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Abstract: We show that given a Frobenius algebra there is a unique notion of its sec-
ond quantization, which is the sum over all symmetric group quotients of nth tensor
powers, where the quotients are given by symmetric group twisted Frobenius algebras.
To this end, we consider the setting of Frobenius algebras given by functors from geo-
metric categories whose objects are endowed with geometric group actions and prove
structural results, which in turn yield a constructive realization in the case of nth tensor
powers and the natural permutation action. We also show that naturally graded symmet-
ric group twisted Frobenius algebras have a unique algebra structure already determined
by their underlying additive data together with a choice of super–grading. Furthermore
we discuss several notions of discrete torsion and show that indeed a non–trivial discrete
torsion leads to a non–trivial super structure on the second quantization.
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Introduction

In “stringy” geometry evaluating a functor from a geometric to a linear category on a
group quotient is generally a two step process. The first is to evaluate the functor not
only on the object, but to form the direct sum of the evaluations on all of the fixed point
sets. The new summands corresponding to group elements which are not the identity are
usually named twisted sectors. The second step is to find a suitable group action on the
twisted sectors and take group invariants.

If the objects in the linear category also have an algebra structure there is an additional
step, i.e. to find a new algebra structure that is not the diagonal one which is canonically
present, but a group graded one.

If there is also a natural pairing such that the original functors have values in Frobe-
nius algebras, then the result of the “stringy” extension of this functor should have values
in G–twisted Frobenius algebras which were introduced for this purpose in [K2].

In particular, the question of importance is the step of finding the suitable multipli-
cation. The theory of G–twisted Frobenius algebras is exactly tailored to classify the
possible multiplicative structures.

We address this matter in the present paper once more in the general case of inter-
section Frobenius algebras and in the special case of symmetric group quotients which
are naturally intersection Frobenius algebras.

The class of intersection Frobenius algebras incorporates the fact that all geometric
construction of Frobenius algebras via functors from geometric categories with geomet-
ric group actions actually have a much richer structure which can be used to provide
further constraints on the nature of the twisted multiplication.

We apply these general results to the case of symmetric group quotients of powers
of Frobenius algebras.

The main result here is that there is a unique multiplicative structure that makes the
canonical extension of the nth tensor power of a Frobenius algebra into a symmetric
group twisted Frobenius algebra.

This uniqueness has to be understood up to a twist by discrete torsion which is always
possible and up to a super re–grading. The former is parametrized by Z2(Sn, k∗) and up
to isomorphism by H 2(Sn, k∗) = Z/2Z and the latter is also a choice in Z/2Z which
renders everything either purely even or super–graded.

This result should be read as the statement that there is a well defined notion of
second quantized Frobenius algebra. Recall that in the spirit of [DMVV, D1] second
quantization in a monoidal category with a notion of symmetric quotients is given by:

Second quantization of X = exp(X) =
∑
n X
×n/Sn,

where Sn acts by permutations on the factors and the sum may be formal or contain
a bookkeeping variable (e.g. qn). From our result, we expect that one can also easily
derive a definition of second quantized motives.All the objects are powers of the original
object and the morphisms are given by structural morphisms. It would be interesting to
explicitly see the multiplication in terms of correspondences.

Furthermore we discuss several notions of discrete torsion and show that indeed a
non–trivial discrete torsion leads to a non–trivial super structure on the second quanti-
zation.

The paper is organized as follows. In §1 we review our definitions of [K2, K3] of
G–twisted and special G–twisted Frobenius algebras. In the latter the multiplication
and group action can be described by group cocycles and non–abelian group cocycles,
respectively. Besides fixing and recalling the notation and definitions, we add several
useful practical lemmas as well as a new description of the non–abelian cocycles in terms
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of ordinary group one–cocycles with values in tori. The second paragraph contains the
functorial setup of the general question posed in the introduction, i.e. to identify the
underlying additive data and the possible extensions of this data by “stringy” product to
the right type of group quotient algebra.

In §2 we also introduce the notion of intersection categories, which reflect the geomet-
rical setups with geometrical group actions which are used for the known construction
of Frobenius algebras such as cohomology, quantum cohomology, singularity theory,
etc. This setup is carried over to the Frobenius side in §3 where we prove general results
about the structure of the cocycles in the special G–twisted Frobenius algebra case.
These results are also the key to understanding the second quantization. Furthermore we
introduce the notion of algebraic discrete torsion, which generalizes the case of discrete
torsion for Jacobian algebras of [K3] and provides the discrete torsion that is linked to
the super–structure of second quantization.

In order to give a clearer view of the geometry involved in the second quantization,
it is useful to also consider the case of Jacobian Frobenius algebras and their second
quantization. The relevant notions of Jacobian Frobenius algebras are recalled in §4.

We then start our consideration of Sn–twisted Frobenius algebras. Section 5 contains
general results about these structures. The main results of this section are the classifica-
tion of possible non–abelian group cocycles and the uniqueness (up to normalization)
of “stringy” products given a group grading compatible with the natural grading on Sn.
Before applying these results to general symmetric powers, we work out all the details in
the case of the nth tensor power of a Frobenius algebra in §6 and also show the existence
of the natural Sn–twisted Frobenius algebra based on the nth tensor power. Here we also
recover the known discrete torsion corresponding to the non–trivial Schur multiplier.

Using the geometric insight of the previous paragraph we turn to the general case
of the nth tensor power of a Frobenius algebra in §7 and show that there is a unique
(up to a choice of parity for the group action) natural extension of nth tensor power to a
Sn–twisted Frobenius algebra, establishing the existence of second quantized Frobenius
algebras. There are two versions, a purely even one and supersymmetric one. Passing
from one to the other can be viewed as turning on a natural algebraic discrete torsion.
Lastly, we relate our results to the ones of [LS].

There are also two appendices. The first contains a key result on the possible form
of non–abelian Sn cocycles and the second contains the detailed version of the proof of
normalizability of §5.

Notation

We denote by n̄ := {1, . . . , n}. Furthermore, we fix k to be a field of characteristic 0.
The reader can think of C if he or she wishes. The theory is the same if k is a super-
commutative Q algebra and (super-)vector spaces and dimensions are replaced by free
modules and ranks. Finally, if we fix a group G then all remains true for a field of a
characteristic coprime to |G|.

1. Orbifold Frobenius Algebras

Recall the following definitions first presented in [K2] and contained in [K3].
We fix a finite group G and denote its unit element by e.

1.1. Definition. A G–twisted Frobenius algebra (or G–Frobenius algebra for short)
over a field k of characteristic 0 is < G,A, ◦, 1, η, ϕ, χ >, where
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G finite group
A finite dim G-graded k–vector space
A = ⊕g∈GAg
Ae is called the untwisted sector and
the Ag for g �= e are called the twisted sectors.
◦ a multiplication on A which respects the grading:
◦ : Ag ⊗ Ah→ Agh

1 a fixed element in Ae–unit
η non-degenerate bilinear form

which respects grading i.e. η|Ag⊗Ah = 0 unless gh = e
ϕ an action by algebra automorphisms of G on A,
ϕ ∈ Homk−alg(G,A), s.t. ϕg(Ah) ⊂ Aghg−1

χ a character χ ∈ Hom(G, k∗)

satisfying the following axioms:

Notation. We use a subscript on an element of A to signify that it has homogeneous
group degree –e.g. ag means ag ∈ Ag–, and we write ϕg := ϕ(g) and χg := χ(g). We
also drop the subscript if a ∈ Ae.
a) Associativity
(ag ◦ ah) ◦ ak = ag ◦ (ah ◦ ak)

b) Twisted commutativity
ag ◦ ah = ϕg(ah) ◦ ag

c) G Invariant Unit:
1 ◦ ag = ag ◦ 1 = ag
and
ϕg(1) = 1

d) Invariance of the metric:
η(ag, ah ◦ ak) = η(ag ◦ ah, ak)

i) Projective self–invariance of the twisted sectors
ϕg|Ag = χ−1

g id

ii) G–Invariance of the multiplication
ϕk(ag ◦ ah) = ϕk(ag) ◦ ϕk(ah)

iii) Projective G–invariance of the metric
ϕ∗g(η) = χ−2

g η

iv) Projective trace axiom
∀c ∈ A[g,h] and lc left multiplication by c:
χhTr(lcϕh|Ag ) = χg−1Tr(ϕg−1 lc|Ah).

An alternate choice of data is given by a one–form ε, the co–unit with ε ∈ A∗e and a
three–tensor 〈·, ·, ·〉 ∈ A∗⊗A∗⊗A∗which is of group degree e, i.e. 〈·, ·, ·〉|Ag⊗Ah⊗Ak = 0
unless ghk = e.

The relations between η, ◦ and ε, µ are given by dualization.
We denote by ρ ∈ Ae the element dual to ε ∈ A∗e and Poincaré dual to 1 ∈ Ae.
In the graded case, we call the degree d of ρ the degree of A. This means that η is

homogeneous of degree d .

1.2. Super-grading. We can enlarge the framework by considering super–algebras rather
than algebras. This will introduce the standard signs.
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The action of G as well as the untwisted sector should be even. The axioms that
change are

bσ ) Twisted super–commutativity
ag ◦ ah = (−1)ãg ãhϕg(ah) ◦ ag

ivσ ) Projective super–trace axiom
∀c ∈ A[g,h] and lc left multiplication by c:
χhSTr(lcϕh|Ag ) = χg−1STr(ϕg−1 lc|Ah),

where STr is the super–trace.
Here we denoted by ã the Z/2Z degree of a.

1.3. G–graded tensor product. Given two G–Frobenius algebras 〈G,A, ◦, 1, η, ϕ, χ〉
and 〈G,A′, ◦′, 1′, η′, ϕ′, χ ′〉 we defined [K1] their tensor product asG–Frobenius alge-
bras to be the G–Frobenius algebra
〈G,⊕g∈G(Ag ⊗ A′g), ◦ ⊗ ◦′, 1⊗ 1′, η ⊗ η′, ϕ ⊗ ϕ′, χ ⊗ χ ′〉.
We will use the short-hand notation A⊗̂A′ for this product.

1.4. Grading and Shifts

1.4.1. Notation. We denote by ρg ∈ Ag the element defining ηg and by dg := deg(ρg)
the degree of Ag and sg := deg(1g) will be called the degree shift. We also set

s+g := 1

2
(s(g)+ s(g−1)) s− := 1

2
(s(g)− s(g−1))

the degree defect.
Notice that d = de if d denotes the degree of A given by η.
By considering η|Ag⊗Ag−1 we find:

1.4.2. Lemma [K3]

s+g = d − dg.

Notice there is no restriction (except anti–symmetry) on s−.
The shift s− is not fixed, however, there is a standard choice provided there exists a

canonical choice of linear representation of G.

1.4.3. Definition. In the case that k = C the standard shift for a G–Frobenius algebra
with a choice of linear representation ρ : G→ GLn(k) is given by

s+g := d − dg
and

s−g := 1

2πi
tr(log(g))− tr(log(g−1)) := 1

2πi
(
∑

i

λi(g)−
∑

i

λi(g
−1))

=
∑

i:λi �=0

(
1

2πi
2λi(g)− 1),
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where the λi(g) are the logarithms of the eigenvalues of ρ(g) using the branch with
arguments in [0, 2π) i.e. cut along the positive real axis.

In total we obtain:

sg = 1

2
(s+g + s−g ) =

1

2
(d − dg)+

∑

i:λi �=0

(
1

2πi
λi(g)− 1

2
).

1.4.4. Remark. This grading having its origin in physics specializes to the so–called age
grading or the orbifold grading of [CR] in the respective situations.

1.5. Special G Frobenius algebras

1.5.1. Definition. We call aG-Frobenius algebra special if allAg are cyclicAe modules
via the multiplication Ae ⊗Ag → Ag and there exists a collection of cyclic generators
1g of Ag such that ϕg(1h) = ϕg,h1ghg−1 with ϕg,h ∈ k∗.

The last condition is automatic, if the Frobenius algebraAe only has k∗ as invertibles,
as is the case for cohomology algebras of connected compact manifolds and Milnor rings
of quasi–homogeneous functions with an isolated critical point at zero.

Fixing the generators 1g we obtain maps rg : Ae → Ag by setting rg(ae) = ae1g .
This yields a short exact sequence

0→ Ig → Ae
rg→ Ag → 0. (1.1)

It is furthermore useful to fix a section ig of rg .
We denote the concatenation πg := ig ◦ ig .

1.5.2. Special super G–Frobenius algebra. The super version of special G–Frobenius
algebras is straightforward. Notice that since each Ag is a cyclic Ae–algebra its parity

is fixed to be (−1)g̃ := 1̃g times that of Ae. I.e. ag = ig(ag)1g and thus ãg = ĩg(ag)1̃g .
In particular if Ae is purely even Ag is purely of degree g̃.

1.5.3. Frobenius algebra structure on the twisted sectors. Recall that theAg are Frobe-
nius algebras by the multiplication

ag ◦g bg = ig(ag)ig(bg)1g (1.2)

and metric

ηg(ag, bg) := η(ig(ag)1g, ig(bg)1g−1). (1.3)

1.5.4. Definition. Given a Frobenius algebraAe and a collection of cyclicAe–modules
Ag : g ∈ G a graded cocycle is a map γ : G×G→ Ae which satisfies

γ (g, h)γ (gh, k) ≡ γ (g, hk)γ (h, k) mod Ighk.

Such a cocycle is called section independent if

(Ig + Ih)γg,h ⊂ Igh.
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Two such cocycles are considered to be the same if γg,h ≡ γ ′g,h mod Igh and iso-
morphic, if they are related by the usual scaling for group cocycles.

Given non–degenerate pairings ηg on the Ag , a cocycle is said to be compatible
with the metric, if

řg(1g) = γ (g, g−1),

where ř is the dual in the sense of vector spaces with non–degenerate metric.

1.5.5. The multiplication. Fixing a cyclic generator 1g ∈ Ag , the multiplication defines
a section independent graded cocycle γ compatible which is compatible with the metric.
The cocycle γ is defined via

1g1h = γg,h1gh.

The section independence follows from the fact that

(Ig + Ih)γg,h1gh = (Ig + Ih)1g1h = 0.

In general, the multiplication is thus given by

agbh = ig(ag)ih(bh)γg,h1gh (1.4)

for any choice of sections ig .
The compatibility with the metric follows from the following equation which holds

for all a ∈ Ae:

η(γg,g−1 , a) = η(a1g, 1g−1) = η(rg(a), 1g−1) = ηg(1g, rg(a)) = η(řg(1g), a).

1.5.6. TheG–action on the twisted sectors. Consider a non–abelian cocycle ϕ which is
defined as a map G×G→ k∗ satisfying:

ϕgh,k = ϕg,hkh−1ϕh,k (1.5)

and

ϕe,g = ϕg,e = 1, (1.6)

where we used the notation ϕg,h = ϕ(g, h)
The G–action defines such a cocycle via

ϕg(1h) = ϕg,h1ghg−1 , (1.7)

and in general the G–action is reduced to the one on the non–twisted sector via

ϕg(ah) = ϕ(g)(ih(ah))ϕg,h1ghg−1 (1.8)

for any choice of sections ih.
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1.5.7. The compatibility equations. The cocycles furthermore satisfy the following two
compatibility equations:

ϕg,hγghg−1,g = γg,h (1.9)

and

ϕk,gϕk,hγkgk−1,khk−1 = ϕk(γg,h)ϕk,gh. (1.10)

We call a pair of a section independent cocycle and a non–abelian cocycle compatible
if they satisfy Eqs. (1.9) and (1.10).

1.6. Definition. A specialG reconstruction datum is a collection of Frobenius algebras
(Ag, ηg, 1g) : g ∈ G together with an action ofG by algebra automorphisms onAe and
the structure of a cyclic Ae module algebra on each Ag with generator 1g such that Ag
and A−1

g are isomorphic as Ae modules algebras.

1.7. Theorem (Reconstruction [K2]). Given a specialG reconstruction datum the struc-
tures of specialG–Frobenius algebras are in 1–1 correspondence with compatible pairs
of a graded, section independentG 2–cocycle with values in Ae that is compatible with
the metric and a non–abelian G 2–cocycle with values in k∗, satisfying the following
conditions:

i) ϕg,g = χ−1
g ,

ii) ηe(ϕg(a), ϕg(b)) = χ−2
g ηe(a, b),

iii) The projective trace axiom ∀c ∈ A[g,h] and lc left multiplication by c:

χhTr(lcϕh|Ag ) = χg−1Tr(ϕg−1 lc|Ah). (1.11)

1.8. Rescaling. Given a special G–Frobenius algebra, we can rescale the cyclic genera-
tors by λg , i.e. we take the same underlying G–Frobenius algebra, but rescale the maps
rg to r̃g with 1̃g = r̃g(1) = λg1g . We also fix λe = 1 to preserve the identity.

