Monotonicity and Totally Nonnegative Spaces

Alison Rosenblum

Purdue University

Student Colloquium January 22, 2020

Introduction

Fomin Shapiro Conjecture

Resolution by Hersh

Monotonicity

Fibers of Maps

Total Nonnegativity

Definition

 $M \in M_n(\mathbb{R})$: *M* totally positive (resp totally nonnegative) if all minors are positive (resp nonnegative)

Introduction

Fomin Shapiro Conjecture

Resolution by Hersh

Monotonicity

ibers of Maps

Definition

 $M \in M_n(\mathbb{R})$: *M* totally positive (resp totally nonnegative) if all minors are positive (resp nonnegative)

Here,

- ▶ U upper triangular matrices with 1's on the diagonal
- > Y totally nonnegative part of U.

Introduction

Fomin Shapiro Conjecture

Resolution by Hersh

Monotonicity

ibers of Maps

Introduction

Fomin Shapiro Conjecture

Resolution by Hersh

Monotonicity

Fibers of Maps

References

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 - のへぐ

Need

Introduction

Fomin Shapiro Conjecture

Resolution by Hersh

Monotonicity

Fibers of Maps

$$\begin{bmatrix} 1 & x & z \\ 0 & 1 & y \\ 0 & 0 & 1 \end{bmatrix}$$

Need

▶
$$x \ge 0$$
, $y \ge 0$, $z \ge 0$

Introduction

Fomin Shapiro Conjecture

Resolution by Hersh

Monotonicity

Fibers of Maps

References

・ロト・日本・ 山田・ 山田・ 山口・

$$\begin{bmatrix} 1 & x & z \\ 0 & 1 & y \\ 0 & 0 & 1 \end{bmatrix}$$

Need

Introduction

Fomin Shapiro Conjecture

Resolution by Hersh

Monotonicity

Fibers of Maps

$$\begin{bmatrix} 1 & x & z \\ 0 & 1 & y \\ 0 & 0 & 1 \end{bmatrix}$$

Need

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへぐ

Introduction

Fomin Shapiro Conjecture

Resolution by Hersh

Monotonicity

Fibers of Maps

Coxeter Groups

Definition

Let W be a group and $S \subset W$. If W has a presentation of the form

- ► Generators: S
- Relations:
 - $s^2 = e$ for all $s \in S$
 - others of the form $(ss')^{m(s,s')} = e$ for $s \neq s' \in S$, $m(s,s') \ge 2$

then (W, S) is a Coxeter system

Introduction

Fomin Shapiro Conjecture

Resolution by lersh

Monotonicity

Fibers of Maps

Definition

Let W be a group and $S \subset W$. If W has a presentation of the form

- ► Generators: S
- Relations:
 - s² = e for all s ∈ S
 others of the form (ss')^{m(s,s')} = e for s ≠ s' ∈ S, m(s,s') ≥ 2

then (W, S) is a Coxeter system

Example

- *W* = *S_n* symmetric group
 S = {*s_i* = (*i i* + 1) | 1 ≤ *i* ≤ *n* − 1}
- ▶ Relations $(s_i s_{i+1})^3 = e$, $(s_i s_j)^2 = e$ for |i j| > 1

Introduction

Fomin Shapiro Conjecture

Resolution by Iersh

Monotonicity

Fibers of Maps

```
▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●
```

Let $w \in W$

$$w = s_{i_1} \cdots s_{i_k}$$

Introduction

Fomin Shapiro Conjecture

Resolution by Hersh

Monotonicity

Fibers of Maps

Let $w \in W$

$$w = s_{i_1} \cdots s_{i_k}$$

• (i_1, \ldots, i_k) a word for w

Introduction

Fomin Shapiro Conjecture

Resolution by Hersh

Monotonicity

Fibers of Maps

References

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○三 ○○○

Let $w \in W$

$$w = s_{i_1} \cdots s_{i_k}$$

• (i_1, \ldots, i_k) a word for w

• If k minimal, (i_1, \ldots, i_k) a reduced word, k = l(w) the length of w

Introduction

Fomin Shapiro Conjecture

Resolution by Hersh

Monotonicity

ibers of Maps

References

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ 三臣 - のへで

Let $w \in W$

$$w = s_{i_1} \cdots s_{i_k}$$

• (i_1, \ldots, i_k) a word for w

• If k minimal, (i_1, \ldots, i_k) a reduced word, k = l(w) the length of w

Definition

Let $u, v \in W$. If there is a reduced word for u that is a subword of a reduced word for v, then $u \leq v$ in the Bruhat order

