Fomin Shapiro
Conjecture
Resolution by Hersh

Monotonicity
Fibers of Maps
Future Directions

Alison Rosenblum

Purdue University
Advanced Topics Examination December 4, 2019

Introduction

Monotonicity

Fibers of Maps
Future Directions
References

Total Nonnegativity

Introduction
Fomin Shapiro
Conjecture
Resolution by
Hersh
Monotonicity
Fibers of Maps
Future Directions
References

Total Nonnegativity

Definition

$M n \times n$ matrix (over \mathbb{R}): M totally positive (resp totally nonnegative) if all minors are positive (resp nonnegative)
Can extend definition to any split semi-simple algebraic group over \mathbb{R}.

- B, B_{-}opposite Borel subgroups
- U (resp U_{-}) unipotent radical of B (resp B_{-})
- $x_{i}(t)=\exp \left(t e_{i}\right)\left(e_{i}\right.$ Chevalley generators of the Lie algebra of $U, t \in \mathbb{R}$)
Y (totally nonnegative elements of U) mulitpicative submonoid of U generated by $x_{i}(t), t \geq 0$

Example: $G=S L(n, \mathbb{R})$

$G=S L(n, \mathbb{R}), B\left(B_{-}\right)$set of upper (lower) triangular matrices, U set of upper triangular matrices with 1's along the diagonal.

Introduction
Fomin Shapiro
Conjecture
Resolution by
Hersh
Monotonicity
Fibers of Maps
Future Directions
References

Example: $G=S L(n, \mathbb{R})$

Introduction
$G=S L(n, \mathbb{R}), B\left(B_{-}\right)$set of upper (lower) triangular matrices, U set of upper triangular matrices with 1 's along the diagonal.
$n=3$:

$$
M=\left[\begin{array}{lll}
1 & x & z \\
0 & 1 & y \\
0 & 0 & 1
\end{array}\right]
$$

Example: $G=S L(n, \mathbb{R})$

Introduction
$G=S L(n, \mathbb{R}), B\left(B_{-}\right)$set of upper (lower) triangular matrices, U set of upper triangular matrices with 1 's along the diagonal.
$n=3$:

$$
M=\left[\begin{array}{lll}
1 & x & z \\
0 & 1 & y \\
0 & 0 & 1
\end{array}\right]
$$

$M \in Y$ iff

- $x, y, z \geq 0$
- $z \leq x y$

Fomin Shapiro
Conjecture
Resolution by
Hersh

Example: $G=S L(n, \mathbb{R})$

Introduction

$G=S L(n, \mathbb{R}), B\left(B_{-}\right)$set of upper (lower) triangular matrices, U set of upper triangular matrices with 1's along the diagonal.
$n=3$:

$$
M=\left[\begin{array}{lll}
1 & x & z \\
0 & 1 & y \\
0 & 0 & 1
\end{array}\right]
$$

$M \in Y$ iff

- $x, y, z \geq 0$
- $z \leq x y$

Coxeter Groups

Introduction
Fomin Shapiro
Conjecture
Resolution by
Hersh
Monotonicity
Fibers of Maps
Future Directions
References

Coxeter Groups

Definition

Let W be a group and $S \subset W$. If W has a presentation of the form

- Generators: S
- Relations:
- $s^{2}=e$ for all $s \in S$
- others of the form $\left(s s^{\prime}\right)^{m\left(s, s^{\prime}\right)}=e$ for $s \neq s^{\prime} \in S$, $m\left(s, s^{\prime}\right) \geq 2$
then (W, S) is a Coxeter system

Coxeter Groups

Definition

Let W be a group and $S \subset W$. If W has a presentation of the form

- Generators: S
- Relations:
- $s^{2}=e$ for all $s \in S$
- others of the form $\left(s s^{\prime}\right)^{m\left(s, s^{\prime}\right)}=e$ for $s \neq s^{\prime} \in S$, $m\left(s, s^{\prime}\right) \geq 2$
then (W, S) is a Coxeter system
Example
$W=S_{n}: S$ set of adjacent transpositions $s_{i}=(i i+1)$ for $1 \leq i \leq n-1$

Words in Coxeter Systems

Let $w \in W, S=\left\{s_{i}\right\}$

Introduction
Fomin Shapiro
Conjecture
Resolution by Hersh

Monotonicity

Fibers of Maps
Future Directions
References

Words in Coxeter Systems

Let $w \in W, S=\left\{s_{i}\right\}$

Introduction
Fomin Shapiro
Conjecture
Resolution by
Hersh
Monotonicity
Fibers of Maps
Future Directions
References

Words in Coxeter Systems

Let $w \in W, S=\left\{s_{i}\right\}$

$$
w=s_{i_{1}} \cdots s_{i_{k}}
$$

- $\left(i_{1}, \ldots, i_{k}\right)$ a word for w
- If k minimal, $\left(i_{1}, \ldots, i_{k}\right)$ a reduced word, $k=I(w)$ the length of w

Introduction
Fomin Shapiro
Conjecture
Resolution by Hersh

Monotonicity
Fibers of Maps
Future Directions References

Words in Coxeter Systems

Let $w \in W, S=\left\{s_{i}\right\}$

$$
w=s_{i_{1}} \cdots s_{i_{k}}
$$

- $\left(i_{1}, \ldots, i_{k}\right)$ a word for w
- If k minimal, $\left(i_{1}, \ldots, i_{k}\right)$ a reduced word, $k=I(w)$ the length of w

Definition

Let $u, v \in W$. If there is a reduced word for u that is a subword of a reduced word for v, then $u \leq v$ in the Bruhat order

Words in Coxeter Systems

Let $w \in W, S=\left\{s_{i}\right\}$

$$
w=s_{i_{1}} \cdots s_{i_{k}}
$$

- $\left(i_{1}, \ldots, i_{k}\right)$ a word for w
- If k minimal, $\left(i_{1}, \ldots, i_{k}\right)$ a reduced word, $k=I(w)$ the length of w

Definition

Let $u, v \in W$. If there is a reduced word for u that is a subword of a reduced word for v, then $u \leq v$ in the Bruhat order

Proposition

If W is finite, there exists a unique element $w_{0} \in W$ so that $w \leq w_{0}$ for all $w \in W$

