Monotonicity and Totally Nonnegative Spaces

Alison Rosenblum

Purdue University

Advanced Topics Examination December 4, 2019

Introduction

Fomin Shapiro Conjecture

Resolution by Hersh

Monotonicity

Fibers of Maps

Future Directions

Introduction

Fomin Shapiro Conjecture

Resolution by Hersh

Monotonicity

Fibers of Maps

Future Directions

References

Introduction

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Definition

 $M \ n \times n$ matrix (over \mathbb{R}): M totally positive (resp totally nonnegative) if all minors are positive (resp nonnegative)

Introduction

Fomin Shapiro Conjecture

Resolution by Hersh

Monotonicity

Fibers of Maps

Future Directions

Definition

 $M \ n \times n$ matrix (over \mathbb{R}): M totally positive (resp totally nonnegative) if all minors are positive (resp nonnegative) Can extend definition to any split semi-simple algebraic group over \mathbb{R} .

- ▶ *B*, *B*_− opposite Borel subgroups
- U (resp U_{-}) unipotent radical of B (resp B_{-})
- x_i(t) = exp(te_i) (e_i Chevalley generators of the Lie algebra of U, t ∈ ℝ)

Y (totally nonnegative elements of U) mulitpicative submonoid of U generated by $x_i(t)$, $t \ge 0$

Introduction

Fomin Shapiro Conjecture

Resolution by Hersh

Monotonicity

ibers of Maps

Future Directions

 $G = SL(n, \mathbb{R})$, $B(B_{-})$ set of upper (lower) triangular matrices, U set of upper triangular matrices with 1's along the diagonal.

Introduction

Fomin Shapiro Conjecture

Resolution by Tersh

Monotonicity

Fibers of Maps

Future Directions

 $G = SL(n, \mathbb{R})$, $B(B_{-})$ set of upper (lower) triangular matrices, U set of upper triangular matrices with 1's along the diagonal.

n = 3:

$$M = \begin{bmatrix} 1 & x & z \\ 0 & 1 & y \\ 0 & 0 & 1 \end{bmatrix}$$

Introduction

Fomin Shapiro Conjecture

Resolution by Tersh

Monotonicity

ibers of Maps

uture Directions

 $G = SL(n, \mathbb{R})$, $B(B_{-})$ set of upper (lower) triangular matrices, U set of upper triangular matrices with 1's along the diagonal.

n = 3:

$$M = \begin{bmatrix} 1 & x & z \\ 0 & 1 & y \\ 0 & 0 & 1 \end{bmatrix}$$

 $M \in Y$ iff

• $x, y, z \ge 0$

Introduction

Fomin Shapiro Conjecture

Resolution by Hersh

Monotonicity

ibers of Maps

uture Directions

 $G = SL(n, \mathbb{R})$, $B(B_{-})$ set of upper (lower) triangular matrices, U set of upper triangular matrices with 1's along the diagonal.

n = 3:

٨

$$M = \begin{bmatrix} 1 & x & z \\ 0 & 1 & y \\ 0 & 0 & 1 \end{bmatrix}$$
$$M \in Y \text{ iff}$$
$$\land x, y, z \ge 0$$
$$\land z \le xy$$

Introduction

Fomin Shapiro Conjecture

Resolution by Tersh

Nonotonicity

ibers of Maps

Coxeter Groups

Introduction

Fomin Shapiro Conjecture

Resolution by Hersh

Monotonicity

Fibers of Maps

Future Directions

References

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ● ●

Coxeter Groups

Definition

Let W be a group and $S \subset W$. If W has a presentation of the form

- ► Generators: S
- Relations:
 - $s^2 = e$ for all $s \in S$
 - others of the form $(ss')^{m(s,s')} = e$ for $s \neq s' \in S$, $m(s,s') \ge 2$

then (W, S) is a Coxeter system

Introduction

Fomin Shapiro Conjecture

Resolution by Tersh

/onotonicity

ibers of Maps

uture Directions

Coxeter Groups

Definition

Let W be a group and $S \subset W$. If W has a presentation of the form

- ► Generators: S
- Relations:

s² = e for all s ∈ S
others of the form $(ss')^{m(s,s')} = e$ for s ≠ s' ∈ S, $m(s,s') \ge 2$

then (W, S) is a Coxeter system

Example

 $W = S_n$: S set of adjacent transpositions $s_i = (i \ i+1)$ for $1 \le i \le n-1$

Introduction

Fomin Shapiro Conjecture

Resolution by Tersh

/lonotonicity

ibers of Maps

Let
$$w \in W$$
, $S = \{s_i\}$

$$w = s_{i_1} \cdots s_{i_k}$$

Introduction

Fomin Shapiro Conjecture

Resolution by Hersh

Monotonicity

Fibers of Maps

Future Directions

References

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Let
$$w \in W$$
, $S = \{s_i\}$

$$w = s_{i_1} \cdots s_{i_k}$$

•
$$(i_1, \ldots, i_k)$$
 a word for w

Introduction

Fomin Shapiro Conjecture

Resolution by Tersh

Monotonicity

ibers of Maps

Future Directions

Let
$$w \in W$$
, $S = \{s_i\}$

$$w = s_{i_1} \cdots s_{i_k}$$

$$(i_1, \ldots, i_k)$$
 a word for w
If k minimal, (i_1, \ldots, i_k) a reduced word, $k = l(w)$ the
length of w

Introduction

Fomin Shapiro Conjecture

Resolution by Tersh

Monotonicity

ibers of Maps

Let
$$w \in W$$
, $S = \{s_i\}$

$$w = s_{i_1} \cdots s_{i_k}$$

• (i_1, \ldots, i_k) a word for w

If k minimal, (i₁,..., i_k) a reduced word, k = l(w) the length of w

Definition

Let $u, v \in W$. If there is a reduced word for u that is a subword of a reduced word for v, then $u \leq v$ in the Bruhat order

Introduction

Fomin Shapiro Conjecture

Resolution by Tersh

Monotonicity

ibers of Maps

Let
$$w \in W$$
, $S = \{s_i\}$

$$w = s_{i_1} \cdots s_{i_k}$$

• (i_1, \ldots, i_k) a word for w

• If k minimal, (i_1, \ldots, i_k) a reduced word, k = l(w) the length of w

Definition

Let $u, v \in W$. If there is a reduced word for u that is a subword of a reduced word for v, then $u \leq v$ in the Bruhat order

Proposition

If W is finite, there exists a unique element $w_0 \in W$ so that $w \leq w_0$ for all $w \in W$