Introduction

Fomin Shapiro Conjecture

Resolution by Hersh

Monotonicity

Fibers of Maps

Let $w \in W$

$$w = s_{i_1} \cdots s_{i_k}$$

• (i_1, \ldots, i_k) a word for w

If k minimal, (i₁,..., i_k) a reduced word, k = l(w) the length of w

Definition

Let $u, v \in W$. If there is a reduced word for u that is a subword of a reduced word for v, then $u \leq v$ in the Bruhat order

Proposition

If W is finite, there exists a unique element $w_0 \in W$ so that $w \leq w_0$ for all $w \in W$

Introduction

Fomin Shapiro Conjecture

Resolution by Tersh

Monotonicity

ibers of Maps

Example: S_3

Bruhat order for S_3 (note $s_1s_2s_1 = s_2s_1s_2$)

Introduction

Fomin Shapiro Conjecture

Resolution by Hersh

Monotonicity

Fibers of Maps

The Connection

Let $W = S_n$, $s_i = (i \ i+1)$ for $1 \le i \le n-1$. Define maps

$$x_{i}: \mathbb{R} \longrightarrow SL_{n}(\mathbb{R})$$

$$t \longmapsto \begin{bmatrix} 1 & 0 & \cdots & 0 \\ 0 & \ddots & & \vdots \\ & 1 & t \\ \vdots & & \ddots & 0 \\ 0 & \cdots & 0 & 1 \end{bmatrix}$$

Introduction

Fomin Shapiro Conjecture

Resolution by Hersh

Monotonicity

Fibers of Maps

References

(where t is in row i, column i + 1)

イロト イロト イヨト イヨト ヨー ショイ

The Connection

Let $W = S_n$, $s_i = (i \ i+1)$ for $1 \le i \le n-1$. Define maps

$$\begin{array}{c} x_{i}:\mathbb{R}\longrightarrow \mathcal{SL}_{n}(\mathbb{R})\\ t\longmapsto \begin{bmatrix} 1 & 0 & \cdots & 0\\ 0 & \ddots & & \vdots\\ & & 1 & t\\ \vdots & & \ddots & 0\\ 0 & \cdots & & 0 & 1 \end{bmatrix}$$

Introduction

Fomin Shapiro Conjecture

Resolution by Hersh

Monotonicity

Fibers of Maps

References

(where t is in row i, column i+1) Let $w = (i_1, \ldots, i_k) \in S_n$: define map

$$\mathbb{R}^k o SL_n(\mathbb{R})$$

 $(t_1,\ldots,t_k) \mapsto x_{i_1}(t_1)\cdots x_{i_k}(t_k)$

Let $w = (1, 2, 1) \in S_3$ (longest word)

Introduction

Fomin Shapiro Conjecture

Resolution by Hersh

Monotonicity

Fibers of Maps

References

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへぐ

Let
$$w = (1, 2, 1) \in S_3$$
 (longest word)
 $x_1(t_1)x_2(t_2)x_1(t_3)$

$$= \begin{bmatrix} 1 & t_1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \cdot \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & t_2 \\ 0 & 0 & 1 \end{bmatrix} \cdot \begin{bmatrix} 1 & t_3 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & t_1 + t_3 & t_1t_2 \\ 0 & 1 & t_2 \\ 0 & 0 & 1 \end{bmatrix}$$
Here's Monotonicity
Fibers of Maps

$$\begin{array}{ll} \text{Let } w = (1,2,1) \in S_3 \text{ (longest word)} \\ x_1(t_1)x_2(t_2)x_1(t_3) \\ = \begin{bmatrix} 1 & t_1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \cdot \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & t_2 \\ 0 & 0 & 1 \end{bmatrix} \cdot \begin{bmatrix} 1 & t_3 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & t_1 + t_3 & t_1t_2 \\ 0 & 1 & t_2 \\ 0 & 0 & 1 \end{bmatrix} \overset{\text{Resolution by}}{\underset{\text{Hersh}}{\underset{\text{Hersh}}{\underset{\text{Monotonicity}}{\underset{\text{Fibers of Maps}}{\underset{\text{References}}{\underset{References}}{\underset$$