Introduction
Fomin Shapiro Conjecture

Resolution by Hersh

Monotonicity
Fibers of Maps
Future Directions
References

Stratification of Y

Let W be the Weyl Group of G
 - $G=S L(n, \mathbb{R}): W=S_{n}$

Introduction

Fomin Shapiro
Conjecture
Resolution by
Hersh
Monotonicity
Fibers of Maps
Future Directions
References

Stratification of Y

Let W be the Weyl Group of G

- $G=S L(n, \mathbb{R}): W=S_{n}$

Decomposition $G=\bigsqcup_{w \in W} B_{-} w B_{-}$induces decomposition of Y into strata $Y_{w}^{o}=Y \cap B_{-} w B_{-}$

Stratification of Y

Let W be the Weyl Group of G

- $G=S L(n, \mathbb{R}): W=S_{n}$

Decomposition $G=\bigsqcup_{w \in W} B_{-} w B_{-}$induces decomposition of Y into strata $Y_{w}^{o}=Y \cap B_{-} w B_{-}$
Notice
$u \leq v$ in the Bruhat order iff $Y_{u}^{o} \subset \overline{Y_{v}^{o}}$

Stratification of Y

Let W be the Weyl Group of G

- $G=S L(n, \mathbb{R}): W=S_{n}$

Decomposition $G=\bigsqcup_{w \in W} B_{-} w B_{-}$induces decomposition of Y into strata $Y_{w}^{o}=Y \cap B_{-} w B_{-}$
Notice
$u \leq v$ in the Bruhat order iff $Y_{u}^{o} \subset \overline{Y_{v}^{o}}$

Proposition (Lusztig)

Let $\left(i_{1}, \ldots, i_{d}\right)$ be a reduced word for $w \in W$. Then the map

$$
\left(t_{1}, \ldots, t_{d}\right) \mapsto x_{i_{1}}\left(t_{1}\right) \cdots x_{i_{d}}\left(t_{d}\right)
$$

is a homeomorphism between $\mathbb{R}_{>0}^{d}$ and Y_{w}^{o}

Example: $G=S L(3, \mathbb{R})$

$$
x_{1}(t)=\left[\begin{array}{lll}
1 & t & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right] \quad x_{2}(t)=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & t \\
0 & 0 & 1
\end{array}\right]
$$

Introduction

Fomin Shapiro Conjecture

Resolution by Hersh

Monotonicity
Fibers of Maps
Future Directions
References

Example: $G=S L(3, \mathbb{R})$

$$
x_{1}(t)=\left[\begin{array}{lll}
1 & t & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right] \quad x_{2}(t)=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & t \\
0 & 0 & 1
\end{array}\right]
$$

Fomin Shapiro Conjecture

Resolution by Hersh

- $Y_{(1,2,1)}^{\mathrm{o}}=Y_{(2,1,2)}^{\mathrm{o}}=\{(x, y, z) \mid x, y>0,0<z<x y\}$

Example: $G=S L(3, \mathbb{R})$

$$
x_{1}(t)=\left[\begin{array}{lll}
1 & t & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right] \quad x_{2}(t)=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & t \\
0 & 0 & 1
\end{array}\right]
$$

- $Y_{i d}^{o}=\{(0,0,0)\}$
- $Y_{(1)}^{o}=\{(x, 0,0) \mid x>0\}$
- $Y_{(2)}^{\circ}=\{(0, y, 0) \mid y>0\}$
- $Y_{(2,1)}^{o}=\{(x, y, 0) \mid x>0, y>0\}$
- $Y_{(1,2)}^{\circ}=\{(x, y, x y) \mid x, y>0\}$
- $Y_{(1,2,1)}^{\circ}=Y_{(2,1,2)}^{\circ}=\{(x, y, z) \mid x, y>0,0<z<x y\}$

Fomin Shapiro Conjecture

Resolution by Hersh

Links of Strata

Notation: Let $Y_{w}=\overline{Y_{w}^{\circ}}$.

Definition

Let $Y_{u}^{o} \subset Y_{v}(\Leftrightarrow u \leq v)$. Let

- $p \in Y_{u}^{o}$ arbitrary
- N a smooth manifold with $N \cap Y_{u}^{o}=\{p\}$ and N transverse to Y_{u}°
- $B_{\delta}(p)$ ball of radius δ centered at p

Then $\operatorname{Lk}(u, v)=Y_{v} \cap N \cap \partial B_{\delta}(p)$

Links of Strata

Notation: Let $Y_{w}=\overline{Y_{w}^{o}}$.
Definition
Let $Y_{u}^{o} \subset Y_{v}(\Leftrightarrow u \leq v)$. Let

- $p \in Y_{u}^{o}$ arbitrary
- N a smooth manifold with $N \cap Y_{u}^{o}=\{p\}$ and N transverse to Y_{u}°
- $B_{\delta}(p)$ ball of radius δ centered at p

Then $\operatorname{Lk}(u, v)=Y_{v} \cap N \cap \partial B_{\delta}(p)$

Figure: $\operatorname{Lk}((0),(1,2,1))$ and $\operatorname{Lk}((1),(1,2,1))$ for $S L(3, \mathbb{R})$

Fomin Shapiro Conjecture

Definition

A set $U \subset \mathbb{R}^{m}$ is an m-cell if $U \cong\left(B^{m}\right)^{0}$. U is a regular m-cell if the pair $(\bar{U}, U) \cong\left(B^{m},\left(B^{m}\right)^{\circ}\right)$

Introduction

Fomin Shapiro Conjecture

Resolution by Hersh

Monotonicity
Fibers of Maps
Future Directions
References

Fomin Shapiro Conjecture

Definition
A set $U \subset \mathbb{R}^{m}$ is an m-cell if $U \cong\left(B^{m}\right)^{o}$. U is a regular m-cell if the pair $(\bar{U}, U) \cong\left(B^{m},\left(B^{m}\right)^{\circ}\right)$

Conjecture

For all $u, v \in W$ with $Y_{u}^{o} \subset Y_{v}, \operatorname{Lk}(u, v)$ is a regular cell complex (decomposes into regular cells).

Fomin Shapiro Conjecture

Definition
A set $U \subset \mathbb{R}^{m}$ is an m-cell if $U \cong\left(B^{m}\right)^{o} . U$ is a regular m-cell if the pair $(\bar{U}, U) \cong\left(B^{m},\left(B^{m}\right)^{\circ}\right)$

Conjecture

For all $u, v \in W$ with $Y_{u}^{o} \subset Y_{v}, \operatorname{Lk}(u, v)$ is a regular cell complex (decomposes into regular cells).

