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Total Nonnegativity

Definition
M n × n matrix (over R): M totally positive (resp totally
nonnegative) if all minors are positive (resp nonnegative)

Can extend definition to any split semi-simple algebraic
group over R.

I B,B− opposite Borel subgroups

I U (resp U−) unipotent radical of B (resp B−)

I xi (t) = exp(tei ) (ei Chevalley generators of the Lie
algebra of U, t ∈ R)

Y (totally nonnegative elements of U) mulitpicative
submonoid of U generated by xi (t), t ≥ 0

2 / 38
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Example: G = SL(n,R)

G = SL(n,R), B (B−) set of upper (lower) triangular
matrices, U set of upper triangular matrices with 1’s along
the diagonal.

n = 3:

M =

1 x z
0 1 y
0 0 1


M ∈ Y iff

I x , y , z ≥ 0

I z ≤ xy
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Coxeter Groups

Definition
Let W be a group and S ⊂W . If W has a presentation of
the form

I Generators: S
I Relations:

I s2 = e for all s ∈ S
I others of the form (ss ′)m(s,s′) = e for s 6= s ′ ∈ S ,

m(s, s ′) ≥ 2

then (W , S) is a Coxeter system

Example

W = Sn: S set of adjacent transpositions si = (i i + 1) for
1 ≤ i ≤ n − 1

4 / 38
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Words in Coxeter Systems

Let w ∈W , S = {si}

w = si1 · · · sik

I (i1, . . . , ik) a word for w

I If k minimal, (i1, . . . , ik) a reduced word, k = l(w) the
length of w

Definition
Let u, v ∈W . If there is a reduced word for u that is a
subword of a reduced word for v , then u ≤ v in the Bruhat
order

Proposition

If W is finite, there exists a unique element w0 ∈W so that
w ≤ w0 for all w ∈W

5 / 38
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Stratification of Y

Let W be the Weyl Group of G

I G = SL(n,R): W = Sn

Decomposition G =
⊔

w∈W B−wB− induces decomposition
of Y into strata Y o

w = Y ∩ B−wB−

Notice
u ≤ v in the Bruhat order iff Y o

u ⊂ Y o
v

Proposition (Lusztig)

Let (i1, . . . , id) be a reduced word for w ∈W . Then the map

(t1, . . . , td) 7→ xi1(t1) · · · xid (td)

is a homeomorphism between Rd
>0 and Y o

w

6 / 38



Introduction

Fomin Shapiro
Conjecture

Resolution by
Hersh

Monotonicity

Fibers of Maps

Future Directions

References

Stratification of Y

Let W be the Weyl Group of G

I G = SL(n,R): W = Sn

Decomposition G =
⊔

w∈W B−wB− induces decomposition
of Y into strata Y o

w = Y ∩ B−wB−

Notice
u ≤ v in the Bruhat order iff Y o

u ⊂ Y o
v

Proposition (Lusztig)

Let (i1, . . . , id) be a reduced word for w ∈W . Then the map

(t1, . . . , td) 7→ xi1(t1) · · · xid (td)

is a homeomorphism between Rd
>0 and Y o

w

6 / 38



Introduction

Fomin Shapiro
Conjecture

Resolution by
Hersh

Monotonicity

Fibers of Maps

Future Directions

References

Stratification of Y

Let W be the Weyl Group of G

I G = SL(n,R): W = Sn

Decomposition G =
⊔

w∈W B−wB− induces decomposition
of Y into strata Y o

w = Y ∩ B−wB−

Notice
u ≤ v in the Bruhat order iff Y o

u ⊂ Y o
v

Proposition (Lusztig)

Let (i1, . . . , id) be a reduced word for w ∈W . Then the map

(t1, . . . , td) 7→ xi1(t1) · · · xid (td)

is a homeomorphism between Rd
>0 and Y o

w

6 / 38



Introduction

Fomin Shapiro
Conjecture

Resolution by
Hersh

Monotonicity

Fibers of Maps

Future Directions

References

Stratification of Y

Let W be the Weyl Group of G

I G = SL(n,R): W = Sn

Decomposition G =
⊔

w∈W B−wB− induces decomposition
of Y into strata Y o

w = Y ∩ B−wB−

Notice
u ≤ v in the Bruhat order iff Y o

u ⊂ Y o
v

Proposition (Lusztig)

