ATEX Tutorial

Alison Rosenblum

Purdue Student Colloquium

September 29, 2022

Welcome!

Please take a moment to register for an Overleaf account (https://www.overleaf.com/) or otherwise set yourself up to use ${ }^{A} T_{E X}$ during the talk

Slides for this presentation are available on my department website, https://www.math.purdue.edu/~rosenbla/talks.html

Some Paradigms

As you typeset with ${ }^{A} T_{E} \mathrm{E}$, keep in mind...

Some Paradigms

As you typeset with ${ }^{A} T_{E} \mathrm{E}$, keep in mind...

- Separate content and style

Some Paradigms

As you typeset with $\operatorname{AR}_{\mathrm{E}} \mathrm{EX}$, keep in mind...

- Separate content and style

■ Can do almost anything (with enough effort)

Some Paradigms

As you typeset with $\operatorname{AR}_{\mathrm{E}} \mathrm{EX}$, keep in mind...

- Separate content and style
- Can do almost anything (with enough effort)
- Use what others have already done

Pass 1: ATEX Basics

Document Structure

Heading

- Contains overarching instructions

Body

- Contains the content of your document

Document Structure

Heading

- Contains overarching instructions

■ Some "essentials:"

- \documentclass\{article\}setsdocumenttype(here,article)■\usepackage\{amsmath,amsthm,amssymb\}veryusefulpackagesformathtypesettingBodyundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefined
- Contains the content of your document

Document Structure

Heading
■ Contains overarching instructions
■ Some "essentials:"
■ class\{article\}setsdocumenttype(here,article)■\usepackage\{amsmath,amsthm,amssymb\}veryusefulpackagesformathtypesettingBodyundefined

- Contains the content of your document

■ Everything between \begin\{document\} and } \end\{document\} }

Basic Typesetting

General usage

■ Plain text code which compiles to a pdf

- Commands typically begin with \}
- Comments: everything from \% to end of line

Basic Typesetting

General usage
■ Plain text code which compiles to a pdf

- Commands typically begin with \}
- Comments: everything from \% to end of line

Text mode

- Standard word processing (mostly)

Basic Typesetting

General usage
■ Plain text code which compiles to a pdf

- Commands typically begin with \}
- Comments: everything from \% to end of line

Text mode

- Standard word processing (mostly)

■ New line: empty line (i.e. hit enter twice)
■ Italics and bold: \textit\{text\} and \textbf\{text\}
■ Special characters: \#\$\% ${ }^{\circ}$ \&_~
{\} }

Basic Typesetting

General usage
■ Plain text code which compiles to a pdf
■ Commands typically begin with \}

- Comments: everything from \% to end of line

Text mode

- Standard word processing (mostly)

■ New line: empty line (i.e. hit enter twice)
■ Italics and bold: \textit\{text\} and \textbf\{text\}
■ Special characters: \#\$\% ${ }^{\circ}$ \&_~
{\} }
■ Usually escape with a backslash (e.g.
\$: \$)

- carat (^): ˆ, tilde (~): ̃, backslash (\backslash): \

Basic Typesetting

General usage
■ Plain text code which compiles to a pdf
■ Commands typically begin with \}

- Comments: everything from \% to end of line

Text mode

- Standard word processing (mostly)

■ New line: empty line (i.e. hit enter twice)
■ Italics and bold: \textit\{text\} and \textbf\{text\}
■ Special characters: \#\$\% ${ }^{\circ}$ \&_ $\backslash\}$

- Usually escape with a backslash (e.g.
\$: \$)
- carat (^): ˆ, tilde (~): ̃, backslash (\backslash): \
■ Quotation marks: 'quote' or ' 'quote" to produce "quote" instead of "quote"

Math Mode

■ Inline math: surround by \$math\$
■ Numbers, letters,,,$+-=$, etc: keyboard entry
■ Exponent: ^ (one character) or ^\{\}, subscript: _ (one character) or _\{\}

Math Mode

■ Inline math: surround by \$math\$
■ Numbers, letters,,,$+-=$, etc: keyboard entry
■ Exponent: ^ (one character) or ^\{\}, subscript: _ (one character) or _\{\}
■ Greek letters: e.g. \delta (lowercase δ) or \Delta (uppercase Δ)

■ I prefer \varepsilon (ε), \varphi (φ) to \epsilon (ϵ), \phi (ϕ)

Math Mode

- Inline math: surround by \$math\$

■ Numbers, letters,,,$+-=$, etc: keyboard entry
■ Exponent: ^ (one character) or ^\{\}, subscript: _ (one character) or _\{\}
■ Greek letters: e.g. \delta (lowercase δ) or \Delta (uppercase Δ)

■ I prefer \varepsilon (ε), \varphi (φ) to \epsilon (ϵ), \phi (ϕ)
■ Math operators: e.g. \sin, \ln

Math Mode

- Inline math: surround by \$math\$

■ Numbers, letters,,,$+-=$, etc: keyboard entry
■ Exponent: ^ (one character) or ^\{\}, subscript: _ (one character) or _\{\}
■ Greek letters: e.g. \delta (lowercase δ) or \Delta (uppercase Δ)

■ I prefer \varepsilon (ε), \varphi (φ) to \epsilon (ϵ), \backslash phi (ϕ)
■ Math operators: e.g. \sin, \ln
■ Math fonts e.g. blackboard: \mathbb\{R\} (R), bold: \backslash mathbf $\{\mathrm{v}\}(\mathrm{v})$, calligraphic: \backslash mathcal $\{\mathrm{P}\}(\mathcal{P})$, \backslash mathfrak\{a\} (a)

Math Mode

- Inline math: surround by \$math\$

■ Numbers, letters,,,$+-=$, etc: keyboard entry
■ Exponent: ^ (one character) or ^\{\}, subscript: _ (one character) or _\{\}
■ Greek letters: e.g. \delta (lowercase δ) or \Delta (uppercase Δ)

■ I prefer \varepsilon (ε), \varphi (φ) to \epsilon (ϵ), \backslash phi (ϕ)
■ Math operators: e.g. \sin, \ln
■ Math fonts e.g. blackboard: \mathbb\{R\} (R), bold: \backslash mathbf $\{\mathrm{v}\}(\mathrm{v})$, calligraphic: \backslash mathcal $\{\mathrm{P}\}(\mathcal{P})$, \backslash mathfrak\{a\} (a)

- Square root: $\backslash \operatorname{sqrt}\{\mathrm{x}\}(\sqrt{x})$, fraction: $\backslash \mathrm{frac}\{1\}\{2\}\left(\frac{1}{2}\right)$

Math Mode

- Inline math: surround by \$math\$

■ Numbers, letters,,,$+-=$, etc: keyboard entry
■ Exponent: ^ (one character) or ^\{\}, subscript: _ (one character) or _\{\}
■ Greek letters: e.g. \delta (lowercase δ) or \Delta (uppercase Δ)

■ I prefer \varepsilon (ε), \varphi (φ) to \epsilon (ϵ), \backslash phi (ϕ)
■ Math operators: e.g. \sin, \ln
■ Math fonts e.g. blackboard: \mathbb\{R\} (R), bold: \backslash mathbf $\{\mathrm{v}\}(\mathrm{v})$, calligraphic: \backslash mathcal $\{\mathrm{P}\}(\mathcal{P})$, \backslash mathfrak\{a\} (a)

- Square root: \backslash sqrt $\{\mathrm{x}\}(\sqrt{x})$, fraction: $\backslash \mathrm{frac}\{1\}\{2\}\left(\frac{1}{2}\right)$
- Detexify (handwriting to LATEX code)

Math Mode (Display Style)

- Big operators: e.g. \sum_\{i=1\}^n ($\sum_{i=1}^{n}$), \int (\int) or \int_a^b $\left(\int_{a}^{b}\right)$, \bigoplus (\bigoplus)

Math Mode (Display Style)