Introduction

Fomin Shapiro Conjecture

Resolution by Tersh

Monotonicity

ibers of Maps

Introduction

Fomin Shapiro Conjecture

Resolution by Hersh

Monotonicity

Fibers of Maps

uture Directions

References

Fomin Shapiro Conjecture

Let W be the Weyl Group of G • $G = SL(n, \mathbb{R})$: $W = S_n$ Introduction

Fomin Shapiro Conjecture

Resolution by Tersh

Monotonicity

Fibers of Maps

Future Directions

Let W be the Weyl Group of G

•
$$G = SL(n, \mathbb{R})$$
: $W = S_n$

Decomposition $G = \bigsqcup_{w \in W} B_- wB_-$ induces decomposition of Y into strata $Y_w^o = Y \cap B_- wB_-$ Introduction

Fomin Shapiro Conjecture

Resolution by Hersh

Nonotonicity

Fibers of Maps

Future Directions

Let W be the Weyl Group of G

$$\blacktriangleright G = SL(n, \mathbb{R}): W = S_n$$

Decomposition $G = \bigsqcup_{w \in W} B_- wB_-$ induces decomposition of Y into strata $Y_w^o = Y \cap B_- wB_-$

Notice

 $u \leq v$ in the Bruhat order iff $Y_{\mu}^{o} \subset \overline{Y_{\nu}^{o}}$

Introduction

Fomin Shapiro Conjecture

Resolution by Hersh

/lonotonicity

ibers of Maps

uture Directions

Let W be the Weyl Group of G

$$\blacktriangleright G = SL(n, \mathbb{R}): W = S_n$$

Decomposition $G = \bigsqcup_{w \in W} B_- wB_-$ induces decomposition of Y into strata $Y_w^o = Y \cap B_- wB_-$

Notice

 $u \leq v$ in the Bruhat order iff $Y_u^{o} \subset \overline{Y_v^{o}}$

Proposition (Lusztig)

Let (i_1, \ldots, i_d) be a reduced word for $w \in W$. Then the map

$$(t_1,\ldots,t_d)\mapsto x_{i_1}(t_1)\cdots x_{i_d}(t_d)$$

is a homeomorphism between $\mathbb{R}^d_{>0}$ and Y^o_w

Introduction

Fomin Shapiro Conjecture

Resolution by Hersh

Ionotonicity

Fibers of Maps

uture Directions

$$x_1(t) = egin{bmatrix} 1 & t & 0 \ 0 & 1 & 0 \ 0 & 0 & 1 \end{bmatrix} \qquad \qquad x_2(t) = egin{bmatrix} 1 & 0 & 0 \ 0 & 1 & t \ 0 & 0 & 1 \end{bmatrix}$$

Introduction

Fomin Shapiro Conjecture

Resolution by Hersh

Monotonicity

Fibers of Maps

Future Directions

$$x_1(t) = egin{bmatrix} 1 & t & 0 \ 0 & 1 & 0 \ 0 & 0 & 1 \end{bmatrix} \qquad \qquad x_2(t) = egin{bmatrix} 1 & 0 & 0 \ 0 & 1 & t \ 0 & 0 & 1 \end{bmatrix}$$

•
$$Y^{o}_{(1,2,1)} = Y^{o}_{(2,1,2)} = \{(x, y, z) \mid x, y > 0, 0 < z < xy\}$$

Introduction

Fomin Shapiro Conjecture

Resolution by Hersh

Monotonicity

Fibers of Maps

Future Directions

$$x_1(t) = egin{bmatrix} 1 & t & 0 \ 0 & 1 & 0 \ 0 & 0 & 1 \end{bmatrix} \qquad x_2(t) = egin{bmatrix} 1 & 0 & 0 \ 0 & 1 & t \ 0 & 0 & 1 \end{bmatrix}$$

$$Y_{id}^{o} = \{(0,0,0)\}$$

$$Y_{(1)}^{o} = \{(x,0,0) \mid x > 0\}$$

$$Y_{(2)}^{o} = \{(0,y,0) \mid y > 0\}$$

$$Y_{(2,1)}^{o} = \{(x,y,0) \mid x > 0, y > 0\}$$

$$Y_{(1,2)}^{o} = \{(x,y,xy) \mid x, y > 0\}$$

$$Y_{(1,2,1)}^{o} = Y_{(2,1,2)}^{o} = \{(x,y,z) \mid x, y > 0, 0 < z < xy\}$$

Introduction

Fomin Shapiro Conjecture

Resolution by Hersh

Monotonicity

Fibers of Maps

uture Directions

Links of Strata

Notation: Let $Y_w = \overline{Y_w^o}$.

Definition

- Let $Y_u^{\mathrm{o}} \subset Y_v$ ($\Leftrightarrow u \leq v$). Let
 - ▶ $p \in Y_u^o$ arbitrary
 - ▶ *N* a smooth manifold with $N \cap Y_u^o = \{p\}$ and *N* transverse to Y_u^o
 - $B_{\delta}(p)$ ball of radius δ centered at p

Then $Lk(u, v) = Y_v \cap N \cap \partial B_{\delta}(p)$

Introduction

Fomin Shapiro Conjecture

Resolution by Hersh

Monotonicity

Fibers of Maps

uture Directions

Links of Strata

Notation: Let $Y_w = \overline{Y_w^o}$.

Definition

- Let $Y_u^{\mathrm{o}} \subset Y_v$ ($\Leftrightarrow u \leq v$). Let
 - ▶ $p \in Y_u^{o}$ arbitrary
 - ▶ *N* a smooth manifold with $N \cap Y_u^o = \{p\}$ and *N* transverse to Y_u^o
 - $B_{\delta}(p)$ ball of radius δ centered at p

Then $Lk(u, v) = Y_v \cap N \cap \partial B_{\delta}(p)$

Figure: Lk((0), (1, 2, 1)) and Lk((1), (1, 2, 1)) for $SL(3, \mathbb{R})$

Introduction

Fomin Shapiro Conjecture

Resolution by Hersh

Monotonicity

Fibers of Maps

uture Directions

Fomin Shapiro Conjecture

Definition

A set $U \subset \mathbb{R}^m$ is an *m*-cell if $U \cong (B^m)^{\circ}$. *U* is a regular *m*-cell if the pair $(\overline{U}, U) \cong (B^m, (B^m)^{\circ})$

Introduction

Fomin Shapiro Conjecture

Resolution by Hersh

Monotonicity

Fibers of Maps

Future Directions

Fomin Shapiro Conjecture

Definition

A set $U \subset \mathbb{R}^m$ is an *m*-cell if $U \cong (B^m)^{\circ}$. *U* is a regular *m*-cell if the pair $(\overline{U}, U) \cong (B^m, (B^m)^{\circ})$

Conjecture

For all $u, v \in W$ with $Y_u^o \subset Y_v$, Lk(u, v) is a regular cell complex (decomposes into regular cells).

