 36, l2 = 214.

To extend this decomposition to all degrees, we now define Tσ[l] to be the subset of Tσ such that each
element in Tσ[l] is less than or equal to an element in Tn−1σ [l]. Similarly, we define the pieces of the filtra-
tion Tσ,k.

Since angle collapse only potentially decreases the initial branching number, we also have the inherited
poset structures on Tσ[l] and Tσ,k.

Example. The elements of T5532146[l1, l2] where l1 = 36, l2 = 214 are shown in Figure 13.
Summing up, we have the decomposition

Tn−1σ (k) = ∐
m1 ,...,mk

∐
l∈dShσ\σ1 [m1 ,...,mk]

Tn−1σ [l] (3.4)

and
Tσ,1 ⊂ Tσ,2 ⊂ ⋅ ⋅ ⋅ ⊂ Tσ,n−2 ⊂ Tσ,n−1. (3.5)

The realization functor C on Tn restricts to (Tσ , ≺T), (Tσ[l], ≺T) and (Tσ,k , ≺T), respectively.
3.2 Permutohedra in Cact1(n)
We can now start to prove that indeed Cact1(n) is covered by n! permutohedra Pσ := Pn, σ ∈ Sn, as shown
below.

Theorem 3.9. For any σ ∈ Sn, colimTσ C is a polytope, which is piecewise linearly homeomorphic (≅) to Pn.
Proof. We proceed by nested induction. When n = 1, 2, colimTσ C is a point and a closed line segment, re-
spectively. So the statement is true in these two cases.

Suppose the statement is true for all m and all σ ∈ Sm, where m < n. Let σ ∈ Sn. We will first show that
colimTσ C is a PL (piecewise linear) cell of dimension n − 1. We will simply say that colimTσ C is a PL Dn−1.

Wewill iteratively use the following observation. The connected sumof twoPLDn−1’s along a subPLDn−2

is a PL Dn−1. More precisely: if X and Y are both PL Dn−1’s and i : Dn−2 í→ X and j : Dn−2 í→ Y are injective
PL maps such that i(Dn−2) is the connected union of some facets of X and j(Dn−2) is the connected union of
some facets of Y (so both i(Dn−2) and j(Dn−2) are PL Dn−2), then the glued object (pushout of X ←ì Dn−2 í→ Y)
is again a PL Dn−1.

Also, notice that by the inductionhypothesis and thedefinitionof the realization functor C, for an element
l ∈ dShσ\σ1 [m1, . . . ,mk],

colim
Tσ[l]

C ≅ Pm1 × Pm2 × ⋅ ⋅ ⋅ × Pmk × ∆k . (3.6)

So colimTσ[l] C is a PL Dn−1.
We now use a second induction on k, to show that

colim
Tσ,k

C is a PL Dn−1. (3.7)

When k = 1 we know that Tn−1σ,1 = Tn−1σ (1) = Tn−1σ [l], with l = σ2 ⋅ ⋅ ⋅ σn, (see Section 3.1.4), and hence
colimTσ,1 C = colimTσ[l] C ≅ Pn−2 × ∆1 is a PL Dn−1.

Now suppose for 2 ≤ k ≤ n − 1, colimTσ,k−1 C is a PL Dn−1.
For each l ∈ dShσ\σ1 [m1, . . . ,mk], colimTσ[l] C, which is a PL Dn−1, is glued to the PL Dn−1 given

by colimTσ,k−1 C along Pm1 × ⋅ ⋅ ⋅ Pmk × ⋃k
i=2 ∂i∆k. Here ∂i is the ith face map which on the simplex in the

vertex notation ∆k = v1 ⋅ ⋅ ⋅ vk+1 can be written as v1 ⋅ ⋅ ⋅ v̂i ⋅ ⋅ ⋅ vk+1. In the cactus picture, this corresponds to
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Figure 14. The colimits colimT1234,i C, i = 1, 2, 3.

the contraction of the ith arc on the root lobe. Notice that since ∂∆k = ⋃k+1
i=1 v1 ⋅ ⋅ ⋅ v̂i ⋅ ⋅ ⋅ vk+1 is a PL Sk−1,

it follows that (v2v3 ⋅ ⋅ ⋅ vk+1) ∪ (v1v2 ⋅ ⋅ ⋅ vk) is a PL Dk−1 and ⋃k
i=2 v1 ⋅ ⋅ ⋅ v̂i ⋅ ⋅ ⋅ vk+1 is also a PL Dk−1. Thus,

Pm1 × ⋅ ⋅ ⋅ Pmk × (⋃k
i=2 v1 ⋅ ⋅ ⋅ v̂i ⋅ ⋅ ⋅ vk+1) is a PL Dn−2. And hence we are gluing two PL Dn−1’s along a common

PL Dn−2 and the result is a PL Dn−1. This is true for each l ∈ Sσ[m1, . . . ,mk] in (3.4) individually, so we can
glue in these colimTσ[l] C one by one and end up with a PL Dn−1 and obtain (3.7).

From this it follows that: colimTσ C = colimTσ,n−1 C is a PL Dn−1, by applying C to the filtration (3.5).
Indeed, we have the following filtration of the PL cell colimTσ,n−1 C by PL cells:

colim
Tσ,1

C ⊂ colim
Tσ,2

C ⊂ ⋅ ⋅ ⋅ ⊂ colim
Tσ,n−2 C ⊂ colimTσ,n−1 C.

An example is illustrated in Figure 14.
Next, we show that the PL cell colimTσ C is indeed piecewise linearly isomorphic to Pn. Let us define

a new functor. For any σ ∈ Sn, let C be the realization functor from Tσ to the category of PL topological spaces
defined by

Cscc(σ) = vσ ∈ ℝn
on degree 0 elements and let Cτ be the convex hull of {Cτ� : τ� ∈ T0σ , τ� ≺T τ} for general τ ∈ T iσ, where i > 0.
Again, the image of ≺T under C are defined to be face inclusions.

There is hence a piecewise linear homeomorphism from colimTli
C to colimTli

C by extending the vertex
correspondences Cscc(σ) Ü→ Cscc(σ).

It remains to identify the face structure. For this, we characterize the codim 1 cells as “interior” or
“exterior”, where the exterior cells form the boundary of the ball and hence of the polytope. Using the
formula for the codimension from Section 2.1.3 this means that there is precisely one black vertex of arity 2
for the tree τ indexing the cell, which we called the collapsed vertex. If this vertex is the root, the cell is
exterior and if it is not it is interior. The reason for this is as follows. If the collapsed vertex is not the root,
then there are two possible angle collapses that can be obtained from the involved trees that fit the order
given by σ. Namely, let the white vertex directly above the collapsed black vertex be labelled by i and j and
the label of thewhite vertex directly below the collapsed black vertex be labelled by k. Since σ gives the order,
we either have i <σ j or j <σ i. Assume without loss of generality that j <σ i. Then τ can be obtained by angle
collapse from τ� where in τ� both i and j are directly above k or from the tree τ�� in which k ≺τ�� j ≺τ�� i and
hence on both sides of this codim 1 cell there are top-dimensional cells and hence it is inside. In the other
case, there is no white vertex k below the collapsed vertex and hence there is only one top-dimensional cell
whose boundary contains C(τ) and C(τ) is exterior. Since we already showed that the CW complex realized
a ball, we can iteratively characterize cells of any codimension as “interior” or “exterior” as follows. A cell
C(τ) is exterior if it is on the boundary of an exterior cell of lower codimension. Another way of stating this is
that the inductive procedure glues along all “interior” cells. See Figure 15 and Figure 16.

We now show that the exterior cells consolidate into products of permutohedra. Form the above,
it follows each cell on the boundary of colimTσ C is indexed by a tree obtained as B+b(τ1, τ2, . . . , τk),
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Figure 15. The only codim 0 element having the codim 1 element B+j (⋅ ⋅ ⋅ )|B
+
i (−) as a face is B

+
j (⋅ ⋅ ⋅ , B

+
i (−)).

Figure 16. The only two codim 0 elements having the codim 1 element ⋅ ⋅ ⋅ B+k (⋅ ⋅ ⋅ , B
+
i (−1)|B

+
j (−2), . . . ) ⋅ ⋅ ⋅ as a face are

⋅ ⋅ ⋅ B+k (⋅ ⋅ ⋅ , B
+
i (−1), B

+
j (−2), . . . ) ⋅ ⋅ ⋅ and ⋅ ⋅ ⋅ B+k (⋅ ⋅ ⋅ , B

+
j (B
+
i (−1), −2), . . . ) ⋅ ⋅ ⋅.

where τi ∈ Tmi−1
li such that l1, l2, . . . , lk ∈ dShσ[m1,m2, . . . ,mk]. As mentioned previously, we denote such

a tree by τ1| ⋅ ⋅ ⋅ |τk.
Let

Tl1 |Tl2 | ⋅ ⋅ ⋅ |Tlk = B+b(Tl1 × ⋅ ⋅ ⋅ × Tlk ) = {τ1|τ2| ⋅ ⋅ ⋅ |τk : τi ∈ Tli }.
We shall consolidate the cells indexed by all τ1|τ2| ⋅ ⋅ ⋅ |τk ∈ Tm1−1

l1 |Tm2−1
l2 | ⋅ ⋅ ⋅ |Tmk−1

lk together to form the faces.
We can then again use induction on n as previously. Namely, by the induction hypothesis and the way that
B+b is defined, we know for each l1|l2| ⋅ ⋅ ⋅ |lk,

colim
Tl1 |Tl2 |⋅⋅⋅|Tlk

C = Pm1 × Pm2 × ⋅ ⋅ ⋅ × Pmk .

But this is the characterization of the cells of Pn. Therefore, colimTσ C = Pn and thus colimTσ C ≅ Pn.
Notice that the colimits can be taken before realization, and all the combinatorics can also be taken on

the level of polytopes. This gives the strengthening of the statement.

Remark 3.10. Let σ ∈ Sn, since colimTσ C ≅ Pn, we say that Pn has the decomposition into cactus cells (prod-
ucts of simplices) associated to σ.

For n ≥ 2, we have n!
2 different decompositions of Pn. The number is n!

2 instead of n! because σ and σ ∘ s
give the same decomposition, where s : [n] → [n] is defined by s|[n−2] = id[n−2], sn−1 = n and sn = n − 1.
3.3 Further consequences. Recursion and Dyer–Lashof operations

3.3.1 Operadic generation and Dyer–Lashof operations

The indexing set Tn−112⋅⋅⋅n of the top-dimensional cells of the decomposition of Pn associated to 12 ⋅ ⋅ ⋅ n can
be generated from the single tree B+1(scc(2)) with two white vertices using the operadic composition ∘1
for the cellular chain operad CC∗(Cact1). This observation allows us to link permutohedra to Dyer–Lashof
operations.

Let c = ∑i∈I nici, where ni ∈ ℤ, be a chain in CCn−1(Cact1(n)) for some n. Let {c} be the set of support
of c, i.e. {c} = {ci : ni ̸= 0}. Let τ = B+1(scc(2)). Define {τ ∘1 T i−112⋅⋅⋅i} to be the (disjoint) union of the sets {τ ∘1 τ�},
where τ� ∈ T i−112⋅⋅⋅i. It can be readily checked that the following holds.