This yields an action of Mappointed spaces(G, k
∗) on the cocycles γ and ϕ preserving

the underlying G–Frobenius algebra structure.
The action is given by:

γg,h �→ γ̃g,h = λgλh

λgh
γg,h,

ϕg,h �→ ϕ̃g,h = λh

λghg−1
ϕg,h. (1.12)

1.8.1. Remark. We can introduce the groups associated with the classes under this scal-
ing and see that the classes of γ correspond to classes inH 2(G,A). We can also identify
the non–abelian cocycles ϕ with one–group cocycles with values in k∗[G], where we
treat k∗[G] as an abelian group with diagonal multiplicative composition

(
∑

g

λgg) · (
∑

h

µhh) :=
∑

g

λgµgg (1.13)
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and G–action given by conjugation:

s(g)(
∑

h

λhh) =
∑

h

λhghg
−1. (1.14)

This is done as follows:
We view the collection ϕg,. as an element of k∗[G] via

ϕg :=
∑

h

ϕg,hghg
−1, (1.15)

then

ϕgh = s(g)ϕh · ϕg.

Indeed

s(g)ϕh · ϕg = s(g)(
∑

k

ϕh,k hkh
−1) ·

∑

k

ϕg,k gkg
−1

=
∑

k

ϕh,k ghkh
−1g−1 ·

∑

k

ϕg,k gkg
−1

=
∑

k

ϕh,kϕg,hkh−1 ghkh−1g−1

=
∑

k

ϕgh,k (gh)k(gh)
−1.

In this identification, equivalence under scaling corresponds to taking cohomology
classes.

The trivial cocycles are of the form s(g)a · a−1 with a =∑
µg g,

s(g)a · a−1 =
∑

h

µhghg
−1 ·

∑

h

µ−1
h h =

∑

h

µh

µghg−1
h (1.16)

and

ϕ̃g =
∑

h

ϕ̃g,hghg
−1 =

∑

h

ϕg,hghg
−1

∑ λh

λghg−1
ghg−1 = ϕg · (s(g)a · a−1)

(1.17)

with a =∑
h λhh.

It is clear that we could also take logarithms of the ϕ and then we would get cocycles
with values in k[G], but there is the problem of choosing a cut as it manifests itself in
the setting of special G–Frobenius algebras in the definition of the degree shifts.

1.8.2. Lemma. Let A and Ag be a graded Frobenius algebras with the top degree of
Ag being dg then for a section independent cocycle γg,g−1 ⊂ L ⊂ Ae with dim(L) =
dim(A

dg
g ), where the superscript denotes a fixed degree.
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Proof. By section independence

Igγg,g−1 = 0.

Thus

γg,g−1 ∈ (ig(Ag)∗)d−s+g ,
where ∗ is the dual w.r.t. the form η and we use the splitting induced by the sections i
(N.B. if η is also positive definite, we could use an orthogonal splitting)

Ak = I kg ⊕ (ig(Ag))k, (1.18)

and superscripts denote fixed degree. Furthermore

dim((ig(Ag)
∗)dg ) = dim(ig(Ag)

dg ) = dim(Adg )− dim(Ig)

= dim(Adg )− dim(Ker(rg)|Adg ) = dim(Im(rg)|Adg ) = dim(A
dg
g ),

where we used the non–shifted grading on Ag . Thus γg,g−1 is fixed up to a constant.
If dimAg = 1 then γg,g−1 is fixed up to normalization by the condition of section

independence. The freedom to scale γg,g−1 is the same freedom one has in general for
choosing a metric for an irreducible Frobenius algebra. Recall that in this case the space
of invariant metrics is one dimensional. ��
1.9. Lemma. If a = ig(ag) ∈ ig(Ag) then aγg,g−1 = řg(ag) and furthermore ig(Ag)∗ =
γg,g−1 ig(Ag), where ∗ is the Poincaré dual w.r.t. η and the splitting (1.18). Moreover if
aIg = 0 then a = ãγg,g−1 for some ã ∈ ig(Ag).
Proof. For the first statement notice that:

η(ig(ag)γg,g−1 , b) = ηg(ag, rg(b));
the second and third statement follow from this using the non–degenerate nature of
η, ηg and the splitting (1.18). N.B. The statement is actually independent of the choice
of splitting. ��
1.10. Proposition. If γg,h = 0 then πh(γg,g−1) = 0 and πg(γh,h−1) = 0.

Proof. If γg,h = 0 then

0 = πh(γg−1,ghγg,h) = πh(γg−1,gγe,h)

= πh(γg−1,g) = πh(γg,g−1)

and also

0 = πg(γg,hγgh,h−1) = πg(γg,eγh−1,h) = πg(γh,h−1).

��
1.11. Definition. We call Ag and Ah transversal if sg + sh = sgh and sg−1 + sh−1 =
s(gh)−1 .
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From the section independence, we obtain:

1.11.1. Lemma. If A is irreducible and Ag and Ah are transversal and γg,h �= 0 then

Ig + Ih = Igh.
1.12. Proposition. The converse of 1.10 it true if Ag and Ah are transversal.

Proof. If Ag and Ah are transversal then deg(γg,h) = 0 and γg,h ∈ k. The same holds
for γh−1,g−1 . By associativity:

1g1h1h−11g−1 = γh,h−1γg,g−1 = γg,hγh−1,g−1γ(gh),(gh)−1 ,

and since γ(gh),(gh)−1 �= 0, we see that if γg,h �= 0 and γh−1,g−1 �= 0 then
γh,h−1γg,g−1 �= 0 so πh(γg,g−1) �= 0 and πg(γh,h−1) �= 0. ��
1.13. Lemma. If [g, h] = e,

ϕg,h = ϕkgk−1,khk−1 . (1.19)

Proof. By applying (1.5) repeatedly

ϕkgk−1,khk−1 = ϕk,hϕgk−1,khk−1 = ϕk,hϕg,hϕk−1,khk−1 = ϕk,hϕg,hϕ−1
k,h = ϕg,h.

��

2. Discrete Torsion

2.1. The twisted group ring kα[G]. Recall that given an element α ∈ Z2(G, k∗) one
defines the twisted group ring kα[G] to be given by the same linear structure with mul-
tiplication given by the linear extension of

g ⊗ h �→ α(g, h)gh (2.1)

with 1 remaining the unit element. To avoid confusion we will denote elements of kα[G]
by ĝ and the multiplication with. Thus

ĝ · ĥ = α(g, h)ĝh.
For α the following equations hold:

α(g, e) = α(e, g) = 1, α(g, g−1) = α(g−1, g). (2.2)

Furthermore

ĝ−1 = 1

α(g, g−1)
ĝ−1

and

ĝ · ĥ · ĝ−1 = α(g, h)α(gh, g−1)

α(g, g−1)
ĝhg−1 = α(g, h)

α(ghg−1, g)
ĝhg−1 = ε(g, h)ĝhg−1

with

ε(g, h) := α(g, h)

α(ghg−1, g)
. (2.3)
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2.1.1. Remark. If the field k is algebraically closed we can find a representative for each
class [α] ∈ H 2(G, k∗) which also satisfies

α(g, g−1) = 1.

2.1.2. Supergraded twisted group rings. Fix α ∈ Z2(G, k∗), σ ∈ Hom(G,Z/2Z); then
there is a twisted super–version of the group ring where now the relations read

ĝĥ = α(g, h)ĝh (2.4)

and the twisted commutativity is

ĝĥ = (−1)σ(g)σ (h)ϕg(ĥ)ĝ, (2.5)

and thus

ϕg(ĥ) = (−1)σ(g)σ (h)α(g, h)α(gh, g−1)ĝhg−1 =: ϕg,hĝhg−1, (2.6)

and thus

ε(g, h) := ϕg,h = (−1)σ(g)σ (h)
α(g, h)

α(ghg−1, g)
. (2.7)

We would just like to remark that the axiom ivσ ) of 1.2 shows the difference between
super twists and discrete torsion.

2.2. Definition. We denote the α-twisted group ring with super–structure σ by kα,σ [G].
We still denote kα,0[G] by kα[G] where 0 is the zero map and we denote k0,σ [G] just by
kσ [G] where 0 is the unit of the group H 2(G, k∗).

A straightforward calculation shows

2.3. Lemma. kα,σ [G] = kα[G]⊗ kσ [G].

2.3.1. The G–Frobenius Algebra structure of kα[G]. Fix α ∈ Z2(G, k∗). Recall from
[K1, K2] the following structures which turn kα[G] into a specialG–Frobenius algebra:

γg,h = α(g, h), η(ĝ, ĝ−1) = α(g, g−1),

χg = (−1)g̃, ϕg,h = α(g, h)

α(ghg−1, g)
=: ε(g, h). (2.8)

2.3.2. Relations. The ε(g, h) which are by definition given as ε(g, h) := α(g,h)

α(ghg−1,h
)

satisfy the equations:

ε(g, e) = ε(g, g) = 1, (2.9)

ε(g1g2, h) = ε(g1, g2hg
−1
2 )ε(g2, h),

ε(k, gh) = ε(k, g)ε(k, h)α(kgk
−1, khk−1)

α(g, h)
,

ε(h, g) = ε(g−1, ghg−1)
α([g, h], h)

α([g, h], hgh−1)
. (2.10)
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This yields for commuting elements:

ε(g, e) = ε(g, g) = 1, ε(g, h) = ε(h−1, g) = ε(h, g)−1,

ε(g1g2, h) = ε(g1, h)ε(g2, h), ε(h, g1g2) = ε(h, g1)ε(h, g2). (2.11)

In the physics literature discrete torsion is sometimes defined to be a function ε
defined on commuting elements of G taking values in U(1) and satisfying Eqs. (2.11).

2.4. The trace axiom. The trace condition for non–commuting elements reads

(−1)h̃(−1)g̃ϕh,gγ[g,h],hgh−1 = (−1)g̃(−1)h̃ϕg−1,ghg−1γ[g,h],h;

stripping off the sign, we rewrite the l.h.s. as

ϕh,gγ[g,h],hgh−1 ĝh = ϕh,gγ−1
g,h [̂g, h]ĥgh−1ĥ,

= ϕh,gγ[g,h],hgγhgh−1,hγ
−1
g,hĝh = γ[g,h],hgγh,gγ

−1
g,hĝh,

and the r.h.s. can be rewritten as

ϕg−1,ghg−1γ[g,h],hĝh = ϕg−1,ghg−1γ
−1
ghg−1,g

[̂g, h]̂hĝ,

= ϕg−1,ghg−1γ[g,h],hgγh,gγ
−1
ghg−1,g

ĝh = γ[g,h],hgγh,gγ
−1
g,hĝh,

which coincides with the calculation above.
This is of course all clear if [g, h] = e, but there is no restriction that the group be

commutative.

2.4.1. Remark. The function ε can be interpreted as a cocycle in Z1(G, k∗[G]), where
k∗[G] are the elements of k[G] with invertible coefficients regarded as a G module by
conjugation (cf. [K1, K2]). This means in particular that on commuting elements ε only
depends on the class of the cocycle α.

2.5. Theorem. The possible superG Frobenius algebra structures onA =⊕
g∈G k are

the structures of super twisted group rings. The isomorphism classes of these alge-
bras correspond to pairs of a class [α] ∈ H 2(G, k∗) and a homomorphism σ ∈
Hom(G,Z/2Z).

Proof. Assume that we have a G Frobenius algebra structure on A then it is a spe-
cial G–Frobenius algebra since 1 ∈ Ae is the unit. Then due to the non–degeneracy
of the metric γg,g−1 ∈ k∗ furthermore πh(γg,g−1) = γg,g−1) ∈ k∗ and thus by 1.10
∀g, h ∈ G : γg,h ∈ k∗, thus γ ∈ Z2(G, k∗) and by compatibility the ϕ are fixed.
Lastly, since γg,h ∈ k∗ and γ̃g,h = 0 the supergrading ˜must be a homomorphism, i.e.
˜∈ Hom(G,Z/2Z).

Vice versa the construction above shows that given a cycle α ∈ Z2(G, k∗) and a
homomorphism σ ∈ Hom(G,Z/2Z) we get a structure of super G Frobenius algebra
with the underlying data.

The statement about the isomorphism classes follows directly from rescaling. ��
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2.6. The action of discrete Torsion

2.6.1. The action of Z2(G, k∗). The group Z2(G, k∗) acts naturally on Z2(G,A) via
(α, γ ) �→ γ α := γ · α and on H 1(G, k∗[G]) via (α, ϕ) �→ ϕα := εα · ϕ where
εα(g, h) = α(g,h)

α(ghg−1,g
).

We call this action by α twist or by the discrete torsion α.

2.7. Definition. Given a G–Frobenius algebra A and an element α ∈ Z2(G, k), we
define the α–twist (or the twist by the discrete torsion α) of A to be the G–Frobenius
algebra Aα := A⊗̂kα[G].

2.8. Proposition. Notice that as vector spaces

Aαg = Ag ⊗ k � Ag. (2.12)

Using this identification the G–Frobenius structures given by (2.12) are

◦α|Aαg⊗Aαh = α(g, h)◦, ϕαg |Aαh = ε(g, h)ϕg,
ηα|Aαg⊗Aαg−1

= α(g, g−1)η, χg = χg. (2.13)

2.9. Lemma. Let 〈G,A, ◦, 1, η, ϕ, χ〉 be a G–Frobenius algebra or more generally
a super Frobenius algebra with super grading ˜ ∈ Hom(A,Z/2Z), then A ⊗ kσ [G]
is isomorphic to the super G–Frobenius algebra 〈G,A, ◦σ , 1, ησ , ϕσ , χσ 〉 with super
grading ∼σ , where

◦σ |Ag⊗Ah = (−1)g̃σ (h)◦, ϕσg,h = (−1)σ(g)σ (h)ϕg,h,

ησg = (−1)g̃σ (g)ηg, χσ = (−1)σ(g)χg,

ãσg = ãg + σ(g).

2.10. Definition. Given a G–Frobenius algebra A a twist for A is a pair of functions
(λ : G×G→ k∗, µ : G×G→ k∗) such that A together with the new G–action

ϕλ(g)(a) = ⊕hλ(g, h)ϕ(g)(ah)

and the new multiplication

ag ◦µ bh = µ(g, h)ag ◦ bh

is again a G–Frobenius algebra.

A twist is called universal if it is defined for all G–Frobenius algebras.

2.10.1. Remark. We could have started from a pair of functions (λ : A× A→ k∗, µ :
G× A→ k∗) in order to projectively change the multiplication and G action, but it is
clear that the universal twists (i.e. defined for any G–Frobenius algebra) can only take
into account the G degree of the elements.
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2.10.2. Remark. These twists arise from a projectivization of theG–structures induced
on a module over A as for instance the associated Ramond–space (cf. [K1]). In physics
terms this means that each twisted sector will have a projective vacuum, so that fix-
ing their lifts in different ways induces the twist. Mathematically this means that the g
twisted sector is considered to be a Verma module over Ag based on this vacuum.

2.11. Theorem ([K4]). Given a (super)G–Frobenius algebraA the universal twists are
in 1–1 correspondence with elements α ∈ Z2(G, k∗) and the isomorphism classes of
universal twists are given by H 2(G, k∗). Furthermore the universal super re–gradings
are in 1-1 correspondence with Hom(G,Z/2Z) and these structures can be realized by
tensoring with kσ [G] for σ ∈ Hom(G,Z/2Z).

Here a super re–grading is a new super grading on A with which A is a super G–
Frobenius algebra and universal means that the operation of re–grading is defined for
all G–Frobenius algebras.

We call the operation of forming a tensor product with kα[G] : α ∈ Z2(G, k∗) a
twist by discrete torsion. The term discrete refers to the isomorphism classes of twisted
G–Frobenius algebras which correspond to classes in H 2(G, k∗). Furthermore, we call
the operation of forming a tensor product with kσ [G] : σ ∈ Hom(G,Z/2Z) super–twist.

2.12. Remark. If k is algebraically closed, then in each class of H 2(G, k∗) there is a
representative with α(g, g−1) = 1. Using these representatives it is possible to twist
a special G–Frobenius algebra without changing its underlying special reconstruction
data.