Let (i1, . . . , id) be a reduced word for w ∈W . Then the map

(t1, . . . , td) 7→ xi1(t1) · · · xid (td)

is a homeomorphism between Rd
>0 and Y o

w

6 / 38



Introduction

Fomin Shapiro
Conjecture

Resolution by
Hersh

Monotonicity

Fibers of Maps

Future Directions

References

Example: G = SL(3,R)

x1(t) =

1 t 0
0 1 0
0 0 1

 x2(t) =

1 0 0
0 1 t
0 0 1



I Y o
id = {(0, 0, 0)}

I Y o
(1) = {(x , 0, 0) | x > 0}

I Y o
(2) = {(0, y , 0) | y > 0}

I Y o
(2,1) = {(x , y , 0) | x > 0, y > 0}

I Y o
(1,2) = {(x , y , xy) | x , y > 0}

I Y o
(1,2,1) = Y o

(2,1,2) = {(x , y , z) | x , y > 0, 0 < z < xy}

7 / 38
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Links of Strata

Notation: Let Yw = Y o
w .

Definition
Let Y o

u ⊂ Yv (⇔ u ≤ v). Let

I p ∈ Y o
u arbitrary

I N a smooth manifold with N ∩ Y o
u = {p} and N

transverse to Y o
u

I Bδ(p) ball of radius δ centered at p

Then Lk(u, v) = Yv ∩ N ∩ ∂Bδ(p)

Figure: Lk((0), (1, 2, 1)) and Lk((1), (1, 2, 1)) for SL(3,R)
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Fomin Shapiro Conjecture

Definition
A set U ⊂ Rm is an m-cell if U ∼= (Bm)o. U is a regular
m-cell if the pair (U,U) ∼= (Bm, (Bm)o)

Conjecture

For all u, v ∈W with Y o
u ⊂ Yv , Lk(u, v) is a regular cell

complex (decomposes into regular cells).

Motivation
Björner: [u, v ] a Bruhat interval ⇒ there exists a regular cell
complex with face poset isomorphic to [u, v ].
Goal: find naturally arising construction.
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Resolution by Hersh
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Some Notation

Let (i1, . . . , id) be a word for w ∈W . Denote

f(i1,...,id ) : Rd
≥0 ∩ Sd−1 → Yw

(t1, . . . , td) 7→ xi1(t1) · · · xid (td)

where Sd−1 is the simplex
∑

ti = K for some K > 0

Notation Change

Henceforth, for w = (i1, . . . , id)

I Y o
w = f(i1,...,id )(R

d
>0 ∩ Sd−1)

I Yw = f(i1,...,id )(R
d
≥0 ∩ Sd−1) ∼= Lk((0), (i1, . . . , id))

10 / 38
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Cell Collapses

(i1, . . . , id) reduced: f(i1,...,id ) homeomorphism on interior,
not necessarily injective on boundary

Example

G = SL(3,R)

f(1,2,1)(t1, t2, t3) =

1 t1 + t3 t1t2
0 1 t2
0 0 1



(1, 0, 0) (0, 1, 0)

(0, 0, 1)

11 / 38
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Resolution

Theorem (Hersh)

Let (i1, . . . , id) be a reduced word for w ∈W . Let ∼ be the
identifications given by any series of face collapses on
Rd
≥0 ∩ Sd−1 such that

1. x ∼ y ⇒ f(i1,...,id )(x) = f(i1,...,id )(y)

2. the series of collapses eliminates all regions whose words
are not reduced

Then f(i1,...,id ) : Rd
≥0 ∩ Sd−1/ ∼ → Yw is a homomorphism

which preserves cell structure

12 / 38
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Monotonicity
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Coordinate Cones