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ 三臣 - のへで

$$\mathsf{Image} = \left\{ \left[\begin{matrix} 0 & 1 & y \\ 0 & 0 & 1 \end{matrix} \right] \middle| x, y \ge 0, 0 \le z \le xy \right\}$$

Let
$$w = (1, 2, 1) \in S_3$$
 (longest word)
 $x_1(t_1)x_2(t_2)x_1(t_3)$
 $= \begin{bmatrix} 1 & t_1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \cdot \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & t_2 \\ 0 & 0 & 1 \end{bmatrix} \cdot \begin{bmatrix} 1 & t_3 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & t_1 + t_3 & t_1 t_2 \\ 0 & 1 & t_2 \\ 0 & 0 & 1 \end{bmatrix}$
Homotonicity
Fibers of Maps
References
If $(t_1, t_2, t_3) \in \mathbb{R}^3_{\geq 0}$,
 $\limage = \left\{ \begin{bmatrix} 1 & x & z \\ 0 & 1 & y \\ 0 & 0 & 1 \end{bmatrix} | x, y \geq 0, 0 \leq z \leq xy \right\} = Y$

• $\Delta_{d-1} = \{(t_1, \ldots, t_d) \in \mathbb{R}^d_{\geq 0} \mid \sum x_i = K\}$ for some fixed K > 0

Introduction

Fomin Shapiro Conjecture

Resolution by Hersh

Monotonicity

Fibers of Maps

Introduction

Fomin Shapiro Conjecture

> Resolution by Iersh

ionotonicity

$$\begin{split} & \Delta_{d-1} = \{(t_1, \dots, t_d) \in \mathbb{R}_{\geq 0}^d \mid \sum x_i = K\} \text{ for some fixed} \\ & K > 0 \\ & w = (i_1, \dots, i_d) \in S_n: \\ & f_{(i_1, \dots, i_d)} : \Delta_{d-1} \to SL_n(\mathbb{R}) \\ & (t_1, \dots, t_d) \mapsto x_{i_1}(t_1) \cdots x_{i_d}(t_d) \\ & \bullet f_{(i_1, \dots, i_d)}(\Delta_{d-1} \cap \mathbb{R}_{>0}^d) = Y_w^o \\ & \bullet f_{(i_1, \dots, i_d)}(\Delta_{d-1}) = Y_w \ (= \overline{Y_w^o}) \end{split}$$

Introduction

Fomin Shapiro Conjecture

> Resolution by Tersh

ibers of Maps

Consequences

Let $w_0 \in S_n$ denote the longest word

Note

$$\triangleright \quad Y_{w_0} = \bigcup_{u \in S_n} Y_u^{o}$$

▶ This decomposition is a stratification of Y_{w_0}

Introduction

Fomin Shapiro Conjecture

Resolution by Hersh

Monotonicity

Fibers of Maps

Consequences

Let $w_0 \in S_n$ denote the longest word

Note

$$(K, 0, 0) \bullet (0, K, 0)$$

$$(K, 0, 0) \bullet (0, K, 0)$$

$$(1) \bullet (1, 2, 1) \bullet (2)$$

$$(1, 2, 1) \bullet (2)$$

$$(1, 2, 1) \bullet (2)$$
Strata of $Y_{(1, 2, 1)}$

Introduction

Fomin Shapiro Conjecture

Resolution by Hersh

Monotonicity

Fibers of Maps

Consequences

Let $w_0 \in S_n$ denote the longest word

Note

•
$$u \leq v$$
 in S_n iff $Y_u^{o} \subset Y_v$

Introduction

Fomin Shapiro Conjecture

Resolution by Hersh

Monotonicity

Fibers of Maps

Introduction

Fomin Shapiro Conjecture

Resolution by Hersh

Monotonicity

Fibers of Maps

Definition

A set $U \subset \mathbb{R}^m$ is an *m*-cell if $U \cong (B^m)^{\circ}$. *U* is a regular *m*-cell if the pair $(\overline{U}, U) \cong (B^m, (B^m)^{\circ})$