3. Functorial Setup

The functorial setup of orbifold Frobenius algebras and reconstruction is discussed in
the following.

Let FROB be the category of Frobenius algebras, whose objects are Frobenius
algebras and morphisms are morphisms which respect to all the structures.

3.1. Definition. A G–category is a category C where for each object X ∈ Ob(C) and
each g ∈ G there exists an object Xg and a morphism ig ∈ Hom(Xg,X) with Xe = X
and ie = id and there are isomorphisms ψg,g−1 ∈ Hom(Xg,Xg−1

).
We call a category a G intersection category if it is a G category and for each pair

(g, h) ∈ G×G and objectX ∈ Ob(C) there are isomorphismsψ ∈ Hom((Xg)h, (Xh)g)

and morphisms ighg,h ∈ Hom((Xg)h,Xgh).
A G–action for a G–category is given by a collection of morphisms φg(X, h) ∈

Hom(Xh,Xghg−1
) which are compatible with the structural morphisms and satisfy

φg(X, g
′hg′−1)φg′(X, h) = φgg′(X, h).

3.2. Examples. Examples of an intersection G–category with G–action are categories
of spaces equipped with a G–action whose fixed point sets are in the same category.
Actually this is the category of pairs (X, Y ) withX say a smooth space with aG–action
and Y a subspace ofX. Then (X, Y )g := (X, Y ∩Fix(g,X)) with Fix(g,X) denoting
the fixed points of g ∈ G in X, and ig = (id, ιg) with ιg : Y ∩ Fix(g,X)→ Y ) being
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the inclusion. It is enough to consider pairs (X, Y ), where Y ⊂ X is the set fixed by a
subgroup generated by an arbitrary number of elements of G: H := 〈g1, . . . , gk〉.

We could also consider the action on the Xg to be trivial and set (Xg)h := Xg . This
will yield a G–category.

Also the category of functions f : Cn→ C with an isolated singularity at 0 together
with a group action of G on the variables induced by a linear action of G on the linear
space fixing the function is an example of a G–category. This is a category of triples
(Cn, f : Cn→ C), ρ ∈ Hom(G,GL(n)) such that f has an isolated singularity at zero
and f (ρ(z)) = f (z) for z ∈ Cn with morphisms being linear between the linear spaces
such that all structures are compatible. The functor under consideration is the local ring
or Milnor ring. Again we set (Xg)h := Xg .

Here the role of the fixed point set is played by the linear fixed point set and the
restriction of the function to this fixed point set (cf.[K1]). Again we can consider pairs
of an object and a subobject as above in order to get an intersection G–category.

Our main examples are smaller categories such as a global orbifold. As aG category,
the objects are the fixed point sets of the various cyclic groups generated by the element
of G and the morphisms being the inclusion maps. Again we set (Xg)h := Xg . For a
global orbifold, we can also consider all fixed point sets of the groups generated by any
number of elements of G as objects together with the inclusion maps as morphisms.
This latter will render a G–intersection category.

The same is true for isolated singularities. Here the objects are the restriction of the
function to the various subspaces fixed by the elements of g together with the inclusion
maps or for theG–intersection category we consider all intersections of these subspaces
together with the restriction of the function to these subspaces as objects, again with the
inclusion morphisms.

Now, suppose we have a G–category C and a contravariant functor F from C to
FROB. In this setting there might be several schemes to define a “stingy geometry” by
augmenting the functor to take values inG–Frobenius algebras. But all of these schemes
have to have the same additive structure provided by the “classical orbifold picture” (see
3.2.1) and satisfy the axioms of G–Frobenius algebras (see §2). Furthermore there are
more structures which are already fixed in this situation, which is explained below. These
data can sometimes be used to classify the possible algebra structures and reconstruct
it when the classification data is known. In the case of so–called special G–Frobenius
algebras a classification in terms of group cohomology classes is possible.

There are some intermediate steps which contain partial information that have been
previously considered, like the additive structure, dimensions, etc., as discussed in 3.2.1.

3.2.1. The “classical orbifold picture”. Now, suppose we have a G–category C and a
contravariant functor F from C to FROB, then for each X ∈ Ob(C), we naturally
obtain the following collection of Frobenius algebras: (F(Xg) : g ∈ G) together with
restriction maps rg = F(ig) : F(X) �→ F(Xg).

One possibility is to regard the direct sum of the Frobenius algebras Ag := F(Xg).
The first obstacle is presented in the presence of a grading, say by N,Z or Q; as it is

well known that the direct sum of two graded Frobenius algebras is only well defined
if their Euler dimensions (cf. e.g. [K3]) agree. This can, however, be fixed by using the
shifts s+ discussed in 1.4. If the grading was originally in N these shifts are usually in
1
2 N, but in the complex case still lie in N.

Furthermore, if we have aG–action on theG category, it will induce the structure of
a G–module on this direct sum.
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Each of the Frobenius algebras Ag comes equipped with its own multiplication, so
there is a “diagonal” multiplication for the direct sum which is the direct sum of these
multiplications.

Using the shift s+ it is possible to define a “classical theory” by considering the
diagonal algebra structure and taking G–invariants. This is the approach used in [AS,
T and AR]. The paper [AS] shows that this structure describes the G–equivariant rather
than the G–invariant geometry.

One can of course forget the algebra structure altogether and retain only the addi-
tive structure. This was done e.g. in [S] in the setting of V–manifolds (i.e. orbifolds).
Concentrating only on the dimensions one arrives for instance at the notion of “stringy
numbers” [BB].

3.2.2. The “stringy orbifold picture”. The “diagonal” multiplication is however not
the right object to study from the perspective of “stringy geometry” or a TFT with a
finite gauge group [K1, CR]. The multiplication should rather be G–graded, i.e. map
Ag ⊗ Ah→ Agh. We call such a product a “stringy” product.

Here the natural question is the following:

Question. Given the additive structure of aG–Frobenius algebra, what are the possible
“stringy” products?

A more precise version of this question is the setting of our reconstruction program
[K2, K3].

3.2.3. TheG–action. One part of the structure of aG–Frobenius algebra is theG–action.
If the G–category is already endowed with a G–action we can use it to reconstruct the
G–action on the G–Frobenius algebra, which in turn limits the choices of “stringy”
products to those that are compatible.

3.2.4. Invariants. By definition G–Frobenius algebras come with a G action whose
invariants form a commutative algebra. Due to the nature of the G action this commu-
tative algebra is graded by conjugacy classes, and under certain conditions the metric
descends and the resulting algebra is again Frobenius. The induced multiplication is
multiplicative in the conjugacy classes and we call such a multiplication commutative
“stringy”.

3.2.5. Examples. Examples of commutative “stringy” products are orbifold (quantum)
cohomology [CR]. For cohomology of global orbifolds it was shown in [FG] and recently
in [JKK] that there is a group graded version for global orbifold cohomology which has
the structure of a G Frobenius algebra, as we had previously postulated [K2]. For new
developments on quantum deformations of the G–Frobenius algebras see [JKK].

3.2.6. SpecialG–Frobenius algebras. The special reconstruction data reflects this situ-
ation in the special case that the Ag algebras are cyclic Ae modules. This is a restriction
which leads to an answer in terms of cocycles for a large class of examples. This class
includes all Jacobian Frobenius algebras as well as symmetric products and special cases
of geometric actions on manifolds.

The general idea can be generalized to the non–cyclic case although computations
get more involved.
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3.3. Definition. Given aG–category C, we call the tuple (Xg) : g ∈ G a G–collection.

The category of G–collections of a G–category is the category whose objects are
G–collections and whose morphisms are collections of morphisms (f g) s.t. the dia-
grams

Xg
ig→ X

↓ f g ↓ f
Yg

ig→ Y

commute.

3.4. Definition. A G–Frobenius functor is a functor from the category ofG–collections
of a G–category to G–Frobenius algebras.

3.5. Reconstruction/classification. The main question of the reconstruction/classifica-
tion program is whether one can extend a functor from a G–category C to Frobenius
algebras to a G–Frobenius functor, and if so how many ways are there to do this.

One can view this as the analogue of solving the associativity equations for general
Frobenius algebras. Some of the solutions correspond to quantum cohomology, some
to singularities, etc. and maybe others to other “string”–schemes. The structures of pos-
sible “stringy” products provide a common approach. The systematic consideration of
all possible products confines the choices of string equivalents of classical concepts and
allows to identify diverse approaches.

The answer to the main question of reconstruction/classification can be answered in
the special case where all of the twisted sectors are cyclic in terms of group cohomolog-
ical data (see below). This is the content of the Reconstruction Theorem of [K1].

The consequences are sometimes quite striking as in the case of symmetric products,
where there is only one possible “stringy” orbifold product.

The restrictions on the possible multiplicative structures are even stricter if one is
considering data stemming from a G–intersection category.

This is the content of the next section.

4. Intersection G–Frobenius Algebras

We will now concentrate on the situation of functors from G–intersection categories to
Frobenius algebras.

Given a G–class in such a category a functor to Frobenius algebras will provide the
following structure which reflects the possibility to take fixed point sets iteratively. Say
we look at the fixed points with respect to elements g1, . . . , gn. These fixed point sets
will be invariant under the group spanned by the elements g1, . . . , gn and they are just
the intersection of the respective fixed point sets of the elements gi . The underlying
spaces are therefore invariant with respect to permutation of the elements gi , and if g
appears twice among the gi then one can shorten the list by omitting one of the gi . Also
if a list gi includes g−1 we may replace it by g. Finally, the fixed point set under the
action of the group generated by two elements g and h is a subset of the fixed point set of
the group generated by their product gh. Translating this into the categorical framework,
we obtain:
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4.1. Definition. AG–intersection Frobenius datum of level k is the following: For each
collection (g1, . . . , gn) with n ≤ k of elements of G, a Frobenius algebra Ag1,...,gn and
the following maps:

Isomorphisms

�σ : Ag1,...,gn → Agσ(1),...,gσ(n)

for each σ ∈ Sn called permutations.
Isomorphisms

�
g1,...,gi ,...,gn

g1,...,g
−1
i ,...,gn

: Ag1,...,gi ,...,gn → A
g1,...,g

−1
i ,...,gn

commuting with the permutations.
Morphisms

r
g1,...,ĝi ,...,gn
g1,...,gi ,...gn : Ag1,...,ĝi ,...,gn → Ag1,...,gn

commuting with the permutations. (Here the symbolˆ is used to denote omission.) Such
that the diagrams

Ag1,...,ĝi ,...,ĝj ,...,gn

r
g1,...,ĝi ,...,ĝj ,...,gn
g1,...,gi ,ĝj ,...gn→ Ag1,...,ĝj ,...,gn

↓ rg1,...,ĝi ,...,ĝj ,...,gn

g1,...,ĝj ,...,gn
↓ rg1,...,ĝj ,...,gn

g1,...,gn

Ag1,...,ĝi ,...,gn

r
g1,...,ĝi ,...,gn
g1,...,gn→ Ag1,...,gn

are co–Cartesian.
Isomorphisms

i
g1,...g,...,ĝ,...,gn
g1,...,g,...,g,...,gn : Ag1,...,g,...,g,...,gn → Ag1,...g,...,ĝ,...,gn

commuting with the permutations.
And finally morphisms:

r
g1,...,gigi+1,...,gn
g1,...,gi ,gi+1,...,gn : Ag1,...,gigi+1,...,gn → Ag1,...,gi ,gi+1,...,gn

commuting with the permutations.
If this data exists for all k we call the data simply G–intersection Frobenius datum.

4.2. Notation. We set rg1,...,gn :=rg1,...,gn−1
g1,...,gn ◦· · ·◦rg1 and we set Ig1,...,gn :=Ker(rg1,...,gn).

Notice that this definition of Ig1,...,gn is independent of the order of the gi .

4.3. Remarks.

1) In order to (re)–construct a suitable multiplication on
⊕
Ag it is often convenient to

use the double and triple intersections (i.e. level 3). Where the double intersection
are used for the multiplication and triple intersections are used to show associativity.
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2) We can use the double intersections to define G–Frobenius algebras based on each
of the Ag , i.e. on

⊕
h∈Z(g) Ag,h for each fixed g, where Z(g) denotes the centralizer

of g.

4.3.1. Definition . A G–action for an intersection G–Frobenius algebra of level k is
given by a collection of morphisms

φg(Ag1,...,gn , h) ∈ Hom(Ag1,...,gn,h,Ag1,...,gn,ghg−1)

which are compatible with the structural homomorphisms and satisfy

φg(Ag1,...,gn , g
′hg′−1)φγ ′(Ag1,...,gn , h) = φgg′(Ag1,...,gn , h).

4.4. Definition. We call an intersection G Frobenius datum a special G intersection
Frobenius datum, if all of the Ag1,...,gn are cyclic Ae module algebras via the restriction
maps such that the Ae module structures are compatible with the restriction morphisms
r . Here the generators are given by rg1,...,gn(1) and the Ae module structure is given by
a · b := rg1,...,gn(a)b.

4.5. Remark. In the case of specialG–Frobenius algebras, the presence of special inter-
section data gives a second way to look at the multiplication. The first way is to use
the restrictions rg and sections ig to define the multiplication as discussed in §1.5. (see
Eq. (1.4)). A second possibility is to use the intersection structure. This can be done in
the following way: first push forward to double intersections, second use the Frobenius
algebra structure there to multiply, then pull the result back up to the invariants of the
product, but allowing to multiply with an obstruction class before pulling back. This is
discussed below in §4.8.

The precise relation between the two procedures is given by the following proposition
and 1.4.

4.6. Proposition. Given a specialG intersection datum (of level 2), the following decom-
position holds for section independent cocycles γ :

rgh(γg,h) = řghg,h(γ̃g,h) = ighg,h(γ̃g,h)řghg,h(1g,h) = γ̄g,hγ⊥g,h (4.1)

for some section ig,h of rg,h, γ̃g,h ∈ (Ag,h)e, γ̄g,h ∈ ig, h)(Ag, h) of degree e, and

γ⊥g,h := ř
gh
g,h(1g,h). Here e = sg + sh − sgh − s+g,h + s+gh with s+g,h := d − dg,h and

dg,h = deg(ρg,h), and we again used the unshifted degrees. (In particular if the s− = 0
then e = 1

2 (s
+
g + s+h + s+gh)− s+g,h = 1

2 (d − dg − dh − dgh)+ dg,h).

Proof. We notice that Ig + Ih = Ig,h and (Ig + Ih)γg,h ⊂ Igh, and set J := rgh(Ig,h).
Choosing some section ighg,h of rghg,h, we can define the splitting

Akgh = ighg,h(Ag,h)⊕ J, (4.2)

where again k means the homogeneous component of degree k. Now

γg,h ∈ (ighg,h(Agh)∗)e,
where ∗ is the dual w.r.t. the form ηgh and the splitting (4.2) and e = sg + sh − sgh +
s+gh − s+g,h.

From which the claim follows by an argument completely analogous to the proof of
Lemmas 1.8.2 and 1.9. ��
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Also generalizing the fact that

Igγg = Igřg(1g) = 0 (4.3)

we obtain

4.7. Lemma.

(Ig + Ih)γ⊥g,h ⊂ Ig,h. (4.4)

4.8. Multiplication. From the section independence of γ , we see for a specialG–Frobe-
nius algebra which is part of a specialG–intersection Frobenius datum of level≥ 2 that
the multiplication Ag ⊗ Ah → Agh can be factored through Ag,h. To be more precise,
we have the following commutative diagram:

Ag ⊗ Ah µ→ Agh

↓ rgg,h ⊗ rhg,h ↑ řg,hgh ◦ lγ̃g,h
Ag,h ⊗ Ag,h µ→ Ag,h

,

where lγ̃g,h is the left multiplication with γ̃g,h. That is using the multiplication in Ag,h,

ag ◦ bh = řghg,h(rgg,h(ag)rhg,h(bh)γ̃g,h). (4.5)

4.8.1. Remark. The decomposition into the terms γ̃ andγ⊥ can be understood as decom-
posing the cocycle into a part which comes from the normal bundle ofXg,h ⊂ Xgh which
is captured by γ⊥ and an additional obstruction part.