In this section, sets and functions are definable in some
o-minimal structure over R
Let Lj ,σ,c = {x ∈ Rn | xjσc} for σ ∈ {<,=, >}, c ∈ R

Definition
A coordinate cone is a set of the form

C = Lj1,σ1,c1 ∩ . . . ∩ Ljm,σm,cm ⊂ Rn

with the ji distinct elements of {1, . . . , n}. Similarly, an
affine coordinate subspace has the form

S = Lj1,=,c1 ∩ . . . ∩ Ljm,=,cm ⊂ Rn

13 / 38



Introduction

Fomin Shapiro
Conjecture

Resolution by
Hersh

Monotonicity

Fibers of Maps

Future Directions

References

Coordinate Cones

In this section, sets and functions are definable in some
o-minimal structure over R
Let Lj ,σ,c = {x ∈ Rn | xjσc} for σ ∈ {<,=, >}, c ∈ R

Definition
A coordinate cone is a set of the form

C = Lj1,σ1,c1 ∩ . . . ∩ Ljm,σm,cm ⊂ Rn

with the ji distinct elements of {1, . . . , n}. Similarly, an
affine coordinate subspace has the form

S = Lj1,=,c1 ∩ . . . ∩ Ljm,=,cm ⊂ Rn

13 / 38



Introduction

Fomin Shapiro
Conjecture

Resolution by
Hersh

Monotonicity

Fibers of Maps

Future Directions

References

Semi-monotone Sets

Definition/Theorem

An open bounded set X ⊂ Rn is semi-monotone if for each
coordinate cone C , X ∩ C is connected (equivalently, if for
every affine coordinate subspace S , X ∩ S is connected)

semi-monotone not semi-monotone

14 / 38
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Monotone Functions

Let f : X → R, X ⊂ Rn nonempty and semi-monotone, and
let F be the graph of f

Definition
f is submonotone if it is bounded, upper semi-continuous,
and for all b ∈ R, {x ∈ X | f (x) < b} is semi-monotone. f is
supermonotone if −f is submonotone.

Definition
f is monotone if it is both sub and supermonotone and
either strictly increasing in, strictly decreasing in, or
independent of xj for all 1 ≤ j ≤ n

15 / 38
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Monotone Functions (Characterization)

Let f : X → R be bounded and continuous, with X ⊂ Rn

open, bounded, and nonempty

Theorem
Let f be strictly increasing in, strictly decreasing in, or
independent of each xj , 1 ≤ j ≤ n. Then the following are
equivalent

I. f is monotone

II. F ∩ C is connected for each coordinate cone C

III. F ∩S is connected for each affine coordinate subspace S

16 / 38
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Monotone Maps

Let f = (f1, . . . , fk) : X → Rk , X ⊂ Rn nonempty and
semi-monotone, F the graph of f .

Definition
Let H = {xj1 , . . . , xjα , yi1 , . . . , yiβ} ⊂ {x1, . . . , xn, y1, . . . , yk}
where α + β = n. H is a basis if
(xj1 , . . . , xjα , fi1 , . . . , fiβ ) : X → Rn is injective
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Monotone Maps

Let f = (f1, . . . , fk) : X → Rk , X ⊂ Rn nonempty and
semi-monotone, F the graph of f .

Definition
f : R→ Rk is monotone if fi is monotone for all i
Inductively, f : Rn → Rk is monotone if for each fi not
independent of xj

1. For each b ∈ R, F ∩ {yi = b} is the graph of a
monotone map fi ,j ,b from a semi-monotone subset of
span{x1, . . . , x̂j , . . . , xn} to
span{y1, . . . , yi−1, xj , yi+1, . . . , yk}

2. The system of basis sets associated with fi ,j ,b does not
depend on b

17 / 38
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Monotone Maps (Characterization)

Let f : X → Rk be bounded and continuous, with X ⊂ Rn

open, bounded, and nonempty, F the graph of f .