Motivation
Björner: $[u, v]$ a Bruhat interval \Rightarrow there exists a regular cell complex with face poset isomorphic to $[u, v]$.
Goal: find naturally arising construction.

Introduction
Fomin Shapiro
Conjecture
Resolution by
Hersh
Resolution by Hersh

Some Notation

Introduction

Fomin Shapiro

Conjecture
Resolution by Hersh

Monotonicity

Fibers of Maps
where S^{d-1} is the simplex $\sum t_{i}=K$ for some $K>0$

Some Notation

Fomin Shapiro

where S^{d-1} is the simplex $\sum t_{i}=K$ for some $K>0$
Notation Change
Henceforth, for $w=\left(i_{1}, \ldots, i_{d}\right)$

- $Y_{w}^{o}=f_{\left(i_{1}, \ldots, i_{d}\right)}\left(\mathbb{R}_{>0}^{d} \cap S^{d-1}\right)$
- $Y_{w}=f_{\left(i_{1}, \ldots, i_{d}\right)}\left(\mathbb{R}_{\geq 0}^{d} \cap S^{d-1}\right) \cong \operatorname{Lk}\left((0),\left(i_{1}, \ldots, i_{d}\right)\right)$

Cell Collapses

> $\left(i_{1}, \ldots, i_{d}\right)$ reduced: $f_{\left(i_{1}, \ldots, i_{d}\right)}$ homeomorphism on interior, not necessarily injective on boundary

Introduction
Fomin Shapiro Conjecture

Resolution by Hersh

Monotonicity

Fibers of Maps
Future Directions
References

Cell Collapses

$\left(i_{1}, \ldots, i_{d}\right)$ reduced: $f_{\left(i_{1}, \ldots, i_{d}\right)}$ homeomorphism on interior, not necessarily injective on boundary
Example

$$
G=S L(3, \mathbb{R})
$$

$$
f_{(1,2,1)}\left(t_{1}, t_{2}, t_{3}\right)=\left[\begin{array}{ccc}
1 & t_{1}+t_{3} & t_{1} t_{2} \\
0 & 1 & t_{2} \\
0 & 0 & 1
\end{array}\right]
$$

Resolution

1. $x \sim y \Rightarrow f_{\left(i_{1}, \ldots, i_{d}\right)}(x)=f_{\left(i_{1}, \ldots, i_{d}\right)}(y)$
2. the series of collapses eliminates all regions whose words are not reduced
Then $\overline{f_{\left(i_{1}, \ldots, i_{d}\right)}}: \mathbb{R}_{\geq 0}^{d} \cap S^{d-1} / \sim \rightarrow Y_{w}$ is a homomorphism which preserves cell structure

Monotonicity

Introduction

Fomin Shapiro Conjecture

Resolution by

Coordinate Cones

Introduction
Fomin Shapiro Conjecture

Resolution by Hersh

Monotonicity
Fibers of Maps
Future Directions
References

Coordinate Cones

In this section, sets and functions are definable in some o-minimal structure over \mathbb{R}
Let $L_{j, \sigma, c}=\left\{\mathbf{x} \in \mathbb{R}^{n} \mid x_{j} \sigma c\right\}$ for $\sigma \in\{<,=,>\}, c \in \mathbb{R}$
Definition
A coordinate cone is a set of the form

$$
C=L_{j_{1}, \sigma_{1}, c_{1}} \cap \ldots \cap L_{j_{m}, \sigma_{m}, c_{m}} \subset \mathbb{R}^{n}
$$

with the j_{i} distinct elements of $\{1, \ldots, n\}$. Similarly, an affine coordinate subspace has the form

$$
S=L_{j_{1},=, c_{1}} \cap \ldots \cap L_{j_{m},=, c_{m}} \subset \mathbb{R}^{n}
$$

Semi-monotone Sets

Definition/Theorem

An open bounded set $X \subset \mathbb{R}^{n}$ is semi-monotone if for each coordinate cone $C, X \cap C$ is connected (equivalently, if for every affine coordinate subspace $S, X \cap S$ is connected)

Semi-monotone Sets

Definition/Theorem

An open bounded set $X \subset \mathbb{R}^{n}$ is semi-monotone if for each coordinate cone $C, X \cap C$ is connected (equivalently, if for every affine coordinate subspace $S, X \cap S$ is connected)

Monotone Functions

Let $f: X \rightarrow \mathbb{R}, X \subset \mathbb{R}^{n}$ nonempty and semi-monotone, and let F be the graph of f

Definition
f is submonotone if it is bounded, upper semi-continuous, and for all $b \in \mathbb{R},\{\mathbf{x} \in X \mid f(\mathbf{x})<b\}$ is semi-monotone. f is supermonotone if $-f$ is submonotone.

Monotone Functions

Definition

f is monotone if it is both sub and supermonotone and either strictly increasing in, strictly decreasing in, or independent of x_{j} for all $1 \leq j \leq n$

Monotone Functions (Characterization)

Let f be strictly increasing in, strictly decreasing in, or independent of each $x_{j}, 1 \leq j \leq n$. Then the following are equivalent
I. f is monotone
II. $F \cap C$ is connected for each coordinate cone C
III. $F \cap S$ is connected for each affine coordinate subspace S

Monotone Maps

Let $\mathbf{f}=\left(f_{1}, \ldots, f_{k}\right): X \rightarrow \mathbb{R}^{k}, X \subset \mathbb{R}^{n}$ nonempty and semi-monotone, F the graph of f.

Definition

Let $H=\left\{x_{j_{1}}, \ldots, x_{j_{\alpha}}, y_{i_{1}}, \ldots, y_{i_{\beta}}\right\} \subset\left\{x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{k}\right\}$ where $\alpha+\beta=n$. H is a basis if $\left(x_{j_{1}}, \ldots, x_{j_{\alpha}}, f_{i_{1}}, \ldots, f_{i_{\beta}}\right): X \rightarrow \mathbb{R}^{n}$ is injective

Monotone Maps

Let $\mathbf{f}=\left(f_{1}, \ldots, f_{k}\right): X \rightarrow \mathbb{R}^{k}, X \subset \mathbb{R}^{n}$ nonempty and semi-monotone, F the graph of f.