- Big operators: e.g. \backslash sum_ $\{i=1\}^{\wedge} n\left(\sum_{i=1}^{n}\right)$, $\operatorname{int}\left(\int\right)$ or \int_a^b (\int_{a}^{b}), \bigoplus (\bigoplus)
- Display math: surround by \backslash [displayed math \backslash] (outdated: surround by $\$ \$ d i s p l a y e d ~ m a t h \$ \$) ~$

Math Mode (Display Style)

- Big operators: e.g. \sum_\{i=1\}^n ($\sum_{i=1}^{n}$), \int (\int) or \int_a^b (\int_{a}^{b}), \bigoplus (\bigoplus)
- Display math: surround by \backslash [displayed math \backslash] (outdated: surround by $\$ \$ d i s p l a y e d ~ m a t h \$ \$) ~$
■ e.g. Inline integral $\int_{0}^{\infty} e^{-x^{2}} d x$ vs displayed

$$
\int_{0}^{\infty} e^{-x^{2}} d x
$$

Math Mode (Display Style)

- Big operators: e.g. \sum_\{i=1\}^n ($\sum_{i=1}^{n}$), \int (\int) or \int_a^b (\int_{a}^{b}), \bigoplus (\bigoplus)
- Display math: surround by $$
displayed math \(\backslash\)] (outdated: surround by \(\$ \$ d i s p l a y e d ~ m a t h \$ \$) ~\)
- e.g. Inline integral \(\int_{0}^{\infty} e^{-x^{2}} d x\) vs displayed
\[
\int_{0}^{\infty} e^{-x^{2}} d x
$$

■ Text in math mode: \text\{non-math stuff\}

Math Mode (Display Style)

- Big operators: e.g. \sum_\{i=1\}^n ($\sum_{i=1}^{n}$), \int (\int) or \int_a^b (\int_{a}^{b}), \bigoplus (\bigoplus)
■ Display math: surround by \backslash [displayed math \backslash] (outdated: surround by \$\$displayed math\$\$)
■ e.g. Inline integral $\int_{0}^{\infty} e^{-x^{2}} d x$ vs displayed

$$
\int_{0}^{\infty} e^{-x^{2}} d x
$$

- Text in math mode: \text\{non-math stuff\}

Note: whitespace generally ignored in math mode

Compiling

- Errors vs. warnings

Compiling

- Errors vs. warnings
- Error log

Compiling

- Errors vs. warnings
- Error log
- Some typical errors
- Mismatched \$ \$ or \{ \}
- Mismatched \begin\{\} and \end\{\} }
- Misspelled commands
- Used command without loading package

Exercises

1. Introduce and state the quadratic formula (use text, inline math, and display math).
2. Write down what

$$
\lim _{\theta \rightarrow 0} \frac{\sin (\theta)}{\theta}=0
$$

means, using the epsilon-delta definition. (as an extra challenge, include the expression $\lim _{\theta \rightarrow 0} \frac{\sin (\theta)}{\theta}$ in your statement).

Pass 2: Custom Commands, Lists

Loading Packages

Say you want to type a script C, \mathscr{C}

Loading Packages

Say you want to type a script C, \mathscr{C}

1. Consult Detexify

Loading Packages

Say you want to type a script \mathbb{C}, \mathscr{C}

1. Consult Detexify

Score: 0.1654948381414253usepackage\{mathrsfs\}\backslashmathscr$\{\mathrm{C}\}$mathmodeundefinedundefinedundefinedundefinedundefinedundefinedundefined

Loading Packages

Say you want to type a script rm{C},\mathscr{C}\)[.ConsultDetexify2.Inpreamble,add\usepackage\{mathrsfs\}undefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefined

Score: 0.1654948381414253
sepackage\{mathrsfs\}\mathscr\{C$\}$mathmodeundefinedundefinedundefinedundefinedundefinedundefinedundefined

Loading Packages

Say you want to type a script rm{C},\mathscr{C}\)[.ConsultDetexify2Inpreamble,add\usepackage\{mathrsfs\}3.Inbody,type\mathscr{C}withcommand\$\mathscr\{C\}\$undefined

Score: 0.1654948381414253
sepackage\{mathrsfs\}Imathscr\{C\}mathmodeundefinedundefinedundefinedundefinedundefinedundefined

Custom Commands

Custom Commands

Basic syntax: in preamble, \newcommand\{name\}[\# of parameters]\{what command does\}

Custom Commands

Basic syntax: in preamble, \newcommand\{name\}[\# of parameters]\{what command does\}

■ e.g. \newcommand $\{\backslash \mathrm{R}\}\{\backslash$ mathbb $\{\mathrm{R}\}\}$ means $\$ \backslash \mathrm{R} \$$ produces \mathbb{R}

- Alternately, \newcommand $\{\backslash \mathrm{bb}\}\{\backslash$ mathbb shortens command: \bb\{R\}, \bb\{Q\}, \bb\{N\}

Custom Commands

Basic syntax: in preamble, \newcommand\{name\}[\# of parameters]\{what command does\}

■ e.g. \newcommand $\{\backslash \mathrm{R}\}\{\backslash$ mathbb $\{R\}\}$ means $\$ \backslash \mathrm{R} \$$ produces \mathbb{R}

- Alternately, \newcommand $\{\backslash \mathrm{bb}\}\{\backslash$ mathbb shortens command: \bb\{R\}, \bb\{Q\}, \bb\{N\}
- e.g. The Newton power sum of degree d in n variables is sometimes denoted $p_{d}^{(n)}\left(\$ p^{\wedge}\{(n)\} _d \$\right)$. Or,
- Create command: \newcommand\{\pow\}[2]\{p^\{(\#1)\}_\{\#2\}\}
- To use: $\$ \backslash$ pow $\{\mathrm{n}\}\{\mathrm{d}\} \$\left(p_{d}^{(n)}\right)$, \backslash pow $\{\mathrm{k}-1\}\{2\}\left(p_{2}^{(k-1)}\right)$

Custom Commands

Basic syntax: in preamble, \newcommand\{name\}[\# of parameters]\{what command does\}

- e.g. \newcommand $\{\backslash \mathrm{R}\}\{\backslash$ mathbb $\{R\}\}$ means $\$ \backslash \mathrm{R} \$$ produces \mathbb{R}
- Alternately, \newcommand $\{\backslash \mathrm{bb}\}\{\backslash$ mathbb shortens command: \bb\{R\}, \bb\{Q\}, \bb\{N\}
- e.g. The Newton power sum of degree d in n variables is sometimes denoted $p_{d}^{(n)}\left(\$ p^{\wedge}\{(n)\} _d \$\right)$. Or,
- Create command: \newcommand\{\pow\}[2]\{p^\{(\#1)\}_\{\#2\}\}
- To use: $\$ \backslash \operatorname{pow}\{\mathrm{n}\}\{\mathrm{d}\} \$\left(p_{d}^{(n)}\right)$, $\backslash \operatorname{pow}\{\mathrm{k}-1\}\{2\}\left(p_{2}^{(k-1)}\right)$
- Custom math operators (e.g.
\DeclareMathOperator\{\card\}\{card\} to talk about cardinality)

Commands with Optional Argument

How do you typeset $\sqrt[3]{x}$?

Commands with Optional Argument

How do you typeset $\sqrt[3]{x}$?

- \$ ${ }^{\text {sqrt }[3]\{x\} \$ ~}$

Commands with Optional Argument

How do you typeset $\sqrt[3]{x}$?

- \$ ${ }^{\text {sqrt }[3]\{x\} \$ ~}$
- [3] an optional argument (if content in brackets not included, \sqrt $\}$ defaults to radical with no numeral)

Commands with Optional Argument

How do you typeset $\sqrt[3]{x}$?

- \$ ${ }^{\text {sqrt }}$ [3] $\{\mathrm{x}\}$ \$
- [3] an optional argument (if content in brackets not included, \sqrt\{\} defaults to radical with no numeral)
Custom commands with (one) optional argument

Commands with Optional Argument

How do you typeset $\sqrt[3]{x}$?