Lemma 3.11. We have {τ ∘1 T i−112⋅⋅⋅i} = T i12⋅⋅⋅(i+1).
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18 | R.M. Kaufmann and Y. Zhang, Permutohedral structures on E2-operads

Theorem 3.12. Let
τn−1 = {τ ∘1 {⋅ ⋅ ⋅ {τ ∘1 {τ ∘1 {τ}}} ⋅ ⋅ ⋅ }}⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

there are n − 1 τ and thus n − 2 ∘1.
.

Then τn−1 = Tn−112⋅⋅⋅n and moreover, the multiplicity of each summand in τ ∘1 (⋅ ⋅ ⋅ (τ ∘1 (τ ∘1 (τ))) ⋅ ⋅ ⋅ )) is 1. So
τn−1 indexes the top-dimensional cells of the decomposition of Pn associated to 12 ⋅ ⋅ ⋅ n. This is the cell for the
Dyer–Lashof operation.

Proof. By iterating i = 2, 3, . . . , n − 1, where n ≥ 3, we see that indeed, we get all the cells indexing Pid = Pn.
By [24, Proposition 2.13] this iteration also has coefficients 1 and yields the cell for the Dyer–Lashof
operation.

Remark 3.13. This also allows us to give a concrete homotopy between the right iteration above and the left
iteration (τ ∘2 (⋅ ⋅ ⋅ (τ ∘2 (τ ∘2 (τ))) ⋅ ⋅ ⋅ ))⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

there are n − 1 τ and thus n − 2 ∘2
= τid = B+σ1 (B+σ2 (⋅ ⋅ ⋅ B+σn−1 (scc(σn)) ⋅ ⋅ ⋅ )).

Here the support is the single tree τid in Tid, whose cell is the hypercube In−1 that sits at the center of the
permutohedron Pσ.

3.3.2 Iterative decomposition into cactus cells

There is an interesting duality in the cactus decomposition. On one hand, recall from the proof of Theo-
rem 3.9, that each codim k − 1 face of Pn is labelled by T

m1−1
l1 |Tm2−1

l2 | ⋅ ⋅ ⋅ |Tmk−1
lk and the subdivision is

given by the elements of this set. More precisely: for n ≥ 2, 1 ≤ k ≤ n − 1, fix m1,m2, . . . ,mk satisfying
mi ≥ 1 and m1 + m2 + ⋅ ⋅ ⋅ + mk = n − 1 and let l = l1, l2, . . . , lk ∈ dShσ[m1,m2, . . . ,mk]. Then the elements
in T

m1−1
l1 |Tm2−1

l2 | ⋅ ⋅ ⋅ |Tmk−1
lk are τ1|τ2| ⋅ ⋅ ⋅ |τk, where each τi ∈ Tmi−1

li is a tree with the maximal number (mi − 1)
of white edges and its partial order is compatible with the total order li. On the other hand, recall from (3.4),
the top cells of Pσ are naturally indexed by the fibers of B−σ1

Tn−1σ (k) = ∐
m1 ,...,mk

∐
l∈dShσ\σ1 [m1 ,...,mk]

Tn−1σ [l].
To sum this up, for fixed k, we define Tfaceσ\σ1 (k) as follows:

Tfaceσ\σ1 (k) = ∐
m1+⋅⋅⋅+mk=n−1

∐
l1 ,...,lk∈dShσ\σ1 [m1 ,...,mk]

T
m1−1
l1 |Tm2−1

l2 | ⋅ ⋅ ⋅ |Tmk−1
lk ⊂ Tn−1−kσ\σ1 .

This is the set of trees indexing all the cells making up the codim k − 1-faces of Pσ\σ1 . Then we have the
diagram:

T
m1−1
l1 |Tm2−1

l2 | ⋅ ⋅ ⋅ |Tmk−1
lk� _

��

B−
b

// T
m1−1
l1 × Tm2−1

l2 × ⋅ ⋅ ⋅ × Tmk−1
lk

B+
b

oo
B+
σ1
//
Tn−1σ [l]

B−
σ1

oo � _

��

Tfaceσ\σ1 (k) B+
σ1 ∘B

−
b

// Tn−1σ (k).
(3.8)

We set

Tfaceσ\σ1 = n−1∐
k=1

Tfaceσ\σ1 (k),
which is the set indexing all the cells making up all faces of Pσ\σ1

Proposition 3.14. The map obtained by taking the disjoint union over k of the lower arrows

B+σ1 ∘ B−b : Tfaceσ\σ1 (k) → Tn−1σ (k),
is a bijection:

B+σ1 ∘ B−b : Tfaceσ\σ1 → Tn−1σ .
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Proof. From Remark 3.7, we see that in the upper row all the arrows are bijections and this proves the claim
of the proposition.

The elements in the codomain Tn−1σ of B+σ1 ∘ B−b label the top-dimensional cells of the decomposition of Pn
into cactus cells. The above propositionmeans the top-dimensional cells of Pn can instead be labelled by the
top-dimensional cells of the decomposition of each face of Pn−1. Figure 17 below uses color to illustrate this
from Pn−1 to Pn for n = 2, 3, 4.

Figure 17. The subdivisions of P1 by 1, P2 by 21, P3 by 321 and P4 by 4321, see also Figure 28 for a more detailed marking of
P3 including a marking by sequences.

Even though we are not able to draw the subdivision of P5, we can at least compute the number of
top-dimensional cells of it |T454321| using the above bijection, where |X| denote the number of elements of
the set X. We have∙ |Tface4321(1)| = |T34321| = 15.∙ |Tface4321(2)| = 30.∙ |Tface4321(3)| = 36.∙ |Tface4321(4)| = 4!.
So |T454321| = ∑4

k=1 |Tface4321(k)| = 105.
3.3.3 Remark

Our construction is related to a statement [4, Remark 1.10].
“JimMcClure and Jeff Smith construct an E2-operad which acts on topological Hochschild cohomology. . . Its

multiplication uses prismatic decomposition of the permutohedra Pk (labelled by “formulae”) which can be
described as follows: The image of P2 × P1 × Pk−1 → Pk is a prism ∆1 × Pk−1, thus by induction endowed with
a prismatic decomposition; it turns out that the (closure of the) complement of the image also admits a prismatic
decomposition labelled by the set of proper faces of Pk−1. . . ”

Namely, the above comment is almost true. It is true that Pn can first be decomposed into two parts:
Pn−1 × I, where I is a closed interval of length√n(n − 1), and the closure of the complement of Pn−1 × I in Pn,
then Pn−1 × I has the decomposition induced from that of Pn−1. But the closure of the complement of Pn−1 × I
in Pn has the decomposition into pieces not labelled by the proper faces of Pn−1, but by the top-dimensional
cells from subdivisions of each proper face of Pn−1.

3.4 The Permutoheral cover of Cact1(n)
Definition 3.15. We extend C from Tσ to Tn and then let

C(n) := colim
Tn

C.
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20 | R.M. Kaufmann and Y. Zhang, Permutohedral structures on E2-operads

Figure 18. The space C(3) is obtained by gluing six copies of P3, one for each σ ∈ P3. For simplicity, the indexing elements from
J0σ for the vertices are only shown for the first P3 (σ = 123). The points that are to be glued are labelled by the same color and
put in the same position.

By construction, the resulting space is homeomorphic to Cact1(n), that is there is a homeomorphism
Ln : C(n) ≈ Cact1(n). This homeomorphism is actually almost the identity. It is just two different realiza-
tions of the same complex, which is why we will write

C(n) = Cact1(n).
Proposition 3.16. Then space Cact1 is a quotient of a coproduct of permutohedra∐σ∈Sn Pn.

Proof. By taking the colimit iteratively that is first over each Tσ and then gluing the resulting spaces further
and using Theorem 3.9, we can write

Cact1(n) = C(n) = (∐
σ∈Sn

Pn)/∼C. (3.9)

Here explicitly, for Pn indexed by σ, the subdivision is indexed by elements in Tσ and for x ∈ Pn indexed by σ
and y ∈ Pn indexed by ν, x ∼C y if there is τ ∈ Tσ ∩ Tν such that x = y in Cτ.

Examples when n = 3 and n = 4 are shown in Figure 18 and Figure 19, respectively.
4 Homotopy equivalence between the permutohedral spaces
Cact1(n) andF(n)

The two spaces F(n) and C(n) are closely related insofar as they both are quotients of coproducts of permu-
tohedra: ∐σ∈Sn Pn

pF

zz

pC

$$

F(n) C(n).
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Figure 19. The space C(4) is obtained by gluing 24 copies of P4, one for each σ ∈ P4. For simplicity, only twelve of the indexing
elements from J0σ for the vertices are shown for the first P4 (σ = 1234). One can find out which cells are glued.

Brought to you by | Purdue University Libraries
Authenticated

Download Date | 11/18/16 5:19 PM



22 | R.M. Kaufmann and Y. Zhang, Permutohedral structures on E2-operads

But the gluings for F(n) only occur on the proper faces of Pn while those for C(n) also happen in the interior
of Pn. In fact, only the interiors of the hyper-cubes CB+

σ1 (B
+
σ2 (⋅⋅⋅B

+
σn−1 (scc(σn))⋅⋅⋅ )) in each of the n! copies of Pn are

not glued. The gluings for C(n) are cell-wise and we identify the cells C(τ) in the decomposition of Pσ and Pν
if the order ≺τ is compatible with both <σ and <ν.
Lemma 4.1. The map pC is constant on fibers of pF and hence there is an induced map 1n:∐σ∈Sn Pn

pF

zz

pC

$$

F(n) 1n
// C(n).

(4.1)

Proof. If x ∼F y, where x ∈ Pn indexed by σ and y ∈ Pn indexed by ν, let l = l1| ⋅ ⋅ ⋅ |lk be an element in Jn
such that l ∈ Jσ ∩ Jν and x = y in the interior of F(l). Then we can find τ = τ1| ⋅ ⋅ ⋅ |τk ∈ Tσ ∩ Tν, where τi ∈ Tli ,
i = 1, . . . , k, by using cactus decomposition of each P|li | associated to li such that x = y in Cτ. So x ∼C y.
It is easily seen that this map is again a quotient map and induces a map

CC∗(1n) : CC∗(F(n)) → CC∗(C(n)) = CC∗(Cact1(n)),
where CC∗(Pσ) → ∑≺τ compatible with <σ C(τ). It is well known thatF(n) has the homotopy type of K(PBn , 1) and
it is proved in [18] that the same holds for Cact1(n), with this one can directly prove that the map above
induces a quasi-isomorphism.

We will prove a little more, namely we will prove that 1n is a homotopy equivalence by constructing an
explicit homotopy inverse hn. The quasi-isomorphism part of the above then follows without resorting to
abstract recognition principles.

Theorem 4.2. The map 1n : F(n) → C(n) is a homotopy equivalence with explicit homotopy inverse hn con-
structed in Section 4.2.

