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ABSTRACT. We introduce the new algebraic structure replacing Frobenius al-
gebras when one is considering functors from objects with finite group actions 
to Frobenius algebras, such as cohomology, the local ring of an isolated singu-
larity, etc.. Our new structure called a G-twisted Frobenius algebra reflects 
the "stringy" geometry of orbifold theories or equivalently theories with fi-
nite gauge group. We introduce this structure algebraically and show how it 
is obtained from geometry and field theory by proving that it parameterizes 
functors from the suitably rigidified version of the cobordism category of one 
dimensional closed manifolds with G bundles to linear spaces. We further-
more introduce the notion of special G-twisted Frobenius algebras which are 
the right setting for studying e.g. quasi-homogeneous singularities with sym-
metries or symmetric products. We classify the possible extensions of a given 
linear data to G-Frobenius algebras in this setting in terms of cohomological 
data. 

Introduction 

We consider the "stringy" geometry and algebra of global orbifold theories. 
They arise when one is considering the "stringy" extension of a classical functor 
which takes values in Frobenius algebras -such as cohomology, local ring, K-theory, 
etc.- in the presence of a finite group action on the objects. In physics the names 
of orbifold theories or equivalently theories with a global finite gauge group are 
associated with this type of question [DHVW, DW,DVVV,IV,V]. A common aspect 
is a new linear structure given by augmenting the traditional one of a-invariants by 
twisted sectors. Here one usually obtains a sum over representatives of conjugacy 
classes of the group in question moded out by the action of the centralizer of these 
elements. The formula for equivariant K -theory [AS] or the orbifold cohomology of 
[CR] are an example of this. We note that the product in the former is not "stringy" 
since it does not mix the twisted sectors. The use of orbifold constructions is also 
the cornerstone of the original mirror construction [GP]. The orbifolds under study 
in that context, are so-called Landau-Ginzburg orbifold theories, which have so far 
not been studied mathematically. These correspond to the Frobenius manifolds 
coming from singularities and are studied in detail in the present paper under the 
names Special or more precisely Jacobian. Together with the theory of tensor 
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136 RALPHM. KAUFMANN 

product [K3] both operations used in [GP] to obtain mirror symmetry are now 
mathematical in the realm of Frobenius algebras. 

We take a novel approach to this procedure by breaking it into two steps: 1) 
adding the twisted sectors, one for each group element together with a group action 
of G and a group graded multiplication. 2) taking the G-invariants which should 
again yield a Frobenius algebra. 

The novelty of our approach is that we regard a non-commutative structure 
before taking the group quotient. The axiomatics of this structure called G-twisted 
Frobenius algebras were first presented in [K1]. The present text adds the geometric 
descriptions in terms of cobordisms of G-bundles and functors to linear spaces to 
our general theory. 

This geometric description should be viewed as an extension of the result of 
Atiyah, Dubrovin, Dijkgraaf and Segal linking the cobordism description of topo-
logical field theory to the algebraic structure of Frobenius algebras. 

In order to make the exposition more tractable we shortened the proofs to 
sketches, the full theory and detailed proofs can be found in [K2], which was made 
available to the referee. 

We furthermore introduce a large class of examples -the so-called special 
G-Frobenius algebras- that we consider in detail. For these algebras we prove 
a Reconstruction Theorem which describes the possible extensions of underlying 
direct sum data to G-twisted Frobenius algebra in terms of cohomological data. 

This is part of the general setup of (re-)construction of "stringy" geometry. 
The paradigm for this is the situation of a geometric object with a group action 
where one can obtain a collection of Frobenius algebras, one for each group element, 
by considering the Frobenius algebras associated to each fixed point set. This de-
composition carries a classical product which is just the direct sum of the products. 
One example is again equivariant or orbifold K-theory or Bredon cohomology. In 
the "stringy" context, however, this multiplication is not the right one, since it 
should respect the group grading. 

The construction of twisted sectors is not merely an auxiliary artifact, but is 
essential. This is clearly visible in the case of the Frobenius algebra associated to the 
singularity of type An together with a Z I ( n + 1) Z action and the singularity of type 
A2n_3 with ZI2Z action, which are worked out in detail in the last paragraph. The 
particular example of type An together with a Z I ( n + 1) Z action exhibits a version 
of Mirror-Symmetry in which it is self-dual, as is expected. Here the twisted sectors 
shed some light on this duality, since in reality it is the sum of twisted sectors that 
is dual to the untwisted one. 

In the case that the Frobenius algebra one starts out with comes from a semi-
simple Frobenius manifold and the quotient of the twisted sector is not trivial, then 
there is unique extension to the level of Frobenius manifolds. This is the case in the 
above example of A2n+3 and Dn. There are other situations where the extension 
to the deformations (i.e. to the Frobenius manifold level) is unique; one being 
symmetric products (cf. §7 and [K4]). 

The paper is organized as follows: After recalling the general facts about cobor-
disms and Frobenius algebras in §1, we give the algebraic structures in an axiomatic 
fashion in §2. There is a slight difference to the theory with trivial group in that 
there are two structures with slightly different G-action to be considered which 
are nevertheless present. These versions differ by a twist with a character. In 
the singularity version, on the non-twisted level, they correspond to the different 
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ORBIFOLD FROBENIUS ALGEBRAS, COBORDISMS AND MONODROMIES 137 

G-modules on the cohomology and the Milnor ring [W]. In physical terms, these 
two structures are related by spectral flow. To be even more precise, one structure 
carries the natural multiplication and the other the natural scalar product. 

In §3 we provide a geometric cobordism realization of the theory. There are 
ramifications of this presentation with [FQ, T], if the above mentioned character 
is trivial. This is, however, not necessarily the case and moreover in the most 
interesting examples this is not the case. 

In §4 we introduce a large class of examples we introduce the so-called special 
G-Frobenius algebras. For these we prove a reconstruction Theorem which classifies 
the possible "stringy" multiplications and G-actions extending the classical direct 
sum in terms of cohomological data. 

Special G-Frobenius algebras have as a subset Jacobian G-Frobenius algebras. 
This allows us to apply our theory to Landau-Ginzburg models or singularity theory 
-in a sense the original building blocks for mirror symmetry- which we do in §5. 
This class encompasses those examples whose origin lies in singularity theory and 
examples of manifolds whose cohomology ring can be described as a quotient by a 
Jacobian ideal in the spirit of the Landau-Ginzburg-Calabi-Yau correspondence. 
Here it is important to note that everything can be done in a super (i.e. Z/2Z-
graded) version. This introduces a new degree of freedom into the construction 
corresponding to the choice of parity for the twisted sectors. 

For special G-Frobenius algebras with grading we give a mirror construction in 
§6. This construction is based on the idea of spectral flow, which in our situation 
boils down to using the exponential of the grading operator to shift the group 
grading. In §7 we explicitly work out several examples including the transition 
from the singularity A2n+3 to Dn via a quotient by Z/2Z, the self duality of An 
and the case of */G. 

Lastly in §8 we comment on recent developments including symmetric group 
actions on powers of a Frobenius algebra which are related to the Hilbert scheme 
of smooth projective varieties [LS]. 

1. Frobenius Algebras and Cobordisms 

In this paragraph, we recall the definition of a Frobenius algebra and its relation 
to the cobordism-category definition of a topological field theory [A,Du,Dij]. 
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1.1. Frobenius algebras. We begin by recollecting well known facts on Frobe-
nius algebras and their cobordism realization in order to stress the parallel exposi-
tion of twisted G Frobenius algebras in the next section. 

1.1.1. Definition. A Probenius algebra (FA) over a field k of characteristic 0 
is (A, o, rJ, 1), where 

Licensed to Max-Planck Institut fur Mathematik.  Prepared on Fri Jan 22 10:09:01 EST 2016for download from IP 195.37.209.180/130.44.104.100.