- \$ ${ }^{\text {sqrt }}$ [3] $\{\mathrm{x}\}$ \$
- [3] an optional argument (if content in brackets not included, \sqrt $\}$ defaults to radical with no numeral)
Custom commands with (one) optional argument
■ e.g. (cont.) \newcommand\{\pow\}[2][n]\{p^\{(\#1)\}_\{\#2\}\}
- [2] still number of parameters
- [n] default value of first parameter

Commands with Optional Argument

How do you typeset $\sqrt[3]{x}$?

- \$ ${ }^{\text {sqrt }}[3]\{\mathrm{x}\}$ \$
- [3] an optional argument (if content in brackets not included, \sqrt $\}$ defaults to radical with no numeral)
Custom commands with (one) optional argument
■ e.g. (cont.) \newcommand\{\pow\}[2][n]\{p^\{(\#1)\}_\{\#2\}\}
- [2] still number of parameters
- [n] default value of first parameter
- \$ \backslash pow $\{\mathrm{m}\} \$\left(p_{m}^{(n)}\right)$, $\$ \backslash$ pow $[\mathrm{k}]\{\mathrm{d}\} \$\left(p_{d}^{(k)}\right)$

Custom Command Hints

Custom Command Hints

■ Names: balance memorability with ease of typing

Custom Command Hints

- Names: balance memorability with ease of typing

■ If errors occur, chosen name might already have another meaning

Custom Command Hints

- Names: balance memorability with ease of typing

■ If errors occur, chosen name might already have another meaning

■ Custom commands work well for handling in-flux notation

Custom Command Hints

■ Names: balance memorability with ease of typing

- If errors occur, chosen name might already have another meaning
- Custom commands work well for handling in-flux notation
- \ensuremath\{\} automatically puts contents into math mode

■ e.g. \newcommand\{\R\}\{\ensuremath\{\mathbb\{R\}\}\} correctly interprets both the real numbers $\backslash R$ and the real numbers $\$ \backslash \mathrm{R} \$$

Custom Command Hints

■ Names: balance memorability with ease of typing
■ If errors occur, chosen name might already have another meaning

- Custom commands work well for handling in-flux notation

■ \ensuremath\{\} automatically puts contents into math mode
■ e.g. \newcommand\{\R\}\{\ensuremath\{\mathbb\{R\}\}\} correctly interprets both the real numbers $\backslash R$ and the real numbers $\$ \backslash \mathrm{R} \$$
■ Some people recommend this so no thoughtless mistakes are made. Other people just keep track of the mode they are in.

List Environments

Unordered list
\begin\{itemize\} }
- banana
- onion

- banana
- onion
\end\{itemize\} }

List Environments

Unordered list
\begin\{itemize\} }
- banana
- onion
\end\{itemize\} }
Ordered list
\begin\{enumerate\} }
- put on socks
- put on shoes
\end\{enumerate\} }

- banana

■ onion

1 put on socks
2 put on shoes

Nested Lists

```
\begin{itemize}
    \item Print from department computers
    \begin{enumerate}
                            \item Hit print (not to blackhole or Dr Shahidi's office printer)
    \end{enumerate}
    \item Print from campus computers
    \begin{enumerate}
        \item Hit print
        \item Log on to Papercut
        \item Select desired printer
        \item Release job
    \end{enumerate}
    \item Print by email
    \begin{enumerate}
        \item Email .pdf to printbw@purdue.edu or printcol@purdue.edu
        \item Await reply with unique link to print
        \item Select desired printer
        \item Release job
    \end{enumerate}
\end{itemize}
```


Nested Lists

■ Print from department computers
1 Hit print (don't choose blackhole or printer in Dr Shahidi's office)
■ Print from campus computers
1 Hit print
2 Log on to Papercut
3 Select desired printer
4 Release job

- Print by email

1 Email .pdf to printbw@purdue.edu or printcol@purdue.edu
2 Await reply with unique link to print
3 Select desired printer
4 Release job

Changing Labels

With usepackage\{enumerate\}inpreamble:undefinedundefinedundefined

```
\begin{enumerate}[A)]
    \item Mungojerrie
    \item Rumpleteazer
\end{enumerate}
Was it...
\begin{enumerate}[I.]
    \item A only
    \item B only
    \item both
\end{enumerate}
```

A. Mungojerrie
B. Rumpleteazer

Was it...
I. A only
II. B only

III both

Changing Labels

With usepackage\{enumerate\}inpreamble:undefinedundefinedundefined

```
\begin{enumerate}[A)]
```

- Mungojerrie
- Rumpleteazer
\end\{enumerate\} }
Was it...
\begin\{enumerate\}[I.] }
- A only
- B only
- both
\end\{enumerate\} }
A. Mungojerrie
B. Rumpleteazer Was it...
I. A only
II. B only

III both

Can also change styles by hand (more laborious)

Description Environment

(A lesser-known choice)

```
\begin\{description\} }
    \item[do] a deer, a female deer
    \item[re] a drop of golden sun
    \item[mi] a name I call myself
    \item[fa] a long, long way to run
    \item[so] a needle pulling thread
    \item[la] a note to follow so
    \item[ti] I drink with jam and bread
    \item and that brings us back to do
\end\{description\} }
```

do a deer, a female deer
re a drop of golden sun
mi a name I call myself
fa a long, long way to run
so a needle pulling thread
la a note to follow so
ti I drink with jam and bread
and that brings us back to do

Exercises

1. Choose and implement your preferred replacement for \mathbb.
2. Tell me the following in a bulleted list
a) The dimension of A (the text $\operatorname{dim}(A)$ should appear).
b) Your favorite and least favorite among the symmetric groups \mathfrak{S}_{n} (\$\mathfrak\{S\}_n\$, but create a command for this).
c) The letter the vector $\overrightarrow{\mathbf{v}}$ would rather be known by. (Create a command with an optional parameter, and try out both the default and altered versions in your answer.)
3. Create a multiple choice question about set closures. Format it as question complete with a question number. To add a line above a symbol, use $\$ \backslash$ bar $\{\mathrm{X}\} \$$ or $\$ \backslash o v e r l i n e\{X\} \$$.
(Display the full question with both, then pick whether to use one of these or a different notation entirely.)

Pass 3: Counters, Theorem Environments

Counters

What is a counter?

Counters

What is a counter?
■ Variable to keep track of e.g section number, place in list, etc.

Counters

What is a counter?
■ Variable to keep track of e.g section number, place in list, etc.
■ Some couters: part, chapter, section, subsection, subsubsection, page

Counters

What is a counter?
■ Variable to keep track of e.g section number, place in list, etc.
■ Some couters: part, chapter, section, subsection, subsubsection, page
■ Counters for ordered list levels: enumi, enumii, enumiii, enumiv

Counters

What is a counter?
■ Variable to keep track of e.g section number, place in list, etc.
■ Some couters: part, chapter, section, subsection, subsubsection, page
■ Counters for ordered list levels: enumi, enumii, enumiii, enumiv

Manually adjusting counters:

Counters

What is a counter?
■ Variable to keep track of e.g section number, place in list, etc.
■ Some couters: part, chapter, section, subsection, subsubsection, page
■ Counters for ordered list levels: enumi, enumii, enumiii, enumiv

Manually adjusting counters:
■ \setcounter\{counter\}\{number\} in body sets counter to a given number (positive or negative)
■ \addtocounter\{counter\} \{number\} adds given number (positive or negative) to counter

■ \stepcounter\{counter\} adds 1 to counter

Counters

What is a counter?
■ Variable to keep track of e.g section number, place in list, etc.
■ Some couters: part, chapter, section, subsection, subsubsection, page
■ Counters for ordered list levels: enumi, enumii, enumiii, enumiv

Manually adjusting counters:
■ \setcounter\{counter\}\{number\} in body sets counter to a given number (positive or negative)
■ \addtocounter\{counter\}\{number\} adds given number (positive or negative) to counter

■ \stepcounter\{counter\} adds 1 to counter
■ Be aware of where counters increment and reset automatically

Counters: Examples

Counters: Examples

- To create Section 0:
\setcounter\{section\}\{-1\}

\section\{Preliminaries\}

Counters: Examples

■ To create Section 0:
\setcounter\{section\}\{-1\}

\section\{Preliminaries\}

■ To skip items 2 and 3 in a list:
\begin\{enumerate\} }
- The first homework problem
\addtocounter\{enumi\}\{2\}
- The next assigned homework problem
\end\{enumerate\} }

Setting up Theorem-like Environments

In preamble:
\newtheorem\{name in source\}\{displayed name\} [counter restarts at]
or
\newtheorem\{name in source\}[same counter as] \{displayed name\}

Setting up Theorem-like Environments

In preamble:
\newtheorem\{name in source\}\{displayed name\} [counter restarts at]
or
\newtheorem\{name in source\}[same counter as] \{displayed name\}
e.g.
\newtheorem\{thm\}\{Theorem\}[section]
\newtheorem\{lemma\}[thm] \{Lemma\}

Styles

Three choices for theorem style:

Theorem 3.1. The plain style (typically used for theorems and similar statements) includes a heading in bold and italicised body text.