Introduction

Fomin Shapiro Conjecture

Resolution by Hersh

Monotonicity

ibers of Maps

Future Directions

Fomin Shapiro Conjecture

Definition

A set $U \subset \mathbb{R}^m$ is an *m*-cell if $U \cong (B^m)^{\circ}$. *U* is a regular *m*-cell if the pair $(\overline{U}, U) \cong (B^m, (B^m)^{\circ})$

Conjecture

For all $u, v \in W$ with $Y_u^o \subset Y_v$, Lk(u, v) is a regular cell complex (decomposes into regular cells).

Motivation

Björner: [u, v] a Bruhat interval \Rightarrow there exists a regular cell complex with face poset isomorphic to [u, v]. Goal: find naturally arising construction.

Introduction

Fomin Shapiro Conjecture

Resolution by Hersh

Nonotonicity

ibers of Maps

uture Directions

Resolution by Hersh

Introduction

Fomin Shapiro Conjecture

Resolution by Hersh

Monotonicity

Fibers of Maps

Future Directions

Some Notation

Let (i_1, \ldots, i_d) be a word for $w \in W$. Denote

$$egin{aligned} f_{(i_1,\ldots,i_d)} &: \mathbb{R}^d_{\geq 0} \cap S^{d-1} o Y_w \ & (t_1,\ldots,t_d) \mapsto x_{i_1}(t_1)\cdots x_{i_d}(t_d) \end{aligned}$$

where S^{d-1} is the simplex $\sum t_i = K$ for some K > 0

Introduction

Fomin Shapiro Conjecture

Resolution by Hersh

Monotonicity Fibers of Maps

References

・ロト・日本・ キョン・ヨー シタウー

Some Notation

Let (i_1, \ldots, i_d) be a word for $w \in W$. Denote

$$egin{aligned} f_{(i_1,\ldots,i_d)} &: \mathbb{R}^d_{\geq 0} \cap S^{d-1} o Y_w \ & (t_1,\ldots,t_d) \mapsto x_{i_1}(t_1) \cdots x_{i_d}(t_d) \end{aligned}$$

where S^{d-1} is the simplex $\sum t_i = K$ for some K > 0

Notation Change

Henceforth, for $w = (i_1, ..., i_d)$ $Y_w^o = f_{(i_1,...,i_d)}(\mathbb{R}^d_{>0} \cap S^{d-1})$ $Y_w = f_{(i_1,...,i_d)}(\mathbb{R}^d_{\geq 0} \cap S^{d-1}) \cong Lk((0), (i_1, ..., i_d))$ Introduction

Fomin Shapiro Conjecture

Resolution by Hersh

Monotonicity Fibers of Maps Future Directions

References

・ロト・西ト・ヨト・ヨー うへで

Cell Collapses

 (i_1, \ldots, i_d) reduced: $f_{(i_1, \ldots, i_d)}$ homeomorphism on interior, not necessarily injective on boundary

Introduction

Fomin Shapiro Conjecture

Resolution by Hersh

Monotonicity

Fibers of Maps

Future Directions

Cell Collapses

 (i_1, \ldots, i_d) reduced: $f_{(i_1, \ldots, i_d)}$ homeomorphism on interior, not necessarily injective on boundary

Example

 $G = SL(3, \mathbb{R})$

$$f_{(1,2,1)}(t_1, t_2, t_3) = \begin{bmatrix} 1 & t_1 + t_3 & t_1 t_2 \\ 0 & 1 & t_2 \\ 0 & 0 & 1 \end{bmatrix}$$

$$(0,0,1)$$

$$(1,0,0) \bullet (0,1,0)$$

Introduction

Fomin Shapiro Conjecture

Resolution by Hersh

Ionotonicity

ibers of Maps

Theorem (Hersh)

Let (i_1, \ldots, i_d) be a reduced word for $w \in W$. Let \sim be the identifications given by any series of face collapses on $\mathbb{R}^d_{\geq 0} \cap S^{d-1}$ such that

1.
$$x \sim y \Rightarrow f_{(i_1,...,i_d)}(x) = f_{(i_1,...,i_d)}(y)$$

2. the series of collapses eliminates all regions whose words are not reduced

Then $\overline{f_{(i_1,...,i_d)}} : \mathbb{R}^d_{\geq 0} \cap S^{d-1} / \sim \to Y_w$ is a homomorphism which preserves cell structure

Introduction

Fomin Shapiro Conjecture

Resolution by Hersh

Monotonicity

ibers of Maps

Monotonicity

Introduction

Fomin Shapiro Conjecture

Resolution by Hersh

Monotonicity

Fibers of Maps Future Directions References

◆□▶ ◆□▶ ◆三▶ ◆三▶ → □ ◆ ○ ◆
Coordinate Cones

In this section, sets and functions are definable in some o-minimal structure over $\ensuremath{\mathbb{R}}$

Let
$$L_{j,\sigma,c} = \{\mathbf{x} \in \mathbb{R}^n \mid x_j \sigma c\}$$
 for $\sigma \in \{<,=,>\}$, $c \in \mathbb{R}$

Introduction

Fomin Shapiro Conjecture

Resolution by Hersh

Monotonicity

Fibers of Maps Future Directions References

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 - のへで

Coordinate Cones

In this section, sets and functions are definable in some o-minimal structure over $\ensuremath{\mathbb{R}}$

Let
$$L_{j,\sigma,c} = \{ \mathbf{x} \in \mathbb{R}^n \mid x_j \sigma c \}$$
 for $\sigma \in \{<,=,>\}$, $c \in \mathbb{R}$

Definition

A coordinate cone is a set of the form

$$C = L_{j_1,\sigma_1,c_1} \cap \ldots \cap L_{j_m,\sigma_m,c_m} \subset \mathbb{R}^n$$

with the j_i distinct elements of $\{1, \ldots, n\}$. Similarly, an affine coordinate subspace has the form

$$S = L_{j_1,=,c_1} \cap \ldots \cap L_{j_m,=,c_m} \subset \mathbb{R}^n$$

Introduction

Fomin Shapiro Conjecture

Resolution by Hersh

Monotonicity

Semi-monotone Sets

Definition/Theorem

An open bounded set $X \subset \mathbb{R}^n$ is semi-monotone if for each coordinate cone $C, X \cap C$ is connected (equivalently, if for every affine coordinate subspace $S, X \cap S$ is connected)

Introduction

Fomin Shapiro Conjecture

Resolution by Hersh

Monotonicity

Fibers of Maps Future Directions References

▲□▶▲□▶▲□▶▲□▶ ■ のへで

Semi-monotone Sets

Definition/Theorem

An open bounded set $X \subset \mathbb{R}^n$ is semi-monotone if for each coordinate cone $C, X \cap C$ is connected (equivalently, if for every affine coordinate subspace $S, X \cap S$ is connected)

semi-monotone

not semi-monotone

Introduction

Fomin Shapiro Conjecture

Resolution by Hersh

Monotonicity

Fibers of Maps Future Directions References

 Let $f: X \to \mathbb{R}, X \subset \mathbb{R}^n$ nonempty and semi-monotone, and let F be the graph of f

Definition

f is submonotone if it is bounded, upper semi-continuous, and for all $b \in \mathbb{R}$, $\{\mathbf{x} \in X \mid f(\mathbf{x}) < b\}$ is semi-monotone. *f* is supermonotone if -f is submonotone.