License or copyright restrictions may apply to redistribution; see http://www.ams.org/publications/ebooks/terms



138 RALPH M. KAUFMANN 

A is a finite dim k-vector space, 
o is a multiplication on A: o : A ® A ---+ A, 
rJ is a non-degenerate bilinear form on A, and 
1 is a fixed element in A- the unit. 

satisfying the following axioms: 
a) Associativity 

(aob)oc=ao(boc) 
b) Commutativity 

aob=boa 
c) Unit: 

'<1Ea:1oa=ao1=a 
d) Invariance: 

ry(a, b o c) = ry(a o b, c) 

1.1.2. Remark. By using rJ to identify A and A* -the dual vector space of 
A- these objects define a one-form E E A* called the co-unit and a three-tensor 
J.L E A*® A*® A*. 

Using dualization and invariance these data are interchangeable with 'f} and 
o via the following formulas. Explicitly, after fixing a basis (~i)iEI of A, setting 
'f/ij := ry(~i,~j) and denoting the inverse metric by ryii 

t:(a) := ry(a, 1), 
J.L(a, b, c) := ry(a o b, c)= E(a o b o c), 
a o b = Lij J.L(a, b, ~i)rJij ~i and 
ry(a, b) = E(a o b). 

1.1.3. Notation. We call p E A the element dual to E. This is the element 
which is Poincare dual to 1. 

1.1.4. Grading. A graded Frobenius algebra is a Frobenius algebra together 
with a group grading of the vector space A: A = ffiiEI Ai where I is a group 
together with the following compatibility equations: denote the /-degree of an 
element by deg. 

1) 1 is homogeneous; 1 E Ad for some dE I 
2) rJ is homogeneous of degree d +D. 

I.e. for homogeneous elements a, b ry(a, b)= 0 unless deg(a) +deg(b) = d+D. 
This means that E and p are of degree D. 

3) o is of degree d, this means that J.L is of degree 2d + D, where again this 
means that 

deg(a o b)= deg(a) + deg(b)- d 

1.1.5. Definition. An even derivation E E Der(A, A) of a Frobenius algebra 
A is called an Euler field, if it is conformal and is natural w.r.t. the multiplication, 
i.e. for some d, D E k it satisfies: 

ry(Ea, b)+ ry(a, Eb) =Dry( a, b) (1.1) 
and 

E(ab) = Eab + aEb- dab (1.2) 
Such derivation will define a grading on A by its set of eigenvalues. 
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ORBIFOLD FROBENIUS ALGEBRAS, COBORDISMS AND MONODROMIES 139 

1.1.6. Super-grading. For an element a of a super vector space A = A0 EB A1 

denote by a its Z/2Z degree, i.e. a = 0 if it is even (a E A0 ) and a = 1 if it is 
odd (a E A1). This changes the axiom for commutativity into one on super-
commutativity. 

b )cr Super-commutativity 
aob= (-1)abboa 

The grading for super Frobenius algebras carries over verbatim. 

1.2. Cobordisms. 

1.2.1. Definition. Let COB be the category whose objects are one-dimensional 
closed oriented (topological) manifolds considered up to orientation preserving 
homeomorphism and whose morphisms are cobordisms of these objects. 

I.e. L: E H om(S1 , S2) if L: is an oriented surface with boundary 8L: = -S1 IJ S2. 
The composition of morphisms is given by glueing along boundaries with re-

spect to orientation reversing homeomorphisms. 

1.2.2. Remark. The operation of disjoint union makes this category into a 
monoidal category with unit 0. 

1.2.3. Remark. The objects can be chosen to be represented by disjoint 
unions of the circle with the natural orientation S 1 and the circle with opposite 
orientation 81 . Thus a typical object looks like S = IJiEJ S 1 lJjEJ 81 . Two stan-
dard morphisms are given by the cylinder, and thrice punctured sphere. 

1.2.4. Definition. Let V£CT k be the monoidal category of finite dimen-
sional k-vector spaces with linear morphisms with the tensor product providing 
a monoidal structure with unit k. 

1.2.5. Theorem. (Atiyah, Dijkgraaf, Dubrovin) [A,Dij, Du] There is a 1-1 
correspondence between Frobenius algebras over k and isomorphism classes of co-
variant functors of monoidal categories from COB to V£CTk, natural with respect 
to orientation preserving homeomorphisms of cobordisms and whose value on cylin-
ders S x I E Hom( S, S) is the identity. 

Under this identification, the Frobenius algebra A is the image of S 1, the mul-
tiplication or rather J.L is the image of a thrice punctured sphere and the metric is 
the image of an annulus. 

2. Orbifold Frobenius algebras 

2.1. G-Frobenius algebras. We fix a finite group G and denote its unit 
element by e. 

2.1.1. Definition. A G-Frobenius algebra (FA) over a field k of characteristic 
0 is < G, A, o, 1, ry, cp, x >,where 
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140 RALPHM. KAUFMANN 

G finite group 
A finite dim G-graded k-vector space 

A= EBgEGAg 
Ae is called the untwisted sector and 
the A9 for g =f. e are called the twisted sectors. 

o a multiplication on A which respects the grading: 
o : A9 ® Ah --+ A9h 

1 a fixed element in Ae-the unit 
'TJ non-degenerate bilinear form 

which respects grading i.e. 9IA9 ®Ah = 0 unless gh = e. 
cp an action of G on A (which will be by algebra automorphisms), 

cp E Hom(G,Aut(A)), s.t. cp9 (Ah) c Aghy-1 
X a character X E Hom(G, k*) 

Satisfying the following axioms: 
NOTATION: We use a subscript on an element of A to signify that it has homo-
geneous group degree -e.g. a9 means a9 E A9 - and we write cp9 := cp(g) and 
Xg := x(g). 

a) Associativity 
(a9 o ah) oak = a9 o (ah oak) 

b) Twisted commutativity 
a9 o ah = cp9 (ah) o a9 

c) G Invariant Unit: 
1 o a9 = a9 o 1 = a9 

and 
'Pg(1) = 1 

d) Invariance of the metric: 
ry(a9 , ah oak) = ry(a9 o ah, ak) 

i) Projective self-invariance of the twisted sectors 
cp9 IA9 = x;1id 

ii) G-Invariance of the multiplication 
'Pk(a9 o ah) = 'Pk(a9 ) o 'Pk(ah) 

iii) Projective G-invariance of the metric 
cp;('TJ) = x-;2, 

iv) Projective trace axiom 
Vc E A[g,h] and lc left multiplication by c: 
XhTr(lc'PhiA 9 ) = Xy-lTr(cpg-llciAh) 

An alternate choice of data is given by a one-form E, the co-unit with E E A: 
and a three-tensor 1-L E A*®A*®A* which is of group degree e, i.e. 1-LIA9 ®Ah®Ak = 0 
unless ghk = e. 

The relations between ry, o and E, 1-L are analogous to those of 1.1.2. 
Again, we denote by p E Ae the element dual to E E A: and Poincare dual to 

1 E Ae· 

2.1.2. Remarks. 

1) Ae is central by twisted commutativity and (Ae, o, 'TJIA.®A., 1) is a Frobenius 
algebra. 

2) All A9 are Ae-modules. 
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3) Notice that x satisfies the following equation which completely determines 
it in terms of <p. Setting h = e, c = 1 in axiom iv) 

dimA9 = x9 -1Tr(<p9 IAJ (2.1) 
by axiom iii) the action of <p on p determines x up to a sign 

x;2 = x_; 2 ry(p, 1) = TJ(<p9 (p), <p9 (1)) = TJ(<p9 (p), 1) (2.2) 
4) Axiom iv) forces the x to be group homomorphisms, so it would be enough 

to assume in the data that they are just maps. 

2.1.3. Proposition. The G invariants Ac of a G~Frobenius algebra A form 
an associative and commutative algebra with unit. This algebra with the induced 
bilinear form is a Frobenius algebra if and only if L:9 x-;2 = IGI, which means that 
the Schur~Frobenius indicator is one. Embedding kin C yields x E Hom(G, U(1)) 
this implies 'Vg : X9 = ±1. 

2.1.4. Definition. A G~Frobenius algebra is called an orbifold model if the 
data (Ac,o, 1) can be augmented by a compatible metric to yield a Frobenius 
algebra. In this case, we call the Frobenius algebra Ac a G-orbifold Frobenius 
algebra. 