4.9. Associativity equations. Furthermore in the presence of a special G intersection
Frobenius datum of level≥ 3 the associativity equations can be factored throughAg,h,k .
More precisely, we have the following commutative diagram of restriction maps:

Aghk
↙ ↘

Agh → Agh,k ↓ Ag,hk ← Ahk
↓ ↘ ↙ ↓
Ag,h → Ag,h,k ← Ah,k

(4.6)

More technically: Using the associativity equations for the γ , we set

rghk(γg,hγgh,k) := γg,h,k (4.7)

and associativity says that also

rghk(γh,kγg,hk) = γg,h,k. (4.8)

By analogous arguments as utilized above one finds

γg,h,k = ighkg,h,k(γ̃g,h,k)ř
ghk
g,h,k(1g,h,k) = řghkg,h,k(γ̃g,h,k) (4.9)

for some γ̃g,h,k ∈ ighkg,h,k(Ag,h,k). So vice–versa to show associativity one needs to show
that

ř
ghk
gh,k(r

gh
gh,k(ř

gh
g,h(γ̃g,h))γ̃gh,k) = řghkg,h,k(γ̃g,h,k) (4.10)

for some γ̃g,h,k which is a symmetric expression in the indices.
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4.10. IntersectionGFrobenius algebras. Vice–versa in the givenG–intersection Frobe-
nius datum using the diagram (4.8) as an ansatz for a multiplication we will arrive at a
special type of Frobenius algebra. The associativity of this ansatz can then be checked
on the triple intersections.

4.10.1. Definition. An intersection G–Frobenius algebra is an intersection G–Frobe-
nius datum of level k ≥ 3 together with aG–Frobenius algebra structure onA :=⊕

Ag
whose multiplication is given by the diagram (4.8) and whose associativity is given by
diagram (4.6).

4.10.2. Remark. Reconstructing from special reconstruction data one can define the
algebras Ag1,...gn via the following procedure. Set Ig1,...,gn := Ig1 + · · · + Ign and
Ag1,...gn := Ae/Ig1,...,gn . In order to get G–intersection Frobenius data one has then
only to show that the Ag1,...gn are indeed Frobenius algebras and choose a metric for
them. If this is possible then Proposition 4.6 shows that any reconstructed special G
Frobenius algebra is an intersection G Frobenius algebra.

4.10.3. Examples

i) We will show that the structures of Remark 4.10.2 are indeed present in the case of
symmetric products.

ii) TheG–Frobenius structures for the global orbifold cohomology ring as presented in
[FG] are intersection G–Frobenius algebras.

4.11. The Sign. Given a preferred choice of character, it is possible to define a sign
which corresponds to a super–twist from a preferred choice of super–grading.

4.11.1. Remark. Given a special G–Frobenius algebra A we denote the eigenvalue of
ρ w.r.t. ϕg by λg and furthermore denote the eigenvalue of ϕhg on ih(ρh) by λhg i.e.
ϕg(ρ) = λgρ and ϕhg (ih(ρh)) = λhgih(ρh). By the projectiveG–invariance of the metric

λh = χ−2
h , (4.11)

and we can regard the ensembles λg and λgh as characters.

4.11.2. Definition. We define a sign sign to be an element of Hom(G, k∗). Fixing an
element sign ∈ Hom(G,Z/2Z) we can define the associated character ψ by

ψ(g) := (−1)sign(g)χg. (4.12)

Vice–versa given a character ψ ∈ Hom(G, k∗) with the property that ψ2 = χ2 we
define the sign given by ψ to be

(−1)sign(g) := χgψ(g)−1. (4.13)

Finally, any choice of root of λ defines a sign.
Given sign and signg for A and Ag for all g, h ∈ G, [g, h] = e we set

ν(g, h) ≡ sign(g)+ signg(h)+ h̃g + g̃ (2). (4.14)

sign and signg are said to be compatible if for all h ∈ g,

ν(g, h) = ν(gh, h) = ν(h, g) = ν(g−1, h). (4.15)
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4.12. Algebraic Discrete Torsion. In certain situations it is also possible to distinguish
one G–Frobenius algebra as initial under the action of discrete torsion. This is the case
for instance for Jacobian Frobenius algebras. In general, we can define a similar struc-
ture for intersection Frobenius algebras, which then incorporates the trace axiom into
the definition of discrete torsion. This shows that the compatibility with the trace axiom
in principle fixes the action up to a twist by discrete torsion.

Denote the centralizer of an element g ∈ G by Z(g) and fix a sign of A. We will
consider G–intersection Frobenius data of level 2.

4.12.1. The induced Z(g)–Frobenius algebra structure. If we are in an intersection
Frobenius algebra of level k ≥ 2, given Ag we can consider

The underlying additive structure.

Âg =
⊕

h∈Z(g)
(Ag)h =

⊕

h∈Z(g)
Ag,h (4.16)

Notice that if h ∈ Z(g), ϕh : Ag → Ag and ϕ descends to a Z(g) action on Ag . How-
ever, we have that ϕh(1g) = ϕh,g1g , but 1g should be invariant under the Z(g)–action
as the new identity. Therefore we set

The Z(g)–action.

ϕ
g
h := ϕ−1

h,gϕh. (4.17)

With this definition ϕgh(1g) = ϕ−1
h,gϕh,g1g = 1g .

The character. Given aG–action on the level 2G–intersection algebra, we can aug-
ment the picture with a character χgh , which will be determined by the trace axiom.

Supergrading. We fix the super–degree of Ag,h in Âg and denote it by h̃g .

4.12.2. Definition. An intersection Frobenius algebra of level k ≥ 2 is said to satisfy
the discrete torsion condition, if the above data satisfy the projective trace axiom and
for all g, h ∈ G there are isomorphisms between Agh,h � Ag,h.

4.12.3. Proposition. In an intersection Frobenius algebraA of level k ≥ 2 that satisfies
the discrete torsion condition, the following equality holds for all g, h ∈ G, [g, h] = e:

χgSTr(ϕg|Ah) = ϕg,hχg(χhg )−1(−1)g̃(−1)h̃
g

dim(Ag,h), (4.18)

or given roots ψ,ψg of λ, λg:

χgSTr(ϕg|Ah) = ϕg,hψg(φhg )−1(−1)sign(g)+sign
h(g)(−1)g̃(−1)h̃

g

dim(Ag,h). (4.19)

Proof. From the discrete torsion condition we obtain

(−1)g̃
h

dim(Ag,h) = χghSTr(ϕhg |Ah,e ),
and furthermore

STr(ϕg|Ah) = (−1)g̃ϕ−1
g,hSTr(ϕhg |Ah,e ).

��
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4.12.4. Corollary. If ψ and ψg are compatible then

χgSTr(ϕg|Ah) = ϕg,hψg(φhg )−1(−1)sign(g)+sign(h)(−1)ν(g,h) dim(Ag,h). (4.20)

4.12.5. Definition. If sign and the signg are compatible, we set for g, h ∈ G, [g, h] = e,
T (h, g) = (−1)sign(g)sign(h)(−1)sign(g)+sign(h)(−1)|νg,h| dim(Ag,h), (4.21)

it satisfies for g, h ∈ G, [g, h] = e,
T (g, h) = T (h, g) = T (gh, h) = T (g−1, h), (4.22)

ε(h, g) = ϕg,h(−1)sign(g)sign(h)ψg(ψ
h
g )
−1. (4.23)

Due to the projective trace axiom and by definition ε viewed as a function from
G×G→ k∗ satisfies the conditions of discrete torsion which are defined by

ε(g, h) = ε(h−1, g), ε(g, g) = 1, ε(g1g2, h) = ε(g1, h)ε(g2, h). (4.24)

5. Jacobian Frobenius Algebras

We first recall the main definitions and statements about Jacobian Frobenius algebras
from [K2, K3].

5.1. Reminder. A Frobenius algebra A is called Jacobian if it can be represented as the
Milnor ring of a function f . I.e. if there is a function f ∈ OAnk

s.t. A = OAnk
/Jf , where

Jf is the Jacobian ideal of f . And the bilinear form is given by the residue pairing. This
is the form given by the Hessian of ρ = Hessf .

If we write OAnk
= k[x1 . . . xn], Jf is the ideal spanned by the ∂f

∂xi
.

A realization of a Jacobian Frobenius algebra is a pair (A, f ) of a Jacobian Frobe-
nius algebra and a function f on some affine k space Ank , i.e. f ∈ OAnk

= k[x1 . . . xn]

s.t. A = k[x1 . . . xn] and ρ := det( ∂2f
∂xi∂xj

).

5.2. Definition. A natural G action on a realization of a Jacobian Frobenius alge-
bra (Ae, f ) is a linear G action on Ank which leaves f invariant. Given a natural G
action on a realization of a Jacobian Frobenius algebra (A, f ) set for each g ∈ G,
Og := OFixg(Ank )

.

We also write V (g) := Fixg(Ank).
This is the ring of functions of the fixed point set of g for the G action on Ank . These

are the functions fixed by g: Og = k[x1, . . . , xn]g .
Denote by Jg := Jf |Fixg(Ank )

the Jacobian ideal of f restricted to the fixed point set

of g.
Define

Ag := Og/Jg. (5.1)

TheAg will be called twisted sectors for g �= 1. Notice that eachAg is a Jacobian Frobe-
nius algebra with the natural realization given by (Ag, f |Fixg ). In particular, it comes
equipped with an invariant bilinear form η̃g defined by the element Hess(f |Fixg ).
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For g = 1 the definition ofAe is just the realization of the original Frobenius algebra,
which we also call the untwisted sector.

Notice there is a restriction morphism rg : Ae → Ag given by a �→ a mod Jg .
Denote rg(1) by 1g . This is a non–zero element of Ag since the action was linear.

Furthermore it generates Ag as a cyclic Ae module.
The set FixgAnk is a linear subspace. Let Ig be the vanishing ideal of this space.
We obtain a sequence

0→ Ig → Ae
rg→ Ag → 0.

Let ia be any splitting of this sequence induced by the inclusion: îg : Og → Oe

which descends due to the invariance of f .
In coordinates, we have the following description. Let FixgAnk be given by equations

xi = 0 : i ∈ Ng for some index set Ng .
Choosing complementary generators xj : j ∈ Tg , we have Og = k[xj : j ∈ Tg] and

Oe = k[xj , xi : j ∈ Tg, i ∈ Ng]. Then Ig = (xi : i ∈ Ng)Oe
is the ideal in Oe generated

by the xi and Oe = Ig ⊕ ig(Ag) using the splitting ig coming from the natural inclusion
îg : k[xj : j ∈ Tg]→ k[xj , xi : j ∈ Tg, i ∈ Ng]. We also define the projections

πg : Ae → Ae;πg = ig ◦ rg
which in coordinates are given by f �→ f |xj=0:j∈Ng . Let

A :=
⊕

g∈G
Ag,

where the sum is a sum of Ae modules.
Some of the conditions of the reconstruction program are automatic for Jacobian

Frobenius algebras. The conditions and freedoms of choice of compatible data to the
above special reconstruction data are given by the following:

5.3. Theorem (Reconstruction for Jacobian algebras). Given a naturalG action on a
realization of a Jacobian Frobenius algebra (Ae, f ) with a quasi–homogeneous func-
tion f with dg = 0 iff g = e together with a natural choice of splittings ig the possible
structures of a naturally graded special G twisted Frobenius algebra on the Ae mod-
ule A := ⊕

g∈G Ag are in 1–1 correspondence with the set of section independent G
graded cocycles γ which are compatible with the metric together with a choice of sign
sign ∈ Hom(G,Z/2Z) and a compatible non–abelian two cocycle ϕ with values in k∗,
which satisfy the condition of discrete torsion

∀g, h s.t. [g, h] = e : ϕg,hϕh,g det(g|Nh) det(h|Ng ) = 1 (5.2)

and the supergrading condition

|Ng| + |Nh| ≡ |Ngh| (2) or γg,h = 0. (5.3)

This means in particular that the trace condition is replaced by (5.2). Also notice that
if γg,h �= 0 then the factor ϕg,hϕh,g = 1 in (5.2) by the compatibility equations so that
(5.2) reads

det(g|Nh) det(h|Ng ) = 1. (5.4)
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Notation. If [g, h] �= 0 then deg(g|Nh) is taken as an abbreviation for deg(g) det−1(g|Th).

5.3.1. Character and Sign. The character and parity are fixed by a choice of sign sign
and are given by:

χg = (−1)g̃(−1)|Ng |det(g). (5.5)

The sign is defined by

χg = (−1)sign(g) det(g),

i.e. we choose ψg = det(g) and it satisfies

sign(g) := g̃ + |Ng| mod 2. (5.6)

5.3.2. Bilinear form on the twisted sectors. If the character χ is non–trivial, we have to
shift the natural bilinear forms ηg on Ag by

((−1)g̃χg)
1/2ηg, (5.7)

where we choose to cut the plane along the negative real axis. For more comments on
this procedure see [K3] and the following remarks.

5.3.3. Remarks about the normalization. We would like to point out that the setup of
reconstruction data already includes the forms ηg . This is the reason for the above shift.
Indeed there is always a pencil of metrics for any given irreducible Frobenius alge-
bra. The overall normalization is fixed by γg,g−1 . More precisely, we always have the
equation:

γg,g−1 ig(ρg) = ρ. (5.8)

Notice that since γg,g−1Ig = 0 this equation determines ρg uniquely at least in the
graded irreducible case since ρg is necessarily of top degree in Ag . So if we were not to
include the ηg into the data, the only conditions on the γg,g−1 would be that they do not
vanish, live in the right degree and satisfy the compatibility but there would be no need
for rescaling.

Another way to avoid the shift is to include it in the restriction data by setting

Ag := Ofg with fg = ((−1)g̃χg)
1/2ηgf |Fix(g). (5.9)

5.3.4. Natural discrete Torsion for Jacobian Frobenius algebras. We can write

χhSTr(ϕh|Ag ) = ε(h, g)T (h, g),
where

T (h, g) = (−1)sign(g)sign(h)(−1)sign(g)+sign(h)(−1)|Tg∩Th|+N

dim(ig(Ag) ∩ ih(Ah))
= (−1)sign(g)sign(h)(−1)sign(g)+sign(h)(−1)|Ng,h| dim(Ag,h), (5.10)
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where we introduced the notation |Ng,h| for dim(Fix(g) ∩ Fix(h)) and Ag,h for
Of |Fix(g)∩Fix(h) ,

ε(h, g) = ϕg,h(−1)sign(g)sign(h) det(g|Nh). (5.11)

The projective trace axiom is satisfied in the graded case if ε satisfies the equations of
discrete torsion

ε(g, h) = ε(h−1, g) ε(g, g) = 1 ε(g1g2, h) = ε(g1, h)ε(g2, h) (5.12)

which in terms of the ϕ is equivalent to the condition (5.2).

5.3.5. Remark. This definition of discrete torsion agrees with the more general one
of 4.12 if we set ψ = det(g) and ψg(h) = det(h)|Tg . Indeed we find signg(h) ≡
h̃g + |Ng

g,h| with |Ng
g,h| = codimFixg(Fixg ∩ Fixh) and thus

ν(g, h) ≡ sign(g)+ signg(h)+ h̃g + g̃ (2)
≡ sign(g)+ codim(Fixg ∩ Fixh)+ |Ng| + g̃ ≡ |Ng,h| (2). (5.13)

5.3.6. Examples

1) (pt/G). Recall (cf. [K3]) that given a linear representation ρ : G → O(n, k), we
obtain the G–twisted Frobenius algebra pt/G from the Morse function f = z1

n +
. . .+ z2

n.
All sectors are isomorphic to k:

A =
⊕

g∈G
k,

all the dg = 0 and all the rg = id . In particular, we have that γg,g−1 = řg(1) = 1 and
πg(γh,h−1) = 1 �= 0, so we see that the γg,h ∈ k∗ and are given (up to rescaling) by
group cocycles γ ∈ H 2(G, k∗) and since the gg,h �= 0, the ϕ and hence the discrete
torsion are fixed by the compatibility γg,h = ϕg,hγghg−1,g .
Explicitly: Fix a parity ˜∈ Hom(G,Z/2Z).
The sign and character are given by

sign(g) ≡ g̃ χg = (−1)sign(g) = (−1)g̃. (5.14)

2) Another example to keep in mind is An which is the Frobenius algebra associated to
zn+1 together with the Z/(n+ 1)Z action z �→ ζnz where ζ nn = 1 [cf. [K3]].

3) A⊗n together with the permutation action. We will consider this example in depth
in §7 and §8. This example has appeared many times in different guises in [DMVV,
D1, D2, LS, U, WZ]. Our treatment is completely general and subsumes all these
cases. Also, there is an ambiguity of signs which is explained by our treatment.