Definition

$\mathbf{f}: \mathbb{R} \rightarrow \mathbb{R}^{k}$ is monotone if f_{i} is monotone for all i Inductively, $\mathbf{f}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{k}$ is monotone if for each f_{i} not independent of x_{j}

1. For each $b \in \mathbb{R}, F \cap\left\{y_{i}=b\right\}$ is the graph of a monotone map $\mathbf{f}_{i, j, b}$ from a semi-monotone subset of $\operatorname{span}\left\{x_{1}, \ldots, \hat{x}_{j}, \ldots, x_{n}\right\}$ to $\operatorname{span}\left\{y_{1}, \ldots, y_{i-1}, x_{j}, y_{i+1}, \ldots, y_{k}\right\}$
2. The system of basis sets associated with $\mathbf{f}_{i, j, b}$ does not depend on b

Monotone Maps (Characterization)

Let $\mathbf{f}: X \rightarrow \mathbb{R}^{k}$ be bounded and continuous, with $X \subset \mathbb{R}^{n}$ open, bounded, and nonempty, F the graph of f.
Definition
\mathbf{f} is quasi-affine if for any $T=\operatorname{span}\left\{x_{j_{1}}, \ldots, x_{j_{\alpha}}, y_{i_{1}}, \ldots, y_{i_{\beta}}\right\}$, $\alpha+\beta=n$, the projection $\rho_{T}: F \rightarrow T$ is injective iff the image $\rho_{T}(F)$ is n dimensional

Fomin Shapiro
Conjecture
Resolution by Hersh

Monotonicity
Fibers of Maps
Future Directions

Monotone Maps (Characterization)

Let $\mathbf{f}: X \rightarrow \mathbb{R}^{k}$ be bounded and continuous, with $X \subset \mathbb{R}^{n}$ open, bounded, and nonempty, F the graph of f.
Definition
\mathbf{f} is quasi-affine if for any $T=\operatorname{span}\left\{x_{j_{1}}, \ldots, x_{j_{\alpha}}, y_{i_{1}}, \ldots, y_{i_{\beta}}\right\}$,
$\alpha+\beta=n$, the projection $\rho_{T}: F \rightarrow T$ is injective iff the image $\rho_{T}(F)$ is n dimensional

Theorem

Let \mathbf{f} be quasi-affine. Then the following are equivalent
I. \mathbf{f} is monotone
II. $F \cap C$ is connected for each coordinate cone C
III. $F \cap S$ is connected for each affine coordinate subspace S

Examples

not monotone

Introduction

Fomin Shapiro
Conjecture
Resolution by Hersh

Monotonicity
Fibers of Maps
Future Directions
References

Examples

not monotone

$$
z=x y \text { on }
$$

$0<x<1,-1<y<1$
not monotone

Introduction

Fomin Shapiro Conjecture

Resolution by Hersh

Monotonicity
Fibers of Maps
Future Directions
References

Examples

$$
\begin{gathered}
z=x y \text { on } \\
0<x<1,-1<y<1 \\
\text { not monotone }
\end{gathered}
$$

$0<x<1,0<y<1-x$
not monotone

Introduction

Fomin Shapiro Conjecture

Resolution by

 HershMonotonicity
Fibers of Maps
Future Directions

Examples

$0<x<1,0<y<1-x$
not monotone

$$
z=x y \text { on }
$$

$0<x<1,-1<y<1$ not monotone

$$
\begin{gathered}
z=x y \text { on } \\
0<x, y<1 \\
\text { monotone }
\end{gathered}
$$

Fomin Shapiro Conjecture

Resolution by Hersh

Monotonicity
Fibers of Maps
Future Directions

Regular Cells

Introduction
Fomin Shapiro
Conjecture
Resolution by Hersh

Monotonicity
Fibers of Maps
Theorem (Basu, Gabrielov, Vorobjov)
The graph $F \subset \mathbb{R}^{n+k}$ of a monotone map $\mathbf{f}: X \rightarrow \mathbb{R}^{k}$ on a semimonotone set $X \subset \mathbb{R}^{n}$ is a regular n-cell.

Application: Toric Cubes

Definition

A toric cube is the image of a map of the form

$$
\begin{gathered}
f_{\mathcal{A}}:[0,1]^{d} \rightarrow[0,1]^{n} \\
\mathbf{t}=\left(t_{1}, \ldots, t_{d}\right) \mapsto\left(\mathbf{t}^{\mathbf{a}_{1}}, \ldots, \mathbf{t}^{\mathbf{a}_{n}}\right)
\end{gathered}
$$

Conjecture
Resolution by Hersh
where $\mathcal{A}=\left\{\mathbf{a}_{\mathbf{1}}, \ldots, \mathbf{a}_{\mathbf{n}}\right\} \subset \mathbb{R}^{d}$ and for $\mathbf{a}_{i}=\left(a_{i, 1}, \ldots, a_{i, d}\right)$, $\mathbf{t}^{\mathbf{a}_{i}}$ denotes $\left(t_{1}^{a_{i, 1}}, \ldots, t_{d}^{a_{i, d}}\right)$. An open toric cube is the image of the restriction of such an $f_{\mathcal{A}}$ to $(0,1)^{d}$.

Theorem (Basu, Gabrielov, Vorobjov)
An open toric cube is the graph of a monotone map, and hence is a regular cell.

Application: Vandermonde Varieties

Let \mathbf{R} be a real closed field
Definition
The Weyl chamber in \mathbf{R}^{k} is

$$
\mathcal{W}^{(k)}=\left\{\left(X_{1}, \ldots, X_{k}\right) \in \mathbf{R}^{k} \mid X_{1} \leq \ldots \leq X_{k}\right\}
$$

Introduction
Fomin Shapiro Conjecture

Resolution by Hersh

Monotonicity
Fibers of Maps

Application: Vandermonde Varieties

Let \mathbf{R} be a real closed field
Definition
The Weyl chamber in \mathbf{R}^{k} is

$$
\mathcal{W}^{(k)}=\left\{\left(X_{1}, \ldots, X_{k}\right) \in \mathbf{R}^{k} \mid X_{1} \leq \ldots \leq X_{k}\right\}
$$

Definition
Let $\mathbf{y}=\left(y_{1}, \ldots, y_{d}\right) \in \mathbf{R}^{d}$. The Vandermonde variety
$V_{d, \mathbf{y}}^{(k)} \subset \mathbf{R}^{k}$ is the variety defined by $p_{1}^{(k)}=y_{1}, \ldots, p_{d}^{(k)}=y_{d}$ where

$$
p_{j}^{(k)}=\sum_{i=1}^{k} X_{i}^{j}
$$

Application: Vandermonde Varieties

Proposition (Basu, Riener)

