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Total Nonnegativity

Introduction

Definition
M n x n matrix (over R): M totally positive (resp totally
nonnegative) if all minors are positive (resp nonnegative)
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Total Nonnegativity

Introduction

Definition
M n x n matrix (over R): M totally positive (resp totally
nonnegative) if all minors are positive (resp nonnegative)
Can extend definition to any split semi-simple algebraic
group over R.

> B, B_ opposite Borel subgroups

» U (resp U_) unipotent radical of B (resp B_)

> x;(t) = exp(te;) (ei Chevalley generators of the Lie

algebra of U, t € R)

Y (totally nonnegative elements of U) mulitpicative
submonoid of U generated by x;(t), t >0
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Example: G = SL(n,R)

G = SL(n,R), B (B-) set of upper (lower) triangular
matrices, U set of upper triangular matrices with 1's along
the diagonal.

3/38



Example: G = SL(n,R)

Introduction

G = SL(n,R), B (B-) set of upper (lower) triangular
matrices, U set of upper triangular matrices with 1's along
the diagonal.

n=3:

O X
=< N

3/38



Example: G = SL(n,R)

G = SL(n,R), B (B-) set of upper (lower) triangular
matrices, U set of upper triangular matrices with 1's along

the diagonal.
n=3:

M =

O O

M e Y iff
> x,y,z>0
> z<xy

O X

=< N
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Example: G = SL(n,R)

G = SL(n,R), B (B-) set of upper (lower) triangular
matrices, U set of upper triangular matrices with 1's along

the diagonal.
n=3:
1 x =z
M=10 1y
0 0 1
M e Y iff
> x,y,z>0
> z<xy

Introduction

Fomin Shapiro
Conjecture

Resolution by
Hersh

Monotonicity
Fibers of Maps
Future Directions

References

3/38



(O B <

i
v

waQ




Coxeter Groups

Introduction

Definition
Let W be a group and S C W. If W has a presentation of
the form

» Generators: S

» Relations:

> s2=eforallse S
> others of the form (ss')™**) = e for s #s' € S,
m(s,s’) > 2

then (W, S) is a Coxeter system
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Coxeter Groups

Definition

Let W be a group and S C W. If W has a presentation of
the form

» Generators: S
» Relations:

> s2=¢cforallseS

> others of the form (ss')™**) = e for s #s' € S,
m(s,s’) > 2

then (W, S) is a Coxeter system
Example

W = S,: S set of adjacent transpositions s; = (i i+ 1) for
1<i<n—1

Introduction
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Let w & Wv 5= {Si}

W:S,'1 ._sik
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Words in Coxeter Systems

Introduction

Let we W, S ={s;}
W =Sj---Sj

k

» (i,...,Ik) a word for w
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Words in Coxeter Systems

Introduction

Let we W, S ={s;}

W:S,'l"-S,'k

» (i,..., i) a word for w
» If kK minimal, (i1, ..., i) a reduced word, k = /(w) the
length of w
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Words in Coxeter Systems

Introduction

Let we W, S ={s;}

W:S,'l-'-S,'k

» (i,...,Ik) a word for w
» If kK minimal, (i1, ..., i) a reduced word, k = /(w) the
length of w
Definition

Let u,v € W. If there is a reduced word for u that is a
subword of a reduced word for v, then u < v in the Bruhat
order
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Words in Coxeter Systems

Introduction

Let we W, S ={s;}

W:S,'l"-S,'k

» (i,...,Ik) a word for w
» If kK minimal, (i1, ..., i) a reduced word, k = /(w) the
length of w
Definition

Let u,v € W. If there is a reduced word for u that is a
subword of a reduced word for v, then u < v in the Bruhat
order

Proposition
If W is finite, there exists a unique element wy € W so that
w<w forall we W
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Fomin Shapiro
Conjecture

Fomin Shapiro Conjecture
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Stratification of Y

Let W be the Weyl Group of G EZ:}QZ’EM
» G=SL(nR): W=S5,
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Stratification of Y