5.4. Theorem. Jacobian algebras naturally give intersection algebras.

Proof. This is straight forward. We set

Ag1,...,gk := Ofg1,...,gk
with fg1,...,gk := f |⋂k

i=1 Fix(gi)
(5.15)

and use the obvious restriction maps. Here again the remarks of 5.3.3 apply. ��
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6. Special Sn–Twisted Frobenius Algebras

6.1. Notation. Given a permutation σ ∈ Sn, we associate to it its cycle decomposition
c(σ ) and its index type I (σ ) := {I1, . . . Ik}, where the Ij are the independent sets in the
cycle decomposition of σ . Notice that the I (σ ) can also be written as 〈σ 〉\n̄, where this
is the quotient set of n̄ w.r.t. group action of the group generated by σ .

The length of a cycle decomposition |c(σ )| is defined to be the number of indepen-
dent cycles in the decomposition. The partition gives rise to its norm (n1, . . . , nk) of n
where ni := |Ii |. And the type of a cycle is defined to be (N1(σ ),N2(σ ), . . . ), where
Ni = # of nj = i in (n1, . . . , nk), i.e.Ni the number of cycles of length i in the cocycle
decomposition of σ .

We define the degree of σ ∈ Sn to be |σ | := the minimal length of σ as a word in
transpositions = n− |c(σ )|.

Recall the relations in Sn are

τ 2 = 1, (6.1)

ττ ′ = τ ′τ ′′ where τ = (ij), τ ′ = (jk), τ ′′ = (kl). (6.2)

6.2. Definition. We call two elements σ, σ ′ ∈ Sn transversal, if |σσ ′| = |σ | + |σ ′|.

6.3. The linear subspace arrangement. A good deal of the theory of Sn Frobenius alge-
bras is governed by the canonical permutation representation of Sn on kn given by
ρ(σ)(ei) = eσ(i) for the canonical basis (ei) of kn.

We set Vσ := Fix(σ ) and Vσ1,...,σn :=⋂n
i=1 Vσi . Notice that

l(σ ) = dim(Vσ ) = |〈σ 〉\n̄| (6.3)

and

|σ | = codim(Vσ ). (6.4)

In the same spirit, we define

l(σ1, . . . σn) := dim(Vσ1,...,σn),

|σ1, . . . , σn| := codim(Vσ1,...,σn). (6.5)

This explains the name transversal. Since if σ and σ ′ are transversal then

Vσ,σ ′ = Vσ ∩ Vσ ′ = Vσσ ′ ,
and the intersection is transversal.

Furthermore notice that

l(σ1, . . . , σn) = |〈σ1, . . . , σn〉\n̄|, (6.6)

where again the last set is the quotient set of n̄ by the action under the group generated
by σ1, . . . , σn.

6.4. Definition. We call a cocycle γ : Sn × Sn→ A normalizable if for all transversal
pairs τ, σ ∈ Sn, |τ | = 1 : γσ,τ ∈ A∗e , i.e. is γσ,τ is invertible, and normalized if it is
normalizable and for all transversal τ, σ ∈ Sn, |τ | = 1 : γσ,τ = 1.



Second Quantized Frobenius Algebras 61

In the example of symmetric products of an irreducible Frobenius algebra or in gen-
eral Ae irreducible the invertibles are of degree 0 and are given precisely by k∗.

6.4.1. Lemma. If a cocycle is normalized then for any transversal σ, σ ′ ∈ Sn : γσ,σ ′ =
1.

Proof. We write σ ′ = τ ′1 · · · τ ′k with k = |σ ′| where all τi are transpositions.
Thus by associativity:

σσ ′ = (((. . . (σ τ ′1)τ ′2) · · · )τ ′k),
so

γσσ ′ = πσσ ′(γσ,σ ′) = πσσ ′(
k∏

i=1

γ
σ

∏i−1
j=1(τj ),τi

) = πσσ ′(
k∏

i=1

1) = 1.

��

6.4.2. Remark. Recall that γτ,τ = řg(1τ ) for a transposition τ .

6.4.3. Lemma. Let σ ∈ Sn. If γ is a normalized cocycle, then for any decomposition
into transpositions σ = τ1 · · · τ|σ | : γσ,σ−1

∏|σ |
i=1 γτi ,τi .

Proof. Let k = |σ |. Thus by associativity:

σσ−1 = (τ1(τ2(· · · (τkτk · · · τ2τ1) · · · ))),
and if τ and σ ′ are transversal

πσ ′(γτ,τσ ′) = πσ ′(γτ,τσ ′γτ,σ ′) = πσ ′(γτ,τ γe,σ ′) = πσ ′(γτ,τ ).

So γσ,σ−1 =∏k
i=1 γτi ,τi . ��

6.5. Theorem. Given special Sn reconstruction data, a choice of normalized cocycle
γ : Sn × Sn → A is unique. Furthermore a choice of normalizable cocycle is fixed by
a choice of the γτ,σ with τ and σ transversal.

Proof. We have that the γσ,σ−1 are given by γσ,σ−1 = řσ (1σ ) and thus fixed after the
normalization which fixes the rσ . Again choosing any minimal decomposition σ ′ =
τ ′1 · · · τ ′|σ | and by using the normalization and associativity repeatedly, we obtain that

γσ,σ ′ = πσσ ′(γσ,σ ′
|σ ′|∏

i=1

γ
τ ′i+1,

∏i
j=1 τ

′
j
) = πσ,σ ′(

|σ ′|∏

i=1

γ
σ

∏i
j=1 τ

′
i−1,τ

′
i
)

= πσσ ′(
∏

i∈I
γτ ′i ,τ

′
i
),

where I := {i : |σ(∏i−1
j=1 τ

′
j )τ
′
i | = |σ

∏i−1
j=1 τ

′
j | − 2}.

Thereby the γσ,σ ′ are already determined by the γτ,τ which are in turn given by
řτ (1τ ).

If the cocycles are only normalizable, we obtain the result in a similar fashion. ��
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6.6. Discrete torsion for Sn. It is well known (see e.g. [Ka]) that H 2(Sn, k∗) = Z/2Z.

6.7. Lemma. Let � be a cocycle corresponding to the non–trivial central extension of
Sn defined as the group generated by τ̂i : i = 1, . . . n,

τ̂i τ̂i = z, zz = e, τ̂i τ̂i+1τ̂i = τ̂i+1τ̂i τ̂i+1, τ̂i τ̂j = zτ̂j τ̂i : |i − j | ≥ 2.

and let k�[Sn] be the corresponding twisted group ring (here z �→ −1) then

ε�(τi, τi) = 1 ε(τi, τj ) = −1 : i �= j.

Proof. Since τ̂ 2
i = −1, τ̂i τ̂i τ̂

−1
i = −(−τ̂i ) = τ̂i . If |i−j | ≥ 2 τ̂i τ̂j τ̂

−1
i = −τ̂j τ̂i (−τ̂i ) =−τ̂j . ��

6.8. Supergrading and Parity p. Since Sn is generated by transpositions which all lie in
the same conjugacy class, we see that the choices of Z/2Z–grading ˜∈ Hom(Sn,Z/2Z)
are given by

i) pure even ∀σ : σ̃ = 1. We call this the even case and set the parity p = 0.
ii) The sign representation σ̃ ≡ |σ | (2). We call this the odd case and set the parity
p = 1.

6.9. Lemma. For the (super) twisted group ring, the following equations hold:

ε(σ, σ ′) = (−1)p|σ ||σ
′|,

in particular ∀τ, τ ′ ∈ Sn, |τ | = |τ ′| = 1, [τ, τ ′] = e,
ε(τ, τ ) = (−1)p ε(τ, τ ′) = (−1)p.

This follows from the general result 2.1.2.

6.10. The non–abelian cocycles ϕ

6.10.1. Remark. Due to the relation (1.5), we see that ϕ is determined by the ϕτ,σ with
|τ | = 1.

6.10.2. Lemma. For any non–abelian Sn cocycle ϕ there is a fixed p ∈ {−1,+1} s.t.
for all τ ∈ Sn, |τ | = 1 ϕτ,τ = (−1)τ̃ τ̃ = (−1)p. Furthermore if ϕ is compatible with a
section independent cocycle compatible with the metric, then p is the supergrading as
an element in Z/2Z (see 6.8).

Proof. By the definition of a non–abelian cocycle, we see that ∀τ : ϕτ,τ ∈ {−1, 1}.
Furthermore all transpositions are conjugate so that by 1.19 ϕτ,τ = ϕτ ′,τ ′ for τ, τ ′ ∈
Sn : |τ | = |τ ′| = 1 which shows the claim. In the case of a compatible pair furthermore:
γτ,τ = ϕτ,τ (−1)τ̃ τ̃ γτ,τ and γτ,τ �= 0, so that ϕτ,τ = (−1)p = (−1)τ̃ . ��
6.10.3. Lemma. For τ, τ ′ ∈ Sn, τ �= τ ′, |τ | = |τ ′| = 1, [τ, τ ′] = e ϕτ,τ ′ = (−1)q for
a fixed q ∈ {−1, 1}.
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Proof. Since ττ = [τ, τ ′] = e, by (1.5) ϕτ,τ ′ = ±1 and by (1.19), the value is indeed
fixed simultaneously for all commuting transpositions, since all pairs of commuting
transpositions are conjugate to each other. ��
6.11. Definition. We call a non–abelian cocycle ϕ normalizable if for all τ, τ ′ ∈ Sn, τ �=
τ ′, |τ | = |τ ′| = 1, [τ, τ ′] = e, ϕτ,τ ′ = (−1)p for some fixed p ∈ {−1, 1}.

We call a non–abelian cocycle ϕ normalized if ∀σ, τ ∈ Sn, |τ | = 1,
ϕσ,τ = (−1)σ̃ τ̃ = (−1)p|σ |.

6.12. Lemma. After a possible twist by any discrete torsion α with [α] �= 0 all non–
abelian cocycles ϕ are normalizable.

Proof. By Lemmas 6.10.2 and 6.10.3, we have that indeed for τ, τ ′ ∈ Sn, |τ | = |τ ′| =
1, [τ, τ ′] = e ϕ(τ, τ ) = (−1)p and ϕ(τ, τ ′) = (−1)q with p, q ∈ {−1, 1}. If p = q
then the cocycle ϕ is already normalizable. If p �= q, let � ∈ Z2(Sn, k∗) be the class
given in Lemma 6.7 then ϕ�(τ, τ ) = (−1)p and ϕ� = (−1)p since if p �= q then
p = q + 1. But on commuting elements εα only depends on the cohomology class of
α and thus we could use a twist by α for any class with [α] �= 0 ∈ H 2(Sn, k∗) instead
of �.

If ϕ is the non–abelian cocycle of a special Sn Frobenius algebra A then the non–
abelian cocycleϕ� can be obtained via tensoring with k�[Sn] as the non–abelian cocycle
of A�.

Theorem A.1 contained in Appendix A implies that all normalizable non–abelian
cocycles ϕ can be rescaled to a normalized cocycle. ��
6.13. Theorem. Any normalizable graded Sn cocycle γ with normalized ϕ can be nor-
malized by a rescaling 1σ �→ λσ1σ .

And vice–versa, given any normalized Sn cocycle and a choice of parity p ∈ {0, 1}
there is only one compatible non–abelian cocycle ϕ given by

ϕσ,σ ′ = (−1)p|σ ||σ
′|. (6.7)

Proof. First notice that by assumption of normalizability the γσ,τ ∈ k∗ for transversal
τ, σ we define the rescaling inductively on |σ | by λτ := 1 and λσ := λσ ′γσ ′,τ ′ , where
σ = σ ′τ ′ and τ and σ are transversal.

More precisely: let σ = σ ′τ ′ with |τ | = 1, |σ ′| = |σ | − 1. With induction on |σ | we
define

λσ := λσ ′γσ ′,τ ′ . (6.8)

Then after scaling we obtain:

γ̃σ ′,τ ′ = λτ ′λσ ′

λσ ′τ ′
γσ ′,τ ′ = λτ ′ = 1.

We have to show that (6.8) is well defined, i.e. is independent of the decomposition.
This can again be seen by induction.

First notice that if |σ | = 1, λσ = 1 poses no problems. If |σ | = 2 either there is a
unique decomposition into two disjoint transpositions or

σ = ττ ′ = τ ′τ ′′, (6.9)
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where τ = (ij), τ ′ = (jk), τ ′′ = (kl). The first case again poses no problem. For the
second one notice that λτ = λτ ′ = 1 and τ ′τ ′′τ ′ = τ , thus

γτ ′,τ ′′ = ϕτ ′,τ ′′(−1)τ̃
′ τ̃ ′′γτ ′τ ′′τ ′,τ ′ = ϕτ ′,τ ′′(−1)τ̃

′ τ̃ ′′γτ,τ ′ = γτ,τ ′ . (6.10)

Assume the λσ are well defined for |σ | < k. Fix σ with |σ | = k and decompose
σ = σ ′τ ′ = σ ′′τ ′′ in two different ways. Then we have to show that

λσ ′γσ ′,τ ′ = λσ ′γσ ′′,τ ′′ ,

where by induction λσ ′ =
∏|σ ′|
i=1 γ

∏i−1
j=1 τ

′
j ,τ
′
i

and σ ′ =∏|σ ′|
i=1 τ

′
i is any minimal represen-

tation. We observe that in Sn we can obtain σ ′τ ′ from σ ′′τ ′′ by using the relation (6.9)
repeatedly. Thus by using associativity and (6.10) we obtain:

λσ ′′γσ ′′,τ ′′ = (
|σ ′′|∏

i=1

γ∏i−1
j=1 τ

′′
j ,τ
′′
i
)γσ ′′,τ ′′ = (

|σ ′|∏

i=1

γ∏i−1
j=1 τ

′
j ,τ
′
i
)γσ ′,τ ′ = λσ ′γσ ′,τ ′ .

The fastidious reader can find the explicit case study in Appendix B.
For the second statement notice that by Lemma 6.4.1 given a normalized γ we have

for all transversal σ, σ ′ : γσ,σ ′ = 1.
Thus for transversal τ, σ ,

1 = γτ,σ = ϕτ,σ (−1)τ̃ σ̃ γτστ,τ = ϕτ,σ (−1)τ̃ σ̃ ,

since τστ and τ are transversal |τστ | = |σ |, |τσττ | = |τσ | = |τ | + |σ |.
And if σ, τ are not transversal, then σ = τσ ′ with |σ ′| = |σ − 1| and σ ′ and τ

transversal,

γτ,τ = γτ,σ = ϕτ,σ (−1)|σ |γσ ′τ,τ = (−1)|σ |γτ,τ ,

and since γτ,τ �= 0, we find

ϕτ,σ = ϕσ,τ = (−1)p. (6.11)

And finally if σ =∏|σ |
i=1 τi ,

ϕσ,σ ′ =
|σ |∏

i=1

ϕτi ,σ̃ ′i = (−1)p|σ ||σ
′|

by using (6.11) with σ̃i = (
∏|σ |
j=i+1 τi)σ

′(
∏|σ |
j=i+1 τi)

−1, |σ̃i | = |σ ′|. ��

7. Symmetric Powers of Jacobian Frobenius Algebras

In this paragraph, we study Sn orbifolds ofA⊗n whereA is a Jacobian Frobenius algebra.
We also fix the degree d of A to be the degree of ρ – the element defining η.

The most important result for Jacobian Frobenius algebras (or manifolds) is that
Af ⊗ Ag = Af+g [K1]. Therefore

A⊗nf (z) = Af (z1)+···+f (zn),

where z is actually a multi-variable z = (z1, . . . , zm).
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7.1. Remark. In the above notation, we should keep it in mind that for functionsg1, . . . gn,
we have that

g1 ⊗ · · · ⊗ gn = g1(z1) · · · gn(zn).

7.2. Sn–action. In this situation there is a natural action ρ of Sn by permuting the zi ,
i.e. for σ ∈ Sn,

ρ(σ)(zki ) = zkσ(i).

It is clear that the function fn := f (z1)+ · · · + f (zn) is invariant under this action, so
that we can apply the theory of [K2, K3]. We see that the representation ρ is just the
dimA–fold sum of the standard representation of Sn on kn.

7.3. The twisted sectors. To analyze the twisted sectors, we have to diagonalize the
given representation. To this end, we regard the cycle decomposition and realize that for
each cycle with index set Il there is a m–dimensional eigenspace generated by

1

ni

∑

i∈Il
zli for l = 1, . . . , m.