Definition 3.2. The definition style also includes a bold heading, but body text is not italicised.

Remark 3.3. The remark style, for inserting less important comments, italicises the heading and uses normal text for the body.

My Typical Set-up

```
\newtheorem\{thm\}\{Theorem\}[section]
\newtheorem\{lemma\}[thm] \{Lemma\}
\newtheorem\{prop\} [thm] \{Proposition\}
\newtheorem\{cor\}[thm] \{Corollary\}
```

\theoremstyle\{definition\}
\newtheorem\{definition\}[thm] \{Definition\}
\newtheorem\{notation\}[thm] \{Notation\}
\theoremstyle\{remark\}
\newtheorem\{remark\}[thm] \{Remark\}
\newtheorem\{example\}[thm] \{Example\}
\newtheorem\{obs\}[thm] \{Observation\}

Usage

\begin\{thm\} [My Theorem] }
In the real numbers, $\$ 2+2=4 \$$
\end\{thm\} }
\begin\{proof\} }
This is true because I say so.
\end\{proof\} }

Usage

```
\begin\{thm\}[My Theorem] }
    In the real numbers, \(\$ 2+2=4 \$\)
\end\{thm\} }
\begin\{proof\} }
    This is true because I say so.
\end\{proof\} }
```

Theorem 3.4 (My Theorem). In the real numbers, $2+2=4$
Proof. This is true because I say so.

Usage

```
\begin\{thm\}[My Theorem] }
    In the real numbers, \(\$ 2+2=4 \$\)
\end\{thm\} }
\begin\{proof } \}
    This is true because \(I\) say so.
\end\{proof\} }
```

Theorem 3.4 (My Theorem). In the real numbers, $2+2=4$
Proof. This is true because I say so.
Note: \emph\{\} command emphasizes via appropriate contrasting italics or non-italics

Exercises

1. Complete the following alterations to your previous exercises
a) Add section divisions.
b) Put your quadratic formula in a theorem-like environment, complete with title.
c) Put your limit definition in a different style of theorem-like environment.
2. Create a three-question worksheet as if for a calculus class. Include some sort of explanatory text between questions 1 and 2 (outside the enumerate environment).

Pass 4: Spacing and Alignment

Document Class

\documentclass[options]\{class\} in preamble

Document Class

\documentclass[options]\{class\} in preamble
■ Sets page size, formatting defaults, etc.

Document Class

\documentclass [options] \{class\} in preamble
■ Sets page size, formatting defaults, etc.
■ Common examples: article, book, standalone (simplest class, for inserting elsewhere), report (for longer articles), letter

Document Class

\documentclass [options] \{class\} in preamble

- Sets page size, formatting defaults, etc.

■ Common examples: article, book, standalone (simplest class, for inserting elsewhere), report (for longer articles), letter
■ Optional arguments to change some defaults (e.g. base font size or paper size)

Automatically Formatted Title

■ Include info \title\{\}, \author\{\}, \date\{\} in preamble
■ \maketitle in body creates title

Automatically Formatted Title

■ Include info \title\{\}, \author\{\}, \date\{\} in preamble
■ \maketitle in body creates title
■ Info also automatically inserted appropriately relative to document class (e.g. in header)

Automatically Formatted Title

■ Include info \title\{\}, \author\{\}, \date\{\} in preamble
■ \maketitle in body creates title
■ Info also automatically inserted appropriately relative to document class (e.g. in header)

■ Optional parameters for shortened title, etc.

Automatically Formatted Title

■ Include info \title\{\}, \author\{\}, \date\{\} in preamble
■ \maketitle in body creates title
■ Info also automatically inserted appropriately relative to document class (e.g. in header)

■ Optional parameters for shortened title, etc.
■ \date\{\today\} automatically updates to the current date on compilation

Horizontal and Vertical Spaces

■ Math mode: $\$ \backslash$; $\$$ small space, $\$ \backslash!\$$ small negative space

Horizontal and Vertical Spaces

■ Math mode: $\$ \backslash$; $\$$ small space, $\$ \backslash!\$$ small negative space
■ \hspace\{distance\}, \vspace\{distance\}, \backslash raisebox\{distance\}\{text\} (to move text up or down within a line)

- Accepts positive or negative distances

Horizontal and Vertical Spaces

■ Math mode: $\$ \backslash$; $\$$ small space, $\$ \backslash!\$$ small negative space
■ \hspace\{distance\}, \vspace\{distance\}, \raisebox\{distance\}\{text\} (to move text up or down within a line)

- Accepts positive or negative distances
- New pages
-
 makes a new page (but formatting might move elements onto it)
-
 creates new pages as needed to begin next content on a blank page

Distances in LATEX

Distances in LATEX

■ Absolute (e.g. in, cm/mm, pt)

Distances in LATEX

■ Absolute (e.g. in, cm/mm, pt)
■ Relative (ex, em: roughly height of x and width of M resp in current font)

Distances in ${ }^{A} T_{E} \mathrm{EX}$

■ Absolute (e.g. in, cm/mm, pt)
■ Relative (ex, em: roughly height of x and width of M resp in current font)
■ Very relative, e.g.
■ \textwidth
■ \paperheight
■ \baselineskip (vertical distance between lines in paragraph)
■ These are both customizable and usable as distances

Text Alignment

Text Alignment

Aligning text
■ Commands , \raggedright, \raggedleft
■ Environments flushleft, flushright, center

- Also packages with refinements

Text Alignment

Aligning text
■ Commands , \raggedright, \raggedleft
■ Environments flushleft, flushright, center

- Also packages with refinements

Columns: multicol package

$$
\begin{aligned}
& \text { \begin\{multicols\}\{number of columns\} } } \\
{\text { text to be formatted in columns }} \\
{\text { \end\{multicols\} } }
\end{array}
\end{aligned}
$$

- \columnbreak breaks columns

Basic Math Alignment

■ Alignment character: \&
■ Line break:

- Not necessary to begin new line in code after
, but can improve readability
■ Utilized in various environments

Basic Math Alignment

■ Alignment character: \&
■ Line break:

- Not necessary to begin new line in code after $\backslash \backslash$, but can improve readability
- Utilized in various environments

General note: * in environment name often indicates unnumbered version of something potentially numbered

Multiline Equations

For awkwardly long equations:

$$
\begin{aligned}
\tilde{s}_{3}=x_{1}^{2} x_{2}^{2} x_{3}^{2} & +x_{1}^{2} x_{2}^{2} x_{4}^{2}+x_{1}^{2} x_{2}^{2} x_{5}^{2}+x_{1}^{2} x_{3}^{2} x_{4}^{2}+x_{1}^{2} x_{3}^{2} x_{5}^{2} \\
& +x_{1}^{2} x_{4}^{2} x_{5}^{2}+x_{2}^{2} x_{3}^{2} x_{4}^{2}+x_{2}^{2} x_{3}^{2} x_{5}^{2}+x_{2}^{2} x_{4}^{2} x_{5}^{2}+x_{3}^{2} x_{4}^{2} x_{5}^{2}
\end{aligned}
$$