Let W be the Weyl Group of G EZ:}?&SUT”O
» G=SL(nR): W=S5,

Decomposition G = | |, ¢y B-wB_ induces decomposition

of Y into strata Y;, = Y N B_wB_
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Stratification of Y

Let W be the Weyl Group of G EZ:}QZ?@M
» G=SL(nR): W=S5,

Decomposition G = | |, ¢y B-wB_ induces decomposition
of Y into strata Y;, = Y N B_wB_
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u < v in the Bruhat order iff Y2 C Y2
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Stratification of Y

Let W be the Weyl Group of G EZ:}QZ’EW
» G=SL(nR): W=S5,

Decomposition G = | |, ¢y B-wB_ induces decomposition

of Y into strata Y;, = Y N B_wB_

Notice
u < v in the Bruhat order iff Y2 C Y2

Proposition (Lusztig)
Let (i1,...,iq) be a reduced word for w € W. Then the map

(tl, RN td) — X,'l(tl) . ‘Xid(td)

is a homeomorphism between RY and Y

6/38



Example: G = SL(3,R)

1t 0
Xl(t) = |:0 1 0] Xg(t) = |:
0 01

Fomin Shapiro
Conjecture
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Example: G = SL(3,R)

Introduction

1 t 0 ]. O O Fomin Shapiro
a(t)=10 101 () =10 1 ¢t S
O O 1 0 O 1 Hersh ‘

Monotonicity
Fibers of Maps
Future Directions

References

> Y((i,z,l) = Y&Lz) ={(x,y,2) | x,y > 0,0 < z < xy}
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Example: G = SL(3,R)

1 ¢t 0
xi(t) = |:0 1 0] xo(t) = |:
0 01

Vg =1{(0,0,0)}

Y = {(x,0,0) | x> 0}

Y5 =1{(0,y,0) [y >0}

Y1) = {(x,y,0) | x >0,y >0}

Y2 = {0y, xv) | x,y > 0}

Y1) = Youia = {(6y,2) [ X,y > 0,0 < z < xy}

1 00
01 ¢
0 01

Fomin Shapiro
Conjecture

YVYVYVVYY
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Links of Strata

Notation: Let Y,, = Y2.

... Fomin Shapiro
Def|n|t|0n Conjecturep
Let Y2 C Y, (& u<v). Let

» pe Y. arbitrary

» N a smooth manifold with NN Y2 = {p} and N
transverse to Y

» Bs(p) ball of radius 0 centered at p
Then Lk(u,v) =Y, N NN 9IBs(p)
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Links of Strata

Notation: Let Y,, = Y2.

Fomin Shapiro

Deﬁnition Conjecture
Let Y2 C Y, (& u<v). Let

» pe Y. arbitrary
» N a smooth manifold with NN Y2 = {p} and N
transverse to Y

» Bs(p) ball of radius 0 centered at p
Then Lk(u,v) =Y, N NN 9IBs(p)

Figure: Lk((0),(1,2,1)) and Lk((1),(1,2,1)) for SL(3,R)
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Fomin Shapiro Conjecture

Fomin Shapiro
Conjecture

Definition
Aset U CR™is an m-cell if U= (B™)°. U is a regular
m-cell if the pair (U, U) = (B™,(B™)°)
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Fomin Shapiro Conjecture

Fomin Shapiro
Conjecture

Definition
Aset U CR™is an m-cell if U= (B™)°. U is a regular
m-cell if the pair (U, U) = (B™,(B™)°)

Conjecture
For all u,v € W with Y C Y,, Lk(u, v) is a regular cell
complex (decomposes into regular cells).
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Fomin Shapiro Conjecture

Fomin Shapiro
Conjecture

Definition
Aset U CR™is an m-cell if U= (B™)°. U is a regular
m-cell if the pair (U, U) = (B™,(B™)°)

Conjecture

For all u,v € W with Y C Y,, Lk(u, v) is a regular cell
complex (decomposes into regular cells).

Motivation

Bjorner: [u, v] a Bruhat interval = there exists a regular cell
complex with face poset isomorphic to [u, v].

Goal: find naturally arising construction.