2.2. Super-grading. We can enlarge the framework by considering super~ 

algebras rather than algebras. This will introduce the standard signs. 
The action of G as well as the untwisted sector should be even. The axioms 

that change are 
b"") Twisted super-commutativity 

a9 o ah = ( -1)agah<p9 (ah) o a9 

iv"") Projective super-trace axiom 
'Vc E A[g,h] and lc left multiplication by c: 
XhSTr(lc'PhiA 9 ) = Xy-lSTr(<pg-IlciAh) 

where STr is the super~trace. 

2.3. Geometric model- spectral flow. The axioms of the G-Frobenius al-
gebra are well suited for taking the quotient, since the multiplication is G~invariant. 
However, this is not the right framework for a geometric interpretation. In order 
to accommodate a more natural coboundary description, we need the following 
definition which corresponds to the physical notion of Ramond ground states: 

2.3.1. Definition. The Ramond space of a G~Frobenius algebra A is the G~ 
graded vector~space 

V := EB9 V9 := ffiA 9 Q9 k 
g 

together with the G-action cp := <p Q9 x, the induced metric g and the induced 
multiplication 6. 

This space is essentially the correct free cyclic module generated by A. 
All structures of A can be naturally transferred but some of the axioms get 

twisted. They read: 
b') Projective twisted commutativity 

v9 ovh = x9 cp9 (vh)ov9 = cp9 (vhov9 ) 
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c') Projectively invariant unit: 
VOVg = v9ov = Vg 
and 
cp9 (v) = XgV 

1 ') Self~invariance of the twisted sectors 
'f!giVg = id 

2') Projective G~invariance of multiplication 
'f!k(v9 ovh) = Xk'f!k(v9 )ocf!k(vh) 

3') G~Invariance of metric 
'f!;(il) = il 

4') Trace axiom 
Vc E V(g,h] and lc left multiplication by c: 

Tr(lc o cp9 [vh) = Tr(cf!h-1 o Zclv.) 

2.3.2. Remark. In the theory of singularities, the untwisted sector of the 
Ramond space corresponds to the forms Hn~ 1 (V., C) while the untwisted sector of 
the G-twisted Frobenius algebra corresponds to the Milnor ring [Wa]. These are 
naturally isomorphic, but have different G-module structures. In that situation, one 
takes the invariants of the Ramond sector, while we will be interested in invariants 
of the G-Frobenius algebra and not only the untwisted sector ( cf. [K5] and see also 
§7). 

3. Bundle cobordisms, finite gauge groups, orbifolding and G-Ramond 
algebras 

In this section, we introduce two cobordism categories which correspond to 
G--orbifold Frobenius algebras and Ramond G-algebras, respectively. Again G is a 
fixed finite group. 

3.1. Bundle cobordisms. In all situations, gluing along boundaries will in-
duce the composition and the disjoint union will provide a monoidal structure. 

3.1.1. Definition. Let QBCCJB be the category whose objects are principal 
G-bundles over one-dimensional closed oriented (topological) manifolds, pointed 
over each component of the base space, whose morphisms are cobordisms of these 
objects (i.e. principal G-bundles over oriented surfaces with pointed boundary). 

More precisely, Br. E Hom(B1 , B 2 ) if E is an oriented surface with boundary 
&E = -81 Il 82 and Br. is a bundle on E which restricts to B 1 and B2 on the 
boundary. 

The composition of morphisms is given by gluing along boundaries with re-
spect to orientation reversing homeomorphisms on the base and covering bundle 
isomorphisms which align the base-points. 

3.1.2. Remark. The operation of disjoint union makes this category into 
monoidal category with unit 0 formally regarded as a principal G bundle over 
0. 

3.1.3. Remark. Typical objects are bundles B over 
Il 1 Il -1 8 = iEI 8 jEJ 8 ' 
Let (81, v) v E 8 1) be a pointed 8 1. 
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3.1.4. Structure Lemma. The space Bun(S1 , G) of G bundles on (81, v) 
can be described as follows: 

Bun(Sl, G)= (G x F)/G 

where F is a generic fibre regarded as a principal G-space and G acts on itself by 
conjugation and the quotient is taken by the diagonal action. 

3.1.5. Remark. Usually one uses the identification 
Bun(M,G) = Hom(7r1(M),G)/G, 

which we also use in the proof. However, for certain aspects of the theory - more 
precisely to glues and to include non-trivial characters- it is vital to include a point 
in the bundle and a trivialization rather then just a point in the base. 

Proof of the Structure Lemma. Given a pointed principal G bundle 
(B,8\1l',F,G), bE B we set 11 = 7r(b) E 8 1. The choice of bE F = Bv gives 
an identification ofF with G, i.e. we let {3 : G ~---+ F be the admissible map in the 
sense of [St] that satisfies {J(e) =b. We set g E G to be the element corresponding 
to the monodromy around the generator of 11'1 (81 ). Notice that since we fixed an 
admissible map everything is rigid - there are no automorphisms- and the mon-
odromy is given by an element, not a conjugacy class. Thus we associate to (B, b) 
the tuple (g, b). 

Vice versa, given (g, b) we start with the pointed space (81, v) and construct 
the bundle with fiber G, monodromy g and marked point b = {3(e) E Bv. 

The bijectiveness of this construction follows by the classical results quoted 
above [St]. 

The choice in this construction corresponds to a choice of a point b E B. 
Changing b amounts to changing {3 and the monodromy g. Moreover, moving the 
point 11 = 7r(b) and moving b inside the fiber by parallel transport keeps everything 
fixed. Moving b inside the fixed fiber by translation (once 11 is fixed) corresponds 
to translation by the group action in the fiber i.e. the translation action of G on F 
and simultaneous conjugation of the monodromy. 

This observation leads us to the following definition: 

3.1.6. Definition. We call a bundle over a closed one-dimensional manifold 
rigidified if its components of the base space are labeled and the bundle is pointed 
over each component of the base space. a trivialization around the projection of this 
point are fixed in each component of the base. We denote such a bundle (B, b) where 
b = (bo, ... , bn; <Po, ... , <Pn) is the set of marked points bi over each component of 
the base together with the trivializations ¢i· Furthermore, if the surface has genus 
zero we realize it in the plane as a pointed disc with all boundaries being 8 1. We 
label the outside circle by 0. If 71' is the bundle projection, we set Xi := 7r(bi), we 
call bo the base-point, the Bx. the special fibers and Bx0 the initial fiber. 

Furthermore, if a given surface has genus zero we realize it in the plane as a 
pointed disc with all boundaries being 8 1. We label the outside circle by 0. 

If 71' is the bundle projection, we set Xi := 7r(bi), we call b0 the base-point, the 
Bx. the special fibers and Bx0 the initial fiber. 

We call two rigidified bundles equivalent if there exists a bundle map between 
them that preserves the monodromy of the marked point and preserves the trivial-
izations as well as the orientation of the base. 
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3.1.7. Definition. Let QBCOB* be the category whose objects are equiv-
alence classes of rigidified principal G-bundles over one-dimensional closed ori-
ented (topological) manifolds considered up to pull-back under orientation pre-
serving homeomorphism of the base respecting the markings and whose morphisms 
are cobordisms of these objects (i.e. principal G-bundles over oriented surfaces 
with boundary together with rigidification on the boundary, a choice of base-point 
xo E 8'E compatible with the rigidification and a choice of curves r i from xo to Xi 
which identify the trivializations via parallel transport, where we used the notation 
above.). 

I.e. objects are bundles B over 8 = lliEI 8 1 lljEJ S1 with base-points and 
trivializations over the various components of the base up to equivalence. An 
element BE E Hom((B1,lh), (B2, b2)) is an equivalence class of a G bundle over a 
bounded surface 'E with boundary 8'E = S1 U 82 whose boundary 8BE = fh U B2 
together with rigidification data b1 and b2 over the boundaries and rigidification 
over the interior given by a choice of paths r i from Xo to Xi (the images of the 
marked points in the components of the boundary). Such bundles are regarded 
as equivalent if there is an orientation preserving homoeomorphism between the 
underlying surfaces that induces an orientation preserving homoemorphims on the 
data such that the equivalence class of the boundary data is preserved. We will call 
81 the inputs and 82 the outputs. 