Multiline Equations

For awkwardly long equations:

$$
\begin{aligned}
\tilde{s}_{3}=x_{1}^{2} x_{2}^{2} x_{3}^{2} & +x_{1}^{2} x_{2}^{2} x_{4}^{2}+x_{1}^{2} x_{2}^{2} x_{5}^{2}+x_{1}^{2} x_{3}^{2} x_{4}^{2}+x_{1}^{2} x_{3}^{2} x_{5}^{2} \\
& +x_{1}^{2} x_{4}^{2} x_{5}^{2}+x_{2}^{2} x_{3}^{2} x_{4}^{2}+x_{2}^{2} x_{3}^{2} x_{5}^{2}+x_{2}^{2} x_{4}^{2} x_{5}^{2}+x_{3}^{2} x_{4}^{2} x_{5}^{2}
\end{aligned}
$$

\begin\{multline*\} }

$$
\begin{aligned}
& \text { \tilde\{s\}_3=x_1^2x_2^2x_3^2+x_1^2x_2^2x_4^2+ } \\
& x_{-} 1^{\wedge} 2 x_{-} 2^{\wedge} 2 x_{-} 5^{\wedge} 2+x_{-} 1^{\wedge} 2 x_{-} 3^{\wedge} 2 x_{-} 4^{\wedge} 2+x_{-} 1^{\wedge} 2 x_{-} 3^{\wedge} 2 x_{-} 5^{\wedge} 2 \backslash \backslash \\
& +x_{-} 1^{\wedge} 2 x_{-} 4^{\wedge} 2 x_{-} 5^{\wedge} 2+x_{-} 2^{\wedge} 2 x_{-} 3^{\wedge} 2 x_{-} 4^{\wedge} 2+x_{-} 2^{\wedge} 2 x_{-} 3^{\wedge} 2 x_{-} 5^{\wedge} 2+ \\
& x_{-} 2^{\wedge} 2 x_{-} 4^{\wedge} 2 x_{-} 5^{\wedge} 2+x_{-} 3^{\wedge} 2 x_{-} 4^{\wedge} 2 x_{-} 5^{\wedge} 2
\end{aligned}
$$

\end\{multline*\} }

Aligned Equations

For e.g. chains of equations:

$$
\begin{aligned}
\frac{d}{d x} \tan (x) & =\frac{d}{d x} \frac{\sin (x)}{\cos (x)} \\
& =\frac{\sin ^{2}(x)+\cos ^{2}(x)}{\cos ^{2}(x)} \\
& =\frac{1}{\cos ^{2}(x)}=\sec ^{2}(x)
\end{aligned}
$$

Aligned Equations

For e.g. chains of equations:

$$
\begin{aligned}
\frac{d}{d x} \tan (x) & =\frac{d}{d x} \frac{\sin (x)}{\cos (x)} \\
& =\frac{\sin ^{2}(x)+\cos ^{2}(x)}{\cos ^{2}(x)} \\
& =\frac{1}{\cos ^{2}(x)}=\sec ^{2}(x)
\end{aligned}
$$

\begin\{align*\} }
$\backslash f r a c\{d\}\{d x\} \backslash \tan (x)$
$\&=\backslash f r a c\{d\}\{d x\} \backslash f r a c\{\backslash \sin (x)\}\{\backslash \cos (x)\} \backslash \backslash$
$\&=\backslash f r a c\left\{\backslash \sin ^{\wedge} 2(x)+\backslash \cos ^{\wedge} 2(x)\right\}\left\{\backslash \cos ^{\wedge} 2(x)\right\} \backslash \backslash$
\& $=\backslash \mathrm{frac}\{1\}\left\{\backslash \cos ^{\wedge} 2(\mathrm{x})\right\}=\backslash \sec ^{\wedge} 2(\mathrm{x})$
\end\{align*\} }

Gather Environment

Centered equations, but no concern for alignment:

$$
\begin{gathered}
I=\left\{s \in \operatorname{cox}_{B}(n) \mid V_{s} \neq \emptyset\right\} \\
J_{T}=T \cap I \\
K=\bigcup_{s \in I} V_{s} \\
K^{J_{T}}=\bigcup_{s \in J_{T}} V_{s}
\end{gathered}
$$

Gather Environment

Centered equations, but no concern for alignment:

$$
\begin{gathered}
I=\left\{s \in \operatorname{cox}_{B}(n) \mid V_{s} \neq \emptyset\right\} \\
J_{T}=T \cap I \\
K=\bigcup_{s \in I} V_{s} \\
K^{J_{T}}=\bigcup_{s \in J_{T}} V_{s}
\end{gathered}
$$

\begin\{gather*\} }

$$
\begin{aligned}
& \mathrm{I}=\backslash\left\{\mathrm{s} \backslash i n \backslash c o x _B(n) \backslash m i d ~ V _s \backslash n e q ~ \ e m p t y s e t \backslash\right\} \backslash \backslash \\
& \text { J_T=T\cap I\\
} \\
& \text { K=\bigcup_\{s\in I\} V_s\\
} \\
& \text { K^\{J_T\}=\bigcup_\{s\in J_T\} V_s }
\end{aligned}
$$

\end\{gather*\} }

Matrices

$$
\(\mathrm{M}=\)
\begin\{bmatrix\} }
\(1 \& x \& z \backslash \backslash\)
0 \& 1 \& \(y \backslash \backslash\)
0 \& 0 \& 1
\end\{bmatrix\} }
$$

$$
M=\left[\begin{array}{lll}
1 & x & z \\
0 & 1 & y \\
0 & 0 & 1
\end{array}\right]
$$

Matrices

$$
M =
\begin\{bmatrix\} }
1 \& \(x \& z \backslash \backslash\)
0 \& 1 \& \(y \backslash \backslash\)
0 \& 0 \& 1
\[
M=\left[\begin{array}{lll}
1 & x & z \\
0 & 1 & y \\
0 & 0 & 1
\end{array}\right]
$$

\end\{bmatrix\} }

■ Also matrix (plain, no delimiters), pmatrix (parentheses), Bmatrix (braces), vmatrix (vertical bars), Vmatrix (double vertical bars)
■ Note: matrix environments need to live in math mode
■ Bonus: ellipses of various types: \$···\$, \$\cdots\$, \$\vdots\$, \$\ddots\$

Tables

■ tabular environment
■ \# of columns, justification, column separators in declaration

- Rows and row separators in body of table

Tables

■ tabular environment
■ \# of columns, justification, column separators in declaration

- Rows and row separators in body of table

	$\#$ of sides	\sum int angles	meas int angle
Eq. Triangle	3	π	$\frac{\pi}{6}$
Square	4	2π	$\frac{\pi}{2}$
Reg. Pentagon	5	3π	$\frac{\frac{\pi}{5}}{8}$
Reg. Hexagon	6	4π	$\frac{\frac{\pi}{3}}{3}$
Reg. n-gon	n	$(n-2) \pi$	$\frac{(n-2) \pi}{n}$

```
\begin{tabular}{l|c c c}
    & \# of sides & $\sum$ int angles & meas int angle\\
    \hline
    Eq. Triangle & 3 & $\pi$ & $\frac{\pi}{6}$\\
    Square & 4 & $2\pi$ & $\frac{\pi}{2}$\\
    Reg. Pentagon & 5 & $3\pi$ & $\frac{3\pi}{5}$\\
    Reg. Hexagon & 6 & $4\pi$ & $\frac{2\pi}{3}$\\
    \hline\hline
    Reg. $n$-gon & n & $(n-2)\pi$ & $\frac{(n-2)\pi}{n}$
```

\end\{tabular\} }

Bonus: Bracket Size

Problem: parentheses in e.g. $$
(\sum_\{i=1\}^n \(\left.\left.x_{-} i\right) \backslash\right]\)
\[
\left(\sum_{i=1}^{n} x_{i}\right)
$$

Bonus: Bracket Size

Problem: parentheses in e.g. $$
(\sum_\{i=1\}^n \(\left.\left.x_{-} i\right) \backslash\right]\)
\[
\left(\sum_{i=1}^{n} x_{i}\right)
$$

- Automatically adjusting parentheses:

$$
\left(\sum_\{i=1\}^n x_i\right) \(\backslash]\)
\[
\left(\sum_{i=1}^{n} x_{i}\right)
$$

Bonus: Bracket Size

Problem: parentheses in e.g. $$
(\sum_\{i=1\}^n \(\left.\left.x_{-} i\right) \backslash\right]\)
\[
\left(\sum_{i=1}^{n} x_{i}\right)
$$

- Automatically adjusting parentheses:

$$
\left(\sum_\{i=1\}^n x_i\right) \(\backslash]\)
\[
\left(\sum_{i=1}^{n} x_{i}\right)
$$

■ Also works for [],
{
}, \langle \backslash rangle, etc.