9/38
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Some Notation

Let (i1,...,iq) be a word for w € W. Denote

Resolution by
Hersh

(tl, R td) — X,'l(tl) . -X;d(td)

where S971 is the simplex >_ t; = K for some K > 0
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Some Notation

Let (i1,...,iq) be a word for w € W. Denote

Resolution by
Hersh

(tl, cee, td) — X,'l(tl) x -X;d(td)
where S971 is the simplex >_ t; = K for some K > 0

Notation Change

Henceforth, for w = (i1, ..., ig)
> YV?/ - fill ..... id)(RiO N Sd_l)

> Yo = fiy iy (RE N S92 LK((0), (i1, - - - ia))

10/38



Cell Collapses

(i1,---,ig) reduced: f; ;) homeomorphism on interior,
not necessarily injective on boundary

Resolution by
Hersh
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Cell Collapses

(i1,---,ig) reduced: f; ;) homeomorphism on interior,
not necessarily injective on boundary

Resolution by

Hersh
Example
G = SL(3,R)
1 t1+t3 fib
f,2,1)(t1, t2, t3) = |0 1 to
0 0 1

(0,0,1) /\
(1,0, 0)'/—\.(0, 1,0)

11/38



Resolution

Theorem (Hersh)

Let (i1, ..,iq) be a reduced word for w € W. Let ~ be the
identifications given by any series of face collapses on
N S971 such that

1. x~y= f(,-hm,,-d)(X) = f(il,...,id)()/)

2. the series of collapses eliminates all regions whose words
are not reduced

Then f( E R>o NS9=1/ ~ — Y, is a homomorphism
which preserves cell structure

Resolution by
Hersh
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Monotonicity
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Coordinate Cones

In this section, sets and functions are definable in some
o-minimal structure over R
Let Lj,c = {x€R" | xjoc} foro € {<,=,>}, ceR

Monotonicity
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Coordinate Cones

In this section, sets and functions are definable in some

o-minimal structure over R

Let Lj,c = {x€R" | xjoc} foro € {<,=,>}, ceR T
Definition

A coordinate cone is a set of the form

C = Ljhghcl ﬂ...ﬂLj CcR"

m>OTm,Cm

with the j; distinct elements of {1,..., n}. Similarly, an
affine coordinate subspace has the form

S = Lj1,:,c1 Nn...N ij7:7cm C R"

13/38



Semi-monotone Sets

Definition/Theorem

An open bounded set X C R” is semi-monotone if for each
coordinate cone C, X N C is connected (equivalently, if for Monotonicity
every affine coordinate subspace S, X N S is connected)

14 /38



Semi-monotone Sets

Definition/Theorem

An open bounded set X C R” is semi-monotone if for each

coordinate cone C, X N C is connected (equivalently, if for Monotonicity
every affine coordinate subspace S, X N S is connected)

semi-monotone not semi-monotone

14 /38



Monotone Functions

Let f: X — R, X C R” nonempty and semi-monotone, and
let F be the graph of f

Monotonicity
Definition

f is submonotone if it is bounded, upper semi-continuous,

and for all b € R, {x € X | f(x) < b} is semi-monotone. f is
supermonotone if —f is submonotone.

15/38



Monotone Functions

Let f: X — R, X C R” nonempty and semi-monotone, and
let F be the graph of f

Monotonicity
Definition

f is submonotone if it is bounded, upper semi-continuous,

and for all b € R, {x € X | f(x) < b} is semi-monotone. f is
supermonotone if —f is submonotone.

Definition
f is monotone if it is both sub and supermonotone and

either strictly increasing in, strictly decreasing in, or
independent of x; forall 1 < j <n

15/38



Monotone Functions (Characterization)

Let f : X — R be bounded and continuous, with X C R”
open, bounded, and nonempty Monotonicity

Theorem

Let f be strictly increasing in, strictly decreasing in, or
independent of each xj, 1 < j < n. Then the following are
equivalent

|. f is monotone
[I. FN C is connected for each coordinate cone C

[1l. FNS is connected for each affine coordinate subspace S

16/38



Monotone Maps

Monotonicity

Let f = (f1,...,f): X — Rk, X C R” nonempty and
semi-monotone, F the graph of f.