Introduction

Fomin Shapiro Conjecture

Resolution by Hersh

Monotonicity

Fibers of Maps

References

◆□▶ ◆□▶ ◆三▶ ◆三▶ → □ ◆ ○ ◆

Definition

A set $U \subset \mathbb{R}^m$ is an *m*-cell if $U \cong (B^m)^{\circ}$. *U* is a regular *m*-cell if the pair $(\overline{U}, U) \cong (B^m, (B^m)^{\circ})$

Definition

A Hausdorff space X is a (finite) cell complex if it can be decomposed into a (finite) collection of cells e_{α} such that

- 1. For each e_{α} there exists a continuous $f_{\alpha} : B^m \to X$ such that f_{α} maps $(B^m)^{\circ}$ homeomorphically to e_{α} and maps ∂B^m to a finite union of cells of dimension < m.
- 2. $A \subset X$ is closed in X iff $A \cap \overline{e_{\alpha}}$ is closed in $\overline{e_{\alpha}}$ for all α .

Introduction

Fomin Shapiro Conjecture

Resolution by Hersh

Monotonicity

Fibers of Maps

Definition

A set $U \subset \mathbb{R}^m$ is an *m*-cell if $U \cong (B^m)^{\circ}$. *U* is a regular *m*-cell if the pair $(\overline{U}, U) \cong (B^m, (B^m)^{\circ})$

Definition

A Hausdorff space X is a (finite) cell complex if it can be decomposed into a (finite) collection of cells e_{α} such that

- 1. For each e_{α} there exists a continuous $f_{\alpha} : B^m \to X$ such that f_{α} maps $(B^m)^{\circ}$ homeomorphically to e_{α} and maps ∂B^m to a finite union of cells of dimension < m.
- 2. $A \subset X$ is closed in X iff $A \cap \overline{e_{\alpha}}$ is closed in $\overline{e_{\alpha}}$ for all α .

Definition

A cell complex is regular if it has a cell decomposition so that f_{α} is also a homeomorphism on ∂B^m for each α .

Introduction

Fomin Shapiro Conjecture

Resolution by Hersh

Monotonicity

ibers of Maps

Conjecture (S. Fomin, M. Shapiro)

For each $u \in S_n$, the stratum Y_u^{o} is a regular cell, and hence Y_{w_0} is a regular cell complex (as is Y_w for each $w \in W$).

Introduction

Fomin Shapiro Conjecture

Resolution by Hersh

Monotonicity

Fibers of Maps

Resolution: Cell Collapses

Introduction

Fomin Shapiro Conjecture

Resolution by Hersh

Monotonicity

Fibers of Maps

Resolution: Cell Collapses

Problem: f_w generally not a homeomorphism on the boundary.

Eg: *n* = 3

Introduction

Fomin Shapiro Conjecture

Resolution by Hersh

Monotonicity

Fibers of Maps

Theorem (Hersh)

Let (i_1,\ldots,i_d) reduced. Let \sim be the identifications given by any series of face collapses on Δ_{d-1} such that

1.
$$x \sim y \Rightarrow f_{(i_1,...,i_d)}(x) = f_{(i_1,...,i_d)}(y)$$

2. the series of collapses eliminates all regions whose words are not reduced

Then $\overline{f_{(i_1,...,i_d)}}:\Delta_{d-1}/\sim \to Y_w$ is a homomorphism which preserves cell structure

Introduction

Fomin Shapiro Conjecture

Resolution by Hersh

Monotonicity

ibers of Maps

Monotonicity: Coordinate Cones

In this section, sets and functions are definable in some o-minimal structure over $\ensuremath{\mathbb{R}}$

Introduction

Fomin Shapiro Conjecture

Resolution by Hersh

Monotonicity

Fibers of Maps

Monotonicity: Coordinate Cones

In this section, sets and functions are definable in some o-minimal structure over $\ensuremath{\mathbb{R}}$

Let
$$L_{j,\sigma,c} = \{\mathbf{x} \in \mathbb{R}^n \mid x_j \sigma c\}$$
 for $\sigma \in \{<,=,>\}$, $c \in \mathbb{R}$

Introduction

Fomin Shapiro Conjecture

Resolution by Hersh

Monotonicity

Fibers of Maps

In this section, sets and functions are definable in some o-minimal structure over $\ensuremath{\mathbb{R}}$