For all $\mathbf{y} \in \mathbf{R}^{d}, d \leq k$, either $V_{d, y}^{(k)} \cap \mathcal{W}^{(k)}$ is empty or a point, or $V_{d, y}^{(k)} \cap \mathcal{W}^{(k)}=\overline{V_{d, y}^{(k)} \cap \mathcal{W}^{(k), o}}$ and $V_{d, \boldsymbol{y}}^{(k)} \cap \mathcal{W}^{(k), \circ}$ is a semi-monotone set, and hence a regular cell

Fibers of Maps

Introduction

Fomin Shapiro
Conjecture
Resolution by Hersh

Monotonicity
Fibers of Maps
Future Directions
References

Route to an Alternate Proof

Theorem (Davis, Hersh, Miller)
Let $v \in W$ with $\left(i_{1}, \ldots, i_{d}\right)$ a reduced word for v. Then if for all $w \in W, w \leq v$, we have $f_{\left(i_{1}, . ., i_{d}\right)}^{-1}(p)$ is contractible for $p \in Y_{w}^{\circ}$, then Y_{w} is a regular cell complex for each $w \leq v$.
(Key ingredient in proof)
Let \sim be an equivalence relation on the closed ball B^{n} so that

- all equivalence classes are contractible
- $S^{n-1} / \sim \cong S^{n-1}$
- if $x \sim y$ with $x \in S^{n-1}$, then $y \in S^{n-1}$
- if $x \sim y$ with $x \notin S^{n-1}$, then $y=x$

Then $B \cong B / \sim$

Reduced Words and Injectivity

Definition/Proposition

The Demazure product on W is the unique associative map $\delta: W \times W \rightarrow W$ such that for $w \in W$ and $s \in S$,

$$
\delta(w, s)= \begin{cases}w s & I(w s)>I(w) \\ w & I(w s)<w\end{cases}
$$

Fomin Shapiro
Conjecture
Resolution by Hersh

Monotonicity
Fibers of Maps
Future Directions
References

Reduced Words and Injectivity

Definition/Proposition

The Demazure product on W is the unique associative map $\delta: W \times W \rightarrow W$ such that for $w \in W$ and $s \in S$,

$$
\delta(w, s)= \begin{cases}w s & I(w s)>I(w) \\ w & I(w s)<w\end{cases}
$$

Theorem

Let $\left(i_{1}, \ldots, i_{d}\right)$ be a reduced word for v and let $p \in Y_{w}$.
Then $f_{\left(i_{1}, \ldots, i_{d}\right)}^{-1}(p)$ is stratified via the standard decomposition of the simplex. Let Q be a subword of $\left(i_{1}, \ldots, i_{d}\right)$.
$f_{\left(i_{1}, \ldots, i_{d}\right)}^{-1}(p) \cap \mathbb{R}_{>0}^{Q}$ is nonempty iff Q multiplies to w under the Demazure product, and is non-trivial iff the expression is not reduced.

Example: $G=S L(3, \mathbb{R})$

$$
\begin{aligned}
& v=(1,2,1), p \in Y_{(1)}, f_{(1,2,1)}^{-1}(p) \text { in red. } \\
& Q=(0,0,1) \\
& Q=(1,0,1) / Q=(1,2,1) \\
& Q=(1,0,0) \quad Q=(0,2,1) \\
& Q=(1,2,0) \quad Q=(0,2,0)
\end{aligned}
$$

Introduction

Fomin Shapiro
Conjecture
Resolution by Hersh

Monotonicity
Fibers of Maps
Future Directions

The Goal

Conjecture

Let $G=S L(n, \mathbb{R})$, let $\left(i_{1}, \ldots, i_{d}\right)$ be a reduced word for $v \in W$, let $w \leq v$, and let $p \in Y_{w}^{o}$. Then the strata of
$f_{\left(i_{1}, \ldots, i_{d}\right)}^{-1}(p)$ are graphs of monotone maps, and hence this stratification is a regular cell decomposition.
This holds in the cases $n=3$ and $n=4$, by computation

Example 1

$$
f_{(1,3,2,1,3,2)}=\left[\begin{array}{cccc}
1 & t_{1}+t_{4} & \left(t_{1}+t_{4}\right) t_{6}+t_{1} t_{2} & t_{1} t_{3} t_{5} \\
0 & 1 & t_{3}+t_{6} & t_{3} t_{5} \\
0 & 0 & 1 & t_{2}+t_{5} \\
0 & 0 & 0 & 1
\end{array}\right]
$$

Introduction
Fomin Shapiro Conjecture

Resolution by

Hersh

Monotonicity

Fibers of Maps
Future Directions
References

Example 1

$$
\begin{aligned}
& f_{(1,3,2,1,3,2)}=\left[\begin{array}{cccc}
1 & t_{1}+t_{4} & \left(t_{1}+t_{4}\right) t_{6}+t_{1} t_{2} & t_{1} t_{3} t_{5} \\
0 & 1 & t_{3}+t_{6} & t_{3} t_{5} \\
0 & 0 & 1 & t_{2}+t_{5} \\
0 & 0 & 0 & 1
\end{array}\right] \\
& p=(a, b, c, a b, 0,0) \\
& \quad \in Y_{(3,1,2)}^{\circ}=\{(x, y, z, x y, 0,0) \mid x, y, z>0, x+y+z=K\}
\end{aligned}
$$

Introduction

Fomin Shapiro Conjecture

Resolution by
Hersh
Monotonicity
Fibers of Maps
Future Directions

Example 1

$$
\begin{aligned}
& f_{(1,3,2,1,3,2)}=\left[\begin{array}{cccc}
1 & t_{1}+t_{4} & \left(t_{1}+t_{4}\right) t_{6}+t_{1} t_{2} & t_{1} t_{3} t_{5} \\
0 & 1 & t_{3}+t_{6} & t_{3} t_{5} \\
0 & 0 & 1 & t_{2}+t_{5} \\
0 & 0 & 0 & 1
\end{array}\right] \\
& p=(a, b, c, a b, 0,0) \\
& \in Y_{(3,1,2)}^{o}=\{(x, y, z, x y, 0,0) \mid x, y, z>0, x+y+z=K\} \\
& f^{-1}(p)=\left\{\left(t_{1}, t_{2}, 0, a-t_{1}, c-t_{2}, b\right) \mid 0 \leq t_{1} \leq a, 0 \leq t_{2} \leq c\right\} \\
& \cup\left\{\left(a, c, t_{3}, 0,0, b-t_{3}\right) \mid 0 \leq t_{3} \leq b\right\}
\end{aligned}
$$