Definition
f is quasi-affine if for any T = span{xj1 , . . . , xjα , yi1 , . . . , yiβ},
α + β = n, the projection ρT : F → T is injective iff the
image ρT (F ) is n dimensional

Theorem
Let f be quasi-affine. Then the following are equivalent

I. f is monotone

II. F ∩ C is connected for each coordinate cone C

III. F ∩S is connected for each affine coordinate subspace S

18 / 38
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Examples

not monotone

z = xy on
0 < x < 1, −1 < y < 1

not monotone

z = x2 + y2 on
0 < x < 1, 0 < y < 1− x

not monotone

z = xy on
0 < x , y < 1

monotone

19 / 38
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Regular Cells

Theorem (Basu, Gabrielov, Vorobjov)

The graph F ⊂ Rn+k of a monotone map f : X → Rk on a
semimonotone set X ⊂ Rn is a regular n-cell.
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Application: Toric Cubes

Definition
A toric cube is the image of a map of the form

fA : [0, 1]d → [0, 1]n

t = (t1, . . . , td) 7→ (ta1 , . . . , tan)

where A = {a1, . . . , an} ⊂ Rd and for ai = (ai ,1, . . . , ai ,d),
tai denotes (t

ai,1
1 , . . . , t

ai,d
d ). An open toric cube is the image

of the restriction of such an fA to (0, 1)d .

Theorem (Basu, Gabrielov, Vorobjov)

An open toric cube is the graph of a monotone map, and
hence is a regular cell.

21 / 38
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Application: Vandermonde Varieties

Let R be a real closed field

Definition
The Weyl chamber in Rk is

W(k) = {(X1, . . . ,Xk) ∈ Rk | X1 ≤ . . . ≤ Xk}

Definition
Let y = (y1, . . . , yd) ∈ Rd . The Vandermonde variety

V
(k)
d ,y ⊂ Rk is the variety defined by p

(k)
1 = y1, . . . , p

(k)
d = yd

where

p
(k)
j =

k∑
i=1

X j
i
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Application: Vandermonde Varieties

Proposition (Basu, Riener)

For all y ∈ Rd , d ≤ k, either V
(k)
d ,y ∩W

(k) is empty or a

point, or V
(k)
d ,y ∩W

(k) = V
(k)
d ,y ∩W(k),◦ and V

(k)
d ,y ∩W

(k),◦ is
a semi-monotone set, and hence a regular cell
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Fibers of Maps
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Route to an Alternate Proof

Theorem (Davis, Hersh, Miller)

Let v ∈W with (i1, . . . , id) a reduced word for v . Then if
for all w ∈W , w ≤ v , we have f −1(i1,...,id )

(p) is contractible for
p ∈ Y o

w , then Yw is a regular cell complex for each w ≤ v .

(Key ingredient in proof)

Let ∼ be an equivalence relation on the closed ball Bn so
that

I all equivalence classes are contractible

I Sn−1/ ∼ ∼= Sn−1

I if x ∼ y with x ∈ Sn−1, then y ∈ Sn−1

I if x ∼ y with x /∈ Sn−1, then y = x

Then B ∼= B/ ∼

24 / 38
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Reduced Words and Injectivity

Definition/Proposition

The Demazure product on W is the unique associative map
δ : W ×W →W such that for w ∈W and s ∈ S ,

δ(w , s) =

{
ws l(ws) > l(w)

w l(ws) < w

Theorem
Let (i1, . . . , id) be a reduced word for v and let p ∈ Yw .
Then f −1(i1,...,id )

(p) is stratified via the standard decomposition

of the simplex. Let Q be a subword of (i1, . . . , id).
f −1(i1,...,id )

(p) ∩ RQ
>0 is nonempty iff Q multiplies to w under

the Demazure product, and is non-trivial iff the expression is
not reduced.

25 / 38
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Example: G = SL(3,R)

v = (1, 2, 1), p ∈ Y(1), f
−1
(1,2,1)(p) in red.