Let
$$L_{j,\sigma,c} = \{\mathbf{x} \in \mathbb{R}^n \mid x_j \sigma c\}$$
 for $\sigma \in \{<,=,>\}$, $c \in \mathbb{R}$

Definition

A coordinate cone is a set of the form

$$C = L_{j_1,\sigma_1,c_1} \cap \ldots \cap L_{j_m,\sigma_m,c_m} \subset \mathbb{R}^n$$

with the j_i distinct elements of $\{1, \ldots, n\}$. Similarly, an affine coordinate subspace has the form

$$S = L_{j_1,=,c_1} \cap \ldots \cap L_{j_m,=,c_m} \subset \mathbb{R}^n$$

Introduction

Fomin Shapiro Conjecture

Resolution by Hersh

Monotonicity

Fibers of Maps

Semi-monotone Sets

Definition/Theorem

An open bounded set $X \subset \mathbb{R}^n$ is semi-monotone if for each coordinate cone $C, X \cap C$ is connected (equivalently, if $X \cap S$ is connected for every affine coordinate subspace S)

Introduction

Fomin Shapiro Conjecture

Resolution by Hersh

Monotonicity

ibers of Maps

Semi-monotone Sets

Definition/Theorem

An open bounded set $X \subset \mathbb{R}^n$ is semi-monotone if for each coordinate cone $C, X \cap C$ is connected (equivalently, if $X \cap S$ is connected for every affine coordinate subspace S)

semi-monotone

not semi-monotone

12

Introduction

Fomin Shapiro Conjecture

Resolution by Hersh

Monotonicity

ibers of Maps

Let $f:X\to\mathbb{R}$ be bounded and continuous, $X\subset\mathbb{R}^n$ open, bounded, and nonempty, F the graph of f

Definition/Theorem

f is monotone if

Introduction

Fomin Shapiro Conjecture

Resolution by Hersh

Monotonicity

Fibers of Maps

Let $f: X \to \mathbb{R}$ be bounded and continuous, $X \subset \mathbb{R}^n$ open, bounded, and nonempty, F the graph of f

Definition/Theorem

- f is monotone if
 - For each 1 ≤ j ≤ n, f is either strictly increasing in x_j, strictly decreasing in x_j, or independent of x_j

Introduction

Fomin Shapiro Conjecture

Resolution by Hersh

Monotonicity

Fibers of Maps

Let $f: X \to \mathbb{R}$ be bounded and continuous, $X \subset \mathbb{R}^n$ open, bounded, and nonempty, F the graph of f

Definition/Theorem

- f is monotone if
 - For each 1 ≤ j ≤ n, f is either strictly increasing in x_j, strictly decreasing in x_j, or independent of x_j
 - one of the following (equivalent) conditions holds
 - $F \cap C$ connected for each coordinate cone C
 - $F \cap S$ connected for each affine coordinate subspace S.

Fomin Shapiro Conjecture

Resolution by Hersh

Monotonicity

Fibers of Maps

Let $\mathbf{f}: X \to \mathbb{R}^k$ be bounded and continuous, with $X \subset \mathbb{R}^n$ open, bounded, and nonempty, F the graph of \mathbf{f} .

Introduction

Fomin Shapiro Conjecture

Resolution by Hersh

Monotonicity

Fibers of Maps

Let $\mathbf{f}: X \to \mathbb{R}^k$ be bounded and continuous, with $X \subset \mathbb{R}^n$ open, bounded, and nonempty, F the graph of \mathbf{f} .

Definition

f is quasi-affine if for any $T = \text{span}\{x_{j_1}, \ldots, x_{j_{\alpha}}, y_{i_1}, \ldots, y_{i_{\beta}}\}, \alpha + \beta = n$, the projection $\rho_T : F \to T$ is injective iff the image $\rho_T(f)$ is *n* dimensional

Introduction

Fomin Shapiro Conjecture

Resolution by Hersh

Monotonicity

ibers of Maps

References

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - つへぐ

Let $\mathbf{f}: X \to \mathbb{R}^k$ be bounded and continuous, with $X \subset \mathbb{R}^n$ open, bounded, and nonempty, F the graph of \mathbf{f} .