Example 1

$$
\begin{array}{ccc}
f=f_{(1,3,2,1,3,2)}, p \in Y_{(3,1,2)}^{o} & \\
f^{-1}(p)=\left\{\left(t_{1}, t_{2}, 0, a-t_{1}, c-t_{2}, b\right) \mid 0 \leq t_{1} \leq a, 0 \leq t_{2} \leq c\right\} \\
\cup\left\{\left(a, c, t_{3}, 0,0, b-t_{3}\right) \mid 0 \leq t_{3} \leq b\right\} & \\
(1,3,2,0,0,0) & \{(a, c, b, 0,0,0)\} & \text { point } \\
(1,3,0,0,0,2) & \{(a, c, 0,0,0, b)\} & \text { point } \\
(1,3,2,0,0,2) & \left\{\left(a, c, t_{3}, 0,0, b\right) \mid 0<t_{3}<b\right\} & \text { line } \\
(0,3,0,1,0,2) & \{(0, c, 0, a, 0, b)\} & \text { point } \\
(1,3,0,1,0,2) & \left\{\left(t_{1}, c, 0, a-t_{1}, 0, b\right) \mid 0<t_{1}<a\right\} & \text { line } \\
(1,0,0,0,3,2) & \{(a, 0,0,0, c, b)\} & \text { point } \\
(1,3,0,0,3,2) & \left\{\left(a, t_{2}, 0,0, c-t_{2}, b\right) \mid 0<t_{2}<c\right\} & \text { line } \\
(0,0,0,1,3,2) & \{(0,0,0, a, c, b)\} & \text { point } \\
(1,0,0,1,3,2) & \left\{\left(t_{1}, 0,0, c-t_{1}, c, b\right) \mid 0<t_{1}<a\right\} & \text { line } \\
(0,3,0,1,3,2) & \left\{\left(0, t_{2}, 0, a, c-t_{2}, b\right) \mid 0<t_{2}<c\right\} & \text { line } \\
(1,3,0,1,3,2) & \left\{\left(t_{1}, t_{2}, 0, a-t_{1}, c-t_{2}, b\right) \mid\right. & \text { square } \\
& \left.0<t_{1}<a, 0 \leq t_{2}<c\right\} & \equiv \text { ゅac }
\end{array}
$$

Example 2

$f_{(1,3,2,1,3,2)}=\left[\begin{array}{cccc}1 & t_{1}+t_{4} & \left(t_{1}+t_{4}\right) t_{6}+t_{1} t_{2} & t_{1} t_{3} t_{5} \\ 0 & 1 & t_{3}+t_{6} & t_{3} t_{5} \\ 0 & 0 & 1 & t_{2}+t_{5} \\ 0 & 0 & 0 & 1\end{array}\right]$

Introduction
 Fomin Shapiro Conjecture
 Resolution by Hersh

Monotonicity

Fibers of Maps
Future Directions
References

Example 2

$$
\begin{aligned}
& f_{(1,3,2,1,3,2)}=\left[\begin{array}{cccc}
1 & t_{1}+t_{4} & \left(t_{1}+t_{4}\right) t_{6}+t_{1} t_{2} & t_{1} t_{3} t_{5} \\
0 & 1 & t_{3}+t_{6} & t_{3} t_{5} \\
0 & 0 & 1 & t_{2}+t_{5} \\
0 & 0 & 0 & 1
\end{array}\right] \\
& p=(a, b, 0, d, 0,0) \in Y_{(2,1,2)}^{0} \\
&=\{(x, y, 0, u, 0,0) \mid x, y>0,0<u<x y, x+y=K\}
\end{aligned}
$$

Introduction
Fomin Shapiro Conjecture

Resolution by Hersh

Monotonicity

Fibers of Maps
Future Directions
References

Example 2

$$
\begin{aligned}
& f_{(1,3,2,1,3,2)}=\left[\begin{array}{cccc}
1 & t_{1}+t_{4} & \left(t_{1}+t_{4}\right) t_{6}+t_{1} t_{2} & t_{1} t_{3} t_{5} \\
0 & 1 & t_{3}+t_{6} & t_{3} t_{5} \\
0 & 0 & 1 & t_{2}+t_{5} \\
0 & 0 & 0 & 1
\end{array}\right] \\
& p=(a, b, 0, d, 0,0) \in Y_{(2,1,2)}^{\circ} \\
& \quad=\{(x, y, 0, u, 0,0) \mid x, y>0,0<u<x y, x+y=K\}
\end{aligned}
$$

$$
f^{-1}(p)=\left\{\left.\left(t_{1}, 0, \frac{a b-d}{a-t_{1}}, a-t_{1}, 0, \frac{d-t_{1} b}{a-t_{1}}\right) \right\rvert\, 0 \leq t_{1} \leq d / b\right\}
$$

Example 2

$$
\begin{aligned}
& \left.f=f_{(} 1,3,2,1,3,2\right), p \in Y_{(2,1,2)}^{0} \\
& f^{-1}(p)=\left\{\left.\left(t_{1}, 0, \frac{a b-d}{a-t_{1}}, a-t_{1}, 0, \frac{d-t_{1} b}{a-t_{1}}\right) \right\rvert\, 0 \leq t_{1} \leq d / b\right\} \\
& \begin{array}{cc}
(1,0,2,1,0,0) & \left\{\left(\frac{d}{b}, 0, b, a-\frac{d}{b}, 0,0\right\}\right. \\
(0,0,2,1,0,2) & \left\{\left(0,0, b-\frac{d}{a}, a, 0, \frac{d}{a}\right)\right\} \\
(1,0,2,1,0,2) & \left\{\left.\left(t_{1}, 0, \frac{a b-d}{a-t_{1}}, a-t_{1}, 0, \frac{d t_{1} b}{a-t_{1}}\right) \right\rvert\,\right. \\
\left.0<t_{1}<\frac{d}{b}\right\}
\end{array}
\end{aligned}
$$

Changes of Coordinates

$$
\text { For } W=S_{n}:\left(t_{1}, t_{2}, t_{3}>0\right)
$$

Introduction

Fomin Shapiro Conjecture

Resolution by

 HershMonotonicity
Fibers of Maps
Future Directions
References

Changes of Coordinates

For $W=S_{n}:\left(t_{1}, t_{2}, t_{3}>0\right)$

- modified nil-move

$$
x_{i}\left(t_{1}\right) x_{i}\left(t_{2}\right)=x_{i}\left(t_{1}+t_{2}\right)
$$

