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Basic idea

Basic idea

Gain insight into the properties of difficult objects, e.g. geometrical
objects, by using simpler data and operations on it.

Hierarchy of data

1 Numbers

2 Vector spaces ; numbers via dimension

3 Algebras

4 k-linear objects. e.g. graded, differential, modules ...

5 Families of these (deformations)

6 Many operations

7 Categories
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Euler Characteristic

Euler

Take any convex polytope in 3d and compute.
|Vertices|-|Edges|+|Faces|. The answer is always 2.

Lhulier

|Vertices|-|Edges|+|Faces|= 2 -2| cavities|
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Euler Characteristic
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Modern version

Classification theorem

For every 2 dimensional closed orientable manifold (surface) S , the
Euler characteristic (use any triangulation and a triangulation
exists) χ(S) = 2− 2g where χ is the Euler characteristic, and g
uniquely fixes the surface up to homeomorphism.

Betti, Poincaré

χ = b0 − b1 + b2. The bi are dimensions of vector spaces.

Finer invariants: Abelian groups

To include the Klein bottle and non–orientable surfaces, one has to
actually use H1, the first homology group. The first Betti number
is the rank of the free part. One needs the torsion! E.g.
H1(Klein) = Z⊕ Z/2Z
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How much information do we get?

In 3d

Question (Poincaré): Is it enough to know that for a sphere H1 is
0 and that it is a closed 3–manifold to uniquely characterize it.
Answer (Poincaré): No. Counterexample: Poincaré homology
sphere ; many new invariants e.g. Casson.

Fundamental group

We can look at the possibly non–Abelian fundamental group given
by all loops at a given point modulo homotopy (continuous
deformation)
Question (Poincaré): Is it enough to know that for a sphere π1 is
trivial and that it is a closed 3–manifold to uniquely characterize it?
Answer (Perelman): Using Ricci–flow of Hamilton: Yes!
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Other ideas

Algebra

There is a dual notion to homology called cohomology.
Cohomology is a a ring. That is we can multiply objects

Forms/deRham algebra

One familiar version is given by deRham forms (what you integrate
over) and their wedge product

ω1 ∧ ω2
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Remarks

1 A special case is the cross product in R3.

2 ωp ∧ ω′q = (−1)pqω′q ∧ ωp like dx ∧ dy = −dy ∧ dx
(This is the sign in the cross product and also the orientation
when integrating over surfaces)

3 Forms are vector spaces over R, so no torsion.

4 The algebra is associative, unital, (super) commutative,
graded, differential.

5 There is a version over Z: singular cohomology which is a ring.
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Algebra structure as a finer invariant

Additive structure

Notice that the cohomology of CP2 and that of S2 ∨ S4 are the
same.

H0 = Z,H1 = 0,H2 = Z,H3 = 0,H4 = Z

Ring structure

As a ring H∗(CP2) = Z[t]/(t3) deg(t) = 2 and
H∗(S2 ∨ S4) = k[s, t]/(t2, s2, st) with deg(s) = 4, deg(t) = 2.

Theorem (Sullivan/Quillen, rational homotopy theory)

Over Q homotopy types are characterized by commutative
differential graded algebras.
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Chain level, more operations

Chain level, singular chains

There is a similar story over Z called singular chains S∗(X ) and
dually singular co-chains S∗(X ). The multiplication on S∗(X ) is
called ∪ = ∪0. It is again, graded, differential, unital, associative,
but not strictly commutative.

E∞

c ∪ c ′ ∓ c ′ ∪ c = d(c ∪1 c ′)
c ∪i c ′ ∓ c ′ ∪ c = d(c ∪i+1 c ′)

These operations are part of a set of operations, which make the
cochains into an E∞-algebra.

Theorem (Mandell)

The E∞ algebra structure on co–chains characterizes homotopy
types of simply connected manifolds over Z.
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Based Loop spaces

Pontrjagin product

The based loop space ΩX = Hompointed(S1,X ). It has a
non–associative product called

µ2 : ΩX × ΩX → ΩX
simply do one loop after the other and re-parameterize

A∞ structure

Due to the re-parameterization, the product is not associative. It is
homotopy associative. There are higher products parameterized by
Stasheff polytopes.