Definition

f is quasi-affine if for any $T = \text{span}\{x_{j_1}, \ldots, x_{j_{\alpha}}, y_{i_1}, \ldots, y_{i_{\beta}}\}$, $\alpha + \beta = n$, the projection $\rho_T : F \to T$ is injective iff the image $\rho_T(f)$ is *n* dimensional

Definition/Theorem

 \boldsymbol{f} is monotone if

Introduction

Fomin Shapiro Conjecture

Resolution by Hersh

Monotonicity

ibers of Maps

References

・ロト ・四ト ・ヨト ・ヨト ・ ヨー うへぐ

Let $\mathbf{f}: X \to \mathbb{R}^k$ be bounded and continuous, with $X \subset \mathbb{R}^n$ open, bounded, and nonempty, F the graph of \mathbf{f} .

Definition

f is quasi-affine if for any $T = \text{span}\{x_{j_1}, \ldots, x_{j_{\alpha}}, y_{i_1}, \ldots, y_{i_{\beta}}\}$, $\alpha + \beta = n$, the projection $\rho_T : F \to T$ is injective iff the image $\rho_T(f)$ is *n* dimensional

Definition/Theorem

- \mathbf{f} is monotone if
 - ▶ **f** is quasi-affine

Introduction

Fomin Shapiro Conjecture

Resolution by Hersh

Monotonicity

ibers of Maps

Let $\mathbf{f}: X \to \mathbb{R}^k$ be bounded and continuous, with $X \subset \mathbb{R}^n$ open, bounded, and nonempty, F the graph of \mathbf{f} .

Definition

f is quasi-affine if for any $T = \text{span}\{x_{j_1}, \ldots, x_{j_{\alpha}}, y_{i_1}, \ldots, y_{i_{\beta}}\}$, $\alpha + \beta = n$, the projection $\rho_T : F \to T$ is injective iff the image $\rho_T(f)$ is *n* dimensional

Definition/Theorem

- \boldsymbol{f} is monotone if
 - f is quasi-affine
 - one of the following (equivalent) conditions holds
 - $F \cap C$ connected for each coordinate cone C
 - $F \cap S$ connected for each affine coordinate subspace S.

Introduction

Fomin Shapiro Conjecture

Resolution by Hersh

Monotonicity

ibers of Maps

not monotone

Introduction

Fomin Shapiro Conjecture

Resolution by Hersh

Monotonicity

Fibers of Maps

not monotone

z = xy on 0 < x < 1, -1 < y < 1 not monotone

Introduction

Fomin Shapiro Conjecture

Resolution by Hersh

Monotonicity

Fibers of Maps

not monotone

not monotone

Fomin Shapiro Conjecture

Resolution by Hersh

Monotonicity

ibers of Maps

z = xy on 0 < x < 1, -1 < y < 1 not monotone

not monotone

z = xy on 0 < x < 1, -1 < y < 1 not monotone

z = xy on 0 < x, y < 1monotone

Introduction

Fomin Shapiro Conjecture

Resolution by Hersh

Monotonicity

Fibers of Maps

Monotonicity and Regularity

Introduction

Fomin Shapiro Conjecture

Resolution by Hersh

Monotonicity

Fibers of Maps

References

Theorem (S. Basu, A. Gabrielov, N. Vorobjov) The graph $F \subset \mathbb{R}^{n+k}$ of a monotone map $\mathbf{f} : X \to \mathbb{R}^k$ on a semimonotone set $X \subset \mathbb{R}^n$ is a regular *n*-cell.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへぐ

Route to an Alternate Proof

Theorem (J. Davis, P. Hersh, E. Miller) Let $v \in W$ with (i_1, \ldots, i_d) a reduced word for v. Then if for all $w \in W$, $w \le v$, we have $f_{(i_1,\ldots,i_d)}^{-1}(p)$ is contractible for $p \in Y_w^o$, then Y_w is a regular cell complex for each $w \le v$.

Introduction

Fomin Shapiro Conjecture

Resolution by Hersh

Monotonicity

Fibers of Maps

Route to an Alternate Proof

Theorem (J. Davis, P. Hersh, E. Miller)

Let $v \in W$ with (i_1, \ldots, i_d) a reduced word for v. Then if for all $w \in W$, $w \leq v$, we have $f_{(i_1,\ldots,i_d)}^{-1}(p)$ is contractible for $p \in Y_w^o$, then Y_w is a regular cell complex for each $w \leq v$.