3.1.8. Construction. We define the pointed bundle (g, h) to be the bundle 
which is obtained by glueing I x G via the identification (0, e) rv (1, h-1gh) and 
marking the point (0, h), where I= [0, 1) the standard interval. 

This produces all monoidal generators. 

3.1.9. Lemma. The elements of Construction 3.1.8 are up to reversing the 
orientation a the monoidal basis of objects of (]BCOB*. Therefore the monoidal 
basis can be identified by G x G up to involution. 

Proof. The only thing to show is that each class of rigidified bundles has 
exactly one element of the above kind. 

Given a rigidified bundle over 8 1 the trivialization yields a map to I x G / rv 

with (0, e) "' (1, k) where k is the monodromy given by the trivialization. Under 
this identification let (0, h) be the image of the point bo. Let g be the monodromy 
of this point. Then k = h-1gh and the bundle is in the same class as (g, h). It is 
clear that there is at most one such element in each class since both the monodromy 
and the trivialization have to be preserved. 

A generating object can thus be depicted by an oriented circle with labels (g, h) 
where (g, h) E G x G. We use the notation (g, h) for positively oriented circles and 
(g, h) for negatively oriented circles. We will consider functors V with an involutive 
property we have that we will have V((g, h)) ~ V((g-1, h))* where * denotes the 
dual. General objects are then just disjoint unions of these, i.e. tuples (gi, hi)· 
Homomorphisms on the generators are given by the trivial bundle cylinder with 
different trivializations on both ends represents the natural diagonal action of G 
by conjugation and translation described in 3.1.4, so that this diagonal G-action is 
realized in terms of cobordisms. 
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The natural G x G action, however, cannot be realized by these cobordisms 
and we would like to enrich our situation to this case by adding morphisms cor-
responding to the G action on the trivializations which is the action of the global 
gauge group. 

3.1.10. Definition. Let RQBCOB be the category obtained from QBCOB* 
by adding the following morphisms. For any n-tuple (k1. ... , kn) : ki E G and any 
object (gi, hi) : i = 1, ... n we set 

T(kb · · ·, kn)(gi, hi)iE{1, ... n} := (gi, kihi)iE{1, ... n} 
We call these morphisms of type II and the morphisms coming from QBCOB* 

of type I. We also sometimes write Ilk for Tk. 

3.1.11. Remark. There is a natural forgetful functor from RQBCOB to 
QBCOB. 

Given a character x E Hom(G, k*) we can form the fibre-product G Xx k. This 
gives a functor k[G]x from the category V£CTk to k[G]- MOV, the category of 
k[G]-modules. 

3.1.12. Definition. A G:K-orbifold theory is a monoidal functor V from 
RQBCOB to k[G]- MOV satisfying the following conditions: 

i) The image of V lies in the image of k[Glx· 
ii) Objects of RQBCOB which differ by morphisms of type II are mapped to 

the same object in k[G] - MOV. 
iii) The value on morphisms of type I does not depend on the choice of connect-

ing curves and associated choice of trivializations or base-point. 
iv) The morphisms of type II are mapped to the G-action by X. 
v) The functor is natural with respect to morphisms of the type T(k, ... , k). I.e. 

V(T(k, ... , k) o E)= V(Tout(k- 1 , ... , k- 1 )) o V(E) o V(Tin(k, ... , k)); where 
Tin and Tout operator on the inputs and outputs respectively. 

vi) V associates id to cylinders B x I, (b, 0) E B x 0, (b, 1) E B x 1 considered 
as cobordisms from (B, b) to itself. 

vii) Vis involutive: V(S) = V*(S) where* denotes the dual vector space with 
induced k[G]-module structure. In accordance, the morphism of type II 
commute with involution, i.e. they are mapped to the G-action by x-1. 

viii) The functor is natural with respect to orientation preserving homeomor-
phisms of the underlying surface of a cobordism and pull-back of the bundle. 

3.1.13. Corollary. Gx-orbifold theories are homotopy invariant. 

3.1.14. Remark. Given a choice of connecting curves, we can identify all 
fibres over special points. Therefore after fixing one identification of a fibre with 
G, we can identify the other marked points as translations of points of parallel 
transport and label them by group elements, which we will do. 

The action of T(k, ... , k) corresponds to a change of identification for one point 
and simultaneous re-gauging of all other points via this translation, i.e. a diagonal 
gauging. Therefore given a cobordism, we can fix an identification of all fibres with 
G. 
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3.1.15. Definition and Notation. We will fix some standard bundle cobor-
disms pictured below. 

0·@·@·~-·(§2~@ 
e e kh k [g,h] 

n rn IV v 

I: The standard disc bundle is the disc with a trivial bundle and positively 
oriented boundary considered as a cobordism between 0 and (e, e); it will be denoted 
by D. 

II: The standard g-cylinder bundle is the cylinder S1 xI with the bundle having 
monodromy g around ( ( S 1, 0)) considered as a cobordism between (g, e) 11 (g, e) and 
0; it will be denoted by C9 • 

III: The (g, h)k-cylinder bundle is the cylinder with a bundle having mon-
odromy g around (S1, 0) considered as a cobordism between (g, h) and (kgk- 1 , kh); 
it will be denoted by c;,k. 

IV: The standard (g, h)k-trinion bundle is the trinion with the bundle having 
monodromies g around the first 8 1 and h around the second S 1 and translations 
e for r01, ro2 considered as a cobordism between (g, k), (h, k) and (gh, k); it will be 
denoted by r;,h. 

V: The (g, h)-torus bundle is the once-punctured torus with the principal G-
bundle having monodromies g and h around the two standard cycles considered as 
a cobordism between ([g, h], e) and 0; it will be denoted by E!,h· 

3.1.16. Proposition. To fix a Gx-orbifold theory on the objects of the type 
(g, e) and to fix a Gx-orbifold theory on the morphisms it suffices to fix it on 
bundles over the standard cylinder bundle C, the (g, h)-cylinder bundles C9,h, and 
on the standard trinion T. 

Idea of the proof. Any object is can be obtained from the monoidal gener-
ators and the morphisms of type II. Any morphism of type I is given by a surface 
which can be decomposed into discs, cylinders and trinions. 

3.1.17. Proposition and Definition. For any Gx-orbifold theory V set 
V((g,e)) V9 

V(T;,h) o: V9 ® Vh ---t V9h 
V(D)(lk) v 
V(C9 ) = i1iv 9 ~W 9 -1 
V(C9 ,h) cph: V9 t---t Vhgh-1 

then this data together with g and X form a Ramond-G algebra (G, V, o, v, ry, cp, x) 
which we call the associated G-Ramond algebra to V. 

Proof. It is clear by 3.1.16 that given a Gx orbifold theory it is completely 
fixed by its associated G-Ramond algebra. The converse is also true: 

The axiom a) follows from the standard gluing procedures of TFT. I.e. the 
usual gluing of a disc with 3 holes from two discs with two holes in two different 
ways. 
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ghk 
ghk 

e e 

For axiom b') we regard the following commutative diagrams 
(g, e) Il(h, e)~(h, e) Il(g, e) (h, e) Il(g, e) (g, e) Il(h, e) 

! r;,h => ! II => ! II I => ! IV 
id (gh,e) -t (gh,e) (gh,g) (gh,g) 

.t).V 

id id id 
Vgh -t V9 h -t V9h -t V9 h 

where we have used axiom viii) for the first move and axiom iii) for the second 
and gluing for the last one. 

gh 

II III IV 

The unit of axiom c) is given by JJe. The projective invariance follows from 
D 0 -t (e,e) 

! II ! II 
0 D ct •• >( IIk-1( -+(e, e) ---+ e, k) -t e, e) 

.t).V 
<1>k -

le 
k -t v;, 

where in the third line lk ~----+ v ~----+ XkV ~----+ v. 

gh 

The axiom d) of the invariance of the metric is again a standard gluing argu-
ment. 
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e 

e e 

I.e. using € and associativity: 

ij(v9ovh,v(gh)-1) = l((v9ovh)ov(gh)-1) = l(v9o(vhov(gh)-1)) = ij(v9,vhov(gh)-1) 