Introduction

Fomin Shapiro Conjecture

Resolution by Hersh

Monotonicity

Let $f : X \to \mathbb{R}$, $X \subset \mathbb{R}^n$ nonempty and semi-monotone, and let F be the graph of f

Definition

f is submonotone if it is bounded, upper semi-continuous, and for all $b \in \mathbb{R}$, $\{\mathbf{x} \in X \mid f(\mathbf{x}) < b\}$ is semi-monotone. *f* is supermonotone if -f is submonotone.

Definition

f is monotone if it is both sub and supermonotone and either strictly increasing in, strictly decreasing in, or independent of x_j for all $1 \le j \le n$ Introduction

Fomin Shapiro Conjecture

Resolution by Hersh

Monotonicity

Monotone Functions (Characterization)

Let $f:X \to \mathbb{R}$ be bounded and continuous, with $X \subset \mathbb{R}^n$ open, bounded, and nonempty

Theorem

Let f be strictly increasing in, strictly decreasing in, or independent of each $x_j, \ 1 \le j \le n.$ Then the following are equivalent

- I. f is monotone
- II. $F \cap C$ is connected for each coordinate cone C
- III. $F \cap S$ is connected for each affine coordinate subspace S

Introduction

Fomin Shapiro Conjecture

Resolution by Hersh

Monotonicity

Let $\mathbf{f} = (f_1, \ldots, f_k) : X \to \mathbb{R}^k$, $X \subset \mathbb{R}^n$ nonempty and semi-monotone, F the graph of f.

Definition

Let
$$H = \{x_{j_1}, \dots, x_{j_\alpha}, y_{i_1}, \dots, y_{i_\beta}\} \subset \{x_1, \dots, x_n, y_1, \dots, y_k\}$$

where $\alpha + \beta = n$. H is a basis if
 $(x_{j_1}, \dots, x_{j_\alpha}, f_{i_1}, \dots, f_{i_\beta}) : X \to \mathbb{R}^n$ is injective

Introduction

Fomin Shapiro Conjecture

Resolution by Hersh

Monotonicity

Let $\mathbf{f} = (f_1, \ldots, f_k) : X \to \mathbb{R}^k$, $X \subset \mathbb{R}^n$ nonempty and semi-monotone, F the graph of f.

Definition

 $\mathbf{f} : \mathbb{R} \to \mathbb{R}^k$ is monotone if f_i is monotone for all iInductively, $\mathbf{f} : \mathbb{R}^n \to \mathbb{R}^k$ is monotone if for each f_i not independent of x_j

- For each b ∈ ℝ, F ∩ {y_i = b} is the graph of a monotone map f_{i,j,b} from a semi-monotone subset of span{x₁,..., x̂_j,..., x_n} to span{y₁,..., y_{i-1}, x_j, y_{i+1},..., y_k}
- 2. The system of basis sets associated with $\mathbf{f}_{i,j,b}$ does not depend on b

Introduction

Fomin Shapiro Conjecture

Resolution by Hersh

Monotonicity

Monotone Maps (Characterization)

Let $\mathbf{f}: X \to \mathbb{R}^k$ be bounded and continuous, with $X \subset \mathbb{R}^n$ open, bounded, and nonempty, F the graph of f.

Definition

f is quasi-affine if for any $T = \text{span}\{x_{j_1}, \ldots, x_{j_{\alpha}}, y_{i_1}, \ldots, y_{i_{\beta}}\}, \alpha + \beta = n$, the projection $\rho_T : F \to T$ is injective iff the image $\rho_T(F)$ is *n* dimensional

Introduction

Fomin Shapiro Conjecture

Resolution by Hersh

Monotonicity

Monotone Maps (Characterization)

Let $\mathbf{f}: X \to \mathbb{R}^k$ be bounded and continuous, with $X \subset \mathbb{R}^n$ open, bounded, and nonempty, F the graph of f.

Definition

f is quasi-affine if for any $T = \text{span}\{x_{j_1}, \ldots, x_{j_{\alpha}}, y_{i_1}, \ldots, y_{i_{\beta}}\}, \alpha + \beta = n$, the projection $\rho_T : F \to T$ is injective iff the image $\rho_T(F)$ is *n* dimensional

Theorem

Let f be quasi-affine. Then the following are equivalent

- I. f is monotone
- II. $F \cap C$ is connected for each coordinate cone C
- III. $F \cap S$ is connected for each affine coordinate subspace S

Introduction

Fomin Shapiro Conjecture

Resolution by Hersh

Monotonicity

not monotone

Introduction

Fomin Shapiro Conjecture

Resolution by Hersh

Monotonicity

Fibers of Maps Future Directions References

◆□▶ ◆□▶ ◆三▶ ◆三▶ → □ ◆ ○ ◆

not monotone

z = xy on 0 < x < 1, -1 < y < 1 not monotone

Introduction

Fomin Shapiro Conjecture

Resolution by Hersh

Monotonicity

```
◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで
```


not monotone

not monotone

Introduction

Fomin Shapiro Conjecture

Resolution by Hersh

Monotonicity

z = xy on 0 < x < 1, -1 < y < 1 not monotone

not monotone

z = xy on 0 < x < 1, -1 < y < 1 not monotone

z = xy on 0 < x, y < 1monotone

Introduction

Fomin Shapiro Conjecture

Resolution by Hersh

Monotonicity

Theorem (Basu, Gabrielov, Vorobjov)

The graph $F \subset \mathbb{R}^{n+k}$ of a monotone map $\mathbf{f} : X \to \mathbb{R}^k$ on a semimonotone set $X \subset \mathbb{R}^n$ is a regular *n*-cell.

Introduction

Fomin Shapiro Conjecture

Resolution by Hersh

Monotonicity

Application: Toric Cubes

Definition

A toric cube is the image of a map of the form

$$egin{aligned} &f_{\mathcal{A}}: [0,1]^d
ightarrow [0,1]^n \ &\mathbf{t}=(t_1,\ldots,t_d)\mapsto (\mathbf{t}^{\mathbf{a}_1},\ldots,\mathbf{t}^{\mathbf{a}_n}) \end{aligned}$$

where $\mathcal{A} = \{\mathbf{a}_1, \ldots, \mathbf{a}_n\} \subset \mathbb{R}^d$ and for $\mathbf{a}_i = (a_{i,1}, \ldots, a_{i,d})$, $\mathbf{t}^{\mathbf{a}_i}$ denotes $(t_1^{\mathbf{a}_{i,1}}, \ldots, t_d^{\mathbf{a}_{i,d}})$. An open toric cube is the image of the restriction of such an $f_{\mathcal{A}}$ to $(0, 1)^d$.