Proof. This follows from Proposition 4.9 below.

Corollary 4.3. The map 1n is a quasi-isomorphism and furthermore, it induces a map on the level of cellular
chains CC∗(1n) : CC∗(F(n)) → CC∗(C(n)) = CC∗(Cact1(n)), where CC∗(Pσ) → ∑≺τ compatible with <σ C(τ).
The way the maps are constructed is by considering lifts along one projection, then a map

f : ∐
σ∈Sn

Pn → ∐
σ∈Sn

Pn

followed by the other projection. We will call the resulting map the map induced by f . For the induced map
to exist, of course f should be suitably constant along fibers. In particular, the map 1n is defined by lifting
along pF and then simply projecting along pC. Thus it is induced by the identity map 1n which is the identity
on all of the Pσ.

Remark 4.4. We will describe the homotopy inverse hn : C(n) → F(n) as a map induced from

hn := ∐
σ∈Sn

hσ : ∐
σ∈Sn

Pn → ∐
σ∈Sn

Pn .

That is, we consider the diagram ∐σ∈Sn Pn

pF
��

∐σ∈Sn Pn
hn=∐ hσ
oo

pC
��

F(n) C(n)hn
oo

with the condition that hn(x) ∼F hn(y) if x ∼C y.
This will be achieved by having each hσ map all points in Pn other than those in the interior of the

hyper-cube CB+
σ1 (B

+
σ2 (⋅⋅⋅B

+
σn−1 (scc(σn))⋅⋅⋅ )) to the proper faces of Pn and then analogous conditions on the proper

faces of Pn are inductively satisfied.
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We will define hσ and the homotopy showing it is a homotopy inverse at the same time. That is, we will
define Hσ : Pn × I → Pn and then set hσ = Hσ( ⋅ , 1) for each σ.

To prove the homotopy equivalence, we notice that the two maps

hn ∘ 1n : F(n) → F(n) and 1n ∘ hn : C(n) → C(n)
are both induced from hn : ∐σ∈Sn Pn →∐σ∈Sn Pn, in the sense that we have the diagrams∐σ∈Sn Pn

pF
��

hn∘1n=hn
// ∐σ∈Sn Pn

pF
��

F(n) hn∘1n
// F(n),

∐σ∈Sn Pn

pC
��

∐σ∈Sn Pn
1n∘hn=hn
oo

pC
��

C(n) C(n).1n∘hn
oo

This means that if the homotopies proving the homotopy equivalence are HF and HC, i.e. 1F(n) ≃HF
hn ∘ 1n

and 1C(n) ≃HC
1n ∘ hn, we can look for a common homotopy∐σ∈Sn Hσ inducing both HF and HC.

This homotopy has to and will satisfy the following conditions:(∗1) Hσ( ⋅ , 0) = 1σ : Pn → Pn.(∗2) If x ∼F y, where x is in Pn indexed by σ and y is in Pn indexed by ν, then Hσ(x, t) ∼F Hν(y, t) for all t ∈ I.(∗3) If x ∼C y, where x is in Pn indexed by σ and y is in Pn indexed by ν, then(∗3a) Hσ(x, t) ∼C Hν(y, t) for all t ∈ I,(∗3b) Hσ(x, 1) ∼F Hν(y, 1).
4.1 Rough sketch of a proof of Theorem 4.2

Before delving into the intricate details of fully constructing the homotopy, we will present a short argument.
First, we know that the individual permutohedra Pn are homotopic to their core In−1, abstractly. More con-
cretely, by Theorem3.9,we know that the cells are glued iteratively in n − 1 steps, parameterized by the initial
branching number. We obtain a retract r : Pn → In, by collapsing the cells in reverse order to the piece of the
boundary that is attached to the lower shell. That is, first we look at

In
� � i

// Pn.
r

oo

It is not hard to show that this is a deformation retract. When the gluing maps are added, however it will
be more convenient to realize that there is actually a map going the other way around. Although it is con-
structed a bit differently, the idea is that if V is the vertex set of Pn, then W = r(V) contains the vertex set
of In and additional points in the boundary. Mapping back W to V using the PL-structure, gives a map the
other way around. This map can be extended to the whole of Pn, which is the sought after map hn. It maps In
homeomorphically onto Pn and is homotopic to the identity:

Pn
≈hn
// Pn.

id
oo

On the cellular level, we contract all the cells that are not of the type In and then obtain a complex which is
isomorphic to F(n).
4.2 Explicit construction of the homotopy

For the actual homotopy, the idea is that one retracts the cells building up the Pσ to the part of their boundary
that is not glued. These cells are given by (3.6) as Pm1 × Pm2 × ⋅ ⋅ ⋅ × Pmk × ∆k which, for concreteness, can be
viewed as inℝm1−1 × ℝm2−1 × ⋅ ⋅ ⋅ × ℝmk−1 × ℝk. They are attached to cells of lower initial branching numbers
along Pm1 ×Pm2 ×⋅ ⋅ ⋅×Pmk ×(⋃k

i=2 v1 ⋅ ⋅ ⋅ v̂i ⋅ ⋅ ⋅ vk+1) ⊂ Pm1 ×Pm2 ×⋅ ⋅ ⋅×Pmk ×∂∆k ⊂ ∂(Pm1 ×Pm2 ×⋅ ⋅ ⋅×Pmk ×∆k).
The basic homotopy is the following.
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Proposition 4.5. Let n ≥ 3. For m1, . . . ,mk ≥ 1, where k ≥ 2 and m1 + ⋅ ⋅ ⋅ + mk = n − 1,
∂(Pm1 × Pm2 × ⋅ ⋅ ⋅ × Pmk × ∆k)\Int(Pm1 × Pm2 × ⋅ ⋅ ⋅ × Pmk × ( k⋃

i=2
v1 ⋅ ⋅ ⋅ v̂i ⋅ ⋅ ⋅ vk+1))

is a deformation retract of Pm1 × Pm2 × ⋅ ⋅ ⋅ × Pmk × ∆k.
Proof. Ashort argument is as follows. Consider Pm1 × Pm2 × ⋅ ⋅ ⋅ × Pmk × ∆k as fibered over Pm1×Pm2×⋅ ⋅ ⋅×Pmk×(⋃k

i=2 v1 ⋅ ⋅ ⋅ v̂i ⋅ ⋅ ⋅ vk+1). The fibers are singletons along ∂(Pm1 ×Pm2 × ⋅ ⋅ ⋅ ×Pmk × (⋃k
i=2 v1 ⋅ ⋅ ⋅ v̂i ⋅ ⋅ ⋅ vk+1)) and the

fibers over the points not in the previous set are closed intervals. Thenwe can contract Pm1×Pm2×⋅ ⋅ ⋅×Pmk×∆k
onto the space ∂(Pm1 × Pm2 × ⋅ ⋅ ⋅ × Pmk × ∆k)\Int(Pm1 × Pm2 × ⋅ ⋅ ⋅ × Pmk × (⋃k

i=2 v1 ⋅ ⋅ ⋅ v̂i ⋅ ⋅ ⋅ vk+1)). The full proof
is in the Appendix.

4.2.1 Extended products and extended homotopies

These homotopies cannot be used directly, since we have to take care of the attachingmaps. For this, we have
to slightly thicken the cell and while retracting the interior of the cell to the boundary, “pull” the thickening
into the interior.

Let Iϵ be a closed line segment with small length ϵ. Consider (Pm1 × ⋅ ⋅ ⋅ × Pmk × (⋃k
i=2 v1 ⋅ ⋅ ⋅ v̂i ⋅ ⋅ ⋅ vk)) × Iϵ

to be embedded into ℝn−1. Define Extϵ(Pm1 × ⋅ ⋅ ⋅ × Pmk × ∆k) to be the union of Pm1 × ⋅ ⋅ ⋅ × Pmk × ∆k, which
we call the basic cell, and (Pm1 × ⋅ ⋅ ⋅ × Pmk × (⋃k

i=2 v1 ⋅ ⋅ ⋅ v̂i ⋅ ⋅ ⋅ vk+1)) × Iϵ, which we call the tab, along the sub-
space Pm1 × ⋅ ⋅ ⋅ × Pmk × (⋃k

i=2 v1 ⋅ ⋅ ⋅ v̂i ⋅ ⋅ ⋅ vk+1).
Proposition 4.6. There is a homotopy

HExtϵ(Pm1×⋅⋅⋅×Pmk×∆k) : Extϵ(Pm1 × ⋅ ⋅ ⋅ × Pmk × ∆k) × I → Extϵ(Pm1 × ⋅ ⋅ ⋅ × Pmk × ∆k),
satisfying the following conditions:
(1) It contracts Pm1 × Pm2 × ⋅ ⋅ ⋅ × Pmk × ∆k onto ∂(Pm1 × Pm2 × ⋅ ⋅ ⋅ × Pmk × ∆k)\Int(Pm1 × Pm2 × ⋅ ⋅ ⋅ × Pmk ×(⋃k

i=2 v1 ⋅ ⋅ ⋅ v̂i ⋅ ⋅ ⋅ vk+1)).
(2) It maps (Pm1 × ⋅ ⋅ ⋅ × Pmk × (⋃k

i=2 v1 ⋅ ⋅ ⋅ v̂i ⋅ ⋅ ⋅ vk+1)) × Iϵ homeomorphically to Extϵ(Pm1 × ⋅ ⋅ ⋅ × Pmk × ∆k).
(3) Let X be space and I� a closed subinterval of I, thenwe call amap G : X × I� → X the identity homotopy on X

if G( ⋅ , t) = 1X for all t ∈ I�. Then HExtϵ(Pm1×⋅⋅⋅×Pmk×∆k) is the identity homotopy on ∂Extϵ(Pm1 ×⋅ ⋅ ⋅×Pmk ×∆k).
Proof. See Appendix A.

4.2.2 Embedding the extensions

Now we describe how to embed the extended products inside each Pn.
Let n ≥ 3. We will do the construction for the Pn corresponding the identity element 1n = 12 ⋅ ⋅ ⋅ n ∈ Sn.

Once we have this, we can push it forward by σ to obtain the construction for Pn corresponding to σ.
Let 2 ≤ k ≤ n − 1. For anym1, . . . ,mk ≥ 1withm1 + ⋅ ⋅ ⋅ + mk = n − 1,we againfirst consider the standard

partition j = j1, . . . , jk ∈ dSh23⋅⋅⋅n[m1, . . . ,mk], where l1 = 23 ⋅ ⋅ ⋅ (m1 + 1) and
li = (m1 + ⋅ ⋅ ⋅ + mi−1 + 2) ⋅ ⋅ ⋅ (m1 + ⋅ ⋅ ⋅ + mi + 1)

for i = 2, . . . , k. Notice that the sequence 1j1 ⋅ ⋅ ⋅ jk is the sequence 12 ⋅ ⋅ ⋅ n for 1n. We know that

colim
T1n [j]

C ≅ Pm1 × ⋅ ⋅ ⋅ × Pmk × ∆k .
Let Extϕm1,...,mk (colimT1n [l] C) be the image in Pn of Extϵ(Pm1 × ⋅ ⋅ ⋅ × Pmk × ∆k) under an homeomorphism
ϕm1 ,...,mk first satisfying the following conditions.
(1) It is a homeomorphism onto its image.
(2) It maps the basic cell to the corresponding cell in Pn
(3) It maps the tab into the cells that the corresponding cell is attached to in the iteration.
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Maps like this exist in abundance, which is easily seen by regarding a neighborhood of the common
boundary.