The other Eigenvectors being given by

1

nl

∑

i∈Il
ζ
j
nl f (i)z

l
i

with Eigenvalue ζ jnl , where f : Il → {1, . . . , nl} is a bijective map respecting the cycle
order.

Restricting fn to the space where all the variables with Eigenvalue different from
one vanish

fσ = f (zi = zj = uk) if i, j ∈ Ik.

Using the variables uk it is obvious that

Aσ = Afσ � A⊗|σ |.

7.4. Restriction maps. With the above choice of uk as variables and using Remark 7.1,
we find that the restriction maps are given as follows:

rσ (g1 ⊗ · · · ⊗ gn) :=
k⊗

i=1

(
∏

j∈Ii
gi) ∈ A⊗|σ |.

Thus these maps are just contractions by multiplication.



66 R.M. Kaufmann

7.5. Fixed point sets. By the above, we see that

Fix(σ ) =
m⊕

i=1

Vσ ⊂ (kn)m, (7.1)

where we used the notation of 6.3. Notice that

dim(Vσ ) = ml(σ ) codim(Vσ ) = |Nσ | = m|σ |. (7.2)

7.6. Bilinear form on A⊗n. We notice that if the bilinear form on A is given by the
element ρ = Hess(f ) then the bilinear form on A⊗n is given by ρ⊗n = Hess(fn) and
it is invariant under the Sn action. Indeed det2(ρ(σ )) = 1. To be more precise, we have
that

det(ρ(σ )) = (−1)m|σ |.

(Here ρ is of course the representation, not the element defining the bilinear form.)

7.7. The Character and Sign. Notice that the character is either the alternating or the
trivial one depending on the choice of the sign, which is determined by the choice of
parity p and on the choice of the number of variables m. (We have to keep in mind that
we can always stabilize the function f by adding squares of new variables).

Using Eq. (5.6), we find however:

χσ = (−1)σ̃ (−1)m|σ | det(σ ) = (−1)σ̃ (7.3)

and find the sign of σ to be

sign(σ ) ≡ σ̃ +m|σ | = (m+ p)|σ |. (7.4)

Thus only the sign, but not the character depends on the number of variables!

7.8. Bilinear form on the twisted sectors. Since it is always the case that (−1)σ̃ χσ = 1,
we do not have to shift the natural bilinear forms on the twisted sectors. They are given
by η⊗l(σ ) or equivalently by ρσ = ρ⊗l(σ ).

7.9. Remark. Notice also that since det(ρ(σ )) = ±1 (i.e. the Schur–Frobenius indicator
is 1) the form η will descend to the Sn invariants (see e.g. [K3]).

7.10. Proposition. After a possible twist by discrete torsion any compatible cocycle γ
is normalizable.

Proof. We check that πσ (γτ,τ ) �= 0 for τ and σ transversal. Then the claim follows from
Proposition 1.10.

Suppose τ and σ are transversal and say τ = (ij), then i and j belong to differ-
ent subsets of the partition I (σ ) (say I (σ )i and I (σ )j ). So since γτ,τ �= 0 neither is
πσ (γτ,τ ).
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More explicitly:

γτ,τ = řτ (1τ ) =
∑

k

1⊗ · · · ⊗ 1⊗
i
↓
ak ⊗1⊗ · · · ⊗ 1⊗

j

↓
bk ⊗1⊗ · · · ⊗ 1, (7.5)

where
∑
k ak ⊗ bk = �(1) �= 0 ∈ A ⊗ A and � := µ̌ : A → A ⊗ A is the natural

co–multiplication on A, and

rσ (γτ,τ ) =
∑

k

1⊗ · · · ⊗ 1⊗
I (σ )i↓
ak ⊗1⊗ · · · ⊗ 1⊗

I (σ )j

↓
bk ⊗1⊗ · · · ⊗ 1. (7.6)

Thus γτ,τ is not in the kernel of the contraction rσ and thus not in the kernel of πσ .
��

7.11. Algebraic discrete Torsion. The choices of algebraic discrete torsion are given by
the choices of cocycles ϕ and the sign. Since there is only one ϕ for a given choice of
parity and fixing the parity the sign is determined by the number of variables m.

Recall (5.11)

ε(σ, σ ′) = ϕσ,σ ′(−1)sign(σ )sign(σ
′) det(σ |Nσ ′ ) = (−1)m|σ ||σ

′| det(σ |Nσ ′ )
and

T (σ, σ ′) = (−1)sign(σ )sign(σ
′)(−1)sign(σ )+sign(σ

′)(−1)m|σ,σ
′| dim(Aσ,σ ′)

= (−1)p(|σ |+|σ
′|+|σ ||σ ′|)(−1)m(|σ |+|σ

′|+|σ ||σ ′|+|σ,σ ′|) dim(Aσ,σ ′).

7.12. Reminder. Recall that the centralizer of an element σ ∈ Sn is given by

Z(σ) ∼=
∏

k

SNk � Z/kZNk ,

where Ni is the number of cycles of length i in the cycle decomposition of σ (cf. 6.1).
This result can also be restated as: “discrete torsion can be undone by a choice of sign”.

We note that Z(σ) is generated by elements of the type τk and ck where τk permutes
two cycles of length k of σ and ck is a cycle of length k of σ .

Also ε is a group homomorphism in both variables, so that by 4.24 ε is fixed by its
value on elements of the above type.

7.12.1. Proposition. The discrete torsion is given by

ε(σ ′, σ ) =
{
(−1)mk|σ |(−1)m(k−1) if σ ′ = τk
(−1)m(k−1)(|σ |−1) if σ ′ = ck ,

where τk and ck are the generators of Z(σ) described above.

Proof.

det(τk)|Nσ = det(τk)det−1(τk|Tσ ) = (−1)mk(−1)m

and

det(ck)|Nσ = det(ck)det−1(ck|Tσ ) = (−1)m(k−1).

��
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7.12.2 Remark. What this calculation shows is that we are dealing with the mth power
of the non–trivial cocycle which in the casem = 1 has been calculated in [D2]. We again
see the phenomenon that the addition of variables (stabilization) changes the sign and
hence the discrete torsion — as is well known in singularity theory. Actually the whole
trace i.e. the product of ε and T is constantly equal to (−1)p(|σ ||σ ′|+|σ |+|σ ′|) dim(Aσ,σ ′)
which coincides with the general statement cf. (8.14).

7.12.3. Corollary. The discrete torsion condition holds.

7.13. Grading and shifts

7.13.1. Proposition

s+σ = d|σ |, s−σ = 0, (7.7)

sσ = 1

2
(s+σ + s−σ ) =

d

2
|σ |, (7.8)

where s+ and s− are the standard shifts for Jacobian Frobenius algebras as defined in
[K2, K3].

For the calculation of s+, we fix some σ ∈ Sn. Let c(σ ) be its cycle decomposition
and I (σ ) := {I1, . . . Ik} be its index decomposition. Then the shift s+σ can be read off
from the definition and the identification

Aσ �
|c(σ )|⊗

i=1

AIi � An−|σ |

with the degree of A⊗l being dl, we obtain

s+σ = nd − (n− |σ |)d = d|σ |.
The shift s−σ is again calculated via the natural representation ρ : Sn→ GL(n, k).
Recall (cf. [K3])

s−g := 1

2πi
Tr(log(g))− Tr(log(g−1)) := 1

2πi
(
∑

i

λi(g)−
∑

i

λi(g
−1))

=
∑

i:λi �=0

2(
1

2πi
λi(g)− 1).

For a cycle c of length k, we have the eigenvalues ζ ik , i = 0, . . . k − 1, where ζk is
the kth root of unity exp(2πi 1

k
). So we get the shift

s−c = 2[
k−1∑

j=1

(
j

k
− 1

2
)] = k(k − 1)

k
− (k − 1) = 0.

For an arbitrary σ , we regard its cycle decomposition and obtain the result.

7.14. Theorem. Given a Jacobian Frobenius algebra A up to a twist by a discrete tor-
sion α ∈ Z2(Sn, k) and supertwist� ∈ Hom(Sn,Z/2Z) there is a unique Sn Frobenius
algebra structure on A⊗n.

Proof. The uniqueness follows from §6. The existence result is deferred to §8 which
can be carried over verbatim. ��
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8. Second Quantized Frobenius Algebras

Given a Frobenius algebra A with multiplication µ : A ⊗ A → A, we can regard its
tensor powers T nA := A⊗n. These are again Frobenius algebras with the natural tensor
multiplication µ⊗n ∈ A⊗3n = (A⊗n)⊗3, tensor metric η⊗n and unit 1⊗n.

We can also form the symmetric powers SnA of A. The metric, multiplication and
unit all descend to make SnA into a Frobenius algebra, but in terms of general theory
[K] we should not regard this object alone, but rather look at the corresponding orbifold
quotient T nA/Sn.

8.1. Assumption. We will assume from now on that A is irreducible and the degree of
A is d.

8.2. Notation. We keep the notation of the previous paragraphs: l(σ ) is the number of
cycles in the cycle decomposition of σ and |σ | = n − l(σ ) is the minimal number of
transpositions.

8.2.1. Lemma. Let ρ be the permutation representation of Sn on A⊗n permuting the
tensor factors. Then the following equations hold:

Tr(ρ(σ )) = dim(A)l(σ ), (8.1)

det(ρ(σ )) = (−1)|σ |(
dim(A)

2 )

{
1 dim(A) ≡ 0 or 1(4)
(−1)|σ | dim(A) ≡ 2 or 3(4)

. (8.2)

Proof. For the first statement we use the fact that entries in the standard tensor basis of
the matrix of ρ(σ) are just 0 or 1. A diagonal entry is 1 if all of the basis elements whose
index is in the same subset of n̄ defined by the partition c(σ ) are equal. The number of
such elements is precisely dim(A)l(σ ).

For the second statement we notice that

det(ρ(σ )) = det(ρ(τ ))|σ |,

where τ is any transposition. For τ = (12) we decompose A⊗ A =⊕dimA
i=1 ei ⊗ ei ⊕

(
⊕

i,j∈n̄,i �=j ei⊗ej ) for some basis ei ofA. Using this decomposition we find that indeed

det(ρ(σ )) = (−1)|σ |(
dim(A)

2 ). For the last statement notice that

1

2
dim(A)(dim(A)− 1) ≡

{
0(2) if dim(A) ≡ 0 or 1(4)
1(2) if dim(A) ≡ 2 or 3(4)

.

��

8.3. Super-grading. As is well known there are only two characters for Sn: the trivial
and the determinant. We will accordingly define the parity with values in Z/2Z,

σ̃ ≡
{

0 (2) if we choose the trivial character
|σ | (2) if we choose the non-trivial character

. (8.3)
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To unify the notation, we set the parity index p = 0 in the first case, which we call even,
and p = 1 in the second case, which we call odd.

In both cases

σ̃ = (−1)p|σ |. (8.4)

8.4. Intersection algebra structures. For σ1, . . . , σm ∈ Sn we define the following
Frobenius algebras:

Aσ := (Al(σ ), η⊗l(σ ), 1⊗l(σ )), (8.5)

Aσ1,...,σm := (A⊗|〈σ1,...,σm〉\n̄|, η⊗|〈σ1,...,σm〉\n̄|, 1⊗|〈σ1,...,σm〉\n̄|). (8.6)

Notice that the multiplication µ gives rise to a series of maps by contractions. More
precisely given a collection of subsets of n̄ we can contract the tensor components of
A⊗n belonging to the subsets by multiplication. Given a permutation we can look at its
cycle decomposition which yields a decomposition of n̄ into subsets. We define µ(σ)
to be the above contraction. Notice that due to the associativity of the multiplication the
order in which the contractions are performed is irrelevant.

These contractions have several sections. The simplest one being the one mapping
the product to the first contracted component of each of the disjoint contractions. We
denote this map by j or in the case of contractions given by I (σ ) for some σ ∈ Sn by
j (σ ).

E.g. µ((12)(34))(a⊗b⊗ c⊗d) = ab⊗ cd and j ((13)(24))(ab⊗ cd) = ab⊗ cd⊗
1⊗ 1.

Thus we define the following maps:

rσ : Ae → Aσ ; rσ := µ(σ), (8.7)

iσ : Aσ → Ae ; iσ := j (σ ). (8.8)

Moreover the same logic applies to the spaces Aσ1,...,σm and we similarly define
rσ1,...,σm, iσ1,...,σm , where the indices are symmetric and maps

r
σ1,...,σm−1
σ1,...,σm : Aσ1,...,σm−1 → Aσ1,...,σm, i

σ1,...,σm−1
σ1,...,σm : Aσ1,...,σm → Aσ1,...,σm−1 , (8.9)

where the again the indices are symmetric.
We also notice that Aσ = Aσ−1 and Aσ,σ = Aσ .

8.5. Remark. The sections iσ also satisfy the condition

iσ (abσ ) = π(a)iσ (bσ ). (8.10)

8.6. Proposition. The maps rσ make Aσ , ησ into a special Sn reconstruction data. A
choice of parity σ̃ fixes the character to be:

χσ = (−1)p|σ |. (8.11)

Furthermore the collection of maps rσ1,...,σm−1
σ1,...,σm turns the collection of Aσ1,...,σm into

special intersection Sn reconstruction data.
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Proof. It is clear that all the Aσ are cyclic Ae modules and it is clear that Aσ = Aσ−1 .
Also the ησ remain unscaled since (−1)p|σ |χσ ≡ 1.
What remains to be shown is that the character is indeed given by χσ = (−1)p|σ |

and that the trace axiom holds.
This is a nice exercise. We are in the graded case and moreover the identity is up to

scalars the only element with degree zero — unless (dimA = 1) and we are in the case
of pt/Sn which was considered in 5.3.6. So if c ∈ A[σ,σ ′] : c �= λ1e then the trace axiom
is satisfied automatically.

Therefore we only need to consider the case c = 1 ∈ A[σ,σ ′] with [σ, σ ′] = e. In
this case, we see that σ ′ acts on Aσ � A⊗l(σ ) as a permutation. Indeed the normalizer
of σ is the semi–direct product of permutations of the cycles and cyclic groups whose
induced action on Aσ is given by permutation and identity respectively.

We claim the trace has the value

Trϕσ |Aσ ′ = dim(Aσ,σ ′). (8.12)

This is seen as follows. Looking at the permutation action on the factors of Aσ , we
see that the trace has entries 0 and 1 in any fixed basis of Aσ induced by a fixed choice
of basis of A. The value 1 appears if the pure tensor element has exactly the same entry
in all tensor components labelled by elements which are in the same cycle of σ (acting
on Aσ ). But these are precisely the elements that span Aσ,σ ′ . To be more precise there
is a canonical isomorphism of these elements with Aσ,σ ′ given by tensors of iterated
diagonal maps � : A→ A⊗ A,�(a) = a ⊗ a.

Thus the trace axiom can be rewritten as:

χσϕσ,σ ′(−1)p|σ | = χ−1
σ ′ ϕσ ′,σ (−1)p|σ

′|. (8.13)

In particular if σ ′ = e
(−1)p|σ | dim(Aσ ) = χσTr(ρ(σ )|A⊗n)

so that

χ(σ) = (−1)p|σ |.

Combining the above we find that:

χσSTr(φσ |Aσ ′ ) = (−1)p(|σ ||σ
′|+|σ |+|σ ′|) dim(Aσ,σ ′) (8.14)

which is an expression completely symmetric in σ, σ ′ and invariant under a change
σ �→ σ−1.

For the last statement we only need to notice that consecutive contractions yield
commutative diagrams which are co–Cartesian. The structural isomorphisms being clear
since they can all be given by the identity morphism — there is no rescaling. ��
8.7. Proposition (Algebraic Discrete Torsion). Fix the sign ≡ 1 and signσ ≡ 1

and set (−1)σ̃
σ ′ = detV σ ′(σ ) = (−1)codimV

σ ′ (Vσ,σ ′ ), where detV σ ′(σ ) is the determi-
nant of the induced action of σ on the fixed point set of σ ′. Furthermore fix χσ

′
σ by

(−1)p(codimV
σ ′ (Vσ,σ ′ )). Then sign and the signσ are compatible and

ε(σ, σ ′) = (−1)p(|σ ||σ
′|)(−1)p|σ |(−1)p(codimV

σ ′ (Vσ,σ ′ )), (8.15)
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or in the notation of 7.12

ε(σ ′, σ ) =
{
(−1)p(k|σ |+k+1) if σ ′ = τk
(−1)p((k−1)|σ |+(k−1)) if σ ′ = ck .