Bonus: Bracket Size

Problem: parentheses in e.g. $$
(\sum_\{i=1\}^n \(\left.\left.x_{-} i\right) \backslash\right]\)
\[
\left(\sum_{i=1}^{n} x_{i}\right)
$$

- Automatically adjusting parentheses:

$$
\left(\sum_\{i=1\}^n x_i\right) \(\backslash]\)
\[
\left(\sum_{i=1}^{n} x_{i}\right)
$$

■ Also works for [],
{
}, \langle \backslash rangle, etc.
■ Can mismatch brackets, but need both \left and \right }

- \left. and \right. for invisible brackets

■ The following is acceptable $\Delta^{4} T_{E X}$, if nothing else

$$
\backslash[f(x)=\backslash l e f t \backslash\{\backslash f r a c\{1\}\{n\} \backslash h s p a c e\{4 e m\} n-1<x \backslash l e q n \backslash r i g h t . \backslash]
$$

$$
f(x)= \begin{cases}\frac{1}{n} & n-1<x \leq n\end{cases}
$$

Exercises

1. Add a title to the current document.
2. Typeset a matrix (at least 3 by 3) in one column, and explain why you chose that particular matrix in a column beside it.
3. Interview two people near you on the following questions and present the results in a table. Center the table on your page.

■ favorite color

- favorite food

■ favorite greek letter
4. Write down an expression that shows both the summation notation and expanded form of a Riemann sum of your choice (but with $\Delta x \neq 1$). Use your own researching abilities to overcome any difficulties with combining multi-line equations and dynamically adjusting brackets.

Pass 5: Bibliographies, Images/Figures/Diagrams

Bibliography File

■ Create .bib file (e.g. file titled TestProject.bib)

Bibliography File

■ Create .bib file (e.g. file titled TestProject.bib)

- Add data to your .bib file

1 Search for resource on google scholar
2 Click "cite" beneath desired search result
3 Choose BibTeX option at bottom of window
4 Copy everything into your .bib file
5 Keyword on first line is used to cite this source (can change if desired)

Bibliography File

■ Create .bib file (e.g. file titled TestProject.bib)

- Add data to your .bib file

1 Search for resource on google scholar
2 Click "cite" beneath desired search result
3 Choose BibTeX option at bottom of window
4 Copy everything into your .bib file
5 Keyword on first line is used to cite this source (can change if desired)

- Alternately, use other prepared citation or write your own

Bibliography File

■ Create .bib file (e.g. file titled TestProject.bib)

- Add data to your .bib file

1 Search for resource on google scholar
2 Click "cite" beneath desired search result
3 Choose BibTeX option at bottom of window
4 Copy everything into your .bib file
5 Keyword on first line is used to cite this source (can change if desired)
■ Alternately, use other prepared citation or write your own

- Can create one .bib file to use in multiple projects

Citations in Document

■ Import package (here, package\{biblatex\}inpreamble)undefinedundefinedundefinedundefinedundefinedundefined

- Add file to your document (\addbibresource\{TestProject.bib\} in preamble)

Citations in Document

■ Import package (here, package\{biblatex\}inpreamble)undefinedundefinedundefinedundefinedundefinedundefined

- Add file to your document (\addbibresource\{TestProject.bib\} in preamble)
■ \printbibliography prints References section containing all cited sources

Citations in Document

■ Import package (here, package\{biblatex\}inpreamble)undefinedundefinedundefinedundefinedundefinedundefined

- Add file to your document (\addbibresource\{TestProject.bib\} in preamble)
■ \printbibliography prints References section containing all cited sources

■ \cite\{keyword\} to cite a source

Citations in Document

■ Import package (here, package\{biblatex\}inpreamble)undefinedundefinedundefinedundefinedundefinedundefined

- Add file to your document (\addbibresource\{TestProject.bib\} in preamble)
■ \printbibliography prints References section containing all cited sources

■ \cite\{keyword\} to cite a source
■ \nocite\{keyword\} adds source to bibliography without any citation appearing in the text (useful in presentations)

Citations in Document

■ Import package (here, package\{biblatex\}inpreamble)undefinedundefinedundefinedundefinedundefinedundefined

- Add file to your document (\addbibresource\{TestProject.bib\} in preamble)
■ \printbibliography prints References section containing all cited sources

■ \cite\{keyword\} to cite a source
■ \nocite\{keyword\} adds source to bibliography without any citation appearing in the text (useful in presentations)

Lots of customization possible

Images

The basics

Images

The basics
■ Upload image (to same file as .tex document)

Images

The basics
■ Upload image (to same file as .tex document)
■ Add to document:
:

Images

The basics

- Upload image (to same file as .tex document)
- Add to document:

■ Adjust size (etc.) with optional parameter:
:

Figure Environment

Allows for positioning of figure, captioning, etc.
\begin\{figure\}[position on page] }
 \%centers content in environment
)
\caption\{Cats Shara and Mara\}
\end\{figure\} }

Figure: Cats Shara and Mara

More on Figures

■ Content need not be an image (e.g. table, LaTeX-generated plot)

- \caption before content in code puts caption above content in pdf

■ Also check out wrapfigure environment for wrapped text

Commutative Diagrams

tikz package for general diagrams
tikz-cd package specially designed for commutative diagrams

Commutative Diagrams

tikz package for general diagrams
tikz-cd package specially designed for commutative diagrams
■ Matrix of objects typeset using alignment character \&

- Arrows
\arrow[direction, "name", tip style, appearance, etc.]
■ Further customization possible (optional parameters for environment)

Commutative Diagram Example

\begin\{tikzcd\} }
G\arrow[r, "f"] \arrow[d, two heads, dashed, "\pi"] \& $G^{\prime} \backslash \backslash$
G/\ker (f) \arrow[r, red, hook, two heads, "\tilde\{f\}", blue] \arrow[ur, dashed, hook] \& $\lim (f) \backslash a r r o w[u$, hook, dashed, "\iota"]
\end\{tikzcd\} }

Downloading/Sharing ATEX

Sharing content: download .pdf file

Downloading/Sharing ATEX

Sharing content: download .pdf file Sharing ATEX code:

■ In Overleaf, click Menu for option to download source

- Includes many auxiliary files used to compile .pdf
- Necessary files for sharing: .tex file, image files, bibliography

■ Double check any file path commands in .tex file for portability

Exercises

1. Pick a paper or other source and quote a theorem from it. Reference the source in the theorem title, and create a references section to display the full citation.
2. Let A, B be sets, let $C \subset A$, and let $\varphi: A \rightarrow B$ be a function. Draw a diagram illustrating the relationship between φ, the restriction of φ to C, and the inclusion map from C to A.
3. To some commutative algebraists, creating a diagram in LATEX of the snake lemma is seen as a rite of passage.
a) As a temporary placeholder, find an image of a snake (or other appropriate substitute) to include in your document. Caption your image with an explanation of why it is there.
b) When the time is right, TeX the snake lemma. The tikzcd package documentation contains a walk-through with suggestions.