Now for general permutation σ ∈ Sn, and l = l1, . . . , lk ∈ dShσ\σ1 [m1, . . . ,mk], let ω = σ1l1 ⋅ ⋅ ⋅ lk ∈ Sn.
We let Extϕm1,...,mk (colimTσ[l] C)be the image of Extϕm1,...,mk (colimT1n [j] C)under the linearmap,whichpermutes
it into the right position, ∑

ν∈Sn
tνCscc(ν1 ,...,νn) Ü→ ∑

ν∈Sn
tνCscc((ων)1 ,...,(ων)n).

Since for fixed σ and k, any two from the collection of colimTσ[l] C for all m1, . . . ,mk and all elements
l ∈ dShσ\σ1 [m1, . . . ,mk] either are disjoint or share a subspace homeomorphic to Di, where i is at most n − 3,
after possibly shrinking and perturbing the image of the tabs, we can choose the homeomorphisms ϕm1 ,...,mk

such that:
(4) The interiors of Extϕm1,...,mk (colimTσ[l] C) are pairwise disjoint for fixed σ and k.
(5) The same top-dimensional cells in Pn for different σ have the same extended products.

Notation 4.7. Since for fixed n and the homeomorphisms ϕm1 ,...,mk , Extϕm1,...,mk (colimTσ[l] C) only depends
on l, for simplicity, we denote it by El. For the example n = 3, see Figure 20. Under the homeomorphisms
ϕm1 ,...,mk and the linearmaps, we transfer the homotopiesHExtϵ(Pm1×⋅⋅⋅×Pmk×∆k) fromExtϵ(Pm1 × ⋅ ⋅ ⋅ × Pmk × ∆k)
to each El. We call this homotopy Hl : El × I → El.

Figure 20. The subsets El when n = 3.

It is clear that these homotopies have the three properties transferred from those in Proposition 4.6.

Corollary 4.8. The homotopies Hl : El × I → El satisfy the following conditions:
(1) Choose σ ∈ Sn such that l = l1, . . . , lk ∈ dShσ\σ1 [m1, . . . ,mk]. For each i = 1, 2, . . . , k − 1, let

diTn−2σ [l] = {B+σ1 (τ1, . . . , τi|τi+1, . . . , τk) : τj ∈ Tmj−1
lj } and dTn−2σ [l] = k−1⋃

i=1
diTn−2σ [l].

Let dTσ[l] be the set of trees in Tσ such that each tree is smaller than or equal to an element in dTn−2σ [l].
Then Hl contracts colimTσ[l] C onto (∂ colimTσ[l] C)\Int(colimdTσ[l]C).

(2) It maps the closure of El\ colimTσ[l] homeomorphically to El.
(3) Hl is the identity homotopy on ∂El.
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4.2.3 Iterated cone construction

Starting from n = 4, we have to take care of the boundaries. For this we will use the so-called iterated cones,
which we now define.

Let n ≥ 4 and 1n = 12 ⋅ ⋅ ⋅ n ∈ Sn. Notice that colimT1n ,1 C, as a subspace of F1n = colimT1n C = Pn, is the
cartesian product of Pn−1 with I√n(n−1), where I√n(n−1) is the interval [0,√n(n − 1)]. We construct the iterated
cones of the faces of Pn of dimension i (2 ≤ i ≤ n − 2), where Pn is seen as the realization of 1n under F, as
follows.We then transfer the cones to all the Pσ symmetrically by using the Sn action. The cones are specified,
by giving their cone vertex which will be a point inside Pn.

There is a choice for such cone vertices.Wewill choose these vertices “as close to the base as needed” and
the cones at each step are mutually disjoint. This is technically done by requiring that the line determined
by the vertex v and the geometric center of the base is perpendicular to the face and the distance from v to
the geometric center is small. Since there are only finitely many cones in each cactus cell it follows that this
is possible. The distance and perpendicularity do not fix v uniquely starting at codimension 2. In that case,
we will choose v such that the entire cone lies inside a union of top-dimensional cactus cells with maximal
possible initial branching number k.

Step 1. For any dimension 2 face Fl1|⋅⋅⋅|ln−2 of Pn, let v be a point in the interior of Pn with distance ϵ2 to the
geometric center of Fl1|⋅⋅⋅|ln−2 . We choose this v as explained above and such that v is not in colimT1n ,1 C. Then
we form the join Fl1|⋅⋅⋅|ln−2 ∗ v, which is a cone with base Fl1|⋅⋅⋅|ln−2 . We call such a cone C1(Fl1|⋅⋅⋅|ln−2 ). These
cones are 3-dimensional.

Step i − 1, 3 ≤ i ≤ n − 3. For any dimension i face Fl1|⋅⋅⋅|ln−i of Pn, we consider its union with the (i − 2)-cones
of its codimension 1 faces:

Fl1|⋅⋅⋅|ln−i ∪ ⋃
k∈Ji−11n , k<l1|⋅⋅⋅|ln−i C

i−2(Fk).
Let v be a point in the interior of Pn with distance ϵi below the face Fl1|⋅⋅⋅|ln−i as explained above. If necessary,
wemove the previous cone vertices, so that the line segments from v to any point in the union do not contain
any other point. Again this is possible, since there are only finitely many cones and we can vary the distance
and the position of the cone points for lower dimensions. Then we form the join of v with this union and
denote it by Ci−1(Fl1|⋅⋅⋅|ln−i ) and call it the (i − 1)-cone of Fl1|⋅⋅⋅|ln−i . Its dimension is (i + 1).
Step n − 3. For any dimension n − 2 (codimension 1) face Fl1|l2 of Pn, we form the union

B(l1|l2) := Fl1|l2 ∪ ⋃
k∈Jn−31n , k<l1|l2

Cn−4(Fk).
For the special elements 1|2 ⋅ ⋅ ⋅ n and 2 ⋅ ⋅ ⋅ n|1, we let Cyl(F1|2⋅⋅⋅n) = Cyl(F2⋅⋅⋅n|1) be the space as the

union of line segments such that each line segment joins a point in B(1|2 ⋅ ⋅ ⋅ n) to the corresponding point
in B(2 ⋅ ⋅ ⋅ n|1). We call it the cylinder of F1|2⋅⋅⋅n (or of F2⋅⋅⋅n|1).

For general l1|l2 (including 1|2 ⋅ ⋅ ⋅ n and 2 ⋅ ⋅ ⋅ n|1), let v be a point in the interior of Pn with distance ϵn−2
directly below the geometric center of Fl1|l2 such that if l1|l2 is neither 1|2 ⋅ ⋅ ⋅ n nor 2 ⋅ ⋅ ⋅ n|1, v is not in the
interior of Cyl(F1|2⋅⋅⋅n). We form the join B(l1|l2) ∗ v and denote it by Cn−3(Fl1|l2 ). We call it the (n − 3)-cone
of Fl1|l2 .

We choose the values of ϵ2, . . . , ϵn−2 small enough and the orientation of each v such that
(1) all the previous conditions are satisfied,
(2) each iterated cone is contained in the union of the elements of a collection {Cll } such that each ll ∈ Tn−11n

has the largest possible arity number,
(3) the union of all (n − 3)-cones exhibits maximal symmetry.

To construct the iterated cones for Pn as Fσ for any σ ∈ Sn, we take as images of the iterated cones of F1n
under the linear map ∑

ν∈Sn
tνFν1|⋅⋅⋅|νn Ü→ ∑

ν∈Sn
tνF(σν)1|⋅⋅⋅|(σν)n .
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4.2.4 Transferring homotopies from faces to cones

We will use the following observation to transfer the previously defined homotopies as homotopies on faces
into the ambient Pn by inducing a homotopy on a cone over the face with vertex v which lies inside Pn.

Let P be a polytope and HP : P × I → P a homotopy with HP( ⋅ , t)|∂P = 1∂P for all t ∈ I. We define
HP×I : (P × I) × I → P × I by ((x, s), t) Ü→ (HP(x, t), s). So HP×I( ⋅ , ⋅ , t)|(∂P)×I = 1(∂P)×I for all t ∈ I. Thus, if
we identify P × I/P × {1}with a cone P ∗ v, the homotopy HP×I induces a homotopy on P × I/P × {1} ≈ P ∗ v,
which we call it HP∗v. This homotopy then satisfies

HP∗v( ⋅ , t)|(∂P)∗v = 1(∂P)∗v . (4.2)

4.2.5 The homotopy

Now we describe the homotopies Hσ where σ ∈ Sn for some n ≥ 1.
For n = 1, 2, we let Hσ be the identity homotopies. In fact, C(n) ≈ F(n) in these two cases. For n = 3,

we let Hσ( ⋅ , t) be Hσ2 ,σ3 ( ⋅ , t) on Eσ2 ,σ3 and Hσ3 ,σ2 ( ⋅ , t) on Eσ3 ,σ2 ; we let Hσ be the identity homotopy on
P3\Int(Eσ2 ,σ3 ∪ Eσ3 ,σ2 ). By Corollary 4.8, Hσ is a well-defined homotopy on P3. See Figure 21.

Figure 21. Top row: the domains of hσ = Hσ( ⋅ , 1). Bottom row: the images of hσ = Hσ( ⋅ , 1).

For each n ≥ 4, we describe Hσ in n steps, assuming we know the homotopies for all m < n.
In the first n − 1 steps the homotopy is applied according to the initial branching number starting with

k = 1 and ending with k = n − 1. After that, in the last step (Step n), the homotopy is done on the faces.
The homotopy on the faces uses the iterated cones of degree ≤ n − 3 while in Steps 2, . . . , n − 1, we use the
extensions. The first step is more complicated since part of the boundary of the cells that we are moving is
connected to other cells of other Pσ. So in this step, there is an additional use of iterated cones.

In the steps with iterated cones, the homotopy is done in several substeps. For this we need the fol-
lowing technical details: For l = l1| ⋅ ⋅ ⋅ |lk ∈ Jσ, let li be the length of the string li and l the maximum of{li : i = 1, . . . , k}. The homotopies over the cones of the faces will be performed inductively over l.