Definition

Let H={X, s Xjo, Vi Yig) CAXUyevvs Xny Y155 Vi)
where a4+ 8 = n. H is a basis if

(Xjgs « v w5 Xjos fiys o5 fig) + X — R" is injective
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Monotone Maps

Let f = (f,...,f): X = RX, X C R" nonempty and
semi-monotone, F the graph of f.

Definition Monotonicity
f : R — R¥ is monotone if f; is monotone for all i
Inductively, f : R" — R* is monotone if for each f; not
independent of x;
1. For each b € R, F N{y; = b} is the graph of a
monotone map f; j , from a semi-monotone subset of
span{xi,...,Xj,...,Xp} to
SPaN{y1, .-, Yi—1,%, Yit1s -+ > Yk}
2. The system of basis sets associated with f; ; , does not
depend on b

17/38



Monotone Maps (Characterization)

Let f : X — R¥ be bounded and continuous, with X C R”
open, bounded, and nonempty, F the graph of f.

Definition Monotonicity
f is quasi-affine if for any T = span{x;, ..., X, Y, -, Yis }»

a + B = n, the projection pr : F — T is injective iff the

image p71(F) is n dimensional

18/38



Monotone Maps (Characterization)

Let f : X — R¥ be bounded and continuous, with X C R”
open, bounded, and nonempty, F the graph of f.

Definition Monotonicity
f is quasi-affine if for any T = span{x;, ..., X, Y, -, Yis }»

a + B = n, the projection pr : F — T is injective iff the

image p71(F) is n dimensional

Theorem

Let f be quasi-affine. Then the following are equivalent
I. f is monotone
[I. F N C is connected for each coordinate cone C

[1l. FNS is connected for each affine coordinate subspace S

18/38
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Examples

Introduction

Fomin Shapiro
Conjecture

Resolution by
Hersh

Monotonicity
Fibers of Maps
not monotone

Future Directions

References

Z =Xy on
0<x<l -1<y<l1
not monotone
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Examples

Introduction

Fomin Shapiro
Conjecture

- /7] Resolution by

Hersh

Monotonicity

z=x>+ y2 on
not monotone 0<x<1l,0<y<1l—x
not monotone

Fibers of Maps
Future Directions

References

Z =Xy on
0<x<l -1<y<l1
not monotone
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Examples

not monotone

Z =Xy on
0<x<l -1<y<l1
not monotone

Introduction

Fomin Shapiro
Conjecture

- /7] Resolution by

Hersh

Monotonicity

z:X2+y2on
0<x<1,0<y<1l—-x
not monotone

Fibers of Maps
Future Directions

References

\
zZ = xy on
O<x,y<l1
monotone

19/38



Regular Cells

Monotonicity

Theorem (Basu, Gabrielov, Vorobjov)

The graph F C R"¥ of a monotone map f : X — R¥ on a
semimonotone set X C R" is a regular n-cell.

20/38



Application: Toric Cubes

Definition
A toric cube is the image of a map of the form

Monotonicity

fa:[0,1]9 = [0,1]"

t=(t1,...,tq) — (£, ..., t%)
where A = {ay,...,a,} C R and for a; = (ai1,---53id)
t% denotes (t;™,...,t;"*). An open toric cube is the image

of the restriction of such an f4 to (0,1)7.

Theorem (Basu, Gabrielov, Vorobjov)

An open toric cube is the graph of a monotone map, and
hence is a regular cell.

21/38



Application: Vandermonde Varieties

Let R be a real closed field
Definition
The Weyl chamber in R¥ is

Monotonicity

W = {(X,.... X)) e RF | Xy < ... < X}
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Application: Vandermonde Varieties

Let R be a real closed field

Definition
The Weyl chamber in R¥ is Monotonicity

W = {(X,.... X)) e RF | Xy < ... < X}

Definition
Lety = (y1,...,yq) € RY. The Vandermonde variety

Vcsky) C R¥ is the variety defined by pgk) =V1,... ,pg ) = Yd

where
(k) _ ij

22/38



Application: Vandermonde Varieties

Monotonicity

Proposition (Basu, Riener)
For ally € RY, d < k, either V(k) N W) is empty or a

point, or V( ) k) = (k) N W(k).2 and V(k) N2 is
a semi- monotone set, and hence a regular ceII

