Continuity and Derivative Mini-Exercises

MA 504 Problem Session

November 3, 2022

- 1. Let X and Y be metric spaces and say that $f : X \to Y$ is some function. Rank the following properties in order of strength. Are any equivalent?
 - f is continuous
 - f is uniformly continuous
 - For some $\lambda \in [0,1)$, $d(f(x), f(y)) \leq \lambda d(x, y)$ for all $x, y \in X$ [If Y = X, f is a contraction mapping.]
 - f is such that d(f(x),f(y)) < d(x,y) for all $x,y \in X$
 - There exists a $c \in \mathbb{R}$ with $c \geq 0$ such that $d(f(x), f(y)) \leq c d(x, y)$ for all $x, y \in X$. [This property is known as Lipschitz continuity, though the textbook does not discuss it.]
 - Any other property that you want to include in your schematic
- 2. (Fall 2015 504 Exam 2) Let $f : \mathbb{R} \to \mathbb{R}$ be continuous. Let C, U, K, and B all be subsets of \mathbb{R} , and assume that C is closed, U is open, K is compact, and B is bounded. Answer True or False for each statement. [The exam required no proof or explanation, but it might be beneficial to cite a theorem/brief justification or find a counterexample.]

(a)	f(C) is closed	Т	\mathbf{F}
(b)	$f^{-1}(C)$ is closed	Т	\mathbf{F}
(c)	f(K) is compact	Т	\mathbf{F}
(d)	$f^{-1}(K)$ is compact	Т	\mathbf{F}
(e)	f(U) is open	Т	\mathbf{F}
(f)	$f^{-1}(U)$ is open	Т	\mathbf{F}
(g)	f is bounded on K	Т	\mathbf{F}
(h)	f is bounded on C	Т	\mathbf{F}
(i)	f is bounded on U provided U is also bounded	Т	\mathbf{F}
(j)	f is bounded on B	Т	\mathbf{F}

- 3. (Fall 2015 504 Exam 2)
 - (a) Let $A \subset \mathbb{R}$ be bounded, and let $f, g : A \to \mathbb{R}$ be uniformly continuous functions. Prove that fg is also uniformly continuous on A.
 - (b) Show that f(x) = x and $g(x) = \sin(x)$ are both uniformly continuous on \mathbb{R} , but their product is not. You may use any properties of $\sin(x)$ that you know.
- 4. Let f(x) be differentiable on the compact interval [a, b]. Is f(x) bounded? What about f'(x)?