(Key ingredient in proof)

Let \sim be an equivalence relation on the closed ball B^n so that

Introduction

Fomin Shapiro Conjecture

Resolution by Hersh

Monotonicity

Fibers of Maps

Example: n = 3

$$v = (1,2,1), \ p \in Y_{(1)}, \ f_{(1,2,1)}^{-1}(p)$$
 in red.

Introduction

Fomin Shapiro Conjecture

Resolution by Hersh

Monotonicity

Fibers of Maps

Conjecture

Let (i_1, \ldots, i_d) be a reduced word for $v \in W$, let $w \leq v$, and let $p \in Y_w^o$. Then the strata of $f_{(i_1,\ldots,i_d)}^{-1}(p)$ are graphs of monotone maps, and hence this stratification is a regular cell decomposition of the fiber.

This holds in the cases n = 3 and n = 4, by computation

Introduction

Fomin Shapiro Conjecture

Resolution by Hersh

Monotonicity

Fibers of Maps

A few more examples: n = 4

- -

Fibers of Maps

$$f_{(1,3,2,1,3,2)} = \begin{bmatrix} 1 & t_1 + t_4 & (t_1 + t_4)t_6 + t_1t_2 & t_1t_3t_5 \\ 0 & 1 & t_3 + t_6 & t_3t_5 \\ 0 & 0 & 1 & t_2 + t_5 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

`

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

24 / 27

A few more examples: n = 4

$$f_{(1,3,2,1,3,2)} = \begin{bmatrix} 1 & t_1 + t_4 & (t_1 + t_4)t_6 + t_1t_2 & t_1t_3t_5 \\ 0 & 1 & t_3 + t_6 & t_3t_5 \\ 0 & 0 & 1 & t_2 + t_5 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$p = (a, b, c, ab, 0, 0)$$

$$\in Y^{o}_{(3,2,1)} = \{(x, y, z, xy, 0, 0) \mid x, y, z > 0, x + y + z = K\}$$

$$f^{-1}(p) = \{(t_1, t_2, 0, a - t_1, c - t_2, b) \mid 0 \le t_1 \le a, 0 \le t_2 \le c\} \cup \{(a, c, t_3, 0, 0, b - t_3) \mid 0 \le t_3 \le b\}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

Introduction

Fomin Shapiro Conjecture

Resolution by Hersh

Monotonicity

Fibers of Maps

A few more examples: n = 4

$$f_{(1,3,2,1,3,2)} = \begin{bmatrix} 1 & t_1 + t_4 & (t_1 + t_4)t_6 + t_1t_2 & t_1t_3t_5 \\ 0 & 1 & t_3 + t_6 & t_3t_5 \\ 0 & 0 & 1 & t_2 + t_5 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Introduction

Fomin Shapiro Conjecture

Resolution by Hersh

Monotonicity

Fibers of Maps

 $f^{-1}(p) = \{(t_1, 0, \frac{ab-d}{a-t_1}, a-t_1, 0, \frac{d-t_1b}{a-t_1}) \mid 0 \le t_1 \le d/b\}$

24 / 27

▶ Conjectured: strata of $f_{(i_1,...,i_d)}^{-1}(p)$ monotone for all $v, w \in S_n, w \leq v \ (v = (i_1,...,i_d), p \in Y_w^o).$

Introduction

Fomin Shapiro Conjecture

Resolution by Hersh

Monotonicity

Fibers of Maps

- ▶ Conjectured: strata of $f_{(i_1,...,i_d)}^{-1}(p)$ monotone for all $v, w \in S_n, w \leq v$ ($v = (i_1,...,i_d), p \in Y_w^o$).
- ▶ ⇒ strata of $f_v^{-1}(p)$ regular, i.e. $f_v^{-1}(p)$ a regular cell complex for all $v, w \in S_n, w \leq v$