Theorem (Stasheff)

A connected space is homotopy equivalent to a loop space if it
admits all the operations above.
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A∞

Algebraic version

A dg–vector spaces together with µi : A⊗n → A satisfying
equations e.g.

µ2(µ2(ab), c)− µ2(a, µ2(bc)) = dµ3(a, b, c)
and so on.

Associahera/Stasheff polytopes
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(cubical decomposition from paper with R.Schwell on A∞–Deligne
conjecture)
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Free Loop spaces

Chas–Sullivan product

The free loop space is LX = Hom(S1,X ). If X is a simply
connected compact manifold of dimension d : H∗−d has the
structure of a BV algebra. This means it has a multiplication and
an (odd) Lie bracket that is compatible (Poisson). Moreover this
bracket is induced by an order two differential operator ∆.

Several approaches

Cohen-Jones: Thom spectrum, Felix-Thomas: rational homotopy
theory, Merkulov: Iterated integrals. Also algebraic version: K,
Tradler-Zeinalian.

Theorem (K., cyclic Deligne conjecture)

For a Frobenius algebra A, CH∗(A,A) admits the action of a chain
model of the framed little discs operad.
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Agruments so far

1 Besides having objects (numbers, groups, spaces) as
invariants, considering operations on these objects help to
make them more powerful.
(Aside: The fact that R,C,H and O are the only division
algebras follows from K -theory together with Adams
operations. Hopf invariant one.)

2 Sometimes there are many such operations together with
relations on them.
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A last example: Operations from Physics/Geometric
background

Correlation functions

In quantum field theory, fields form a vector spaces. A main goals
it to compute correlation functions n–point functions

< φ1, . . . , φn >
which are multilinear. The result is usually given in terms of
Feynman integrals. One calculates via reduction.

Mathematical example: Cohomological Field theory
[Kontsevich-Manin]

A CohFT on a vector space V with a non–degenerate quadratic
form is given by multilinear maps taking values in H∗(M̄g ,n)
Ig ,n : V⊗n → H∗(M̄g ,n) satisfying the equations of the cohomology
classes themselves.
Short version: V is an algebra over the modular operad H∗(M̄g ,n).
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Gromov–Witten Invariants

Theorem (Kontsevich-Manin, Behrend-Fantechi, Ruan-Tian, ....)

Gromov–Witten invariants yield a CohFT.

Use

Geometric information. Like enumerative problems. Mirror
Symmetry. CohFT gives relations that can be used to create
recursion formulas. Write into power series, get PDEs. Example
WDVV equation

∀a, b, c , d :
∑

ef Φabeg ef Φfcd = (−1)ã(b̃+c̃)
∑

ef Φbceg ef Φfad

where Φabc = ∂a∂b∂cΦ, g ij is the inverse metric

Theorem (Kontsevich-Manin-K, Behrend,K)

The diagonal class yields a quantum Künneth formula.
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So far

1 Find out about geometry using operations.
• Products.
• Module structures.
• Coherent systems of higher order operations.

2 The operations are coded by new objects, e.g. operads.

3 Sometimes these are given by spaces/geometries again.
• E∞ generated by S∞ (hemispherical decomposition)
• A∞ Stasheff Associahedra
• G∞ Cycloherda and Associaherdra.
• M̄g ,n

4 Recursions/calculational tools encoded by relations.
• Cohomological relations.
• Boundary relations.
• Graph type, e.g. Whitehead moves.
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Feynman categories: Goals

There are two main goals

1 Provide a lingua universalis for operations and relations which
includes all known such gadgets as examples.

2 Do universal constructions in general.

Applications

Find out information of objects with operations. E.g.
Gromov-Witten invariants, String Topology, etc.
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Warm up I

Operations and relations for Associative Algebras

• Data: An object A and a multiplication µ : A⊗ A→ A

• An associativity equation (ab)c = a(bc).