For axiom 1 ') 
We use the following diagram: 

'd (g,e)~(g,e) (g,e) 
t id =? t 6 =? t c 

'd (g,e)~(g,e) (g,g) 
,ij.V 

V id v id v g --'> g --'> g 
Lid L 'Po 

id id V9 ----" V9 ----" V9 
where we used axiom viii) for the first move and axiom iii) for the second. 

g 

e e 
I II 

The axiom 2') follows from the diagrams 

g 

g 
III 

g 

k k Tk 0 k- 1 

(g, e) U(h,e) (C(g,~(h,e)) (kgk- 1 , k) U(khk- 1 , k) kgk~hk- 1 (kghk- 1 , k) (kg~ 1 ,k) (gh, e) 
! ! ! ! 
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e e 

T;h 
(g, e) Il(h, e) ~ (gh, e) 

! II ! II 
(g, e) Il(h, e)(Il_!0Jk)(g, k) Il(h, k)~(gh, k{~ 1 (gh, e) 

! ! ! ! 
V9h 

! II 
0 

V9 ®Vh ~ V9h 
The axiom 3') - G-invariance of the metric- follows from the following dia-

grams 

e 
(g, e) l1 (g, e) 

! II 

e 
-1 g g 

e 

K 
! II 

(g,e)Il(g,e) <Sfl (kgk- 1 ,k)Il(kgk 1,k) ~ K 
! (id,} ! (id,} ! (id,} 

(g, e) ll(g-1 , e) <Sfl (kgk- 1 , k) Il(kg- 1k- 1 , k)~ K 

! ! ! 
t K 
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(g, e) 11 (g, e) 
!II 
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K 
!II 

(g, e) 11 (g, e) (II~ h) (g, k) 11 (g, k) ~ K 
l (id,} l (id,} l (id,} 

(g,e)11(g-l,e) (II!:jlk (g,k)11(g 1 ,k)~ K 
l l l 

V9 ® V9 -1 __!!__. K 
Lastly axiom 4') comes from gluing a once punctured torus in two different 

ways. 

3.1.18. Proposition. Given a G-Ramond algebra V there is a unique Gx 
orbifold theory V s.t. Vis its associated G-Ramond algebra. 

Combining the Propositions 3.1.16 and 3.1.18 using standard arguments we can 
obtain: 

3.1.19. Theorem. There is a 1-1 correspondence between G-twisted FA and 
isomorphism classes of Gx-orbifold theories as x runs trough the characters of G. 

3.1.20. Corollary. There is a 1-1 correspondence between G-orbifold FA and 
isomorphism classes of monoidal functors which are identity on cylinders and satisfy 
the involutive property from Ql3C0!3 to VECT which lift to RQBC0/3. 

3.2. Spectral flow. In the previous paragraph, we chose the geometric ver-
sion to correspond to the Ramond picture, as is suggested by physics, since we 
are considering the vacuum states in their Hilbert-spaces at the punctures. From 
physics one expects that by the spectral flow, the vacuum states should bijectively 
correspond to the chiral algebra. In the current setting the difference only man-
ifests itself in a change of G-action given by a twist resulting from the character 
X· We can directly produce this G-action and thereby the G-Frobenius algebra by 
considering the G-action not by c: k> but by lh-1 oc: k· This statement is proven 
by re-inspection of the commutati~e diagrams in the p~oof of 3.1.17. 

4. Special G-Frobenius algebras 

In this section we restrict ourselves to a subclass of G-twisted Frobenius al-
gebras. This subclass is large enough to contain all G-Frobenius algebras arising 
from singularities, symmetric products and spaces whose cohomology of the fixed 
point sets are given by restriction of the comhomology of the ambient space. The 
restriction allows us to characterize the possible G-Frobenius structures for a given 
collection of Frobenius algebras as underlying data in terms of cohomological data. 
The restriction we will impose (cyclicity of the twisted sectors) can easily be gen-
eralized to more generators; which will render everything matrix-valued. 

4.1. Definition. A special G-Probenius algebra is a G-twisted Frobenius al-
gebra whose components A9 are cyclic Ae-modules, together with two collections 
of maps ( r 9 ), ( i 9 ) indexed by G where 
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r 9 : Ae - A9 is the map of Ae-modules induced by multiplication, we write 
a9 := r9 (a). In particular, if one sets 19 := r 9 (1) we obtain r9 (a) = al9 • 

Notice that it is equivalent to specifying the map r 9 or generators 19 of A9 

as cyclic Ae-modules. 
i9 : A9 ~---+ Ae are collections of maps s.t. each i9 is an injection which splits 
the exact sequence of Ae-modules. 

rg 

0 ---+ 19 ---+ A ~ A9 ---+ 0 
ig 

(4.1) 

Here 19 C Ae is the annihilator of 19 and thus of A9 • We denote the concatenation 
of i9 and r9 by 1r9 

1rg = r9 o i9 : Ae - Ae 
and we take the statement that i9 is a section of Ae modules to mean 

i9 (aeb9 ) = 7r9 (ae)i9 (b9 ) 

Furthermore the following holds: 

Vg E G: <p9 (1h) = <,Og,hlghg-1 
for some <,Og,h E K and <,Og,1 = 1. 

4.1.1. Special super G-Frobenius algebra. The super version of special 
G-Frobenius algebras is straightforward. Notice that since each A9 is a cyclic Ae-
algebra its parity is fixed to be (-1)9 :=~times that of Ae. I.e. a9 = i9 (a9 )19 ------and thus ii'g = i 9 (a 9 )~ . In particular if Ae is purely even, A9 is purely of degree 
g. 

4.2. Proposition. Let 'T/g : i9 (A9 ) ® i9 (A9 ) - K be given by the following 
formula: 

'T/g(a,b) = 'f/(r9 (a),r9 -1(b)) = E('Y9 ,9 -17rg(ab)) 
Then i9 (A9 ) c Ae together with 'f/g and the induced multiplication a o9 b 
i9 (a o r9 (b)) = 1r9 (a o b) is a Frobenius sub-algebra. Furthermore 'f/g establishes 
an isomorphism between i9 (A9 ) and i 9 -1(A9 -1). 

4.3. Proposition. The following equality holds 1r 9-1 o 1r 9 = 1r 9 showing that 
7r9 -1li9 (A 9 ) = id identifying i9 (A9 ) and i 9-1(A9-1). 

4.4. Definition. Let A be a special G-twisted Frobenius algebra A. We define 
a G gmded 2-cocycle with values in Ae to be a map 'Y : G x G - Ae which satisfies 

'Yg,h := 'Y(g, h) E i9h(A9h) (4.2) 
and 

1rghk('Yg,h'Ygh,k) = 1rghkbh,k'Yg,hk) 
We will call such a cocycle associative if also Vg, h, k E G: 

1r ghk(7r 9 h(i9 (A9 )ih(Ah) )ik(Ak)'Yg,h'Ygh,k) = 

(4.3) 

1r ghk( i9 (A9 )7rhk( ih(Ah)ik(Ak) )'Yh,k'Yg,hk) ( 4.4) 
and we call a cocycle section independent if Vg, hE G 

(19 + h)'Y9 ,h c I9h (4.5) 
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4.5. Remark. Notice that if g is section independent then it follows that the 
multiplication is independent of the choice of section and the cocycle is automati-
cally associative. 