Proof. First:

ν(σ, σ ′) ≡ codimVσ ′ (Vσ,σ ′)+ codim(Vσ )(2)

which satisfies 4.15, since

codimVσ (Vσ,σ ′)+ codim(Vσ ) = codim(Vσ,σ ′) = codimVσ ′ (Vσ,σ ′)+ codim(Vσ ′).

Now just by definition

ε(σ, σ ′) = (−1)p(|σ ||σ
′|)(−1)p|σ |(−1)p(codimV

σ ′ (Vσ,σ ′ ))

and lastly: codimVσ (Vτk,σ ) = 1 and codimVσ (Vck,σ ) = 0. ��

8.7.1. Remark. This algebraic discrete torsion indeed reproduces the effect that turning
it on yields the super–structure on the twisted sectors as postulated in [D2]. The com-
putation of the discrete torsion in [D2] was however done for pt/Sn with the choice
of cocycle γ given by a Schur multiplier, see 2.3.2. The current calculation explains
how the non–trivial Schur–multiplier used to twist by a discrete torsion behaves like a
supertwist. In terms of 6.10.3 one can see this as the fact that in both twists –super and
non–trivial discrete torsion– q = 1.

8.8. Proposition. After possibly twisting by discrete torsion any cocycle γ compat-
ible with the special reconstruction data is normalizable and hence unique after the
normalization.

Proof. Verbatim the proof of 7.10. ��
So from now on we can and will deal with normalized cocycles.

8.8.1. Lemma . For any minimal decomposition T of σ ′ into transpositions σ ′ =
τ1 . . . τ|σ ′|

řσ (1σ ) =
∏

i

γτi ,τi . (8.16)

Proof. Notice that Iσ =
⊕
Iτi and thus Iσ

∏
i∈I γτi = 0. Furthermore deg(

∏
i∈I γτi ) =

d|σ | = s+(σ ) = 2dσ = deg(γσ,σ−1) and dim(Iδ)dl(σ ) = dim(A⊗n) − 1, where the
superscript denotes the part of homogeneous degree. This follows from the equalities:
dim((Iσ )dl(σ )) = dim(Ker(rdl(σ )σ )) = dim(A⊗n)− dim(Im(rdl(σ )σ )) = dim(A⊗n)− 1.
We split (A⊗n)dl(σ ) = (Iσ )dl(σ ) ⊕ L, where L is the line generated by iσ (ρσ ).

We have to show that

η(
∏

i∈I
γτ , b) = ησ (1σ rσ (b)).

This is certainly true if deg(b) �= dn − d|σ | = dl(σ ) since then both sides vanish.
This is also the case if b ∈ Iσ . It remains to show that η(

∏
i∈I γτi ,τi , iσ (ρσ )) = 1.
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We do this by induction on |σ |, the statement being clear for |σ | = 1. Let τ|σ | = (ij)
and set σ ′ = στ|σ | then

iσ ′(ρσ ′) = γτ|σ |,τ|σ | iσ (ρσ )

which follows from the equation ρ ⊗ 1γ(12),(12) = ρ ⊗ ρ and its pull back. So

1 = η(
|σ |−1∏

i=1

γτi ,τi , iσ ′(ρσ ′)) = η(
|σ |−1∏

i=1

γτi ,τi , γτ|σ |,τ|σ | iσ ρσ ).

Another way to see this is to use the isomorphism Aσ � Aτ1,...,τ|σ | and the iterated
restriction maps for the pull-back, noticing that indeed the γτ,τ pull back onto each other
in the various space. ��

Using the same rationale we obtain:

8.9. Corollary.

řσσ
′

σ,σ ′(1σ,σ ′) = πσσ ′(
∏

i∈Iσ,σ ′
γτi ,τi ), (8.17)

where Iσ,σ ′ = {i ∈ I : |〈σσ ′, τ 〉\n̄| < |〈σσ ′〉\n̄|} or in other words the γτi ,τi that do
not get contracted.

8.10. Grading and shifts. The meta–structure for symmetric powers is given by treating
An as the linear structure, just like the variables in the Jacobian case. In particular we
fix the following degrees and shifts

deg(1σ ) = d|σ |,

s+σ = d|c(σ )|, s−σ = 0,

sσ = 1

2
(s+σ + s−σ ) =

d

2
|c(σ )|.

Notice that as always there is no ambiguity for s+, not even in the choice of dimen-
sion of Aσ , but the choice for s− is a real one which is however the only choice which
extends the natural grading if A is Jacobian.

This view coincides with the realization of A⊗n as the nth tensor product of the
extension of coefficients to A of the Jacobian algebras for f = z2.

8.11. Notation. The geometry of Sn–Frobenius algebras is given by the subspace arrange-
ment of fixed point sets Vσ = Fix(σ ) ⊂ kn of the various σ ∈ Sn acting on kn as well
as their intersections Vσ,σ ′ = Vσ ∩ Vσ ′ , etc., which were introduced in §6.
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Recall that |σ | = codimV (Vσ ). We also define |σ, σ ′| := codim(Vσ ∩ Vσ ′) and set

dσ,σ ′ := 1

d
deg(γσ,σ ′) = 1

2
(|σ | + |σ ′| − |σσ ′|),

nσ,σ ′ := 1

d
deg(řσσ

′
σ,σ ′(1σ,σ ′)) = codimVσσ ′ (Vσ,σ ′)

= |σ, σ ′| − |σσ ′|,
g̃σ,σ ′ := 1

d
deg(γ̃σ,σ ′) = dσ,σ ′ − nσ,σ ′

= 1

2
(|σ | + |σ ′| + |σσ ′| − 2|σ, σ ′|). (8.18)

Now given two elements σ, σ ′ ∈ Sn their representation on kn naturally splits kn into
a direct sum, which is given by the smallest common block decomposition of both σ
and σ ′. More precisely:

Fix the standard basis ei of kn. For a subset B ∈ n̄ we set VB =
⊕

i∈B kei ⊂ kn.
Given σ, σ ′ we decompose

V := kn =
⊕

B∈〈σ,σ ′〉\n̄
VB,

and decompose

Vσ =
⊕

B∈〈σ,σ ′〉\n̄
Vσ ;B; Vσ,σ =

⊕

B∈〈σ,σ ′〉\n̄
Vσ,σ ;B, (8.19)

where Vσ ;B := Vσ ∩ VB;Vσ,σ ′;B := Vσ,σ ′ ∩ VB and we used the notation of 6.1.
Notice that dim(Vσ,σ ′;B) = 1 and we can decompose γ̃g,h =

⊗
B γ̃g,h;B .

Using the notation:

|σ |B := codimVB(Vσ ;B), |σ, σ ′|B := codimVB(Vσ,σ ;B),

set

dσ,σ ′;B := 1

2
(|σ |B + |σ ′|B − |σ, σ ′|B),

nσ,σ ′;B := |σ, σ ′|B − |σσ ′|B = codimVσσ ′;B(Vσ,σ ′;B),

g̃σ,σ ′;B := dσ,σ ′;B − nσ,σ ′;B = 1

d
deg(γ̃σ,σ ′;B)

= 1

2
(|σ |B + |σ ′|B + |σσ ′|B − 2|σ, σ ′|B). (8.20)

Notice that all the above functions take values in N.
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8.11.1. Triple intersections. For any number of elements σi we can analogously define
the above quantities. We will do this for the triple intersections, since we need these to
show associativity and although tedious we do this in order to fix the notation.

We regard the triple intersections Vσ,σ ′,σ ′′ = Vσ ∩ Vσ ′ ∩ Vσ ′′ .
Recall that |σ | = codimV (Vσ ). We also define |σ, σ ′, σ ′′| := codim(Vσ,σ ′,σ ′′) and

set

dσ,σ ′,σ ′′ := 1

d
deg(γσ,σ ′γσσ ′,σ ′′),

= 1

2
(|σ | + |σ ′| − |σσ ′| + |σσ ′| + |σ ′′| − |σσ ′σ ′′|)

= 1

2
(|σ | + |σ ′| + |σ ′′| − |σσ ′σ ′′|),

nσ,σ ′,σ ′′ := 1

d
deg(řσσ

′σ ′′
σ,σ ′,σ ′′(1σ,σ ′σ ′′)) = codimVσσ ′σ ′′ (Vσ,σ ′,σ ′′)

= |σ, σ ′, σ ′′| − |σσ ′σ ′′|
g̃σ,σ ′,σ ′ := 1

d
deg(γ̃σ,σ ′,σ ′′) = dσ,σ ′,σ ′′ − nσ,σ ′,σ ′′

= 1

2
(|σ | + |σ ′| + |σ ′′| + |σσ ′σ ′′| − 2|σ, σ ′, σ ′′|). (8.21)

where γ̃σ,σ ′,σ ′′ was defined in (4.7).
As above given three elements σ, σ ′, σ ′′ ∈ Sn their representation on kn naturally

splits kn into a direct sum, which is given by the smallest common block decomposition
of σ, σ ′ and σ ′. More precisely:

Again, fix the standard basis ei of kn. For a subsetB ∈ n̄we setVB =
⊕

i∈B kei ⊂ kn.
Given σ, σ ′ we decompose

V := kn =
⊕

B∈〈σ,σ ′,σ ′′〉\n̄
VB,

and decompose

Vσ =
⊕

B∈〈σ,σ ′,σ ′′〉\n̄
Vσ ;B; Vσ,σ ′ =

⊕

B∈〈σ,σ ′,σ ′′〉\n̄
Vσ,σ ′;B,

Vσ,σ ′,σ ′′ =
⊕

B∈〈σ,σ ′,σ ′′〉\n̄
Vσ,σ ′,σ ′′;B, (8.22)

where Vσ ;B := Vσ ∩ VB;Vσ,σ ′;B := Vσ,σ ′ ∩ VBVσ,σ ′,σ ′′;B := Vσ,σ ′,σ ′′ ∩ VB .
Notice that dim(Vσ,σ ′,σ ′′;B) = 1.
We will also use the notation:

|σ |B := codimVB(Vσ ;B), |σ, σ ′|B := codimVB(Vσ,σ ;B)

and

|σ, σ ′, σ ′′|B := codimVB(Vσ,σ,σ ′′;B).
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8.12. The cocycle in terms of γτ,τ s. Let γσ,σ ′ be given by the following:
For transversal σ, σ ′ we set γσ,σ ′ = 1.
If σ and σ ′ are not transversal using Theorem 6.13 we set

rσ,σ ′(γσ,σ ′) = rσσ ′(
∏

i∈I
γτi ,τi ) =

∏

i∈I ′
πσσ ′(γτi ,τi )

∏

j∈I ′′
rσσ ′(γτj ,τj )

=: γ̄σ,σ ′γ
⊥
σ,σ ′ . (8.23)

where

I ′ = {i ∈ I : πσ,σ ′(γτi ,τi ) = πσσ ′(γτi ,τi )},
I ′′ = {i ∈ I : πσ,σ ′(γτi ,τi ) �= πσσ ′(γτi ,τi )}, (8.24)

and γ̄σ,σ ′ ∈ ighg,h(Ag,h).
8.13. Proposition. The equations of 8.12 are well defined and yield a group cocycle
compatible with the reconstruction data. Furthermore

γ⊥σ,σ ′ = rσσ
′

σ,σ ′(1σ,σ ′), (8.25)

γ̄σ,σ ′ = iσσ ′σ,σ ′(
⊗

B∈〈σ,σ ′〉\n̄
eg(σ,σ

′,B)), (8.26)

γσ,σ ′ = rσσ ′σ,σ ′(
⊗

∈〈σ,σ ′〉\n̄
eg(σ,σ

′,B)) = řσ,σ ′
σ,σ ′ (γ̃g,h). (8.27)

Proof. We need to check that indeed Eq. (8.23) is well defined. From Lemma 8.8.1 and
Corollary 8.9 we know that (8.25) is true and that the product over I ′′ is well defined.

For (8.26) we notice that if a γτi ,τi gets contracted, then

πσσ ′(γτi ,τi ) = 1⊗ · · · ⊗ 1⊗ e ⊗ 1⊗ · · · ⊗ 1, (8.28)

where e = µµ̌(1) is the Euler class which sits in the image of the kth factor which is the
same as the image of the lth factor under the map πσ,σ ′ if τi = (kl).

The well definedness then follows by decomposition into Vσσ ′,B from the statement
for one–dimensional Vσ,σ ′ where it is clear from grading.

Finally (8.27) follows from (8.25) and (8.26) via Proposition 4.6.
For the associativity we use the general theory of intersection algebras 4.9. Here we

notice that indeed the number of γτi ,τi : i ∈ I ′′ contracted in each component B by

r
σ,σ ′
σσ ′,σ ′′ is given by

nσ,σ ′;B − |σ, σ ′, σ ′′|B + |σσ ′, σ ′′|B
= |σ, σ ′|B − |σσ ′|B − |σ, σ ′, σ ′′|B + |σσ ′, σ ′′|B := q(σ, σ ′, σ ′′;B) (8.29)

so that by commutativity of (4.6)

rσσ
′

σσ ′,σ ′′(γσ,σ ′) = iσσ
′,σ ′′

σ,σ ′,σ ′′(
⊗

B

eq(σ,σ
′,σ ′′;B))řσσ

′,σ ′′
σ,σ ′,σ ′′(1σ,σ ′,σ ′′)
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and thus the γ⊥ match also by commutativity. What remains to be calculated is the
power of e in each of the components B. This power is given by

1

2
(|σσ ′|B + |σ ′′|B + |σσ ′σ ′′|B − 2|σσ ′, σ ′′|B)

+ 1

2
(|σ |B + |σ ′|B + |σσ ′|B − 2|σ, σ ′|B)

+ (|σ, σ ′|B − |σσ ′|B − |σ, σ ′, σ ′′|B + |σσ ′, σ ′′|B)
= 1

2
(|σ |B + |σ ′|B + |σ ′′|B + |σσ ′σ ′′|B − 2|σ, σ ′, σ ′′|B)

= g̃σ,σ ′,σ ′′;B.
��

Putting together Propositions 8.8 and 8.13 of this section we obtain:

8.14. Theorem. There exists a unique normalized cocycle compatible with the above
special reconstruction data. There is only one compatible cocycle in the all even case.

In the super–case there are two choices of parity for the twisted sectors: all even or
the parity of p|σ | ≡ |σ |(2). Fixing the parity fixes the non–abelian cocycle.

In other words, there is a unique multiplicative Sn Frobenius algebra structure on
the tensor powers of A and there are two G–actions labelled by parity.

8.15. Definition. We call the symmetric power of a Frobenius algebra the Sn–twisted
Frobenius algebra obtained from T nA, (rσ ) by using the unique normalized cocycle with
all even sectors and the super–symmetric power of a Frobenius algebra the Sn–twisted
Frobenius algebra obtained from T nA, (rσ ) by using the unique normalized cocycle
with the parity given by Aσ ≡ |σ | (2).
8.16. Definition. We define the second quantization of a Frobenius algebra A to be
the sum of all symmetric powers ofA and the second super–symmetric quantization of
a Frobenius algebra A to be the sum of all super–symmetric powers of A. We consider
this sum either as formal or as a direct sum, where we need to keep in mind that the
degrees of the summands are not equal.

8.17. Comparison with the Lehn and Sorger construction. In [LS] Lehn and Sorger con-
structed a non–commutative multiplicative structure in the special setting of symmetric
powers. By the uniqueness result of the last section we know —since their cocycles are
also normalized— that their construction has to agree with ours. In this section we make
this explicit. Our general considerations of intersection algebras explain the appearance
of their cocycles as the product over the Euler class to the graph defect times contribution
stemming from the dual of the contractions.

The equality of the two multiplications infers that in the particular case of global
orbifold cohomology for symmetric products our results coincide with the calculations
of [FG]. In fact in [FG] all the axioms for G–Frobenius algebras except for the trace
axiom are verified for their construction. The trace axiom was verified in [JKK], where
global orbifold cohomology was considered from the more general point of view of
moduli spaces and maps which encompass its quantum deformation as well.

From the point of view of orbifold cohomology [CR], the Sn invariants of the Sn
Frobenius algebra for the symmetric product yield the Frobenius algebra for orbifold
cohomology. This then coincides with the calculations of [FG, U].
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In the special case for the nth symmetric power of a K3 surface S, after twisting
with the discrete torsion α ∈ Z2(Sn, k∗) defined by α(τ, τ ) = −1 one obtains the
cohomology ring of the Hilbert scheme Hilb[n](S).