Q = (1, 0, 0) Q = (0, 2, 0)

Q = (0, 0, 1)

Q = (1, 2, 1)
Q = (1, 0, 1) Q = (0, 2, 1)

Q = (1, 2, 0)

26 / 38
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The Goal

Conjecture

Let G = SL(n,R), let (i1, . . . , id) be a reduced word for
v ∈W , let w ≤ v , and let p ∈ Y o

w . Then the strata of
f −1(i1,...,id )

(p) are graphs of monotone maps, and hence this
stratification is a regular cell decomposition.

This holds in the cases n = 3 and n = 4, by computation
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Example 1

f(1,3,2,1,3,2) =


1 t1 + t4 (t1 + t4)t6 + t1t2 t1t3t5
0 1 t3 + t6 t3t5
0 0 1 t2 + t5
0 0 0 1



p = (a, b, c , ab, 0, 0)

∈ Y o
(3,1,2) = {(x , y , z , xy , 0, 0) | x , y , z > 0, x + y + z = K}

f −1(p) ={(t1, t2, 0, a− t1, c − t2, b) | 0 ≤ t1 ≤ a, 0 ≤ t2 ≤ c}
∪ {(a, c , t3, 0, 0, b − t3) | 0 ≤ t3 ≤ b}

28 / 38
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Example 1

f = f(1,3,2,1,3,2), p ∈ Y o
(3,1,2)

f −1(p) ={(t1, t2, 0, a− t1, c − t2, b) | 0 ≤ t1 ≤ a, 0 ≤ t2 ≤ c}
∪ {(a, c , t3, 0, 0, b − t3) | 0 ≤ t3 ≤ b}

(1, 3, 2, 0, 0, 0) {(a, c , b, 0, 0, 0)} point
(1, 3, 0, 0, 0, 2) {(a, c , 0, 0, 0, b)} point
(1, 3, 2, 0, 0, 2) {(a, c , t3, 0, 0, b) | 0 < t3 < b} line
(0, 3, 0, 1, 0, 2) {(0, c , 0, a, 0, b)} point
(1, 3, 0, 1, 0, 2) {(t1, c , 0, a− t1, 0, b) | 0 < t1 < a} line
(1, 0, 0, 0, 3, 2) {(a, 0, 0, 0, c , b)} point
(1, 3, 0, 0, 3, 2) {(a, t2, 0, 0, c − t2, b) | 0 < t2 < c} line
(0, 0, 0, 1, 3, 2) {(0, 0, 0, a, c , b)} point
(1, 0, 0, 1, 3, 2) {(t1, 0, 0, c − t1, c , b) | 0 < t1 < a} line
(0, 3, 0, 1, 3, 2) {(0, t2, 0, a, c − t2, b) | 0 < t2 < c} line
(1, 3, 0, 1, 3, 2) {(t1, t2, 0, a− t1, c − t2, b) | square

0 < t1 < a, 0 < t2 < c}
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Example 2

f(1,3,2,1,3,2) =


1 t1 + t4 (t1 + t4)t6 + t1t2 t1t3t5
0 1 t3 + t6 t3t5
0 0 1 t2 + t5
0 0 0 1



p = (a, b, 0, d , 0, 0) ∈ Y o
(2,1,2)

= {(x , y , 0, u, 0, 0) | x , y > 0, 0 < u < xy , x + y = K}

f −1(p) = {(t1, 0,
ab − d

a− t1
, a− t1, 0,

d − t1b

a− t1
) | 0 ≤ t1 ≤ d/b}
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Example 2

f = f(1, 3, 2, 1, 3, 2), p ∈ Y o
(2,1,2)

f −1(p) = {(t1, 0,
ab − d

a− t1
, a− t1, 0,

d − t1b

a− t1
) | 0 ≤ t1 ≤ d/b}

(1, 0, 2, 1, 0, 0) {(db , 0, b, a−
d
b , 0, 0} point

(0, 0, 2, 1, 0, 2) {(0, 0, b − d
a , a, 0,

d
a )} point

(1, 0, 2, 1, 0, 2) {(t1, 0, ab−da−t1 , a− t1, 0,
d−t1b
a−t1 ) |

0 < t1 <
d
b }
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Changes of Coordinates

For W = Sn: (t1, t2, t3 > 0)