Correspondingly, we subdivide the interval I in such a way that the homotopy can take place at differ-
ent times in I. Let fm0 : I → I be defined by t Ü→ 1

m t and f
m
1 : I → I by t Ü→ 1

m (t + m − 1), where m ≥ 4. Let
fm0 : I → I and fm1 : I → I be the identity maps if m = 3, 2, 1. Then we let

fi1 i2⋅⋅⋅ik = f ni1 ∘ f n−1i2 ∘ ⋅ ⋅ ⋅ ∘ f n−k+1ik

for 1 ≤ k ≤ n, where ij = 0, 1, j = 1, . . . , k. We also let Ii1 i2⋅⋅⋅ik = fi1 i2⋅⋅⋅ik (I). For an example, see Figure 22. From
now on, i1 = 0 corresponds to step 1 while i1 = 1 corresponds to step n.
Step 1: t ∈ [0, 1n ], i0 = 0. For l = l1| ⋅ ⋅ ⋅ |ln−2 ∈ Jσ, if l = 2, then all but two of l1, . . . , ln−2 are of length 1 and
we let HC1(Fl) : C1(Fl) × [0, 1n ] → C1(Fl) be the identity homotopy. If l = 3, then l = ⋅ ⋅ ⋅ |ll| ⋅ ⋅ ⋅, where ll = ijk
and all the other lms are of length 1. We define HFl : Fl × [0, 1n ] → Fl by(x, t) Ü→ ψ−1l (∗ × ⋅ ⋅ ⋅ × ∗ × HF123 (ψll (x), f−1i1⋅⋅⋅in−3 (t)) × ∗ × ⋅ ⋅ ⋅ × ∗)
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Figure 22. The subspaces Ii1 ⋅⋅⋅ik when n = 6. Notice that Ii1 i2 i3 i4 i5 i6 = Ii1 i2 i3 .

if t ∈ Ii1 i2⋅⋅⋅in−3 for some i1, . . . , in−3 and (x, t) Ü→ x otherwise, where

ψl = (∗, . . . , ∗, ψll , ∗, . . . , ∗) : Fl → ∗ × ⋅ ⋅ ⋅ × ∗ × F123 × ∗ × ⋅ ⋅ ⋅ × ∗
is the homeomorphism defined under i Ü→ 1, j Ü→ 2 and k Ü→ 3. Then we get the induced homotopy

HC1(Fl) : C1(Fl) × [0, 1n ] → C1(Fl).
Let 3 ≤ i ≤ n − 3. Suppose we have described the homotopies for t ∈ [0, 1n ] on the (i − 2)-cones. For

l = l1| ⋅ ⋅ ⋅ |ln−i, define HFl : Fl × [0, 1n ] → Fl by(x, t) Ü→ ψ−1l (HF12⋅⋅⋅l1 (ψl1 (x), f−1i1 i2⋅⋅⋅in−l1 (t)), . . . , HF12⋅⋅⋅ln−i (ψln−i (x), f−1i1 i2⋅⋅⋅in−ln−i (t))),
where

ψl = (ψl1 , . . . , ψln−i ) : Fl → F12⋅⋅⋅l1 × ⋅ ⋅ ⋅ × F12⋅⋅⋅ln−i
is the homeomorphism under the assignments (lj)k Ü→ k, for k = 1, 2, . . . , lj and j = 1, 2, . . . , n − i, and
we define HF12⋅⋅⋅lj (ψlj (x), f−1i1 i2⋅⋅⋅in−lj (t)) to be ψlj (x) if f−1i1⋅⋅⋅in−lj (t) = 0. The homotopies HFl and HCi−1(Fk), where
k ∈ Ji−1σ and k < l, agree on their overlaps.

Thus, we get a well-defined homotopy on Fl1|⋅⋅⋅|ln−i ∪ ⋃k∈Ji−11n ,k<l1|⋅⋅⋅|ln−i Ci−2(Fk), which induces the homo-
topy

HCi−1(Fl) : C
i−1(Fl) × [0, 1n ] → Ci−1(Fl).

Lastly, for l = l1|l2, define
HFl : Fl × [0, 1n ] → Fl

by (x, t) Ü→ ψ−1l (HF12⋅⋅⋅l1 (ψl1 (x), f−1i1 i2⋅⋅⋅in−l1 (t)), HF12⋅⋅⋅l2 (ψl2 (x), f−1i1 i2⋅⋅⋅in−l2 (t)))
as above. Again, we get a well-defined homotopy on

B(l1|l2) = Fl1|l2 ∪ ⋃
k∈Jn−31n , k<l1|l2

Cn−4(Fk).
Then we get induced homotopies HCn−3(Fl) : Cn−3(Fl) × [0, 1n ] → Cn−3(Fl), where l is neither 1|2 ⋅ ⋅ ⋅ n nor
2 ⋅ ⋅ ⋅ n|1. Let θ be the homeomorphism θ = (θ1, θ2) : Cyl(F1|2⋅⋅⋅n) → B(1|2 ⋅ ⋅ ⋅ n) × I. Then we also have the
homotopy

HCyl(F1|2⋅⋅⋅n) : Cyl(F1|2⋅⋅⋅n) × [0, 1n ] → Cyl(F1|2⋅⋅⋅n)
definedby (x, t) Ü→ θ−1(HB(1|2⋅⋅⋅n)(θ1(x), t), θ2(x)). ThehomotopiesHCyl(F1|2⋅⋅⋅n) and theHCn−3(Fl)s agree on their
overlaps. On the other hand, we letHσ : Pn × [0, 1n ] → Pn be the identity homotopy on the complement of the
interior of the subspace Cyl(F1|2⋅⋅⋅n) ∪ ⋃l∈Jn−2σ \{1|2⋅⋅⋅n,2⋅⋅⋅n|1} Cn−3(Fl). By (4.2), Hσ : Pn × [0, 1n ] → Pn is a well-
defined homotopy.

Step j, j = 2, . . . , n − 1: t ∈ [ j−1n , j
n ]. Let Hσ( ⋅ , t) be Hl( ⋅ , nt − j + 1) on El, where l = l1, . . . , lj is compatible

with σ (recall this means each li is a subsequence of σ2 ⋅ ⋅ ⋅ σn), and let Hσ( ⋅ , t) be the identity homotopy on
the complement of the interior of the union of these Els in Pn. By Corollary 4.8, each Hσ : Pn × [ j−1n , jn ] → Pn
is a well-defined homotopy.
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Step n: t ∈ [ n−1n , 1]. Weget the induced homotopiesHCn−3(Fl) : Cn−3(Fl) × [ n−1n , 1] → Cn−3(Fl) for all l ∈ Jn−2σ
as those in Step 1 except that we let i1 = 1 and we do not consider the cylinders. On the other hand, we
let Hσ : Pn × [ n−1n , 1] → Pn be the identity homotopy on the complement of the interior of ⋃l∈Jn−2σ

Cn−3(Fl).
By (4.2), Hσ : Pn × [ n−1n , 1] → Pn is a well-defined homotopy.

The above n homotopies agree on their overlaps, thus we get a well-defined homotopy Hσ : Pn × I → Pn.

Proposition 4.9. For any n ≥ 1, the homotopies Hσ satisfy conditions (∗1), (∗2) and (∗3) of Remark 4.4 and
hence induce the homotopies 1F(n) ≃HF

hn ∘ 1n and 1C(n) ≃HC
1n ∘ hn detailed in Remark 4.4.

Proof. There is nothing to check for n = 1, 2. By our previous discussion, it suffices to prove that the homo-
topies Hσ, σ ∈ Sn satisfy (∗1), (∗2) and (∗3).

As a warm-up, let us consider the case for n = 3 in detail first. Condition (∗1) holds by Corollary 4.8.
Let x ∼F y, where x ∈ Pn indexed by σ and y ∈ Pn indexed by ν. Then x = y in Int(Fl) for some l ∈ Jσ ∩ Jν.
If the order of l is 2, then σ = ν. So Hσ(x, t) = Hν(x, t) = Hν(y, t) in Fl. Otherwise (the order of l is smaller
than 2), Hσ(x, t) = x = y = Hν(y, t) in Fα because we have the identity homotopy on the 1-skeleton. So
Hσ(x, t) ∼F Hν(y, t) for any t, verifying (∗2). Let x ∼C y, where x ∈ Pn indexed by σ and y ∈ Pn indexed
by ν. Then there is l ∈ T2σ ∩ T2ν with the lowest arity number such that x = y in Cl. Then for any t, either
Hσ(x, t) = Hν(y, t) in Cl or Hσ(x, t) = Hν(y, t) in Ck, where k ∈ T2σ ∩ T2ν and k has arity number one greater
than or equal to that of l. Thus, (∗3a) holds. Lastly, if x = y in Int(Cl), where l has arity number 1, then σ = ν
and so Hσ(x, 1) = Hσ(y, 1) = Hν(y, 1) in Fσ = Fν; otherwise, Hσ(x, 1) = Hν(y, 1) in Fk for some k ∈ J1σ ∩ J1ν .
Hence, (∗3b) holds.

For n ≥ 4, from the description ofHσ when t ∈ [0, 1n ], we see that (∗1)holds. Now let x ∼F y, where x ∈ Pn
indexed by σ and y ∈ Pn indexed by ν. Then x = y in Int(Fl) for some l ∈ Jσ ∩ Jν. Then Hσ(x, t) = Hν(y, t) in
Fl (but not necessarily in Int(Fl)). Thus, (∗2) holds. Now let x ∼C y, where x ∈ Pn indexed by σ and y ∈ Pn
indexed by ν. Then there is l ∈ Tn−1σ ∩ Tn−1ν with the lowest arity number such that x = y in Cl. Then for any t,
either Hσ(x, t) = Hν(y, t) in Cl or Hσ(x, t) = Hν(y, t) in Ck, where k ∈ Tn−1σ ∩ Tn−1ν and k has arity number
greater than or equal to that of l. Therefore, (∗3a) holds. Finally, let x ∼C y, where x ∈ Pn indexed by σ
and y ∈ Pn indexed by ν, so there is l ∈ Tσ ∩ Tν such that x = y in Cl. Then there is k = k1| ⋅ ⋅ ⋅ |kk ∈ Fσ ∩ Fν
such that Hσ(Cl, n−1n ) = Hν(Cl, n−1n ) ⊂ Fk. By the definition of the homotopy, there is a k� < k such that
Hσ(x, 1) = Hν(y, 1) in Fk� , establishing (∗3b).
5 Discussion: Relations to other E2 operads, application and
outlook

There seem to be two breeds of E2 operads. The first, and older ones, are useful for the recognition of iterated
loop spaces, like the little discs, the little cubes and the Steiner operad. The other, and the newer generation,
are good for solving Deligne’s conjecture. Of course there are the cofibrant models, which are by definition
a hybrid. These have the drawback that they are usually a bit too abstract to handle to give actual operadic
operations, by which we mean they act only through a factorization via a more concrete operad.

The first type usually has configuration spaces as deformation retracts, namely, as we have discussed,
they have the Milgram model {F(n)} as retract, which is classically used in the iterated loop space program
(see [3, 35]). See [29, Section 2.4] as a good survey. One feature of F, however, is that it is not an operad in
any known way. There are some remnants [3, 29] using convex hulls, but there is not even a closed cellular
operad structure.

On the other hand, the other models have an algebraic aspect, which allows one to define operations on
the Hochschild cochain complex. Their diversity is actually not as big as one would think.