23/38



Fibers of Maps Rl
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Route to an Alternate Proof

Theorem (Davis, Hersh, Miller)

Let v € W with (i,...,ig) a reduced word for v. Then if
for all w e W, w < v, we have f(/_ll I.d)(p) is contractible for

p € Y, then Y, is a regular cell complex for each w < v. R

(Key ingredient in proof)

Let ~ be an equivalence relation on the closed ball B" so
that

» all equivalence classes are contractible

> Snfl/ ~ Snfl

» if x ~ y with x € S"7 1, then y € S"!

» if x ~ y with x ¢ S"71, then y = x
Then B B/ ~

24/38



Reduced Words and Injectivity

Definition/Proposition

The Demazure product on W is the unique associative map
0: W x W — W such that for w e W and s € S,

6( ) ws /(WS) > /(W) Fibers of Maps
w,s) =
wo I(ws) <w
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Reduced Words and Injectivity

Definition /Proposition
The Demazure product on W is the unique associative map
0: W x W — W such that for w e W and s € S,

6( ) ws /(WS) > /(W) Fibers of Maps
w,s) =
wo I(ws) <w

Theorem

Let (i1,...,iy) be a reduced word for v and let p € Y,.

Then f(’.*l}_._’,.d)(p) is stratified via the standard decomposition

of the simplex. Let Q be a subword of (i1, ..., iy).
/'_1,1...,id)(p) N RSO is nonempty iff @ multiplies to w under

the Demazure product, and is non-trivial iff the expression is

not reduced.

25/38



Example: G = SL(3,R)

Introduction

Fomin Shapiro

—1 . Conjecture
V= (1’ 27 1)Y p € 3/(1)Y ’:(1’211)(p) n rEd. Rcs:\ulion by
Hersh
Q f— (07 07 ]_) Monotonicity

Fibers of Maps

Future Directions

Q — (1’ 07 ]-) Q == (O, 2, ]_) References

Q = (1,0,0) =20 Q = (0,2,0)

OO
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The Goal

Conjecture Fibers of Maps
Let G = SL(n,R), let (i,...,iq) be a reduced word for
veW,let w<v, andlet p € Yyo. Then the strata of

~1 . (p) are graphs of monotone maps, and hence this

fi...ip) (P) 2 pe
stratification is a regular cell decomposition.

This holds in the cases n = 3 and n = 4, by computation

27/38



Example 1

1 ti+ta (t1+ta)te+ tity  titsts

_ 0 1 t3 + te t3ts
fu32132)= |5 1 ty + t5
0 0 0 1

Fibers of Maps
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Example 1

I tit+ts (t1+ta)te+tata titsts

f = 0 1 t3 + t6 t3ts
(122132710 0 i t+ts
b= (37 b7 c, ab, 07 0) Fibers of Maps

€ Y312 ={(x,y,2,x,0,0) [ x,y,z > 0,x+y+z=K}
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Example 1

I tit+ts (t1+ta)te+tata titsts

f = 0 1 t3 + t6 t3ts
(122132710 0 i t+ts
b= (a7 b7 c, ab; 07 0) Fibers of Maps

€ Y312 ={(x,y,2,x,0,0) [ x,y,z > 0,x+y+z=K}

f~Y(p) ={(t1,t2,0,a— t1,c —t2,b) | 0< t; < 2,0 < tn < ¢}
U{(a,c,t3,0,0,b—t3) ‘ 0<ts< b}

-

28/38



Example 1

f=1f132132) P € Y312 4
f_l(p) :{(t17 t270)a - t17c - t2) b) | 0 S t S 3)0 S tr S C}
U{(a,c,t3,0,0,b—t3) |0 < t3 < b}