4.6. Definition. A non-abelian G 2-cocycle with values in K* is a map cp : 
G x G ---+ K which satisfies: 

(4.6) 
where C/)g,h := cp(g, h) and 

C/)e,g = C/)g,e = 1 
Notice that in the case of a commutative group G this says that the cp9 ,h form 

a two cocycle with values in K*. 
Furthermore setting g = h - 1 , we find: 

-1 
C/)g-1,ghg-1 = cpg,h 

Using the multiplication law 19 1h = /'g,h1gh to define /'g,h one obtains: 

4. 7. Proposition. A special G-twisted Frobenius algebra A gives rise to an 
associative G 2-cocycle ')' with values in A and to a non-abelian G 2-cocycle cp 
with values in K*, which satisfy the compatibility equations 

C/)g,h/'ghg-1,g = /'g,h (4.7) 

and 
(4.8) 

4. 7.1. Proposition. A special G-Frobenius algebra gives rise to collection of 
Frobenius-algebras (A9 , o9 , 19 , ry9 )gEG together with a G-action on Ae. A graded G 
2-cocycle with values in Ae and a compatible non-abelian G 2-cocycle with values 
in k*. Furthermore: 

i) TJe(cpg(a), cpg(b)) = x;2 TJe(a, b) 
ii) ry9 (a9 , b9 ) = ry(i9 (a9 )i9 (b9 )/'9 ,9 -1, 1) 

iii) The projective trace axiom Vc E A[g,h] and lc left multiplication by c: 

Xh 'It(lcC/)h IA 9 ) = Xg-1 'It( C/)g-dciAh) ( 4.9) 

4.8. Theorem. (Reconstruction) Given a Frobenius algebra (Ae, TJe) and a 
G-action on A : cp : G x A ---+ A together with the following data 

- Frobenius algebras (A9 ,ry9 lg E G\ {1}). 
-Injective algebra homomorphisms i9 : A9 ---+ Ae s.t. i9 (A9 ) = ig-1(A9-1) 
- Restriction maps: r9 :A---+ A9 s.t. r9 o i9 = id. 
- A graded associative G 2-cocycle ')' with values in Ae and a compatible non-

abelian G 2-cocycle cp with values inK*, s.t. ry9 (a, b) = ry9 (/'9 ,9 -1Ig(a), i 9 (b)). 
- A group homomorphism x : G ---+ K* 

such that i)-iii) of 4.7.1 hold, then there is a unique extension of this set of data 
to a special G-twisted Frobenius algebra, i.e. there is a unique special G-twisted 
Frobenius algebra with these underlying data. 

Idea of a proof. 
Use the multiplication law 

a 9 bh = r 9h(i9 (a9 )ih(bh)/'g,h)19 ,h (4.10) 

and the G-action 
(4.11) 
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and check all properties. 

4.9. Rescaling. Given a special G-Frobenius algebra, we can rescale the 
cyclic generators by >-.9 , i.e. we take the same underlying G-Frobenius algebra, 
but rescale the maps r9 to r9 with l 9 = f 9 (1) = )..9 19 . We also fix Ae = 1 to 
preserve the identity. 

This yields an action of Mappointed spaces ( G, k*) on the co cycles "'( and r.p pre-
serving the underlying G-Frobenius algebra structure. 

The action is given by: 

"'(g,h 

'Pg,h (4.12) 

4.9.1. Remark. We can introduce the groups associated with the classes un-
der this scaling and see that the classes of"'( correspond to classes in H 2 (G, A). We 
can also identify the non-abelian cocycles r.p with one--group cocycles with values 
in k*[G] where we treat k*[G] as an abelian group with diagonal multiplicative 
composition 

(I:: Agg) . (L f.Lhh) := L Ag/-Lg9 (4.13) 
g h g 

and G-action given by conjugation: 

s(g)(L Ahh) = L Ahghg-1 (4.14) 
h h 

4.10. Lemma. If"'(g,h = 0 then 1rh('Y9 ,9 -1) = 0 and n9 ('Yh,h-1) = 0 

4.10.1. Graded special G-Frobenius algebras. Consider a set of graded 
Frobenius algebras satisfying the reconstruction data: {(A9 , 179 ) : g E G} with 
degrees d9 := deg(179 ) 

s.t. A9 ~ A9 -1. E.g. in the cohomology of fixed point sets d9 is given by the 
dimension and for the Jacobian Frobenius manifolds (see the next section) d9 fixed 
by the degree of Hess(f9 ) = p9. Furthermore, the reconstructed {1J[(Ag®A 9 _pg E 
G} have degree d9 = d9 -1. 

For a G-twisted FA the degrees all need to be equal to d :=de. To achieve this, 
one can shift the grading in each A9 by s9 . This amounts to assigning degree s9 to 
19 . This is the only freedom, since the multiplication should be degree--preserving 
and all A9 are cyclic. 

Set 
st := Sg + s9 -1 
s-;; := Sg - s9 -1 

Then st := d- d9 for grading reasons, but the shift s- is more elusive. 

4.10.2. Definition. The standard shift for a Jacobian Frobenius algebra (see 
below) is given by 

Licensed to Max-Planck Institut fur Mathematik.  Prepared on Fri Jan 22 10:09:01 EST 2016for download from IP 195.37.209.180/130.44.104.100.

License or copyright restrictions may apply to redistribution; see http://www.ams.org/publications/ebooks/terms



154 RALPH M. KAUFMANN 

and 
1 1 s; := -2 .tr(log(g)) -tr(log(g-1 )) := -2 .(L=Ai(g)- LAi(g-1 )) 
1n 1rz . . • • 

1 
= L 2 ( -2 . Ai (g) - 1) 7rZ 

i:-\;#0 

where the Ai (g) are the logarithms of the eigenvalues of g using the branch with 
values in [0, 27r) i.e. cut along the positive real axis. 

In this case we obtain: 

1 1 1 . 1 
s = -(s+ + s-) = -(d- d ) + "(-_z(g)- -) 

g 2 g g 2 g L...t 27ri 2 
i 

4.11. Remark-Grading and Monodromies. The grading s- has a geo-
metric meaning in the case of singularities. Here the original grading is given by 
the monodromy operator. In the twisted sector the monodromy operator is replaced 
by the product of the operator and the operator represented by g. This is described 
in [K5]. 

4.11.1. Reconstruction for graded special G-Frobenius algebras. In 
the Reconstruction program the presence of a non-trivial grading can greatly sim-
plify the check of the trace axiom. E.g. if A[g,h] has no element of degree 0 then 
both sides of this requirement are 0 and if [g, h] = e one needs only to look at the 
special choices of c with deg(c) = 0 which most often is just c = 1, the identity. 

4~11.2. Ramond-grading. The grading in the Ramond-sector is by the fol-
lowing definition 

This yields 

d 
deg(v) ·- --.- 2 

d 
deg(ry) = 0 and deg(o) = 2 

5. Jacobian Frobenius algebras 

5.1. Definition. A Frobenius algebra A is called Jacobian 
if it can be represented as the Milnor ring of a function f. I.e. if there is a 

function f E OA"'}( s.t. A= OA"'J(!JJ where Jf is the Jacobian ideal of f. And 
the bilinear form is given by the residue pairing. This is the form given by the the 
Hessian off: p :=Hess!. 

If we write OA;: = k[x1 .. . xnJ, Jf is the ideal spanned by the~-
A realization of a Jacobian F'robenius algebra is a pair (A, f) of a Jacobian 

Frobenius algebra and a function f on some affine k space Ak, i.e. f E 0 AJ: = 
~ k[x1 ... Xn] s.t. A= k[x1 ... Xn] and p := det( 8 x,ax1 ). 

A small realization of a Jacobian F'robenius algebra is a realization of minimal 
dimension, i.e. of minimal n. 
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5.2. Definition. A natural G action on a realization of a Jacobian Probenius 
algebra (Ae, f) is a linear G action on Ak which leaves f invariant. 

Given a natural G action on a realization of a Jacobian Frobenius algebra 
(A, f) set for each g E G, 0 9 := OFixg(Al:)· This is the ring of functions of the 
fixed point set of g for the G action on Ak. These are the functions fixed by g: 
0 9 = k[xb ... ,xn]9 • 

Denote by J9 := JfiFixgCAJ:l the Jacobian ideal off restricted to the fixed point 
set of g. 

Define 
A9 := 0 9 jJ9 (5.1) 

The A9 will be called twisted sectors for g-:/= 1. Notice that each A9 is a Jacobian 
Frobenius algebra with the natural realization given by (A9 ,/IFix9 ). In particu-
lar, it comes equipped with an invariant bilinear form ij9 defined by the element 
Hess(/IFix9 ). 

For g = 1 the definition of Ae is just the realization of the original Frobenius 
algebra, which we also call the untwisted sector. 