• Think of µ as a 2-linear map. Let ◦1 and ◦2 be substitution in
the 1st resp. 2nd variable: The associativity becomes

µ ◦1 µ = µ ◦2 µ : A⊗ A⊗ A→ A .

µ ◦1 µ(a, b, c) = µ(µ(a, b), c) = (ab)c
µ ◦2 µ(a, b, c) = µ(a, µ(b, c)) = a(bc)

• We get n–linear functions by iterating µ:
a1 ⊗ · · · ⊗ an → a1 . . . an.

• There is a permutation action τµ(a, b) = µ ◦ τ(a, b) = ba

• This give a permutation action on the iterates of µ. It is a
free action there and there are n! n–linear morphisms
generated by µ and the transposition.
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Warm up II

Categorical formulation for representations of a group G .

• G the category with one object ∗ and morphism set G .

• f ◦ g := fg .

• This is associative and has a unit.

• Inverses are an extra structure ⇒ G is a groupoid.

• A representation is a functor ρ from G to Vect.

• ρ(∗) = V , ρ(g) ∈ Aut(V )

• Induction and restriction now are pull–back and push–forward
(Lan) along functors H → G .
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Feynman categories

Data

1 V a groupoid

2 F a symmetric monoidal category

3 ı : V → F a functor.

Notation

V⊗ the free symmetric category on V (words in V).

V


  

ı // F

V⊗

ı⊗
>>
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Feynman category

Definition

Such a triple F = (V,F , ı) is called a Feynman category if

i ı⊗ induces an equivalence of symmetric monoidal categories
between V⊗ and Iso(F).

ii ı and ı⊗ induce an equivalence of symmetric monoidal
categories Iso(F ↓ V)⊗ and Iso(F ↓ F) .

iii For any ∗ ∈ V, (F ↓ ∗) is essentially small.
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Hereditary condition (ii)

1 In particular, fix φ : X → X ′ and fix X ′ '
⊗

v∈I ı(∗v ): there
are Xv ∈ F , and φv ∈ Hom(Xv , ∗v ) s.t. the following diagram
commutes.

X
φ //

'
��

X ′

'
��⊗

v∈I Xv

⊗
v∈I φv //

⊗
v∈I ı(∗v )

(1)

2 For any two such decompositions
⊗

v∈I φv and
⊗

v ′∈I ′ φ
′
v ′

there is a bijection ψ : I → I ′ and isomorphisms
σv : Xv → X ′ψ(v) s.t. P−1ψ ◦

⊗
v σv ◦ φv =

⊗
φ′v ′ where Pψ is

the permutation corresponding to ψ.

3 These are the only isomorphisms between morphisms.
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Example 1

F = Sur , V = I
• Sur be the category of finite sets and surjection with q as

monoidal structure

• I be the trivial category with one object ∗ and one morphism
id∗.

• I⊗ is equivalent to the category with objects n̄ ∈ N0 and
Hom(n̄, n̄) ' Sn, where we think
n̄ = {1, . . . , n} = {1} q · · · q {1}, 1 = ı(∗).

• I⊗ ' Iso(Sur)

• T ' {1, . . . , n}. S
f //

'
��

T

'
��

q|T |i=1f −1(i)
qf |f−1(i) // q|T |i=1ı(∗)
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Ops and Mods

Definition

Fix a symmetric monoidal category C and F = (V,F , ı) a Feynman
category.

• Consider the category of strong symmetric monoidal functors
F-OpsC := Fun⊗(F , C) which we will call F–ops in C

• V-ModsC := Fun(V, C) will be called V-modules in C with
elements being called a V–mod in C.

Theorem

The forgetful functor G : Ops →Mods has a right adjoint F (free
functor) and this adjunction is monadic.
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Examples

Ops

There is a basic Feynman category whose objects are 1-vertex
graphs and whose morphisms are graphs with extra sturcture. The
way we obtain several Feynman categories. The Ops will then
yield all known types of operads or operad like objects.