Theorem (Basu, Gabrielov, Vorobjov)

An open toric cube is the graph of a monotone map, and hence is a regular cell.

Introduction

Fomin Shapiro Conjecture

Resolution by Tersh

Monotonicity

Application: Vandermonde Varieties

Let \mathbf{R} be a real closed field

Definition The Weyl chamber in \mathbf{R}^k is

$$\mathcal{W}^{(k)} = \{(X_1,\ldots,X_k) \in \mathbf{R}^k \mid X_1 \leq \ldots \leq X_k\}$$

Introduction

Fomin Shapiro Conjecture

Resolution by Hersh

Monotonicity

Application: Vandermonde Varieties

Let \mathbf{R} be a real closed field

Definition The Weyl chamber in \mathbf{R}^k is

$$\mathcal{W}^{(k)} = \{(X_1,\ldots,X_k) \in \mathbf{R}^k \mid X_1 \leq \ldots \leq X_k\}$$

Definition

Let $\mathbf{y} = (y_1, \dots, y_d) \in \mathbf{R}^d$. The Vandermonde variety $V_{d,\mathbf{y}}^{(k)} \subset \mathbf{R}^k$ is the variety defined by $p_1^{(k)} = y_1, \dots, p_d^{(k)} = y_d$ where

$$p_j^{(k)} = \sum_{i=1}^k X_i^j$$

Introduction

Fomin Shapiro Conjecture

Resolution by Hersh

Monotonicity

Fibers of Maps Future Directions References

▲□▶ ▲御▶ ▲臣▶ ▲臣▶ ―臣 – のへで

Application: Vandermonde Varieties

Introduction

Fomin Shapiro Conjecture

Resolution by Hersh

Monotonicity

Fibers of Maps Future Directions References

Proposition (Basu, Riener)

For all $\mathbf{y} \in \mathbf{R}^d$, $d \leq k$, either $V_{d,\mathbf{y}}^{(k)} \cap \mathcal{W}^{(k)}$ is empty or a point, or $V_{d,\mathbf{y}}^{(k)} \cap \mathcal{W}^{(k)} = \overline{V_{d,\mathbf{y}}^{(k)} \cap \mathcal{W}^{(k),\circ}}$ and $V_{d,\mathbf{y}}^{(k)} \cap \mathcal{W}^{(k),\circ}$ is a semi-monotone set, and hence a regular cell

Introduction

Fomin Shapiro Conjecture

Resolution by Hersh

Monotonicity

Fibers of Maps

Future Directions

Fibers of Maps

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○三 のへの

Route to an Alternate Proof

Theorem (Davis, Hersh, Miller)

Let $v \in W$ with (i_1, \ldots, i_d) a reduced word for v. Then if for all $w \in W$, $w \leq v$, we have $f_{(i_1,\ldots,i_d)}^{-1}(p)$ is contractible for $p \in Y_w^o$, then Y_w is a regular cell complex for each $w \leq v$.

(Key ingredient in proof)

Let \sim be an equivalence relation on the closed ball B^n so that

all equivalence classes are contractible
Sⁿ⁻¹/ ~ ≅ Sⁿ⁻¹
if x ~ y with x ∈ Sⁿ⁻¹, then y ∈ Sⁿ⁻¹
if x ~ y with x ∉ Sⁿ⁻¹, then y = x
Then B ≅ B/~

Introduction

Fomin Shapiro Conjecture

Resolution by Hersh

Monotonicity

Fibers of Maps

Future Directions References

Reduced Words and Injectivity

Definition/Proposition

The Demazure product on W is the unique associative map $\delta: W \times W \to W$ such that for $w \in W$ and $s \in S$,

$$\delta(w, s) = \begin{cases} ws & l(ws) > l(w) \\ w & l(ws) < w \end{cases}$$

Introduction

Fomin Shapiro Conjecture

Resolution by Hersh

Monotonicity

Fibers of Maps

Future Directions

Reduced Words and Injectivity

Definition/Proposition

The Demazure product on W is the unique associative map $\delta: W \times W \to W$ such that for $w \in W$ and $s \in S$,

$$\delta(w, s) = \begin{cases} ws & l(ws) > l(w) \\ w & l(ws) < w \end{cases}$$

Introduction

Fomin Shapiro Conjecture

Resolution by Hersh

Monotonicity

Fibers of Maps

Future Directions References

Theorem

Let (i_1, \ldots, i_d) be a reduced word for v and let $p \in Y_w$. Then $f_{(i_1,\ldots,i_d)}^{-1}(p)$ is stratified via the standard decomposition of the simplex. Let Q be a subword of (i_1, \ldots, i_d) . $f_{(i_1,\ldots,i_d)}^{-1}(p) \cap \mathbb{R}_{>0}^Q$ is nonempty iff Q multiplies to w under the Demazure product, and is non-trivial iff the expression is not reduced.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

Example: $G = SL(3, \mathbb{R})$

$$v = (1, 2, 1), p \in Y_{(1)}, f_{(1,2,1)}^{-1}(p) \text{ in red.}$$

 $Q = (0, 0, 1)$
 $Q = (1, 0, 1)$
 $Q = (1, 2, 1)$
 $Q = (0, 2, 1)$
 $Q = (1, 2, 0)$
 $Q = (0, 2, 0)$

Introduction

Fomin Shapiro Conjecture

Resolution by Hersh

Monotonicity

Fibers of Maps

Future Directions References

Conjecture

Let $G = SL(n, \mathbb{R})$, let (i_1, \ldots, i_d) be a reduced word for $v \in W$, let $w \leq v$, and let $p \in Y_w^o$. Then the strata of $f_{(i_1,\ldots,i_d)}^{-1}(p)$ are graphs of monotone maps, and hence this stratification is a regular cell decomposition.