On the cell/chain level they are variations of the Gerstenhaber–Voronov’s GV-brace operations [15]. On
the topological level, they all retract to Cact, which deformation retracts to C = Cact1. The difference to the
above is that C is actually a chain level operad, whileF is not. Moreover, C has the b/w tree structure, making
it ready to give operations, such as in Deligne’s conjecture.
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Let us briefly go through the list and history. Most of the operads were actually constructed first on the
combinatorial level and then realized as topological spaces, using totalizations, realizations or condensa-
tions. For the operad Cact the story was the inverse. It existed first as a topological operad [25], and then
it was realized that it is E2 and it has an operadic cellular chain model CC∗(Cact1) (see [18]) corresponding
to GV.

The first operad is the Kontsevich–Soibelman minimal operad M[28], which is the generalization of the
GV-operad to the A∞ case. It gave the first solution to Deligne’s conjecture and works overℤ. The procedure
here is a little different as the Fulton–MacPherson compactification and a W-construction were used. The
fact that it can be realized as a version of cacti is contained in [26]. If the A∞ algebra is strict, it contacts to
CC∗(Cact), see [24]. The next operad was by McClure and Smith [32] and it gives a cosimplicial description
of the GV-operad and hence can realize a topological operad using totalization. The current paper also fixes
the homotopy type of formulas in [32] directly.

In their second paper, McClure and Smith [33] introduced sequence notation for the GV-operad, which
has been one of the most influential constructions in the theory. The sequence operad S2 is with hindsight
actually isomorphic to the description by b/w bipartite trees [18, 20] as we recall below. The totalization
of [32] then reconstructs spineless cacti on the topological level. Alternatively, McClure and Smith [33] used
Berger’s machine. The operad structure of this comparison was further clarified in [6].

The third paper [34] contains the very fruitful functor operad approach, which has been reformulated
in [2] by means of the lattice path operad. This gives back the usual operations if certain degeneracy maps
are applied. That this procedure is also operadic follows from a more general theorem proved in [22, Theo-
rem4.4]. The degeneracies are given as anglemarkings. An intermediate step to the full realization is given by
partitioning, see [22]. This provides a colored set operad structure. Thiswas cast into a cosimplicial/simplicial
picture in [2] as the lattice path operad. Here the map from ∆n specifies the partitioning in the sense of [22]
and is equivalent to using the foliation operator of [20]. After doing the condensation, one again obtains
spineless cacti on the topological level.

The quotient map we discuss is probably related to the second filtration of the Barratt–Eccles operad as
discussed in [6], but this is unclear at the moment, cf. Section 5.3 below. What is clear is that the quotient
makes the non-operad F into an operad on the cell level and even a topological quasi-operad, i.e. associative
up to homotopy.

For the cyclic Deligne conjecture, which is an application of the E2 identification, the story is similar. The
first proof is in [21] using cacti. The first full proof that cacti are indeed equivalent to fD2 is in [18]. Here one
uses the E2 structure of spinless cacti and the fact that cacti is a bi-crossed product. The paper [2] adds the
simplicial structure on the chain level explaining the usual operations as action of a colored operad. Another
version of this partitioning is contained in [22]. Condensation then reconstructs cacti. Another chain level
action was given slightly later than [21] in [45]. They did not, however, show that the relevant chain level
operads are models for the framed little discs. So, on the topological level the operads adapted to prove the
cyclic version are basically all cacti. The added difficulty, is that for cacti one is dealing with a bi-crossed
product and not just a semi-direct product. The cyclic A∞ version again based on cacti is contained in [48].

5.1 Bijection of CC∗(Cact1) and S2

The isomorphism is clear from the isomorphisms

S2
≃←→ formulas ≃←→ GV ≃←→ CC∗(Cact1) ≃←→ T

pp,nt
bp

contained in [18, 32, 33], see also [2].
This isomorphism between CC∗(Cact1) and S2 is actually explicitly given in [23], which also contains the

idea of cacti with stops, i.e. monotone parameterizations as explained in [19], used by Salvatore in the cyclic
case, to rewrite the existing proofs in the language of McClure–Smith. Given a cactus or equivalently a b/w
tree, one obtains a sequence as follows. Go around the outside circle and record the lobe number you see.
Equivalently, for a planar planted b/w tree all thewhite angles (i.e. pairs of subsequent flags to awhite vertex)
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come in a natural order by embedding in the plane. Reading off the labels give the direct morphism, which is
easily seen to be an isomorphism.

In fact, [23, Proposition 4.11] actually contains a generalization to the full E∞ structures. Here one
obtains an obviously surjective map. The injectivity is clear on the E2 level.

5.2 Lifting of a cellular quasi-isomorphism

Let CC∗(F(n)) be the cellular chains of F(n). In [44], Tourchine constructed a homomorphism

I∗ : CC∗(F(n)) → CC∗(Cact1(n))
of complexes and showed that I∗ is a quasi-isomorphism using homological algebra. By checking the defini-
tion of I∗ in [44, p. 882], one immediately has the following.

Proposition 5.1. The homomorphism I∗ : CC∗(F(n)) → CC∗(Cact1(n)) is induced from the homotopy equiva-
lence 1n : F(n) → Cact1(n). Thus, I∗ is a quasi-isomorphism.
5.3 Further connections

Since both F(n) and C(n) are obtained by gluing n! contractible polytopes, our work also has connections to
Batanin’s theory of the symmetrization of contractible 2-operads (and n-operads in general) [1]. It is worth
pointing out that instead of making the spaces bigger by compactifying the various deformation retract
models of the configuration spaces F(ℝ2, n) to get operadic structures, one can subdivide the constituent
contractible pieces (Pn) and then do further gluing to get the quasi-operad {Cact1(n)}n≥1, which become
a bona-fide operad {Cact(n)}n≥1 after taking the semi-direct product with the scaling operad [18].

Another E2-operad which is quite different from C2 or D2 is {|C2Sn|}n≥1, the realization of the second
term of the Smith filtration of the simplicial universal bundleWSn, which is also known as the Barratt–Eccles
operad. A reformulation of C2Sn resembles the presentation of F(n): C2S2 is built up out of n! copies of the
nerve N(Sn , <), where < is the weak Bruhat order on the set Sn (see [5]). It can be readily checked that for
n = 1, 2, 3, |N(Sn , <)| deformation retracts to Pn and C2Sn deformation retracts toF(n). The retraction can be
explicitly described. The same is hoped for n ≥ 4, even though the dimension of |C2Sn| grows quadratically
as n(n−1)

2 and difficulty already arises when n = 4.
One could also try to find an explicit combinatorial retraction from |C2Sn| to F(n) for each n, as it is

known that the two are weakly equivalent as topological preoperads. As is follows from [6] that surjections of
complexity≤ 2 canbe faithfully realized inside C2Sn onewouldhave to prove that this injection is a homotopy
equivalence.

A next step would be to relate the higher-dimensional little discs (cubes etc.) operad to higher-dimen-
sional cacti operad through products of permutohedra. We refer the reader to [23] for a higher-dimensional
version of the cacti operad.

A Proof of Proposition 4.5 and Proposition 4.6

A.1 Proof of Proposition 4.5

Proposition 4.5 follows from two lemmas.

Lemma A.1. Let Sn−2± be the upper(lower)-hemisphere

Sn−2± = {(x1, . . . , xn−1) ∈ ℝn−1 : x21 + ⋅ ⋅ ⋅ + x2n−1 = 1, xn−1 ≥ 0 (xn−1 ≤ 0)}
inℝn−1. Then Sn−2+ is a deformation retract of the unit cell Dn−1.
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Figure 23. Deformation retraction from D3 to S2+.

Proof. Define HDn−1 : Dn−1 × I → Dn−1 by

HDn−1 ((x1, x2, . . . , xn−1), t) = (x1, x2, . . . , xn−2, (1 − t)xn−1 + t√1 − x21 − ⋅ ⋅ ⋅ − x2n−2).
It can be readily checked thatHDn−1 is awell-defined homotopy. Geometrically,HDn−1 contracts each fiber over
a point (x1, . . . , −√1 − x21 − ⋅ ⋅ ⋅ − x2n−2) on Sn−2− to the point (x1, . . . ,√1 − x21 − ⋅ ⋅ ⋅ − x2n−2) on Sn−2+ . In addition,
HDn−1 ( ⋅ , t) is the identity map on Sn−2+ for all t ∈ I. So HDn−1 is a deformation retraction from Dn−1 onto Sn−2+
(Sn−2+ is a deformation retract of Dn−1), see Figure 23 for an illustration of the case n = 4.
Lemma A.2. There is a homeomorphism from Pm1 × Pm2 × ⋅ ⋅ ⋅ × Pmk × ∆k to Dn−1 mapping Pm1 × Pm2 × ⋅ ⋅ ⋅ ×
Pmk × (⋃k

i=2 v1 ⋅ ⋅ ⋅ v̂i ⋅ ⋅ ⋅ vk+1) homeomorphically onto Sn−2− .

Proof. LetCml be the geometric center of Pml , where l = 1, . . . , k, and let Fjl , where jl ∈ Il, be the facets of Pml .
Let Ck = 1

k+1 (v1 + ⋅ ⋅ ⋅ + vk+1). So Ck is the barycenter of ∆k. Then Pml = ⋃jl∈Il Fjl ∗ Cml , where ∗ is the join
operation, and ∆k = ⋃k+1

i=1 v1 ⋅ ⋅ ⋅ v̂i ⋅ ⋅ ⋅ vk+1Ck. So
Pm1 × ⋅ ⋅ ⋅ × Pmk × ∆k = k⋃

l=1
⋃
jl∈Il

k+1⋃
i=1

(Fj1 ∗ Cm1 ) × ⋅ ⋅ ⋅ × (Fjl ∗ Cml ) × ⋅ ⋅ ⋅ × (Fjk ∗ Cmk ) × (v1 ⋅ ⋅ ⋅ v̂i ⋅ ⋅ ⋅ vk+1Ck).
Notice that each product on the right above has C = (Cm1 , . . . , Cmk , Ck) as one of its vertices and is the union
of line segments from C to a point of the union⋃k

l=1(Fj1 ∗Cm1 )×⋅ ⋅ ⋅×Fjl ×⋅ ⋅ ⋅×(Fjk ∗Cmk )×(v1 ⋅ ⋅ ⋅ v̂i ⋅ ⋅ ⋅ vk+1Ck)∪(Fj1 ∗ Cm1 ) × ⋅ ⋅ ⋅ × (Fjk ∗ Cmk ) × (v1 ⋅ ⋅ ⋅ v̂i ⋅ ⋅ ⋅ vk+1) and the lines intersect only at C.
The line segments of different products having C as a vertex above agree on the intersections. So

Pm1 × ⋅ ⋅ ⋅ × Pmk × ∆k is the union of line segments emanating from C and the union of the end points dif-
ferent from C of the line segments is ∂(Pm1 × ⋅ ⋅ ⋅ × Pmk × ∆k). (See Figure 24.)