I modified nil-move

xi (t1)xi (t2) = xi (t1 + t2)

I commutation moves (for |i − j | > 1)

xi (t1)xj(t2) = xj(t1)xi (t2)

I braid moves

xi (t1)xi+1(t2)xi (t3)

= xi+1

(
t2t3

t1 + t3

)
xi (t1 + t3)xi+1

(
t1t2

t1 + t3

)

32 / 38
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Structure of Fibers (preliminary)

Fiber f −1(i1,...,id )
(p), p ∈ Y o

w , w = (j1, . . . , jk) reduced,

Q = (i ′1, . . . , i
′
d ′) a subword of (i1, . . . , id) multiplying to w

under the Demazure product, not reduced

I Case 0: Q multiplies to (j1, . . . , jd) without braid moves
I xi ′1 (t1) · · · xi ′d (td) 7→

xj1(t1,1+. . .+t1,n1) · · · xjk (tk,1+. . .+tk,nk )
inj.7→ (a1, . . . , ak)

I fiber a cross product of simplicies, graph of monotone
map

I Case 1: Q Multiplies to (j1, . . . , jk) via one braid move
followed by a modified nil-move
I . . . xi (tp)xi+1(tp+1)xi (tp+2)xI+1(tp+3) . . . 7→

. . . xi+1

(
tp+1tp+2

tp+tp+2

)
xi+1(tp+tp+2)xi+1

(
tptp+1

tp+tp+2
+ tp+3

)
. . .

inj.7→ (a1, . . . ak)

I fiber graph of tp 7→
(

a′1a
′
2

a′2−tp
, a′2 − tp,

a′2a
′
3−(a

′
1+a′3)tp

a′2−tp

)
semi-monotone

33 / 38
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under the Demazure product, not reduced
I Case 0: Q multiplies to (j1, . . . , jd) without braid moves

I xi ′1 (t1) · · · xi ′d (td) 7→

xj1(t1,1+. . .+t1,n1) · · · xjk (tk,1+. . .+tk,nk )
inj.7→ (a1, . . . , ak)

I fiber a cross product of simplicies, graph of monotone
map

I Case 1: Q Multiplies to (j1, . . . , jk) via one braid move
followed by a modified nil-move
I . . . xi (tp)xi+1(tp+1)xi (tp+2)xI+1(tp+3) . . . 7→

. . . xi+1

(
tp+1tp+2

tp+tp+2

)
xi+1(tp+tp+2)xi+1

(
tptp+1

tp+tp+2
+ tp+3

)
. . .

inj.7→ (a1, . . . ak)

I fiber graph of tp 7→
(

a′1a
′
2

a′2−tp
, a′2 − tp,

a′2a
′
3−(a

′
1+a′3)tp

a′2−tp

)
semi-monotone
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Outline of Results

I Conjectured: strata of f −1(i1,...,id )
(p) monotone for all

v ,w ∈ Sn, w ≤ v (v = (i1, . . . , id), p ∈ Y o
w ).

I ⇒ strata of f −1v (p) regular, i.e. f −1v (p) a regular cell
complex for all v ,w ∈ Sn,w ≤ v

I (Davis, Hersh, Miller) The face poset of the
stratification of f −1(i1,...,id )

(p) is isomorphic to the face
poset of the interior dual block complex of the subword
complex ∆((i1, . . . , id),w)

I (Davis, Hersh, Miller) The interior dual block complex
of any non-empty subword complex ∆(Q,w) is a
contractible, regular cell complex

I ⇒ f −1v (p) contractible for all v ,w ∈ sn, w ≤ v

I ⇒ Yw a regular cell complex for each w ≤ v
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Future Directions
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Future Directions

Totally nonnegatvie part of flag variety (G/P)≥0
I Conjecture: regular cell complex homeomorphic to a ball
I Evidence:

I contractible
I cell poset that of a regular cell complex homeomorphic

to a ball
I regular cell complex up to homotopy equivalence

I Special case: totally nonnegative Grassmanian (Grn,k)≥0
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