Pass 6: Beamer

Beamer Paradigms

Slide-based .pdf presentation: use \documentclass\{beamer\}

Beamer Paradigms

Slide-based .pdf presentation: use \documentclass\{beamer\} Slides v. Frames

- Frame contains all content for a given "slide" on screen
- Each frame may compile as multiple slides with different overlays

Beamer Paradigms

Slide-based .pdf presentation: use \documentclass\{beamer\} Slides v. Frames

- Frame contains all content for a given "slide" on screen

■ Each frame may compile as multiple slides with different overlays
\frame\{titlepage\}
creates title slide with metadata from preamble (e.g. author, title, institution)

Beamer Paradigms

Slide-based .pdf presentation: use \documentclass\{beamer\} Slides v. Frames

- Frame contains all content for a given "slide" on screen

■ Each frame may compile as multiple slides with different overlays
\frame\{titlepage\}
creates title slide with metadata from preamble (e.g. author, title, institution)

Standard frame code:
\begin\{frame\}\{Frame Title\} }
Frame contents
\end\{frame\} }

Highlighting Text

■ Highlight a word: \alert\{vital\} word (vital word)

Highlighting Text

■ Highlight a word: \alert\{vital\} word (vital word)
■ Highlighting more text: blocks
\begin\{block\}\{block title\} }
Stuff you want to highlight (like a theorem)
\end\{block\} }
Very Important Thing
This is the alertblock style
Semi-important Thing
This is the block style

Example

This is the example block style

Effects

- \pause: content after this doesn't appear until you next advance the presentation

Effects

■ \pause: content after this doesn't appear until you next advance the presentation

■ \onslide<slide(s)>\{content\}: content appears on specified slides within frame, with blank space otherwise

■ \only<slides (s) >\{content\} content appears on specified slides within frame with nothing otherwise

Effects

■ \pause: content after this doesn't appear until you next advance the presentation

■ \onslide<slide(s)>\{content\}: content appears on specified slides within frame, with blank space otherwise

■ \only<slides (s)>\{content\} content appears on specified slides within frame with nothing otherwise
■ Streamlining in itemize/enumerate environment

Effects

■ \pause: content after this doesn't appear until you next advance the presentation

■ \onslide<slide(s)>\{content\}: content appears on specified slides within frame, with blank space otherwise

■ \only<slides (s)>\{content\} content appears on specified slides within frame with nothing otherwise
■ Streamlining in itemize/enumerate environment
■ Note: pause won't always interact as expected with other transitions

Example: onslide environment

When multiplying exponential expressions
\onslide<2>\{with common bases\}, add the exponents

When multiplying exponential expressions , add the exponents

Example: onslide environment

When multiplying exponential expressions
\onslide<2>\{with common bases\}, add the exponents

When multiplying exponential expressions with common bases, add the exponents

Example: only Environment

```
\only<1>\{All groups are Abelian\}
\only<2->\{\sout\{All groups are Abelian\}\}
\onslide<2->\{Let \$\mathcal\{S\}\$ be an o-minimal structure on an
ordered group \(\$ \backslash\) mathcal \(\{\mathrm{R}\} \$\), and say \(\$ \backslash\) cdot : \mathcal \(\{\mathrm{R}\} \backslash\) times
\mathcal\{R\} \rightarrow \mathcal\{R\}\$ is definable in \$\mathcal\{S\}\$.
Then \(\$ \backslash\) mathcal \(\{R\} \$\) is Abelian.\}
```

All groups are Abelian

Example: only Environment

```
\only<1>{All groups are Abelian}
\only<2->{\sout{All groups are Abelian}}
\onslide<2->{Let $\mathcal{S}$ be an o-minimal structure on an
ordered group $\mathcal{R}$, and say $\cdot : \mathcal{R}\times
\mathcal{R} -> \mathcal{R}$ is definable in $\mathcal{S}$.
Then $\mathcal{R}$ is Abelian.}
```

All groups are Abelian
Let \mathcal{S} be an o-minimal structure on an ordered group \mathcal{R}, and say $\cdot: \mathcal{R} \times \mathcal{R} \rightarrow \mathcal{R}$ is definable in \mathcal{S}. Then \mathcal{R} is Abelian.

Note: sout\{\}commandforstrikethroughrequires\usepackage[normalem]\{ulem\}inpreambleundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefined

Example: Effects in Itemize/Enumerate

```
\begin{enumerate}
    \item<1-> Get a cat and enjoy her company until she dies
    \item<2-> Get two cats and enjoy their company until one dies
    \item<3> Decide you won't get any new cats for awhile
    \item<4-> Immediately get two more cats
\end{enumerate}
```

1 Get a cat and enjoy her company until she dies

Example: Effects in Itemize/Enumerate

```
\begin{enumerate}
    \item<1-> Get a cat and enjoy her company until she dies
    \item<2-> Get two cats and enjoy their company until one dies
    \item<3> Decide you won't get any new cats for awhile
    \item<4-> Immediately get two more cats
\end{enumerate}
```

1 Get a cat and enjoy her company until she dies
2 Get two cats and enjoy their company until one dies

Example: Effects in Itemize/Enumerate

```
\begin{enumerate}
    \item<1-> Get a cat and enjoy her company until she dies
    \item<2-> Get two cats and enjoy their company until one dies
    \item<3> Decide you won't get any new cats for awhile
    \item<4-> Immediately get two more cats
\end{enumerate}
```

1 Get a cat and enjoy her company until she dies
2 Get two cats and enjoy their company until one dies
3 Decide you won't get any new cats for awhile

Example: Effects in Itemize/Enumerate

```
\begin{enumerate}
    \item<1-> Get a cat and enjoy her company until she dies
    \item<2-> Get two cats and enjoy their company until one dies
    \item<3> Decide you won't get any new cats for awhile
    \item<4-> Immediately get two more cats
\end{enumerate}
```

1 Get a cat and enjoy her company until she dies
2 Get two cats and enjoy their company until one dies

4 Immediately get two more cats

Columns

Beamer has dedicated column environment (no need to use multicol package)
\begin\{columns\} }
\column\{width\}
Content intended for first column
\column\{width\}
Content intended for second column
\end\{columns\} }

Columns

```
Beamer has dedicated column environment (no need to use multicol package)
\begin{columns}
    \column{width}
    Content intended for first column
    \column{width}
    Content intended for second column
\end{columns}
```

I usually use mulitples of \textwidth to set column width (e.g.
each .5\textwidth)

Styles/Themes

- Matrix of themes and colors: one gallery available here (https://deic.uab.cat/~iblanes/beamer_gallery/)
- In preamble
\usetheme\{theme name\}
\usecolortheme\{colortheme name\}
- Can also use e.g. Purdue's custom theme files

Frame Numbers, Sections

To add frame numbers (e.g.): in preamble include \setbeamertemplate\{footline\}[frame number]

Frame Numbers, Sections

To add frame numbers (e.g.): in preamble include \setbeamertemplate\{footline\}[frame number]

Automatic Section title slides (my way)

- In preamble:
\backslash AtBeginSection []
\{
\begin\{frame\}\{\} }
\backslash begin\{center\}
\usebeamerfont\{sectiontitle\}\{\huge\insertsection\}
\end\{center\} }
\end\{frame\} }
\addtocounter\{framenumber\}\{-1\}
\}
■ In document, to start new section:

\section[abbreviated title]\{title\}

Frame Numbers, Sections

To add frame numbers (e.g.): in preamble include \setbeamertemplate\{footline\}[frame number]

Automatic Section title slides (my way)

- In preamble:
\backslash AtBeginSection []
\{
\begin\{frame\}\{\} }
\backslash begin\{center\}
\usebeamerfont\{sectiontitle\}\{\huge\insertsection\}
\end\{center\} }
\end\{frame\} }
\addtocounter\{framenumber\}\{-1\}
\}
- In document, to start new section:

\section[abbreviated title]\{title\}

To create references slide(s) (my way)
\begin\{frame\}[allowframebreaks] \{References\} }
\printbibliography
\end\{frame\} }

Exercises

In a new document, create a beamer presentation. Your presentation should include the following. When you have finished, download the presentation and click through it in your .pdf viewer's slide show mode to ensure everything behaves as expected.
a) A title page.
b) A slide with information about you (e.g. consider the questions from Pass 4 Exercise 3). Format this in a bulleted list that you can click through.
c) A slide presenting the theorem you chose for Pass 5 Question 1. Remember that it's impolite to display bibliography reference numbers in the middle of a presentation.
d) A references slide citing the theorem's source.
e) A theme and colortheme other than the default.