Figure 24. Decompositions of P2 × ∆1 and P2 × P2 × ∆2 into line segments joined at their C.
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We will use a similar proof of that of [36, Lemma 1.1] four times from now on. Here is the first time.
Let T : Pm1 × ⋅ ⋅ ⋅ × Pmk × ∆k → ℝn−1 be the translation defined by

T(x) = x − C.
Let r� : ℝn−1\{(0, . . . , 0)} → Sn−2 be the radial contraction given as

r�(x) = x|x| ,
where |x| is the Euclidean norm of x. Since each half open ray emanating from (0, . . . , 0) intersects with
T(∂(Pm1 × ⋅ ⋅ ⋅ × Pmk × ∆k)) at one and only one point, r� restricts to a continuous bijection

r : T(∂(Pm1 × ⋅ ⋅ ⋅ × Pmk × ∆k)) → Sn−2.

Being the continuous image of a compact space, T(∂(Pm1 × ⋅ ⋅ ⋅ × Pmk × ∆k)) is compact, and Sn−2 is Hausdorff,
so r is indeed a homeomorphism.

Now we extend r : T(∂(Pm1 × ⋅ ⋅ ⋅ × Pmk × ∆k)) → Sn−2 to R : T(Pm1 × ⋅ ⋅ ⋅ × Pmk × ∆k) → Dn−1. Define

R(x) = {{{{{
x|r−1( x|x| )| if x ̸= (0, . . . , 0),(0, . . . , 0) if x = (0, . . . , 0).

Except for at x ̸= (0, . . . , 0), R is also continuous at x = (0, . . . , 0). To see this, let L be a lower bound of the
Euclidean norm on ∂(Pm1 × ⋅ ⋅ ⋅ × Pmk × ∆k). Then for any ϵ > 0, if |x| < Lϵ, then|R(x) − R(0)| = |x||r−1( x|x| )| ≤ LϵL = ϵ.

Since R is a continuous bijection from compact T(Pm1 × ⋅ ⋅ ⋅ × Pmk × ∆k) to Hausdorff Dn−1, R is indeed
a homeomorphism. Furthermore, T is also a homeomorphism onto its image. So R ∘ T is a homeomorphism
from Pm1 × ⋅ ⋅ ⋅ × Pmk × ∆k to Dn−1 mapping ∂(Pm1 × ⋅ ⋅ ⋅ × Pmk × ∆k) homeomorphically onto Sn−2.

So far, Pm1 × ⋅ ⋅ ⋅ × Pmk × (⋃k
i=2 v1 ⋅ ⋅ ⋅ v̂i ⋅ ⋅ ⋅ vk+1) has not been mapped to the lower-hemisphere Sn−2− . We

will use stereographic projection to achieve this.
Recall ∆k = v1v2 ⋅ ⋅ ⋅ vk+1 and ∂∆k = (⋃k

i=2 v1 ⋅ ⋅ ⋅ v̂i ⋅ ⋅ ⋅ vk+1) ∪ (v1v2 ⋅ ⋅ ⋅ vk ∪ v2 ⋅ ⋅ ⋅ vkvk+1). Then:
(1) Nk = 1

k−1 (v2 + ⋅ ⋅ ⋅ + vk) is in Int(v1v2 ⋅ ⋅ ⋅ vk⋃ v2 ⋅ ⋅ ⋅ vkvk+1).
(2) Sk = 1

2 (v1 + vk+1) is in Int(⋃k
i=2 v1 ⋅ ⋅ ⋅ v̂i ⋅ ⋅ ⋅ vk+1).

(3) Nk, Ck and Sk lie on the same line and |NkCk| : |NkSk| = 2 : (k + 1).
(See Figure 25.)

Figure 25. The pointsNi, Ci and S, i = 2, 3, 5.

Now we letN = (Cm1 , . . . , Cmk ,Nk) and S = (Cm1 , . . . , Cmk , Sk). So:
(1) N is in the relative interior of ∂(Pm1 × ⋅ ⋅ ⋅ × Pmk × ∆k)\Int(Pm1 × ⋅ ⋅ ⋅ × Pmk × (⋃k

i=2 v1 ⋅ ⋅ ⋅ v̂i ⋅ ⋅ ⋅ vk+1)).
(2) S is in the relative interior of Pm1 × ⋅ ⋅ ⋅ × Pmk × (⋃k

i=2 v1 ⋅ ⋅ ⋅ v̂i ⋅ ⋅ ⋅ vk+1).
(3) C is in Int(Pm1 × ⋅ ⋅ ⋅ × Pmk × ∆k).
(4) N, C and S lie on the same line and |NC| : |NS| = 2 : (k + 1).
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34 | R.M. Kaufmann and Y. Zhang, Permutohedral structures on E2-operads

Let ϕ be an element in SO(n − 1) rotating the vectorN − C so that it is aligned with the positive xn−1-axis.
Notice that ϕ : Dn−1 → Dn−1 is a homeomorphism. So b := ϕ ∘ R ∘ T is a homeomorphism.

Let N = (0, . . . , 0, 1) ∈ ℝn−1 and S = (0, . . . , 0, −1) ∈ ℝn−1. The stereographic projections
p�N : Sn−2\N → ℝn−2, (x1, . . . , xn−1) Ü→ ( x1

1 − xn−1 , x2
1 − xn−1 , . . . , xn−2

1 − xn−1 ),
and

p�S : S
n−2\S → ℝn−2, (x1, . . . , xn−1) Ü→ ( x1

1 + xn−1 , x2
1 + xn−1 , . . . , xn−2

1 + xn−1 ),
are homeomorphisms with inverses

p�−1N (y1, . . . , yn−2) = ( 2y1
1 + y21 + ⋅ ⋅ ⋅ + y2n−2 , . . . , 2yn−2

1 + y21 + ⋅ ⋅ ⋅ + y2n−2 , −1 + y21 + ⋅ ⋅ ⋅ + y2n−21 + y21 + ⋅ ⋅ ⋅ + y2n−2 ),
p�−1S (y1, . . . , yn−2) = ( 2y1

1 + y21 + ⋅ ⋅ ⋅ + y2n−2 , . . . , 2yn−2
1 + y21 + ⋅ ⋅ ⋅ + y2n−2 , 1 − y21 − ⋅ ⋅ ⋅ − y2n−21 + y21 + ⋅ ⋅ ⋅ + y2n−2 ).

Since

Dn−2S := b(Pm1 × ⋅ ⋅ ⋅ × Pmk × ( k⋃
i=2
v1 ⋅ ⋅ ⋅ v̂i ⋅ ⋅ ⋅ vk+1)) ⊂ Sn−2\N

and

Dn−2N := b(∂(Pm1 × ⋅ ⋅ ⋅ × Pmk × ∆k)\Int(Pm1 × ⋅ ⋅ ⋅ × Pmk × ( k⋃
i=2
v1 ⋅ ⋅ ⋅ v̂i ⋅ ⋅ ⋅ vk+1))) ⊂ Sn−2\S,

p�N and p
�
S restrict to homeomorphisms pN and pS from Dn−2S and Dn−2N respectively to their images.

Notice that Pm1 × ⋅ ⋅ ⋅ × Pmk × (⋃k
i=2 v1 ⋅ ⋅ ⋅ v̂i ⋅ ⋅ ⋅ vk+1) admits a presentation of the following form

k⋃
l=1

⋃
jl∈Il

k⋃
i=2

⋃
j=1,k+1

(Fj1 ∗ Cm1 ) × ⋅ ⋅ ⋅ × (Fjl ∗ Cml ) × ⋅ ⋅ ⋅ × (Fjk ∗ Cmk ) × (v1 ⋅ ⋅ ⋅ v̂i v̂j ⋅ ⋅ ⋅ vk+1Sk).
Each product on the right has S = (Cm1 , . . . , Cmk , Sk) as one of its vertices and it is a union of line segments
from S to a point on⋃k

l=1(Fj1∗Cm1 )×⋅ ⋅ ⋅×Fjl×⋅ ⋅ ⋅×(Fjk∗Cmk )×(v1 ⋅ ⋅ ⋅ v̂i v̂j ⋅ ⋅ ⋅ vk+1Ck)∪(Fj1∗Cm1 )×⋅ ⋅ ⋅×(Fjk∗Cmk )×(v1 ⋅ ⋅ ⋅ v̂i v̂j ⋅ ⋅ ⋅ vk+1) and the lines intersect only at S. The line segments of different products above agree on the
intersections. So Pm1 × ⋅ ⋅ ⋅ × Pmk × (⋃k

i=2 v1 ⋅ ⋅ ⋅ v̂i ⋅ ⋅ ⋅ vk+1) is the union of line segments emanating from S and
the union of the end points different from S of the line segments is ∂(Pm1 × ⋅ ⋅ ⋅ × Pmk × (⋃k

i=2 v1 ⋅ ⋅ ⋅ v̂i ⋅ ⋅ ⋅ vk+1)).
Thus, pN(Dn−2S ) is the closure of an open set inℝn−2 containing the origin and pN(Dn−2S ) is a union of line seg-
ments emanating from the origin such that each segment intersects ∂(pN(Dn−2S )) at only one point. Therefore,
we have a homeomorphism GS : pN(Dn−2S ) → Dn−2 ⊂ ℝn−2 obtained similar to that of R.

Every line segment xS above and the point C determine a half plane. This half plane intersects the sub-
space ∂(Pm1 × ⋅ ⋅ ⋅ × Pmk × ∆k) at a piecewise linear pathNy1 ⋅ ⋅ ⋅ ymxS such thatNy1 ⋅ ⋅ ⋅ ymx ismapped to a line
segment emanating from the origin in pS(Dn−2N ). Thus, pS(Dn−2N ) is the closure of an open set inℝn−2 contain-
ing the origin and pS(Dn−2N ) is a union of line segments emanating from the origin such that each segment in-
tersects ∂(pS(Dn−2N )) at only one point. Therefore, we have a homeomorphism GN : pS(Dn−2N ) → Dn−2 ⊂ ℝn−2
obtained similar to that of R.

Now we define f : Sn−2 → Sn−2 by

f(x) = {{{p−1N ∘ GS ∘ pN(x), x ∈ Dn−2S ,
p−1S ∘ GN ∘ pS(x), x ∈ Dn−2N .

Notice that each branch of f is continuous and they agree on the overlap. (See Figure 26.) So f is continuous.
Being a continuous bijection from compact Hausdorff Sn−2 onto itself, f is thus a homeomorphism.

Now we extend f : Sn−2 → Sn−2 to F : Dn−1 → Dn−1 by

F(x) = {{{f( x|x| )|x|, x ̸= (0, . . . , 0),(0, . . . , 0), x = (0, . . . , 0).
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Figure 26. Two stereographic projections.

Similar to R, F is continuous at x = (0, . . . , 0) because for any ϵ > 0, if |x| < ϵ, then|F(x) − F(0)| = !!!!!!!f( x|x| )!!!!!!!|x| = |x| < ϵ.
Being a continuous bijection from compact Hausdorff Dn−1 onto itself, F is thus a homeomorphism.