This holds in the cases n = 3 and n = 4, by computation

Introduction

Fomin Shapiro Conjecture

Resolution by Hersh

Monotonicity

Fibers of Maps

^Euture Directions References

$$f_{(1,3,2,1,3,2)} = \begin{bmatrix} 1 & t_1 + t_4 & (t_1 + t_4)t_6 + t_1t_2 & t_1t_3t_5 \\ 0 & 1 & t_3 + t_6 & t_3t_5 \\ 0 & 0 & 1 & t_2 + t_5 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Introduction

Fomin Shapiro Conjecture

Resolution by Hersh

Monotonicity

Fibers of Maps

Future Directions

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへぐ

$$f_{(1,3,2,1,3,2)} = \begin{bmatrix} 1 & t_1 + t_4 & (t_1 + t_4)t_6 + t_1t_2 & t_1t_3t_5 \\ 0 & 1 & t_3 + t_6 & t_3t_5 \\ 0 & 0 & 1 & t_2 + t_5 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$p = (a, b, c, ab, 0, 0)$$

$$\in Y^{o}_{(3,1,2)} = \{(x, y, z, xy, 0, 0) \mid x, y, z > 0, x + y + z = K\}$$

Introduction

Fomin Shapiro Conjecture

Resolution by Hersh

Monotonicity

Fibers of Maps

uture Directions References

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ 三臣 - のへで

$$f_{(1,3,2,1,3,2)} = \begin{bmatrix} 1 & t_1 + t_4 & (t_1 + t_4)t_6 + t_1t_2 & t_1t_3t_5 \\ 0 & 1 & t_3 + t_6 & t_3t_5 \\ 0 & 0 & 1 & t_2 + t_5 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$p = (a, b, c, ab, 0, 0)$$

$$\in Y^{o}_{(3,1,2)} = \{(x, y, z, xy, 0, 0) \mid x, y, z > 0, x + y + z = K\}$$

$$\begin{aligned} f^{-1}(p) = & \{(t_1, t_2, 0, a - t_1, c - t_2, b) \mid 0 \leq t_1 \leq a, 0 \leq t_2 \leq c\} \\ & \cup \{(a, c, t_3, 0, 0, b - t_3) \mid 0 \leq t_3 \leq b\} \end{aligned}$$

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ 三臣 - のへで

Introduction

Fomin Shapiro Conjecture

Resolution by Hersh

Monotonicity

Fibers of Maps

Future Directions References

$$\begin{aligned} f &= f_{(1,3,2,1,3,2)}, \ p \in Y^{o}_{(3,1,2)} \\ f^{-1}(p) &= \{(t_1, t_2, 0, a - t_1, c - t_2, b) \mid 0 \leq t_1 \leq a, 0 \leq t_2 \leq c\} \\ &\cup \{(a, c, t_3, 0, 0, b - t_3) \mid 0 \leq t_3 \leq b\} \\ \\ (1, 3, 2, 0, 0, 0) &\{(a, c, b, 0, 0, 0)\} \\ (1, 3, 0, 0, 2) &\{(a, c, t_3, 0, 0, b) \mid 0 < t_3 < b\} \\ (1, 3, 2, 0, 0, 2) &\{(a, c, t_3, 0, 0, b) \mid 0 < t_3 < b\} \\ (1, 3, 0, 1, 0, 2) &\{(t_1, c, 0, a - t_1, 0, b) \mid 0 < t_1 < a\} \\ (1, 3, 0, 0, 3, 2) &\{(a, t_2, 0, 0, c - t_2, b) \mid 0 < t_2 < c\} \\ (1, 0, 0, 1, 3, 2) &\{(t_1, 0, 0, c - t_1, c, b) \mid 0 < t_1 < a\} \\ (1, 0, 0, 1, 3, 2) &\{(t_1, 0, 0, c - t_1, c, b) \mid 0 < t_1 < a\} \\ (1, 3, 0, 1, 3, 2) &\{(t_1, 0, 0, c - t_1, c, b) \mid 0 < t_1 < a\} \\ (1, 3, 0, 1, 3, 2) &\{(t_1, 0, 0, c - t_1, c, b) \mid 0 < t_1 < a\} \\ (1, 3, 0, 1, 3, 2) &\{(t_1, 0, 0, c - t_1, c, b) \mid 0 < t_2 < c\} \\ (1, 3, 0, 1, 3, 2) &\{(t_1, t_2, 0, a - t_1, c - t_2, b) \mid 0 < t_2 < c\} \\ (1, 3, 0, 1, 3, 2) &\{(t_1, t_2, 0, a - t_1, c - t_2, b) \mid 0 < t_2 < c\} \\ (1, 3, 0, 1, 3, 2) &\{(t_1, 0, 0, c - t_1, c, b) \mid 0 < t_2 < c\} \\ (1, 3, 0, 1, 3, 2) &\{(t_1, 0, 0, c - t_1, c - t_2, b) \mid 0 < t_2 < c\} \\ (1, 3, 0, 1, 3, 2) &\{(t_1, 0, 0, c - t_1, c - t_2, b) \mid 0 < t_2 < c\} \\ (1, 3, 0, 1, 3, 2) &\{(t_1, 0, 0, c - t_1, c - t_2, b) \mid 0 < t_2 < c\} \\ (1, 3, 0, 1, 3, 2) &\{(t_1, 0, 0, c - t_1, c - t_2, b) \mid 0 < t_2 < c\} \\ (1, 3, 0, 1, 3, 2) &\{(t_1, 0, 0, c - t_1, c - t_2, b) \mid 0 < t_2 < c\} \\ (1, 3, 0, 1, 3, 2) &\{(t_1, 0, 0, c - t_1, c - t_2, b) \mid 0 < t_2 < c\} \\ (1, 3, 0, 1, 3, 2) &\{(t_1, 0, 0, c - t_1, c - t_2, b) \mid 0 < t_2 < c\} \\ (1, 1, 2, 0, a - t_1, c - t_2, c) \\ (1, 1, 2, 0, a - t_1, c - t_2, c) \\ (1, 1, 2, 0, 2, 0, 0 < t_2 < c\} \\ (1, 1, 2, 0, 2, 0, 0 < t_2 < c) \\ (1, 1, 2, 0, 2, 0, 0 < t_2 < c\} \\ (1, 1, 2, 0, 2, 0, 0 < t_2 < c) \\ (1, 1, 2, 0, 2, 0, 0 < t_2 < c) \\ (1, 1, 2, 0, 2, 0, 0 < t_2 < c) \\ (1, 1, 2, 0, 2, 0 < t_2 < c) \\ (1, 1, 2, 0, 2, 0 < t_2 < c) \\ (1, 1, 2, 0, 2, 0 < t_2 < c) \\ (1, 1, 2, 0, 2, 0 < t_2 < c) \\ (1, 1, 2, 0, 2, 0 < t_2 < c) \\ (1, 1, 2, 0, 2, 0 < t_2 < c) \\ (1, 1, 2, 0, 2, 0 < t_2 < c) \\ (1, 1, 2, 0, 2, 0 < t_2 < c) \\ (1, 1, 2, 0, 2, 0 <$$

ntroduction

Fomin Shapiro Conjecture

Resolution by Hersh

Monotonicity

Fibers of Maps Future Directions

References

$$f_{(1,3,2,1,3,2)} = \begin{bmatrix} 1 & t_1 + t_4 & (t_1 + t_4)t_6 + t_1t_2 & t_1t_3t_5 \\ 0 & 1 & t_3 + t_6 & t_3t_5 \\ 0 & 0 & 1 & t_2 + t_5 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Introduction