Notice there is a restriction morphism r 9 : Ae- A9 given by a~----+ aiFix9 mod J9 • 

Denote r 9 (1) by 19 . This is a non-zero element of A9 since the action was 
linear. Furthermore it generates A9 as a cyclic Ae module. 

The set Fix9 Ak is a linear subspace. Let 19 be the vanishing ideal of this space. 
We obtain a sequence 

A rg 

0 - 19 - e - A9 - 0 
Let ia be any splitting of this sequence induced by the inclusion: i9 : 0 9 - Oe 

which descends due to the invariance of f. 
In coordinates, we have the following description. Let Fix9 Ak be given by 

equations Xi= 0: i E N9 for some index set N9 • 

Choosing complementary generators Xj : j E T9 we have 0 9 = k[xi : j E T9 ] 

and Oe = k[xj,Xi: j E T9 ,i E N9 ]. Then 19 =(xi: i E N9 )o. the ideal in Oe 
generated by the Xi and Oe = 19 EB i9 (A9 ) using the splitting i9 coming from the 
natural inclusion i9 : k[xi: j E T9]- k[xj,Xi: j E T9 ,i E N9 ]. We also define the 
projections 

1fg : Al - Ag; 1fg = ig 0 Tg 
which in coordinates are given by f ~----+ flxj=O:jeN9 Let 

A:= ffiA9 

gEG 

where the sum is a sum of Ae modules. 

5.3. Definition. A discrete Torsion is a map f: G x G- k, s.t. 
t:(g,h) = t:(h- 1,g) t:(g,g) = 1 t:(glg2,h) = t:(gbh)~:(g2,h) 

5.4. Theorem. Given a natural G action on a realization of a Jacobian Frobe-
nius algebra (Ae, f) with a quasi-homogeneous function f of degree d and type 
q = (ql> ... , Qn) together with the natural choice of splittings i9 the possible struc-
tures of special G twisted Frobenius algebra on the Ae module A:= ffi9ea A9 are 
in 1-1 correspondence with elements of Z2 (G, A), where Z2 are G graded cocycles 
and a compatible non-abelian two cocycle cp with values in k*, which define a choice 
of discrete torsion. 
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6. Mirror construction for special G-Frobenius algebras 

6.1. Double grading. We consider Frobenius algebras with grading in some 
abelian group I. 

A= E9Ai 
iEJ 

This grading can be trivially extended to a double grading with values in I x I 
in two ways 

Ace= EB Ai,i and Aac = EB Ai,-i 
iEJ iEJ 

corresponding to the diagonal ~ : I --+ I x I and (id,-) o ~ : I --+ I x I. We 
call hi-graded Frobenius algebras of this form of (c, c)-type and of (a, c)-type, 
respectively. In the language of Euler fields we consider the field ( E, E) = ( E, E) 
or (E, E)= (E, -E). 

These gradings become interesting for special G-Frobenius algebras, since in 
that case the shifts will produce a possible non-diagonal grading. 

6.2. Definition. Given a graded special G-Frobenius algebra we assign the 
following hi-degrees to 19 

(E,E)(19 ) := (s9 ,s9 -1) 
It is clear that Ae is of (c, c)-type. A is however only of (c, c) type if s9 = s9 -1. 

Furthermore for the Ramond-space of A we assign the following hi-degree to v 

- d d 
(E, E)(v) := ( - 2, - 2) 

6.3. Euler-twist (spectral flow). In this section, we consider a graded spe-
cial G-Frobenius algebra and construct a new vector-space from it. We denote the 
grading operator by E: 

6.3.1. Definition. The twist-operator j for an Euler-field E is 

j := exp(2niE) 

We denote the group generated by j by J. 
We call a special G-Frobenius algebra Euler if there is a special G-Frobenius 

algebra A of which A is a subalgebra where G is a group that has G and J as 
subgroups. 

6.3.2. Definition. The dual A to an Euler special G-Frobenius algebra A of 
( c, c)-type is the vector space 

A := EB Ag := EB Vgj-1 
gEG gEG 

with the Ae and G-module structure determined by TJ : A9 ~ V91 -1 together with 
the hi-grading 

(E,E)(i 9 ) := (s91 -1 -d,s91 -1) 
where i9 denote the generator of A9 as Ae-module and the bi-linear form 

i} := Tj(f/) 
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where Tj := tJJgEarJ and V and fj refer to the Ramond-space of A. 

7. Explicit Examples 

7.1. Self duality of An. We consider the example of the Jacobian Frobenius 
Algebra associated to the function zn+l 

An := C[z]j(zn) 

together with the induced multiplication and the Grothendieck residue. Ex-
plicitly: 

the form 

and the grading: 

z'z3 = -· · { zi+i if i + j < n 
0 else 

. i 
E(z') :=-

n+1 
which means p = zn- 1 and d = ~+~. 

We consider just the group J ~ Z/(n + 1)Z with the generator j acting on z 
by multiplication with (n+l := exp(2rrin~ 1 ). We have 

and thus 

F . { C ifi=O 
~xi; 0 else 

A·{An ifi=O 
i' 1j; else 

Furthermore we have the following grading; 

- { (0, 0) for i = 0 
(E,E)(1p) = (i-1 n-i) else 

n+1'n+1 
which means pi; = 1j; and dj; = 0. 
Using the reconstruction Theorem we have to find a cocycle 'Y and a compatible 

action r.p. There is no problem for the metric since always IN9 I = 1 and if n + 1 is 
even det( (~) = -1. Since the group J is cyclic there is no freedom of choice for 
E and just two choices of parity are possible corresponding to j f---+ ±1. 

From the general considerations we know "/j;,jn-1-; E Ae and deg('Yj;,jn-1-;) = 
d- dj; = ~+~ which yields 

"/j;,jn-H = (( -1)Ji(i)1/2p = (( -1)J()i/2Zn-1 

for the other 'Y notice that deg(1j;) + deg(1jk) = it~J: 2 while deg(1jHk) = it~J: 1 

if i + k =f. n + 1, but there is no element of degree n~ 1 in AjHk fori+ k =f. n + 1. 
Hence 

this means that 
"':i"':k . 

r.pj;,jk = (-1F J c· 
Therefore the G-invariants A0 = A1 are generated by the identity 1. 
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The Ramond grading of this algebra is 

- { (0, 0) (E, E)(1J;v) = (_L _.! __ k_ + .!) 
n+1 2' n+1 2 

fori= 0 
else 

Since j E G the special G-Frobenius algebra is Euler and the dual is defined, 
moreover G = J so that the vector-space structures of A and A coincide. The 
grading is given by: 

- { (0, 0) fori= 0 
(E,E)(1j•v) = (-k-(n+l) _.! n+1-k + .!) else 

n+1 2' n+1 2 

The G-action is given by 

(/; ·; 'k = { J ,J 
( -1)?.1\i fork= 1 
( -1 )Y1k else 

This G-action leaves all even sectors Aji invariant except for i = 1 if ] = 1. Thus 
with the choice of all even sectors we have as G-modules 

A~An 
where more explicitly 
ij; t--t zn+ 1-i : k = 2, ... n and io t--t 1. 
Notice that this An is of (a, c)-type however. Also since J = G the form fj 

pulls back and gives a non-degenerate form on A0 , which is the usual form on An. 
Furthermore the usual multiplication on An is compatible with everything so that 
we can say that An is self-dual under this operation. 

7.2. Dn from a special Z/2Z-Frobenius algebra based on A2n-3 • In 
this section, we show how to get Dn from a special Z/2Z-Frobenius algebra based 
on A2n-3· The function for the Frobenius algebra A2n-3 is z 2n-2 . Since this is an 
even function, Z/2Z acting via z t--t -z is a symmetry. There are two sectors, the 
untwisted and the twisted sector containing the element L1 with degree 0. The 
multiplication is fixed by deg('Y_1,-1) = ~~=~ thus 

"' - z2(n-2) ,-1,-1-

again the group is cyclic so the G-action only depends on the choice of parity of 
the -1-sector. 