Types of operads and graphs

Ops Graphs

Operads rooted trees
Cyclic operads trees
Modular operads connected graphs (add genus marking)
PROPs directed graphs (and input output marking)
NC modular operad graphs (and genus marking)
. . . . . .
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Further examples

Enriched version

We can consider Feynman categories and target categories enriched
over another monoidal category, such as T op, Ab or dgVect.

Theorem

The category of Feynman categories with trivial V enriched over E
is equivalent to the category of operads in E with the
correspondence given by O(n) :=: Hom(n̄, 1̄). The Ops are now
algebras over the underlying operad.

More

Other examples are twisted modular operads, non–sigma versions,
the simplicial category, crossed simplicial groups, FI–algebras.
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Universal constructions: What we can do:

1 Push–forwards and pull–backs along functors between
Feynman categories.
Think induction/restriction/extension by 0.

2 Co(bar) transforms and resolutions. Think (co)bar
transformation/resolution for algebras as well as Feynman
transforms and master equations.
NB: This needs model category theory which we
provide

3 Universal operations. Lie–brackets, BV etc.

4 Hopf algebra structures (joint with I. Gálvez–Carrillo and A.
Tonks).
This includes Connes–Kreimers Renormalization Hopf algebra,
Goncharov’s Hopf algebra for multi–zetas (polylogs) and
Baues’ double cobar Hopf algebra.
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Master equations

The Feynman transform is quasi–free. An algebra over FO is dg–if
and only if it satisfies the following master equation.

Name of
F-OpsC

Algebraic Structure of FO Master Equation (ME)

operad ,[GJ94] odd pre-Lie d(−) +− ◦ − = 0

cyclic operad
[GK95]

odd Lie d(−) + 1
2
[−,−] = 0

modular operad
[GK98]

odd Lie + ∆ d(−) + 1
2
[−,−] + ∆(−) = 0

properad
[Val07]

odd pre-Lie d(−) +− ◦ − = 0

wheeled prop-
erad [MMS09]

odd pre-Lie + ∆ d(−) +− ◦ −+ ∆(−) = 0

wheeled prop
[KWZ12]

dgBV d(−) + 1
2
[−,−] + ∆(−) = 0
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Geometry and moduli spaces

Modular Operads

The typical topological example are M̄gn. These give rise to chain
and homology operads.

• Gromov–Witten invariants make H∗(V ) and algebra over
H∗(M̄g ,n)

Odd Modular

The canonical geometry is given by M̄KSV which are real blowups
of M̄gn along the boundary divisors.

• We get 1-parameter gluings parameterized by S1. Taking the
full S1 family on chains or homology gives us the structure of
an odd modular operad.

• Going back to Sen and Zwiebach, a viable string field theory
action S is a solution of the quantum master equation.
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Hopf algebras

Basic structures

Assume F is additive and decomposition finite. Consider Hom(F).
Let µ be the tensor product with unit idI.

∆(φ) =
∑

(φ0,φ1):φ=φ1◦φ0 φ0 ⊗ φ1
and ε(φ) = 1 if φ = idX and 0 else.

Theorem (Galvez-Carrillo, K , Tonks)

Hom(F) together with the structures above is a bi–algebra. Under
certain mild assumptions, a canonical quotient is a Hopf algebra

Examples

In this fashion, we can reproduce Connes–Kreimer’s Hopf algebra,
the Hopf algebras of Goncharov and a Hopf algebra of Baues that
he defined for double loop spaces.
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Summary

1 Lift invariants from numbers to objects (e.g. groups)

2 Consider operations to get classification/recognition

3 These operations are governed by algebraic structures,
operad-like structures.

4 The operad-like structures themselves often have underlying
geometries

5 The operad-like structures and their properties are
axiomatized via Feynman categories

6 From Feynman categories we can distill Hopf algebras.

7 Hope: These give us geometric categories.
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Next steps

• Find the connection to Tannakian categories. Find out the
role of fibre functors.

• Find action of Grothendieck-Teichmüller group (GT).

• Connect to GT action (Kitchloo-Morava) on the stable
symplectic category.

• Construct Feynman category for the open/closed version of
Homological Mirror symmetry.

• . . .
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The end

Thank you!
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