Fomin Shapiro Conjecture

Resolution by Hersh

Monotonicity

Fibers of Maps

Future Directions

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○ ●

$$f_{(1,3,2,1,3,2)} = \begin{bmatrix} 1 & t_1 + t_4 & (t_1 + t_4)t_6 + t_1t_2 & t_1t_3t_5 \\ 0 & 1 & t_3 + t_6 & t_3t_5 \\ 0 & 0 & 1 & t_2 + t_5 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$p = (a, b, 0, d, 0, 0) \in Y_{(2,1,2)}^{o}$$

= {(x, y, 0, u, 0, 0) | x, y > 0, 0 < u < xy, x + y = K}

Introduction

Fomin Shapiro Conjecture

Resolution by Hersh

Monotonicity

Fibers of Maps

Future Directions References

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

$$f_{(1,3,2,1,3,2)} = \begin{bmatrix} 1 & t_1 + t_4 & (t_1 + t_4)t_6 + t_1t_2 & t_1t_3t_5 \\ 0 & 1 & t_3 + t_6 & t_3t_5 \\ 0 & 0 & 1 & t_2 + t_5 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$p = (a, b, 0, d, 0, 0) \in Y_{(2,1,2)}^{o}$$

= {(x, y, 0, u, 0, 0) | x, y > 0, 0 < u < xy, x + y = K}

$$f^{-1}(p) = \{(t_1, 0, \frac{ab-d}{a-t_1}, a-t_1, 0, \frac{d-t_1b}{a-t_1}) \mid 0 \le t_1 \le d/b\}$$

Introduction

Fomin Shapiro Conjecture

Resolution by Hersh

Monotonicity

Fibers of Maps Future Directions

References

$$f=f_{(1,3,2,1,3,2)},\ p\in Y_{(2,1,2)}^{\mathrm{o}}$$

$$f^{-1}(p) = \{(t_1, 0, \frac{ab-d}{a-t_1}, a-t_1, 0, \frac{d-t_1b}{a-t_1}) \mid 0 \le t_1 \le d/b\}$$

$$\begin{array}{ll} (1,0,2,1,0,0) & \{ (\frac{d}{b},0,b,a-\frac{d}{b},0,0\} & \text{point} \\ (0,0,2,1,0,2) & \{ (0,0,b-\frac{d}{a},a,0,\frac{d}{a}) \} & \text{point} \\ (1,0,2,1,0,2) & \{ (t_1,0,\frac{ab-d}{a-t_1},a-t_1,0,\frac{d-t_1b}{a-t_1}) \mid \\ & 0 < t_1 < \frac{d}{b} \} \end{array}$$

・ロト ・四ト ・ヨト ・ヨト 2

Fibers of Maps

Changes of Coordinates

For $W = S_n$: $(t_1, t_2, t_3 > 0)$

Introduction

Fomin Shapiro Conjecture

Resolution by Hersh

Monotonicity

Fibers of Maps

Future Directions

Changes of Coordinates

For
$$W = S_n$$
: $(t_1, t_2, t_3 > 0)$

modified nil-move

$$x_i(t_1)x_i(t_2) = x_i(t_1 + t_2)$$

Introduction

Fomin Shapiro Conjecture

Resolution by Hersh

Monotonicity

Fibers of Maps

Future Directions

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで
Changes of Coordinates

For
$$W = S_n$$
: $(t_1, t_2, t_3 > 0)$

modified nil-move

$$x_i(t_1)x_i(t_2) = x_i(t_1 + t_2)$$

• commutation moves (for |i - j| > 1)

 $x_i(t_1)x_j(t_2) = x_j(t_1)x_i(t_2)$

▲□▶ ▲御▶ ▲臣▶ ★臣▶ ―臣 …のへで

Introduction

Fomin Shapiro Conjecture

Resolution by Hersh

Monotonicity

Fibers of Maps

Changes of Coordinates

For
$$W = S_n$$
: $(t_1, t_2, t_3 > 0)$

modified nil-move

$$x_i(t_1)x_i(t_2) = x_i(t_1 + t_2)$$

• commutation moves (for |i - j| > 1)

 $x_i(t_1)x_j(t_2) = x_j(t_1)x_i(t_2)$

braid moves

$$\begin{aligned} x_i(t_1)x_{i+1}(t_2)x_i(t_3) \\ &= x_{i+1}\left(\frac{t_2t_3}{t_1+t_3}\right)x_i(t_1+t_3)x_{i+1}\left(\frac{t_1t_2}{t_1+t_3}\right) \end{aligned}$$

Introduction

Fomin Shapiro Conjecture

Resolution by Hersh

Monotonicity

Fibers of Maps

Structure of Fibers (preliminary)

Fiber $f_{(i_1,\ldots,i_d)}^{-1}(p)$, $p \in Y_w^{o}$, $w = (j_1,\ldots,j_k)$ reduced, $Q = (i'_1,\ldots,i'_{d'})$ a subword of (i_1,\ldots,i_d) multiplying to w under the Demazure product, not reduced

Introduction

Fomin Shapiro Conjecture

Resolution by Hersh

Monotonicity

Fibers of Maps

uture Directions

Structure of Fibers (preliminary)

Fiber $f_{(i_1,\ldots,i_d)}^{-1}(p)$, $p \in Y_w^o$, $w = (j_1,\ldots,j_k)$ reduced, $Q = (i'_1,\ldots,i'_{d'})$ a subword of (i_1,\ldots,i_d) multiplying to w under the Demazure product, not reduced

- ► Case 0: Q multiplies to $(j_1, ..., j_d)$ without braid moves ► $x_{i'_i}(t_1) \cdots x_{i'_d}(t_d) \mapsto$
 - x_{j1}(t_{1,1}+...+t_{1,n1}) ···· x_{jk}(t_{k,1}+...+t_{k,nk}) → (a₁,..., a_k)
 fiber a cross product of simplicies, graph of monotone map

Introduction

Fomin Shapiro Conjecture

Resolution by Hersh

Monotonicity

Fibers of Maps

Future Directions References

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三 のへ⊙

Structure of Fibers (preliminary)

Fiber $f_{(i_1,\ldots,i_d)}^{-1}(p)$, $p \in Y_w^o$, $w = (j_1,\ldots,j_k)$ reduced, $Q = (i'_1,\ldots,i'_{d'})$ a subword of (i_1,\ldots,i_d) multiplying to w under the Demazure product, not reduced

- ► Case 0: Q multiplies to $(j_1, ..., j_d)$ without braid moves ► $x_{i'_i}(t_1) \cdots x_{i'_i}(t_d) \mapsto$
 - $x_{j_1}(t_{1,1}+\ldots+t_{1,n_1})\cdots x_{j_k}(t_{k,1}+\ldots+t_{k,n_k}) \stackrel{\text{inj.}}{\mapsto} (a_1,\ldots,a_k)$
 - fiber a cross product of simplicies, graph of monotone map
- Case 1: Q Multiplies to (j₁,..., j_k) via one braid move followed by a modified nil-move