Therefore, the composition F ∘ b is a homeomorphism from Pm1 × Pm2 × ⋅ ⋅ ⋅ × Pmk × ∆k to Dn−1 mapping
Pm1 × Pm2 × ⋅ ⋅ ⋅ × Pmk × (⋃k

i=2 v1 ⋅ ⋅ ⋅ v̂i ⋅ ⋅ ⋅ vk+1)homeomorphically onto Sn−2− . It follows that F ∘ b alsomaps the
subspace ∂(Pm1 × Pm2 × ⋅ ⋅ ⋅ × Pmk × ∆k)\Int(Pm1 × Pm2 × ⋅ ⋅ ⋅ × Pmk × (⋃k

i=2 v1 ⋅ ⋅ ⋅ v̂i ⋅ ⋅ ⋅ vk+1)) homeomorphically
onto Sn−2+ .

Proof of Proposition 4.5. Define HPm1×⋅⋅⋅×Pmk×∆k : (Pm1 × ⋅ ⋅ ⋅ × Pmk × ∆k) × I → Pm1 × ⋅ ⋅ ⋅ × Pmk × ∆k by
HPm1×⋅⋅⋅×Pmk×∆k (x, t) = b−1 ∘ F−1 ∘ HDn−1 (F ∘ b(x), t).

A.2 Proof of Proposition 4.6

Now we prove Proposition 4.6.

Proof of Proposition 4.6. Let

Sn−2− × Iϵ := {(x1, . . . , xn−2, xn−1 − δ) ∈ ℝn−1 : (x1, . . . , xn−1) ∈ Sn−2− , 0 ≤ δ ≤ ϵ},
and let the extended closed (n − 1)-cell be

Extϵ(Dn−1) := Dn−1 ∪ (Sn−2− × Iϵ).
(See Figure 27.) Define

HSn−2− ×Iϵ : (Sn−2− × Iϵ) × I → Extϵ(Dn−1)
by

HSn−2− ×Iϵ ((x1, . . . , xn−1), t) = (x1, . . . , xn−2, xn−1 + t(xn−1 + √1 − x21 − ⋅ ⋅ ⋅ − x2n−2 + ϵ)2√1 − x21 − ⋅ ⋅ ⋅ − x2n−2ϵ ).
Then HSn−2− ×Iϵ is a well-defined homotopy. It linearly extends each fiber over (x1, . . . , xn−2, xn−1 − ϵ) in
Sn−2− × Iϵ to the fiber in Extϵ(Dn−1). For each t ∈ I, HSn−2− ×Iϵ ( ⋅ , t) is a homeomorphism onto its image.
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Figure 27. The extended closed 3-cell Extϵ(D3).

By extending R and possibly perturbing F, we get R̃ and F̃ such that

F̃ ∘ ϕ ∘ R̃ ∘ T : (Pm1 × ⋅ ⋅ ⋅ × Pmk × ( k⋃
i=2
v1 ⋅ ⋅ ⋅ v̂i ⋅ ⋅ ⋅ vk+1)) × Iϵ → Sn−2− × Iϵ

is a homeomorphism whose images of Pm1 × ⋅ ⋅ ⋅ × Pmk × (⋃k
i=2 v1 ⋅ ⋅ ⋅ v̂i ⋅ ⋅ ⋅ vk+1) × {0} and Pm1 × ⋅ ⋅ ⋅ × Pmk ×(⋃k

i=2 v1 ⋅ ⋅ ⋅ v̂i ⋅ ⋅ ⋅ vk+1)×{ϵ} are Sn−2− and Sn−2− − {(0, . . . , 0, ϵ)}, respectively. Furthermore, F ∘ b (= F ∘ ϕ ∘ R ∘ T)
and F̃ ∘ ϕ ∘ R̃ ∘ T agree on Pm1 × ⋅ ⋅ ⋅ × Pmk × (⋃k

i=2 v1 ⋅ ⋅ ⋅ v̂i ⋅ ⋅ ⋅ vk+1).
We define

H(Pm1×⋅⋅⋅×Pmk×(⋃
k
i=2 v1⋅⋅⋅v̂i ⋅⋅⋅vk+1))×Iϵ : ((Pm1 ×⋅ ⋅ ⋅×Pmk ×( k⋃

i=2
v1 ⋅ ⋅ ⋅ v̂i ⋅ ⋅ ⋅ vk+1))× Iϵ)× I → Extϵ(Pm1 ×⋅ ⋅ ⋅×Pmk ×∆k)

by
H(Pm1×⋅⋅⋅×Pmk×(⋃

k
i=2 v1⋅⋅⋅v̂i ⋅⋅⋅vk+1))×Iϵ (x, t) = T−1 ∘ R̃−1 ∘ ϕ−1 ∘ F̃−1 ∘ HSn−2− ×Iϵ (F̃ ∘ ϕ ∘ R̃ ∘ T(x), t).

Notice that
HPm1×⋅⋅⋅×Pmk×∆k ( ⋅ , t) = H(Pm1×⋅⋅⋅×Pmk×(⋃

k
i=2 v1⋅⋅⋅v̂i ⋅⋅⋅vk+1))×Iϵ ( ⋅ , t)

on Pm1 × ⋅ ⋅ ⋅ × Pmk × (⋃k
i=2 v1 ⋅ ⋅ ⋅ v̂i ⋅ ⋅ ⋅ vk+1) for each t ∈ I. Then we can define

HExtϵ(Pm1×⋅⋅⋅×Pmk×∆k) : Extϵ(Pm1 × ⋅ ⋅ ⋅ × Pmk × ∆k) × I → Extϵ(Pm1 × ⋅ ⋅ ⋅ × Pmk × ∆k)
by

HExtϵ(Pm1×⋅⋅⋅×Pmk×∆k)(x, t) = HPm1×⋅⋅⋅×Pmk×∆k (x, t)
if x ∈ Pm1 × ⋅ ⋅ ⋅ × Pmk × ∆k and

HExtϵ(Pm1×⋅⋅⋅×Pmk×∆k)(x, t) = H(Pm1×⋅⋅⋅×Pmk×(⋃
k
i=2 v1⋅⋅⋅v̂i ⋅⋅⋅vk+1))×Iϵ (x, t)

if x ∈ (Pm1 × ⋅ ⋅ ⋅ × Pmk × (⋃k
i=2 v1 ⋅ ⋅ ⋅ v̂i ⋅ ⋅ ⋅ vk+1)) × Iϵ. It can be readily checked that the three conditions are

satisfied.

B Different representations for planar planted labelled black and
white bipartite trees

In this section, we review the following bijections.
The bijection between formulas and treeswas given in [20]. The bijection between sequences of complex-

ity ≤ 2 and formulas was given in [33] and themap from the planar planted labelled black andwhite bipartite
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trees to sequences is contained in [23, Section 4.4] after converting the tree to an arc picture, see below. This
is enough to establish the following bijections:

S planted planar bipartite trees
ii

))

33

ss

S sequences of complexity ≤ 2 oo // S formulas.

(B.1)

We will briefly review these constructions and explicitly add a new map back from sequences of complexity≤ 2. The interesting feature is that we establish that these sequences explicitly yield a poset structure on the
set S, thus exhibiting the tree-like structure explicitly.

In Figure 28, we show the labelings in both cacti (trees) and sequences for the case of P3 as a kind of
Rosetta Stone.

Figure 28. Part of Figure 17 marked with sequences as well.

B.1 Trees/cacti and sequences

B.1.1 From trees to sequences

Given a planar planted b/w labelled tree, whose vertices are labelled by a set S, we get a sequence as follows.
Embed the tree in the plane. Start at the root and go counterclockwise around the tree. If you hit a white
vertex, record its label.

B.1.2 From sequences of complexity ≤ 2 to trees
Recall from [33] that a non-repeating sequence in S has complexity ≤ 2 if each non-repeating subsequence
of i, j has one of the following four forms: ij, ji, iji, jij. This allows us to give a partial relation on S as follows:
i ≺ j if the subsequence is of the form iji. The partial relation is actually a partial order, since it is transitive.
Indeed, assume that i ≺ j and j ≺ k; then the subsequence of i, j, k must be of the form ijkji, since deleting k
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must yield iji and deleting i must yield jkj. We can represent this partial order by an ordered rooted forests
(of planar planted trees with only white vertices), the roots being the initial elements. There might be more
than one minimal element, but all of them are linearly ordered by their first appearance in the sequence. We
can then add a black root to these using the B+b operator. In order to obtain the a b/w bipartite tree, we notice
that if two vertices labelled by i and j, with i coming before j in the sequence, have the same predecessor k,
their subsequence can be either kijk or kijik. In the first instance, we collapse the angle between i and j.
Continuing this with all pairs, we arrive at a b/w tree. It is clear that these maps are inverses to each other.

This also gives a nice interpretation of the exterior cells. These are the cells whose sequences yield a par-
tial order with more that one minimal element. Compare Figure 28.

B.1.3 Cacti/arcs/sequenes

A more general setting is given as follows. Every tree of the above kind corresponds to a cactus which in
turn corresponds dually to a family of arcs on a genus 0 surface, see [18, 25] summarized in Figure 29. The
morphism from arc families on surface of any genus to sequences is given in [23, Section 4.4]. This coincides
with the sequence read off from the tree. Indeed in a cactus, if one deletes all the intersection points and the
root, one is left with disjoint union of labelled arcs. The labelling is by the label of the lobe they belong to.
Each such arc is actually dual to an arc in the arc picture and the counter-clock wise order of them coincides
with the one on the arcs. This is directly seen from the chord diagram (see Figure 29 and [18] as well).
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Figure 29. I: a cactus without spines; II: its black and white tree; III: its dual tree giving the poset structure; IV: its chord
diagram; V: its image as an arc family, see [18, 20, 25] for details. The corresponding sequence is 12342151.
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B.2 From planar planted bipartite trees to formulas

This is contained in [20] simply by using flow charts. It is obvious that the following two procedures are
bijective. We will briefly recall them.

B.2.1 From a formula to a tree

A formula is a combination of nested operations of two possible kinds: iterated ∪ and higher braces. Given
such a formula, write down a flow chart. There is a black vertex of arity l for each iterated cup product mul-
tiplying l elements. Put a white vertex of arity l if there is a higher brace operation of the type f{g1, . . . , gl}.
Put the edges corresponding to the nesting, that is feed the result of inner operations into the next outer
operation. Including the empty iteration of ∪ as the identity, one obtains a bipartite tree.
B.2.2 From a tree to a formula

This is simply the reverse procedure, think of every black vertex as the operation “iterated cup” and every
white vertex “higher brace” of the natural arity, then read off the sequence of operations defined by this
flow chart.

B.3 Surjections and sequences

The relationship between surjections and sequences is given explicitly in [6]. As mentioned previously,
it would be very interesting to learn more about the relationship between the current work and the Barrat–
Eccles operad.

B.4 Lattice paths and homotopy diagonals

The equivalence of sequences and elements of the lattice path operad is given in [2]. In the case of complexity≤ 2 this is exactly the sequence given by the homotopy diagonal in [18] (see [18, Figure 9]).
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