Lastly, there is a family of discrete torsions α(τ, τ ) = λ, λ ∈ k∗ which gives rise
to the family of multiplications found in [QW] by twisting. In the complex case, the
existence of this family also shows the triviality of the cocycles [α] ∈ H 2(Sn,C∗).

A more detailed discussion of these remarks can be found in [K5].

8.17.1. Definition (The graph defect). ForB ∈ 〈σ, σ ′〉\n̄ define the graph defect as [LS]

g(σ, σ ′;B) := 1

2
(|B| + 2− |〈σ 〉\B| − |〈σ ′〉\B| − |〈σ, σ ′〉\B|). (8.30)

The equality of the two multiplications follows from:

8.17.2. Proposition

g(σ, σ ′;B) = g̃σ,σ ′;B = 1

2
(|σ |B + |σ ′|B + |σσ ′|B − 2|σ ′, σ ′|B) = dσ,σ ′;B − nσ,σ ′;B

Proof. By the above:

g(σ, σ ′;B) = 1

2
(dim(VB)+ 2 dimVB (Vσ,σ ′;B)− dim(Vσ,B)

− dim(Vσ ′;B)− dim(Vσσ ′;B))

= 1

2
(dim(VB)− dim(Vσ,B)+ dim(VB)− dim(Vσ ′;B)

+ dim(VB)− dim(Vσσ ′;B)− (2 dim(VB)− dimVB (Vσ,σ ′;B)))

= 1

2
(|σ |B + |σ ′|B + |σσ ′|B − 2|σ, σ ′|B).

��

8.17.3. Remark. The above equation makes it obvious that g ∈ N, since dσ,σ ′;B,
nσ,σ ′;B ∈ N and both |σ | + |σ ′| ≥ |σ, σ ′| and |σσ ′| ≥ |σ, σ ′|. The first inequality
follows from Vσ,σ ′ = Vσ ∩ Vσ ′ and the second one from Vσ,σ ′ ⊂ Vσσ ′ .

8.18. Remark. The change of sign needed to recover the cohomology algebra of the
Hilbert scheme of a K3 surface can also be obtained by a twisting with a discrete tor-
sion. To be precise, by the normalized discrete torsion class α defined by α(τ, τ ) = −1
(τ ∈ Sn, |τ | = 1), for a more detailed discussion, see [K5].

Appendix A

A.1. Theorem. Any normalizable non–abelian Sn cocycle ϕ with values in k∗ can be
normalized after a rescaling and then one of the following holds: ∀σ, τ, |τ | = 1 :

ϕσ,τ = 1.

We call this case even and set the parity p = 0. Or ∀σ, τ |τ | = 1

ϕσ,τ = (−1)|σ |.
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We call this case odd and set the parity p = 1. In unified notation:

ϕσ,τ = (−1)p|σ | (A.1)

with p ∈ {0, 1}.
Proof. By assumption

∀τ, τ ′, |τ | = |τ ′| = 1, [τ, τ ′] = e : ϕτ,τ ′ = (−1)p. (A.2)

We will show by induction that we can scale (cf. 1.8) such that

∀τ, τ ′, |τ | = |τ ′| = 1, [τ, τ ′] �= e : ϕτ,τ ′ = (−1)p. (A.3)

Combining (A.2) and (A.3):

∀τ, τ ′; |τ | = |τ ′| = 1 : ϕτ,τ ′ = (−1)p. (A.4)

Induction for (A.4). Assume that (A.4) holds for τ, τ ′ ∈ Sn ⊂ Sn+1.
Now scale with

λ(ij) := (−1)pϕ(n−1 n+1),(n n+1) for i, j ≤ n,
λ(i n+1) := (−1)pϕ(in),(n n+1) for i < n,

λ(n n+1),(n n+1) := 1. (A.5)

Notice this implies that

ϕ̃(in),(n n+1) = λ(n n+1)

λ(i n+1)
ϕ(in),(n n+1)

= (−1)p
1

ϕ(in),(n n+1)
ϕ(in),(n n+1) = (−1)p, (A.6)

ϕ̃(in),(i n+1) = ϕ̃−1
(in),(n n+1) = (−1)p, (A.7)

ϕ̃(ij),(kl) = ϕ(ij),(kl) = (−1)p if i, j, k, l ≤ n, (A.8)

where the last statement follows by induction.
We need to show

ϕ̃τ,τ ′ = (−1)p. (A.9)

For n = 2 the statement is true.
So we assume n ≥ 2 and by assumption:

∀τ, τ ′; |τ | = |τ ′| = 1; [τ, τ ′] = e : ϕτ,τ ′ = (−1)p. (A.10)

Thus by induction (A.6)–(A.8) and (A.10), we need to check the cases

i) τ = (ij), τ ′ = (j n+ 1); i, j ∈ {1, . . . , n− 1}; i �= j ,
ii) τ = (i n+ 1), τ ′ = (j n+ 1); i, j ∈ {1, . . . , n}, i �= j ,
iii) τ = (in+ 1), τ ′ = (ij); i, j ∈ {1, . . . , n}, i �= j .
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Notice that ϕ̃(i n+1),(ij) = ϕ̃−1
(i n+1),(j n+1) and thus ii) implies iii). Else iii) follows by

(A.6) and thus it suffices to show i) and ii).
For i)

ϕ̃(ij),(j n+1) = λ(j n+1)

λ(i n+1)
ϕ(ij),(j n+1) = ϕ(jn)(nn+1)

ϕ(in)(nn+1)
ϕ(ij),(j n+1)

= ϕ(jn),(n n+1)ϕ(in),(i n+1)ϕ(ij),(j n+1) = ϕ(in)(ij)(jn),(n n+1)

= ϕ(ij),(n n+1) = (−1)p

by (A.10).
For ii) If j = n then

ϕ̃(i n+1),(n n+1) = λ(n n+1)

λ(ij)
ϕ(i n+1),(n n+1) = (−1)p

ϕ(n−1 n+1)(n n+1)
ϕ(i n+1),(n n+1)

so if i = n− 1 ϕ̃(n−1 n+1),(n n+1) = (−1)p.
If i �= n− 1 then

(−1)p
ϕ(i n+1),(n n+1)

ϕ(n−1 n+1)(n n+1)
= (−1)pϕ(n−1 n+1),(n−1 n)ϕ(i n+1),(n n+1)

= (−1)pϕ(i n+1)(n−1 n+1),(n−1 n)

= (−1)pϕ(n−1 i)(i n+1),(n−1 n)

= (−1)pϕ(n−1 i),(n−1 n)ϕ(i n+1),(n−1 n) = (−1)p.

If j �= n

ϕ̃(i n+1),(j n+1) = λ(j n+1)

λ(ij)
ϕ(i n+1),(j n+1) = ϕ(jn)(n n+1)

ϕ(n−1 n+1)(n n+1)
ϕ(i n+1),(j n+1)

= ϕ(jn),(n n+1)ϕ(n−1 n+1),(n−1 n)ϕ(i n+1),(j n+1)

= ϕ(i n+1)(jn)(n−1 n+1),(n−1 n).

Now first assume {i, j} ∩ {n− 1, n} = ∅ then

ϕ(i n+1)(jn)(n−1 n+1),(n−1 n) = ϕ(n+1 n−1)(n−1 i)(jn),(n−1 n)

= ϕ(jn),(n−1n)ϕ(n−1 i),(n−1 j)ϕ(n−1 n+1),(ij) = (−1)p.

Case 2a) i = n, j = n− 1 then

ϕ(i n+1)(jn)(n−1 n+1),(n−1 n) = ϕ(n n+1)(n−1n)(n−1 n+1),(n−1 n)

= ϕ(n−1 n),(n−1 n) = (−1)p.

Case 2b) i = n, j �= n− 1

ϕ(i n+1)(jn)(n−1 n+1),(n−1 n) = ϕ(n n+1)(jn)(n−1 n+1),(n−1 n)

= ϕ(n−1 n)(jn)(j n+1),(n−1 n)

= ϕ(n−1 n),(j n−1)ϕ(jn),(n−1 n)ϕ(j n+1),(n−1 n) = (−1)p.

Case 3) i = n− 1, j �= n
ϕ(i n+1)(jn)(n−1 n+1),(n−1 n) = ϕ(n−1 n+1)(jn)(n−1 n+1),(n−1 n) = ϕ(jn),(n−1 n) = (−1)p.
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Case 4) j = n− 1, i �= n
ϕ(i n+1)(n−1 n)(n−1 n+1),(n−1 n) = ϕ(n n−1)(n−1 i)(i n+1)),(n−1 n)

= ϕ(n n−1)(in)ϕ(n−1 i),(n−1 n)ϕ(i n+1)),(n−1 n) = (−1)p.

Finally if σ =∏|σ |
i=1 τi

ϕσ,τ =
|σ |∏

i=1

ϕτi ,τ̃i = (−1)p|σ |

with τ̃i = (
∏|σ |
j=i+1 τi)τ (

∏|σ |
j=i+1 τi)

−1, |τ̃i | = |τ | = 1 which proves the theorem. ��

Appendix B

B.1. A detailed proof of Theorem 6.13. We will assume by induction on r that

γσ ′,τ ′ = 1 for |τ ′| = 1, |σ ′| ≤ r − 1 and λσ = 1 for |σ | ≤ r. (B.1)

Fix σ with |σ | = r + 1. We need to show that indeed for two decompositions

σ = σ ′τ ′ = σ ′′τ ′′ (B.2)

indeed

γσ ′,τ ′ = γσ ′′,τ ′′ . (B.3)

We set σ ′′′ = στ ′τ ′′ and τ ′′′ = τ ′τ ′′τ ′. It follows

σ ′ = σ ′′′τ ′′, σ ′′ = σ ′′′τ ′′′, τ ′′′ �= τ ′′.
If |σ ′′′| = r − 1, we find

γσ ′,τ ′ = γσ ′′′τ ′′,τ ′γσ ′′′,τ ′′ = γσ ′′′,τ ′′τ ′γτ ′′,τ ′
= γσ ′′′,τ ′′′τ ′′γτ ′′′,τ ′′ = γσ ′′′τ ′′′,τ ′′γσ ′′′,τ ′′′ = γσ ′′,τ ′′ .

If |σ ′′′| = r+1 then if τ ′ = (ij), τ ′′ = (kl), i, j, k, l must all lie in the same cycle.
Without loss of generality and to avoid too many indices, we assume that this cycle c

is just given by c = (12 · · ·h) for someh ≤ r+2. First assume that {i, j}∩{k, l} = ∅. We
can then assume i < j , k < l and i < k. Then there are three possibilities: i < j < k < l,
i < k < l < j and i < k < j < l, where the first two have |σ ′′′| = r − 1.

So fix i < k < j < l. We see that we can decompose

σ ′ = σ̃ (ilh)(kj), σ ′′ = σ̃ (ikh)(j l)
with

σ̃ = σ(hljki) and |σ̃ | = r − 3.
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Now

γσ ′,τ ′ = γσ̃ (ilh)(kj),(ij) = γσ̃ (ilh)(kj),(ij)γσ̃ (ilh),(kj) = γσ̃ (ilh),(kj)(ij)γ(kj),(ij)
= γσ̃ (ilh),(ik)(kj)γ(ik),(kj) = γσ̃ (ilh)(ik),(kj)γσ̃ (ilh),(ik) = γσ̃ (iklh),(kj)
= γσ̃ (ikh)(kl),(kj)γσ̃ (ikh),(kl) = γσ̃ (ikh),(kl)(kj)γ(kl),(kj)
= γσ̃ (ikh),(j l)(kl)γ(j l),(kl) = γσ̃ (ikh)(j l),(kl)γσ̃ (ikh),(j l) = γσ̃ (ikh)(j l),(kl)
= γσ ′′,τ ′′

since |σ̃ (ilh)| = |σ̃ (ikh)| = r − 1.
If |{i, j} ∩ {k, l}| = 1 then we can assume that j = k and i < l which leaves us with

the cases: i < j < l,j < i < l and i < l < j ; where in the first two cases |σ ′′′| = r−1.
Now assume i < j < k. We can decompose

σ ′ = σ̃ (ilh), σ ′′ = σ̃ (ijh)
with

σ̃ = σ(hlj i) and |σ̃ | = h− 4.

And

γσ ′,τ ′ = γσ̃ (ilh),(ij) = γσ̃ (il)(lh),(ij)γσ̃ (il),(lh) = γσ̃ (il),(lh)(ij)γ(lh),(ij)
= γσ̃ (il),(ij)(lh)γ(ij),(lh) = γσ̃ (il)(ij),(lh)γσ̃ (il),(ij) = γσ̃ (ij l),(lh)
= γσ̃ (ij)(j l),(lh)γσ̃ (ij),(j l) = γσ̃ (ij),(j l)(lh)γ(j l),(lh)
= γσ̃ (ij),(jh)(j l)γ(jh),(j l) = γσ̃ (ij)(jh),(j l)γσ̃ (ij),(jh) = γσ̃ (ijh),(j l)
= γσ ′′,τ ′′ ,

since |σ̃ (il)| = |σ̃ (ij)| = r − 1.

Acknowledgements. I would like to thank the IHÉS for its kind hospitality. My visits in 2001 and 2002
mark the conceptual origin and the finishing phase of the paper. I also gratefully acknowledge the support
from the NSF. It is a pleasure to thank L. Borisov who sparked my interest in symmetric products,Y. Ruan
and A. Adem for discussions and the wonderful conference in Madison and B. Guralnick for discussions
on Schur multipliers and pointing out the reference [Ka].

References

[AS] Atiyah, M., Segal, G.: On equivariant Euler characteristics. J. Geom. Phys. 6, 671–677 (1989)
[AR] Adem, A., Ruan, Y.: Twisted Orbifold K-Theory. Commun. Math. Phys. 237, 533–556 (2003)
[BB] Batyrev, V., Borisov, L.: Mirror duality and string-theoretic Hodge numbers. Invent. Math.

126(1), 183–203 (1996)
[CR] Chen, W., Ruan, Y.: A New Cohomology Theory for Orbifold. Preprint, math.AG/0004129

and Orbifold Quantum Cohomology. Preprint, math.AG/0005198
[D1] Dijkgraaf, R.: Fields, strings, matrices and symmetric products. In: Moduli of curves and

abelian varieties, Aspects Math., E33, Braunschweig: Vieweg, 1999, pp. 151–199
[D2] Dijkgraaf, R.: Discrete Torsion and Symmetric Products. Preprint, hep-th/9912101
[DMVV] Dijkgraaf, R., Moore, G., Verlinde, E., Verlinde, H.: Elliptic Genera of Symmetric Products

and Second Quantized Strings. Commun. Math. Phys. 185, 197–209 (1997)
[FG] Fantechi, B., Goettsche, L.: Orbifold cohomology for global quotients. Duke Math. J. 117,

197–227 (2003)
[JKK] Jarvis, T., Kaufmann, R., Kimura, T.: Pointed admissible G-covers and G-cohomologic field

theories, Preprint MPI 2003-51, IHES M/03/22, math. AG/0302316



Second Quantized Frobenius Algebras 83

[K1] Kaufmann, R.: The tensor Product in the Theory of Frobenius manifolds. Int. J. Math. 10,
159–206 (1999)

[K2] Kaufmann, R.: Orbifolding Frobenius algebras. Talk at WAGP2000 conference at SISSA
Trieste, October 2000

[K3] Kaufmann, R.: Orbifolding Frobenius algebras. Internat. J. of Math. 14, 573–619 (2003)
[K4] Kaufmann, R.M.: The algebra of discrete torsion. Preprint, MPI 2002-112, math.AG/0208081,

p 23
[K5] Kaufmann, R.: Discrete torsion, symmetric products and the Hilbert scheme. Preprint,. 2002.

To appear In: Proceedings of the conference in honor ofYuri Ivanovich Manin’s 65th birthday.
[Ka] Karpilovsky, G.: The Schur multiplier. Oxford NewYork: Clarendon Press, Oxford University

Press, 1987
[LS] Lehn, M., Sorger, C.: The cup product of the Hilbert scheme for K3 surfaces. Invent. Math.

152, 305–329 (2003)
[QW] Qin, Z., Wang, W.: Hilbert schemes and symmetric products: a dictionary. In: Orbifolds in

Mathematics and Physics, Contemp. Math. (310). Providence, RI: Amer. Math. Soc., 2002,
pp. 233–257

[S] Satake, I.: The Gauss-Bonnet theorem forV -manifolds. J. Math. Soc. Japan 9, 464–492 (1957)
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