(1,3,2,0,0,0) {(a,c,b,0,0,0)} point [
(1,3,0,0,0,2) {(a,¢,0,0,0,b)} point
(1,3,2,0,0,2)  {(a,c,t5,0,0,b) |0 < t3 < b} line
(0,3,0,1,0,2) {(0,¢,0,2,0, b)} point
(1,3,0,1,0,2) {(t1,¢,0,a—1t1,0,b)|0<t; <a} line
(1,0,0,0,3,2) {(2,0,0,0, ¢, b)} point
(1,3,0,0,3,2) {(a,t2,0,0,c—t2,b) |0 < tp < c} line
(0,0,0,1,3,2) {(0,0,0,a, ¢, b)} point
(1,0,0,1,3,2) {(t1,0,0,c—t1,c,b) |0< t; < a} line
(0,3,0,1,3,2) {(0,t,0,a,c — t2,b) |0 < tr < c} line
(1,3,0,1,3,2) {(t1,t2,0,a — t1,c — t2, b) | square

0<ti<al<tp<c}
29 /38



Example 2

1 1+t (t1+f4)t6—|—t1t2 t1t3t5

p |0 1 t3+ to t3ts
(1.32,132) = g 0 1 to + t5
0 0 0 1

Fibers of Maps

30/38



Example 2

1 1+t (t1+t4)t6—|—t1t2 t1t3t5

f _ |0 1 t3 + to t3ts
(132132710 0 1 ty+ t5
p= (av b7 07 d; 07 0) € Y(O271’2) Fibers of Maps

={(x,y,0,u,0,0) | x,y >0,0<u<xy,x+y=K}
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Example 2

1 1+t (t1+t4)t6—|—t1t2 t1t3t5

p |0 1 t3+ to t3ts
(1.32,132) = g 0 1 to + t5
0 0 0 1

Fibers of Maps

p = (a7 b,O, d,0,0) 6 Y(O271’2)
={(x,y,0,u,0,0) | x,y >0,0<u<xy,x+y=K}
ab—d d—t1b

F(p) = {(t;,0,—— a— .0
(p) {( 1, ?a_tlva 1,Y, a—t]_

)10 <t <d/b}

30/38



Example 2
f=11,3,2,1372), pe Y3,

b—d d—tib
FHP) = (8,0, 2= a— 1,0, 5—12) | 0< &y < d/b}
— 4 1

Fibers of Maps

(1,0,2,1,0,0) {(4,0,b, a g0 0} point
(07072a17072) {(O 0 b—7% a 0 )} pOint
(17072a1a0a2) {(t170 b= d a_ tl’ 7 a ttllb)|

0 < t <43
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For W= Sn: (t17 tr, t3 > 0)

«<O> <Fr «Er» B>

Q>




Changes of Coordinates

For W = S,: (t1, to, t3 > 0)

» modified nil-move

X,’(tl)X,'(t2) = X,'(tl + t2)

Fibers of Maps
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Changes of Coordinates
For W = S,: (t1, to, t3 > 0)
» modified nil-move
X,’(tl)X,'(t2) = X,'(tl + t2)
» commutation moves (for |i — j| > 1)

xi(t1)xj(t2) = xj(t1)xi(t2)

Fibers of Maps
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Changes of Coordinates

For W = S,: (t1, to, t3 > 0)

» modified nil-move

X,’(tl)X,'(t2) = X,'(tl + t2)

Fibers of Maps
» commutation moves (for |i — j| > 1)

xi(t1)xj(t2) = xj(t1)xi(t2)
» braid moves

xi(t1)xip1(t2)xi(t3)

trt3 tito
= Xj Xi(t1 + 13)X; —_—
,+1<t1+t3> i(t1 + t3) '+1<t1+t3>

32/38



Structure of Fibers (preliminary)

Fiber 71 y(P), p€ Yo, w=(j1,... k) reduced,

(71yeesfd
Q=(i{,...,i%) asubword of (i1,...,iq) multiplying to w
under the Demazure product, not reduced

Fibers of Maps

33/38



Structure of Fibers (preliminary)

Fiber =1 . (p), p€ Y2, w = (ji,...,Jjk) reduced,

(1yeeesid)
Q=(i{,...,i%) asubword of (i1,...,iq) multiplying to w
under the Demazure product, not reduced
» Case 0: @ multiplies to (j1, ..., jq) without braid moves