Introduction

Fomin Shapiro
Conjecture
Resolution by
Hersh
Monotonicity
Fibers of Maps
Future Directions
References

Changes of Coordinates

For $W=S_{n}:\left(t_{1}, t_{2}, t_{3}>0\right)$

- modified nil-move

$$
x_{i}\left(t_{1}\right) x_{i}\left(t_{2}\right)=x_{i}\left(t_{1}+t_{2}\right)
$$

- commutation moves (for $|i-j|>1$)

$$
x_{i}\left(t_{1}\right) x_{j}\left(t_{2}\right)=x_{j}\left(t_{1}\right) x_{i}\left(t_{2}\right)
$$

Introduction
Fomin Shapiro
Conjecture
Resolution by
Hersh
Monotonicity
Fibers of Maps
Future Directions

Changes of Coordinates

For $W=S_{n}:\left(t_{1}, t_{2}, t_{3}>0\right)$

- modified nil-move

$$
x_{i}\left(t_{1}\right) x_{i}\left(t_{2}\right)=x_{i}\left(t_{1}+t_{2}\right)
$$

- commutation moves (for $|i-j|>1$)

$$
x_{i}\left(t_{1}\right) x_{j}\left(t_{2}\right)=x_{j}\left(t_{1}\right) x_{i}\left(t_{2}\right)
$$

- braid moves

$$
\begin{aligned}
& x_{i}\left(t_{1}\right) x_{i+1}\left(t_{2}\right) x_{i}\left(t_{3}\right) \\
& \quad=x_{i+1}\left(\frac{t_{2} t_{3}}{t_{1}+t_{3}}\right) x_{i}\left(t_{1}+t_{3}\right) x_{i+1}\left(\frac{t_{1} t_{2}}{t_{1}+t_{3}}\right)
\end{aligned}
$$

Structure of Fibers (preliminary)

Fiber $f_{\left(i_{1}, \ldots, i_{d}\right)}^{-1}(p), p \in Y_{w}^{0}, w=\left(j_{1}, \ldots, j_{k}\right)$ reduced, $Q=\left(i_{1}^{\prime}, \ldots, i_{d^{\prime}}^{\prime}\right)$ a subword of $\left(i_{1}, \ldots, i_{d}\right)$ multiplying to w under the Demazure product, not reduced

Introduction
Fomin Shapiro Conjecture

Resolution by Hersh

Monotonicity
Fibers of Maps
Future Directions

Structure of Fibers (preliminary)

Fiber $f_{\left(i_{1}, \ldots, i_{d}\right)}^{-1}(p), p \in Y_{w}^{0}, w=\left(j_{1}, \ldots, j_{k}\right)$ reduced, $Q=\left(i_{1}^{\prime}, \ldots, i_{d^{\prime}}^{\prime}\right)$ a subword of $\left(i_{1}, \ldots, i_{d}\right)$ multiplying to w under the Demazure product, not reduced

- Case 0: Q multiplies to $\left(j_{1}, \ldots, j_{d}\right)$ without braid moves
$-x_{i_{1}^{\prime}}\left(t_{1}\right) \cdots x_{i_{d}^{\prime}}\left(t_{d}\right) \mapsto$
$x_{j_{1}}\left(t_{1,1}+\ldots+t_{1, n_{1}}\right) \cdots x_{j_{k}}\left(t_{k, 1}+\ldots+t_{k, n_{k}}\right) \stackrel{\text { inj }}{\mapsto}\left(a_{1}, \ldots, a_{k}\right)$
- fiber a cross product of simplicies, graph of monotone map

Structure of Fibers (preliminary)

Fiber $f_{\left(i_{1}, \ldots, i_{d}\right)}^{-1}(p), p \in Y_{w}^{0}, w=\left(j_{1}, \ldots, j_{k}\right)$ reduced, $Q=\left(i_{1}^{\prime}, \ldots, i_{d^{\prime}}^{\prime}\right)$ a subword of $\left(i_{1}, \ldots, i_{d}\right)$ multiplying to w under the Demazure product, not reduced

- Case 0: Q multiplies to $\left(j_{1}, \ldots, j_{d}\right)$ without braid moves
$-x_{i_{1}^{\prime}}\left(t_{1}\right) \cdots x_{i_{d}^{\prime}}^{\prime}\left(t_{d}\right) \mapsto$
$x_{j_{1}}\left(t_{1,1}+\ldots+t_{1, n_{1}}\right) \cdots x_{j_{k}}\left(t_{k, 1}+\ldots+t_{k, n_{k}}\right) \stackrel{\text { inj }}{\mapsto}\left(a_{1}, \ldots, a_{k}\right)$
- fiber a cross product of simplicies, graph of monotone map
- Case 1: Q Multiplies to $\left(j_{1}, \ldots, j_{k}\right)$ via one braid move followed by a modified nil-move

$$
\begin{aligned}
& \ldots x_{i}\left(t_{p}\right) x_{i+1}\left(t_{p+1}\right) x_{i}\left(t_{p+2}\right) x_{I+1}\left(t_{p+3}\right) \ldots \mapsto \\
& \ldots x_{i+1}\left(\frac{t_{p+1} t_{p+2}}{t_{p}+t_{p+2}}\right) x_{i+1}\left(t_{p}+t_{p+2}\right) x_{i+1}\left(\frac{t_{p} t_{p+1}}{t_{p}+t_{p+2}}+t_{p+3}\right) \ldots \\
& \stackrel{\text { inj. }}{\mapsto}\left(a_{1}, \ldots a_{k}\right)
\end{aligned}
$$

- fiber graph of $t_{p} \mapsto\left(\frac{a_{1}^{\prime} a_{2}^{\prime}}{a_{2}^{\prime}-t_{p}}, a_{2}^{\prime}-t_{p}, \frac{a_{2}^{\prime} a_{3}^{\prime}-\left(a_{1}^{\prime}+a_{3}^{\prime}\right) t_{p}}{a_{2}^{\prime}-t_{p}}\right)$ semi-monotone

Outline of Results

Introduction

- Conjectured: strata of $f_{\left(i_{1}, \ldots, i_{d}\right)}^{-1}(p)$ monotone for all $v, w \in S_{n}, w \leq v\left(v=\left(i_{1}, \ldots, i_{d}\right), p \in Y_{w}^{0}\right)$.