In the untwisted sector we have A~ 12 z = (1, z 2 , ... , z2(n-1)) ~ An-1 and the 
action of -1 on L 1 is given by 

so that if a(-1) = 1 

- (-1).::]_.::]_+1 1P-1,-1 -

Z/2Z 
A2n-3,Z/2Z ~ Dn 

and if a( -1) = 0 we just obtain the invariants of the untwisted sector which are 
isomorphic to An-1· 

The untwisted sector is given by the singularity An-1 as expected upon the 
transformation u = z2 • Notice that the invariants of the Ramond sector yield the 
singularity An-2 as expected from [W). These are of the form uidu or z 2i+ldz with 
i = 0, ... ,n- 3. 
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7.3. Point mod G. In the theory of Jacobian Frobenius algebras there is the 
notion of a point played by a Morse singularity z~ + · · · + z;. Any finite subgroup 
G C O(n, k) leaves this point invariant. 

The G-twisted algebra after possibly stabilizing is the following. 

A= Ef1k19 

gEG 

And the grading is deg(19 ) = Gs;, !s;), since d = d9 = 1. 
Using 4.10 it follows that the 'Y cannot vanish, thus fixing cp and e, so that the 

possibilities are enumerated by the graded cocycles. The compatibility equations 
hold automatically. 

SPECIAL CASE. 

If we assume that G C O(n, C) and that s; = 0 (i.e. Ei:.X;'i'O 2!-i>.i = l~ul E 
N), then we the cocycles lie in H 2 (G, k*) and the possible algebra structures are 
those of twisted group algebras. 

7.3.1. Point mod ZjnZ. By the above analysis we realize ZjnZ as the sub-
group of rotations of order n in C. We have that s; = 0 and thus we can choose 
the full cocycle making A into An, multiplicatively, with trivial grading and trivial 
G-action if one chooses all even sectors. The metric, however, will not be consistent 
with An. The identity pairs with itself for instance. Dualizing A, we obtain the 
following space 

A= EBjiAji-1 

with again a trivial (E, E) grading. Choosing the generator] := j-1 for J, the 
metric reads 

i=k=n 
else 

8. Recent developments 

After the first presentation of our axiomatic treatment of the "stringy" geom-
etry of orbifolds at WAGPOO Oct. 2000 in Trieste [Kl] two papers appeared taking 
the same point of view in a special setting: in [LS] the authors were considering 
the cohomology of the Hilbert scheme of points of a variety and came up with an 
algebraic structure on the n-th tensor power of a Frobenius algebra. It can be 
shown (cf. [K4] and see below) that this is the essentially unique structure of spe-
cial Sn-twisted Frobenius algebra on A®n. The second paper taking our point of 
view is [FG] where the special setting of of Gromov-Witten invariants of a global 
quotient are considered and shown to satisfy our axioms. 
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8.1. Symmetric Powers. For the full calculations see [K4] Let A be a Frobe-
nius algebra with degree d. We consider A®n with the permutation action of the 
symmetric group group Sn. 

Regarding first a Jacobian Frobenius algebra A given by the function J, A®n is 
the Jacobian algebra of the function f(z1 ) + · · · + f(zn) and action of permuting the 
variable coinc;:ides with the action of permuting the tensor factors. The restriction 
to the fixed point set Fix( a) : a E Sn is nothing but the contraction f.l-u which is 
the iterated contraction by multiplication over the indices provided by the partition 
corresponding to the cycle of a. 

The standard degree shifts in the case of a power of a Jacobian algebra can be 
calculated to be 

s+ = d- du = dJaJ, s- = 0 
where JaJ is the minimal number of transposition needed to represent a. 

In the general setting we can use the contraction maps f.l-u as the maps r u and 
keep the grading. 

8.2. Theorem. Given a Jacobian Frobenius algebra A there are exactly two 
Sn Frobenius algebra structures on A®n with restriction maps ru and the natural 
grading above. These correspond to an all even case and a super-graded case. 
These cases differ exactly by a choice of algebraic discrete torsion [K4]. 

Here the notion of algebraic discrete torsion is introduced in [K4] and extends 
the notion of discrete torsion for Jacobian Frobenius algebras as presented above. 

References 

[A] M. Atiyah. Topological quantum field theories. Inst. Hautes Etudes Sci. Pub!. Math. No. 68 
(1988), 175-186. 

[AS] M. Atiyah and G. Segal. On equivariant Euler charocteristics. J. Geom. Phys. 6, 671-677 
(1989). 

[CR] W. Chen, Y. Ruan. Orbifold Quantum Cohomology. Preprint math.AG/0005198. 
[DHVW] Strings on orbifolds. Nuclear Phys. B 261 (1985), 678-686. 

L. Dixon et a!. E. Strings on orbifolds. II. Nuclear Phys. B 274 (1986), 285-314. 
[Dij] R. Dijkgraaf. A geometrical approach to two-dimensional conformal field theory Ph. D. 

Thesis, Utrecht (1989). 
[Du] B. Dubrovin. Geometry of 2D topological field theories. Integrable systems and quantum 

groups (Montecatini Terme, 1993), 120-348, Lecture Notes in Math., 1620, Springer, Berlin, 
1996. 

[DVVV] R. Dijkgraaf, C. Vafa, E. Verlinde, H. Verlinde. The operotor algebro of orbifold models. 
Comm. Math. Phys. 123 (1989), 485-526. 

[DW] R. Dijkgraaf, E. Witten. Topological gauge theories and group cohomology. Comm. Math. 
Phys. 129 (1990), 393-429. 

[FQ] D. Freed, F. Quinn. Chern-Simons theory with finite gauge group. Comm. Math. Phys. 156 
(1993), 435-472. 

[GP] B. R. Greene, M. R. Plesser Duality in Calabi- Yau moduli space. Nuclear Phys. B 338 (1990), 
15-37 

[HT] A. Hatcher, W. Thurston. A presentation for the mapping class group of a closed orientable 
surface. Topology 19 (1980), 221-237. 

[IV] K. Intriligator,C. Vafa. Landau-Ginzburg orbifolds. Nuclear Phys. B 339 (1990), 95-120 
[K1] R. Kaufmann, Orbifolding Frobenius Algebros. Talk presented at WAGPOO Oct. 2000 in 

Trieste, Italy. 
[K2] R. Kaufmann, Orbifolding Frobenius Algebros. Preprint MPI 2001-56, IHES M/01/37, 

math.AG/0107163, 42p. 
[K3] R. Kaufmann. The tensor Product in the Theory of Frobenius manifolds. Int. J. of Math. 10 

(1999) 159-206. 

Licensed to Max-Planck Institut fur Mathematik.  Prepared on Fri Jan 22 10:09:01 EST 2016for download from IP 195.37.209.180/130.44.104.100.

License or copyright restrictions may apply to redistribution; see http://www.ams.org/publications/ebooks/terms



ORBIFOLD FROBENIUS ALGEBRAS, COBORDISMS AND MONODROMIES 161 

[K4] R. Kaufmann. Second quantized Probenius algebras. Preprint math.AG/0206137, IHES 
M/02/46. 

[K5] R. Kaufmann. Singularities and orbifold Probenius algebras (in preparation) 
[LS] M. Lehn and C. Sorger. The cup product of the Hilbert scheme for K3 surfaces. Preprint 

math.AG/0012166 
[FG] B. and L. Goettsche Orbifold cohomology for global quotients Preprint math.AG/0104207 
[St] N. Steenrod. The Topology of Fibre Bundles. Princeton Mathematical Series, vol. 14. Prince-

ton University Press, Princeton, N. J., 1951. 
[T] V. Turaev. Homotopy field theory in dimension 2 and group-algebras math.QA/9910010 
[V] C. Vafa. String vacua and orbifoldized LG models. Modern Phys. Lett. A 4 (1989), 1169-1185. 
[W] C. T. C. Wall. A note on symmetry of singularities. Bull. London Math. Soc. 12 (1980), 

169-17 
E-mail address: kaufmann\Omath. usc. edu 

UNIVERSITY OF SOUTHERN CALIFORNIA, LOS ANGELES, USA 

Licensed to Max-Planck Institut fur Mathematik.  Prepared on Fri Jan 22 10:09:01 EST 2016for download from IP 195.37.209.180/130.44.104.100.

License or copyright restrictions may apply to redistribution; see http://www.ams.org/publications/ebooks/terms