> Xil'(tl) ce X,'&(td) — Fibers of Maps
inj.
X (t4- - Htrm) X (Bt Ften,) (a1, 3)
» fiber a cross product of simplicies, graph of monotone

map
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Structure of Fibers (preliminary)

. -1 . .
Fiber f(il,-‘.,id)(p)’ peYS w={(i,...,Jjk) reduced,
Q=(i{,...,i%) asubword of (i1,...,iq) multiplying to w
under the Demazure product, not reduced
» Case 0: @ multiplies to (j1, ..., jq) without braid moves
> Xil'(tl) ce X,'&(td) — Fibers of Maps
X (trate A tm) X (tkate A ten) B (a1, .., ak)
» fiber a cross product of simplicies, graph of monotone
map
» Case 1: Q Multiplies to (j1,-..,Jk) via one braid move
followed by a modified nil-move

> xi(tp)Xiv (tpr1)Xi(tpr2) X141 (Ep43) -

t, t,
S Xi+1 ﬁ) Xit1(tp+tps2)Xit1 (fpﬁiz + tp+3)
inj.
4 (31, .. ak)

a a2

> fiber graph of t, — (
semi-monotone

32 - tp7 aéftp
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» Conjectured: strata of f(l_ll ,.d)(p) monotone for all
v,w € Sy, w<v (v=_(i,...,0q), pE YY)

«0O0>» «F>r» «E» «E>»

nae
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Outline of Results

» Conjectured: strata of ’[(E}...,;d)(l’) monotone for all
viw €Sy, w<v (v=_i,...,0q), p€ YY)

» = strata of £, (p) regular, i.e. f,}(p) a regular cell
complex for all viw € S, w < v
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Outline of Results

> Conjectured: strata of f ! .d)(p) monotone for all
vowe Sy, w<v(v=_(i,...,iq), pE YO).

» = strata of £, (p) regular, i.e. f,}(p) a regular cell
complex for all v,w € S,,w < v L

» (Davis, Hersh, Miller) The face poset of the
stratification of f .i,y(P) is isomorphic to the face
poset of the |nter|or dual block complex of the subword
complex A((i1, ..., iq), w)

» (Davis, Hersh, Miller) The interior dual block complex
of any non-empty subword complex A(Q, w) is a
contractible, regular cell complex
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Outline of Results

> Conjectured: strata of f ! .d)(p) monotone for all
vowe Sy, w<v(v=_(i,...,iq), pE YO).

» = strata of £, (p) regular, i.e. f,}(p) a regular cell
complex for all v,w € S,,w < v L

» (Davis, Hersh, Miller) The face poset of the
stratification of f ,.d)(p) is isomorphic to the face
poset of the |nter|or dual block complex of the subword
complex A((i1, ..., iq), w)

» (Davis, Hersh, Miller) The interior dual block complex
of any non-empty subword complex A(Q, w) is a
contractible, regular cell complex

> = £, 1(p) contractible for all v,w € sp, w < v
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Outline of Results

>

>

A\

Conjectured: strata of £ .1....id)(p) monotone for all
viw €Sy, w<v (v=_i,...,0q), p€ YY)
= strata of £, 1(p) regular, i.e. f,71(p) a regular cell

complex for all v,w € S,,w < v

(Davis, Hersh, Miller) The face poset of the
stratification of f ,.d)(p) is isomorphic to the face
poset of the |nter|or dual block complex of the subword
complex A((i1, ..., iq), w)

(Davis, Hersh, Miller) The interior dual block complex
of any non-empty subword complex A(Q, w) is a
contractible, regular cell complex

= f,;1(p) contractible for all v,w € s,, w < v

= Y\, a regular cell complex for each w < v

Fibers of Maps
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Future Directions

Future Directions
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Future Directions

Totally nonnegatvie part of flag variety (G/P)>o

» Conjecture: regular cell complex homeomorphic to a ball
> EVidence: Future Directions

» contractible

» cell poset that of a regular cell complex homeomorphic
to a ball

» regular cell complex up to homotopy equivalence

» Special case: totally nonnegative Grassmanian (Gry «)>0
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