Pass 7: Links and Cross-References

Cross-References

■ \label\{reference name\} tags numbered item (section, theorem, equation, figure) for reference

■ \ref\{reference name\} prints the number of this item

Cross-References

■ \label\{reference name\} tags numbered item (section, theorem, equation, figure) for reference

■ \ref\{reference name\} prints the number of this item
Suggestions

- Choose revealing labels

■ Don't use e.g. \label\{Corollary 4.15$\}$ unless this will always be Corollary 4.15
■ \label\{\} should come after counter increments

Example: Cross-References

(Adapted from Measure and Integral by Wheeden and Zygmund)
 7 Differentiation
 Section label:

Definition 7.5 (Hardy-Littlewood Maximal Function). Let f be defined on \mathbb{R}^{n} and integrable over every cube Q. Let

$$
\left.f^{*}(\mathbf{x})=\sup \frac{1}{|Q|} \int_{Q} \right\rvert\, f(\mathbf{y}) d \mathbf{y}
$$

where the supremum is taken over all Q with edges parallel to the coordinate axes and center \mathbf{x}. The function f^{*} is called the Hardy-Littlewood maximal function of f.

9 Appx. of the Identity: Maximal Functions

Let F^{*} denote the Hardy-Littlewood function of f [see (7.5)]... The HardyLittlewood maximal function plays no important role in analysis... It arose naturally in Section 7...

\section\{Differentiation\} \label\{sect:Differentiation\}

Definition Label:

\begin\{definition\}[Hardy- } Littlewood Maximal Function] \label\{def:HLMaxFn\}

Let $\$ \mathrm{f} \$ \mathrm{be} .$.
Citing:
...of \$f\$ [see
(\backslash ref $\{$ def: HLMaxFn$\}$)]...
...in Section
\ref\{sect:Differentiation\}...

Example: Full Code

The full code that produced the example is as follows:

```
\setcounter{section}{6}
\section{Differentiation}\label{sect:Differentiation}
\lots
\setcounter{thm}{4}
\begin{definition}[Hardy-Littlewood Maximal Function]\label{def:HLMaxFn}
    Let $f$ be defined on $\bb{R}^n$ and integrable over every cube $Q$. Let
    \[
        f^*(\mathbf{x})=\sup\frac{1}{|Q|}\int_Q |f(\mathbf{y})\;d\mathbf{y}
    \]
    where the supremum is taken over all $Q$ with edges parallel to the coordinate axes and center
    $\mathbf{x}$. The function $f^*$ is called the \emph{Hardy-Littlewood maximal function of $f$}.
\end{definition}
\ldots
\setcounter{section}{8}
\section{Appx. of the Identity: Maximal Functions}\label{sect:MaximalFunctions}
\lots
Let $F^*$ denote the Hardy-Littlewood function of $f$ [see (\ref{def:HLMaxFn})]... The Hardy-
Littlewood maximal function plays no important role in analysis... It arose naturally in Section
\ref{sect:Differentiation}...
```


Hyperlinks

In preamble: sepackage\{hyperref\}(mightneedtobethelastpackageimported)undefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefined

Hyperlinks

In preamble: sepackage\{hyperref\}(mightneedtobethelastpackageimported)undefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefined

■ Automatically makes cross-references into hyperlinks

Hyperlinks

In preamble: sepackage\{hyperref\}(mightneedtobethelastpackageimported)undefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefined

■ Automatically makes cross-references into hyperlinks

- To link a web address (url displayed):

The Overleaf documentation on hyperlinks is available at
\url\{https://www.overleaf.com/learn/latex/Hyperlinks\}

The Overleaf documentation on hyperlinks is available at https://www.overleaf.com/learn/latex/Hyperlinks

- To link a web address (hidden link)

To prevent email account shutdown, \href\{virus.exe\}\{click here!\}

To prevent email account shutdown, click here!

In-document Links

■ Link source: \hyperlink\{tag\}\{text to become link\}
■ Link destination: \hypertarget\{tag\}\{destination text\}
Example:
Ghost Story (pdf)
Ghost Story source code

Link Appearance

Controlled via hypersetup in preamble e.g.
\hypersetup\{
colorlinks=true,
urlcolor=magenta,
linkbordercolor=101,
\}

- colorlinks=true colors link text (default false)

■ urlcolor=magenta makes url links magenta
■ linkbordercolor=101 sets color of boxes around links (RGB format)

PDF Metadata

What the .pdf knows about itself
■ pdf title (as displayed in the window's title bar), pdf author, pdf start page, etc.

Also a part of hypersetup:

```
\hypersetup{
    urlbordercolor = 1 1 1,
    pdftitle = Curriculum Vitae
    pdfauthor = Alison Rosenblum
}
```

(my CV hypersetup, complete with easter egg url links)

Exercises

1. Which section in this presentation was your favorite? Which section are you least comfortable with? Add labels to the section headings in your document so that you can indicate them via cross-reference.
2. What is the third website that appears in your search history when you type the letter 'a'? Create a hyperlink to it within your document (or pick a different letter if you don't like the results).
3. Create a sentence with a link directing to some phrase on the first page of your document.
4. Change the color of one of the links you created in the last two questions.

Resources

Helpful Links

■ Overleaf documentation (https://www.overleaf.com/learn)
■ Tikzcd package documentation
(https://ctan.math.washington.edu/tex-archive/graphics/pgf/ contrib/tikz-cd/tikz-cd-doc.pdf)
■ Fundamentals of Programming course notes LaTeX days 1-5 and CV day (https:
//www.math.purdue.edu/~bradfor3/ProgrammingFundamentals/)

- Dr Bell's LATEX flash cards (https://www.math.purdue.edu/~bell/talks/, first link)
■ Detexify (http://detexify.kirelabs.org/classify.html)
■ Comprehensive List of LaTeX symbols (https: //tug.ctan.org/info/symbols/comprehensive/symbols-a4.pdf)
- Other CTAN documentation (official documentation archive; typically technical)
- google

Suggestions

■ Commands typically intuitive (can often guess the command)

Suggestions

- Commands typically intuitive (can often guess the command)
- Simplest solution is often the best (unless you want to be very particular, gravitate towards the solution that largely makes use of existing packages)

Suggestions

- Commands typically intuitive (can often guess the command)

■ Simplest solution is often the best (unless you want to be very particular, gravitate towards the solution that largely makes use of existing packages)

- If it feels laborious and commonly required (e.g making an abstract, title page or table of contents), there is probably a command for it already

Suggestions

- Commands typically intuitive (can often guess the command)
- Simplest solution is often the best (unless you want to be very particular, gravitate towards the solution that largely makes use of existing packages)
- If it feels laborious and commonly required (e.g making an abstract, title page or table of contents), there is probably a command for it already
- Look at other people's .tex documents to accumulate hints

Suggestions

- Commands typically intuitive (can often guess the command)

■ Simplest solution is often the best (unless you want to be very particular, gravitate towards the solution that largely makes use of existing packages)

- If it feels laborious and commonly required (e.g making an abstract, title page or table of contents), there is probably a command for it already
■ Look at other people's .tex documents to accumulate hints
■ Choose some big thing (e.g. class notes) to typeset. Push yourself to match or improve formatting choices in the original