Fomin Shapiro Conjecture

Resolution by Hersh

Monotonicity

Fibers of Maps
Future Directions
References

Outline of Results

- Conjectured: strata of $f_{\left(i_{1}, \ldots, i_{d}\right)}^{-1}(p)$ monotone for all $v, w \in S_{n}, w \leq v\left(v=\left(i_{1}, \ldots, i_{d}\right), p \in Y_{w}^{0}\right)$.
$\Rightarrow \Rightarrow$ strata of $f_{v}^{-1}(p)$ regular, i.e. $f_{v}^{-1}(p)$ a regular cell complex for all $v, w \in S_{n}, w \leq v$

Fomin Shapiro Conjecture

Resolution by Hersh

Monotonicity

Fibers of Maps
Future Directions
References

Outline of Results

- Conjectured: strata of $f_{\left(i_{1}, \ldots, i_{d}\right)}^{-1}(p)$ monotone for all $v, w \in S_{n}, w \leq v\left(v=\left(i_{1}, \ldots, i_{d}\right), p \in Y_{w}^{0}\right)$.
- \Rightarrow strata of $f_{v}^{-1}(p)$ regular, i.e. $f_{v}^{-1}(p)$ a regular cell complex for all $v, w \in S_{n}, w \leq v$
- (Davis, Hersh, Miller) The face poset of the stratification of $f_{\left(i_{1}, \ldots, i_{d}\right)}^{-1}(p)$ is isomorphic to the face poset of the interior dual block complex of the subword complex $\Delta\left(\left(i_{1}, \ldots, i_{d}\right), w\right)$
- (Davis, Hersh, Miller) The interior dual block complex of any non-empty subword complex $\Delta(Q, w)$ is a contractible, regular cell complex

Outline of Results

- Conjectured: strata of $f_{\left(i_{1}, \ldots, i_{d}\right)}^{-1}(p)$ monotone for all $v, w \in S_{n}, w \leq v\left(v=\left(i_{1}, \ldots, i_{d}\right), p \in Y_{w}^{0}\right)$.
- \Rightarrow strata of $f_{v}^{-1}(p)$ regular, i.e. $f_{v}^{-1}(p)$ a regular cell complex for all $v, w \in S_{n}, w \leq v$
- (Davis, Hersh, Miller) The face poset of the stratification of $f_{\left(i_{1}, \ldots, i_{d}\right)}^{-1}(p)$ is isomorphic to the face poset of the interior dual block complex of the subword complex $\Delta\left(\left(i_{1}, \ldots, i_{d}\right), w\right)$
- (Davis, Hersh, Miller) The interior dual block complex of any non-empty subword complex $\Delta(Q, w)$ is a contractible, regular cell complex
- $\Rightarrow f_{v}^{-1}(p)$ contractible for all $v, w \in s_{n}, w \leq v$

Outline of Results

- Conjectured: strata of $f_{\left(i_{1}, \ldots, i_{d}\right)}^{-1}(p)$ monotone for all $v, w \in S_{n}, w \leq v\left(v=\left(i_{1}, \ldots, i_{d}\right), p \in Y_{w}^{0}\right)$.
- \Rightarrow strata of $f_{v}^{-1}(p)$ regular, i.e. $f_{v}^{-1}(p)$ a regular cell complex for all $v, w \in S_{n}, w \leq v$
- (Davis, Hersh, Miller) The face poset of the stratification of $f_{\left(i_{1}, \ldots, i_{d}\right)}^{-1}(p)$ is isomorphic to the face poset of the interior dual block complex of the subword complex $\Delta\left(\left(i_{1}, \ldots, i_{d}\right), w\right)$
- (Davis, Hersh, Miller) The interior dual block complex of any non-empty subword complex $\Delta(Q, w)$ is a contractible, regular cell complex
- $\Rightarrow f_{v}^{-1}(p)$ contractible for all $v, w \in s_{n}, w \leq v$
$\bullet \Rightarrow Y_{w}$ a regular cell complex for each $w \leq v$

Introduction
Fomin Shapiro
Conjecture
Resolution by
Hersh

Monotonicity

Future Directions

Fibers of Maps

Future Directions
References

Future Directions

Totally nonnegatvie part of flag variety $(G / P)_{\geq 0}$

- Conjecture: regular cell complex homeomorphic to a ball
- Evidence:
- contractible
- cell poset that of a regular cell complex homeomorphic to a ball
- regular cell complex up to homotopy equivalence
- Special case: totally nonnegative Grassmanian $\left(G r_{n, k}\right)_{\geq 0}$

References I

䍰 George Lusztig. "Introduction to Total Positivity". In: Positivity in Lie Theory: Open Problems. Vol. 26. De Gruyter Expositions in Mathematics. Berlin and New York: Walter De Gruyter, 1998, pp. 133-145. ISBN: 3-11-016112-5.
Sergey Fomin and Michael Shapiro. "Stratified Spaces Formed by Totally Positive Varieties". In: Michigan Math J. 48 (2000), pp. 253-270.
(Anders Björner. "Posets, Regular CW Complexes, and Bruhat Order". In: Europ. J. Combinatorics 5 (1984), pp. 7-16.
(R) Patricia Hersh. "Regular Cell Complexes in Total Positivity". In: Inventiones Mathematicae 197 (2014), pp. 57-114.

References II

R Saugata Basu, Andrei Gabrielov, and Nicolai Vorobjov. "Semi-monotone Sets". In: J. Eur. Math. Soc. 15 (2013), pp. 635-657.
: Saugata Basu, Andrei Gabrielov, and Nicolai Vorobjov. "Monotone Functions and Maps". In: Revista de la Real Academia de Ciencias Exactas, Fisicas y Naturales. Serie A. Matematicas 107 (2013), pp. 5-33.
E Saugata Basu, Andrei Gabrielov, and Nicolai Vorobjov. "Toric Cubes are Closed Balls". In: ().
圊 Saugata Basu and Cordian Riener. "Vandermonde Varieties, Mirrored Spaces, and the Cohomology of Symetric Semi-algebraic Sets". In: (2019).

References III

R Konstanze Rietsch and Lauren Williams. "Discrete Morse Theory for Totally Non-Negative Flag Varieties". In: Advances in Mathematics 223 (2010), pp. $1855-1884$.