Introduction

Fomin Shapiro Conjecture

Resolution by Hersh

Monotonicity

Fibers of Maps

▶ Conjectured: strata of $f_{(i_1,...,i_d)}^{-1}(p)$ monotone for all $v, w \in S_n, w \leq v \ (v = (i_1,...,i_d), p \in Y_w^o).$

Introduction

Fomin Shapiro Conjecture

Resolution by Tersh

Monotonicity

Fibers of Maps

Future Directions

- ▶ Conjectured: strata of $f_{(i_1,...,i_d)}^{-1}(p)$ monotone for all $v, w \in S_n, w \leq v$ ($v = (i_1,...,i_d), p \in Y_w^o$).
- ▶ ⇒ strata of $f_v^{-1}(p)$ regular, i.e. $f_v^{-1}(p)$ a regular cell complex for all $v, w \in S_n, w \leq v$

Introduction

Fomin Shapiro Conjecture

Resolution by Hersh

Monotonicity

Fibers of Maps

Future Directions

34 / 38

- ▶ Conjectured: strata of $f_{(i_1,...,i_d)}^{-1}(p)$ monotone for all $v, w \in S_n, w \leq v$ $(v = (i_1,...,i_d), p \in Y_w^o)$.
- ▶ ⇒ strata of $f_v^{-1}(p)$ regular, i.e. $f_v^{-1}(p)$ a regular cell complex for all $v, w \in S_n, w \leq v$
- (Davis, Hersh, Miller) The face poset of the stratification of f⁻¹_{(i1,...,id})(p) is isomorphic to the face poset of the interior dual block complex of the subword complex Δ((i₁,...,i_d), w)
- (Davis, Hersh, Miller) The interior dual block complex of any non-empty subword complex Δ(Q, w) is a contractible, regular cell complex

Introduction

Fomin Shapiro Conjecture

Resolution by Hersh

Monotonicity

Fibers of Maps

- ▶ Conjectured: strata of $f_{(i_1,...,i_d)}^{-1}(p)$ monotone for all $v, w \in S_n, w \leq v$ $(v = (i_1,...,i_d), p \in Y_w^o)$.
- ▶ ⇒ strata of $f_v^{-1}(p)$ regular, i.e. $f_v^{-1}(p)$ a regular cell complex for all $v, w \in S_n, w \leq v$
- (Davis, Hersh, Miller) The face poset of the stratification of f⁻¹_{(i1,...,id})(p) is isomorphic to the face poset of the interior dual block complex of the subword complex Δ((i₁,...,i_d), w)
- (Davis, Hersh, Miller) The interior dual block complex of any non-empty subword complex Δ(Q, w) is a contractible, regular cell complex
- ▶ $\Rightarrow f_v^{-1}(p)$ contractible for all $v, w \in s_n, w \leq v$

Introduction

Fomin Shapiro Conjecture

Resolution by Hersh

Monotonicity

Fibers of Maps

- ▶ Conjectured: strata of $f_{(i_1,...,i_d)}^{-1}(p)$ monotone for all $v, w \in S_n, w \leq v$ $(v = (i_1,...,i_d), p \in Y_w^o)$.
- ▶ ⇒ strata of $f_v^{-1}(p)$ regular, i.e. $f_v^{-1}(p)$ a regular cell complex for all $v, w \in S_n, w \leq v$
- (Davis, Hersh, Miller) The face poset of the stratification of f⁻¹_{(i1,...,id})(p) is isomorphic to the face poset of the interior dual block complex of the subword complex Δ((i₁,...,i_d), w)
- (Davis, Hersh, Miller) The interior dual block complex of any non-empty subword complex Δ(Q, w) is a contractible, regular cell complex
- ▶ $\Rightarrow f_v^{-1}(p)$ contractible for all $v, w \in s_n, w \leq v$
- ▶ ⇒ Y_w a regular cell complex for each $w \le v$

Introduction

Fomin Shapiro Conjecture

Resolution by Hersh

Monotonicity

Fibers of Maps

Future Directions

Introduction

Fomin Shapiro Conjecture

Resolution by Hersh

Monotonicity

Fibers of Maps

Future Directions

References

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ● ●

Totally nonnegatvie part of flag variety $(G/P)_{\geq 0}$

- Conjecture: regular cell complex homeomorphic to a ball
- Evidence:
 - contractible
 - cell poset that of a regular cell complex homeomorphic to a ball
 - regular cell complex up to homotopy equivalence
- Special case: totally nonnegative Grassmanian $(Gr_{n,k})_{\geq 0}$

Introduction

Fomin Shapiro Conjecture

Resolution by Hersh

Monotonicity

ibers of Maps

Future Directions

References I

George Lusztig. "Introduction to Total Positivity". In: *Positivity in Lie Theory: Open Problems*. Vol. 26. De Gruyter Expositions in Mathematics. Berlin and New York: Walter De Gruyter, 1998, pp. 133–145. ISBN: 3-11-016112-5.

- Sergey Fomin and Michael Shapiro. "Stratified Spaces Formed by Totally Positive Varieties". In: Michigan Math J. 48 (2000), pp. 253–270.
- Anders Björner. "Posets, Regular CW Complexes, and Bruhat Order". In: Europ. J. Combinatorics 5 (1984), pp. 7–16.
 - Patricia Hersh. "Regular Cell Complexes in Total Positivity". In: Inventiones Mathematicae 197 (2014), pp. 57–114.

Introduction

Fomin Shapiro Conjecture

Resolution by Hersh

Monotonicity

Fibers of Maps

Future Directions References

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 善臣 - のへで

References II

- Saugata Basu, Andrei Gabrielov, and Nicolai Vorobjov. "Semi-monotone Sets". In: *J. Eur. Math. Soc.* 15 (2013), pp. 635–657.
- Saugata Basu, Andrei Gabrielov, and Nicolai Vorobjov. "Monotone Functions and Maps". In: *Revista de la Real Academia de Ciencias Exactas, Fisicas y Naturales. Serie A. Matematicas* 107 (2013), pp. 5–33.
- Saugata Basu, Andrei Gabrielov, and Nicolai Vorobjov.
 "Toric Cubes are Closed Balls". In: ().
- Saugata Basu and Cordian Riener. "Vandermonde Varieties, Mirrored Spaces, and the Cohomology of Symetric Semi-algebraic Sets". In: (2019).

Introduction

Fomin Shapiro Conjecture

Resolution by Hersh

Monotonicity

ibers of Maps

Future Directions

- James F. Davis, Patricia Hersh, and Ezra Miller. "Fibers of Maps to Totally Nonnegative Spaces". In: (2019).
- Konstanze Rietsch and Lauren Williams. "Discrete Morse Theory for Totally Non-Negative Flag Varieties". In: Advances in Mathematics 223 (2010), pp. 1855 –1884.

Introduction

Fomin Shapiro Conjecture

Resolution by Hersh

Monotonicity

ibers of Maps

uture Directions