Introduction

Fomin Shapiro Conjecture

Resolution by Hersh

Monotonicity

Fibers of Maps

- ▶ Conjectured: strata of $f_{(i_1,...,i_d)}^{-1}(p)$ monotone for all $v, w \in S_n, w \leq v$ $(v = (i_1,...,i_d), p \in Y_w^o)$.
- ▶ ⇒ strata of $f_v^{-1}(p)$ regular, i.e. $f_v^{-1}(p)$ a regular cell complex for all $v, w \in S_n, w \leq v$
- (Davis, Hersh, Miller) The face poset of the stratification of f⁻¹_{(i1,...,id})(p) is isomorphic to the face poset of the interior dual block complex of the subword complex Δ((i₁,...,i_d), w)
- (Davis, Hersh, Miller) The interior dual block complex of any non-empty subword complex Δ(Q, w) is a contractible, regular cell complex

Introduction

Fomin Shapiro Conjecture

Resolution by Hersh

Monotonicity

Fibers of Maps

- ▶ Conjectured: strata of $f_{(i_1,...,i_d)}^{-1}(p)$ monotone for all $v, w \in S_n, w \leq v$ $(v = (i_1,...,i_d), p \in Y_w^o)$.
- ▶ ⇒ strata of $f_v^{-1}(p)$ regular, i.e. $f_v^{-1}(p)$ a regular cell complex for all $v, w \in S_n, w \leq v$
- (Davis, Hersh, Miller) The face poset of the stratification of f⁻¹_{(i1,...,id})(p) is isomorphic to the face poset of the interior dual block complex of the subword complex Δ((i₁,...,i_d), w)
- (Davis, Hersh, Miller) The interior dual block complex of any non-empty subword complex Δ(Q, w) is a contractible, regular cell complex
- ▶ $\Rightarrow f_v^{-1}(p)$ contractible for all $v, w \in s_n, w \leq v$

Introduction

Fomin Shapiro Conjecture

Resolution by Hersh

Monotonicity

Fibers of Maps

- ▶ Conjectured: strata of $f_{(i_1,...,i_d)}^{-1}(p)$ monotone for all $v, w \in S_n, w \leq v$ $(v = (i_1,...,i_d), p \in Y_w^o)$.
- ▶ ⇒ strata of $f_v^{-1}(p)$ regular, i.e. $f_v^{-1}(p)$ a regular cell complex for all $v, w \in S_n, w \leq v$
- (Davis, Hersh, Miller) The face poset of the stratification of f⁻¹_{(i1,...,id})(p) is isomorphic to the face poset of the interior dual block complex of the subword complex Δ((i₁,...,i_d), w)
- (Davis, Hersh, Miller) The interior dual block complex of any non-empty subword complex Δ(Q, w) is a contractible, regular cell complex
- ▶ $\Rightarrow f_v^{-1}(p)$ contractible for all $v, w \in s_n, w \leq v$
- ▶ ⇒ Y_w a regular cell complex for each $w \le v$

Introduction

Fomin Shapiro Conjecture

Resolution by Hersh

Monotonicity

Fibers of Maps

References I

- George Lusztig. "Introduction to Total Positivity". In: *Positivity in Lie Theory: Open Problems*. Vol. 26. De Gruyter Expositions in Mathematics. Berlin and New York: Walter De Gruyter, 1998, pp. 133–145. ISBN: 3-11-016112-5.
- Sergey Fomin and Michael Shapiro. "Stratified Spaces Formed by Totally Positive Varieties". In: *Michigan Math J.* 48 (2000), pp. 253–270.
- Patricia Hersh. "Regular Cell Complexes in Total Positivity". In: Inventiones Mathematicae 197 (2014), pp. 57–114.
- Saugata Basu, Andrei Gabrielov, and Nicolai Vorobjov.
 "Semi-monotone Sets". In: J. Eur. Math. Soc. 15 (2013), pp. 635–657.

Introduction

Fomin Shapiro Conjecture

Resolution by Hersh

Monotonicity

Fibers of Maps

Saugata Basu, Andrei Gabrielov, and Nicolai Vorobjov. "Monotone Functions and Maps". In: *Revista de la Real Academia de Ciencias Exactas, Fisicas y Naturales. Serie A. Matematicas* 107 (2013), pp. 5–33.

James F. Davis, Patricia Hersh, and Ezra Miller. "Fibers of Maps to Totally Nonnegative Spaces". In: (2019). Introduction

Fomin Shapiro Conjecture

Resolution by Hersh

Monotonicity

Fibers of Maps