Monotonicity and Totally Nonnegative Spaces

Fomin Shapiro
Conjecture
Resolution by
Hersh
Monotonicity

Alison Rosenblum

Purdue University

Student Colloquium
January 22, 2020

Total Nonnegativity

Introduction
Fomin Shapiro
Conjecture
Resolution by
Hersh
Definition
$M \in M_{n}(\mathbb{R})$: M totally positive (resp totally nonnegative) if all minors are positive (resp nonnegative)

Total Nonnegativity

Definition
$M \in M_{n}(\mathbb{R}): M$ totally positive (resp totally nonnegative) if all minors are positive (resp nonnegative) Here,

- U upper triangular matrices with 1's on the diagonal
- Y totally nonnegative part of U.

Example: $n=3$

$$
\left[\begin{array}{lll}
1 & x & z \\
0 & 1 & y \\
0 & 0 & 1
\end{array}\right]
$$

Introduction
Fomin Shapiro
Conjecture
Resolution by Hersh

Monotonicity
Fibers of Maps
References

Example: $n=3$

$$
\left[\begin{array}{lll}
1 & x & z \\
0 & 1 & y \\
0 & 0 & 1
\end{array}\right]
$$

Introduction

Fomin Shapiro
Conjecture
Resolution by Hersh

Monotonicity
Need

Example: $n=3$

$$
\left[\begin{array}{lll}
1 & x & z \\
0 & 1 & y \\
0 & 0 & 1
\end{array}\right]
$$

Introduction

Fomin Shapiro
Conjecture
Resolution by
Hersh
Monotonicity
Need

Example: $n=3$

$$
\left[\begin{array}{lll}
1 & x & z \\
0 & 1 & y \\
0 & 0 & 1
\end{array}\right]
$$

Introduction
Fomin Shapiro
Conjecture
Resolution by
Hersh
Monotonicity
Need

- $x \geq 0, y \geq 0, z \geq 0$
- $\left|\begin{array}{ll}x & z \\ 1 & y\end{array}\right| \geq 0$

Example: $n=3$

$$
\left[\begin{array}{lll}
1 & x & z \\
0 & 1 & y \\
0 & 0 & 1
\end{array}\right]
$$

Introduction
Fomin Shapiro
Conjecture
Resolution by
Hersh
Monotonicity
Fibers of Maps
References

- $x \geq 0, y \geq 0, z \geq 0$
- $\left|\begin{array}{ll}x & z \\ 1 & y\end{array}\right| \geq 0$

$$
Y=\left\{(x, y, z) \in \mathbb{R}^{3} \mid x, y \geq 0,0 \leq z \leq x y\right\}
$$

Coxeter Groups

Definition

Let W be a group and $S \subset W$. If W has a presentation of the form

- Generators: S
- Relations:
$\rightarrow s^{2}=e$ for all $s \in S$
- others of the form $\left(s s^{\prime}\right)^{m\left(s, s^{\prime}\right)}=e$ for $s \neq s^{\prime} \in S$, $m\left(s, s^{\prime}\right) \geq 2$
then (W, S) is a Coxeter system

Introduction

Fomin Shapiro
Conjecture
Resolution by
Hersh
Monotonicity

Coxeter Groups

Definition

Let W be a group and $S \subset W$. If W has a presentation of the form

- Generators: S
- Relations:
$\rightarrow s^{2}=e$ for all $s \in S$
- others of the form $\left(s s^{\prime}\right)^{m\left(s, s^{\prime}\right)}=e$ for $s \neq s^{\prime} \in S$, $m\left(s, s^{\prime}\right) \geq 2$
then (W, S) is a Coxeter system

Example

- $W=S_{n}$ symmetric group
- $S=\left\{s_{i}=(i \quad i+1) \mid 1 \leq i \leq n-1\right\}$
- Relations $\left(s_{i} s_{i+1}\right)^{3}=e,\left(s_{i} s_{j}\right)^{2}=e$ for $|i-j|>1$

Introduction

Fomin Shapiro

Words

Let $w \in W$

$$
w=s_{i_{1}} \cdots s_{i_{k}}
$$

Introduction
Fomin Shapiro
Conjecture
Resolution by Hersh

Monotonicity

Fibers of Maps
References

Words

Let $w \in W$

$$
w=s_{i_{1}} \cdots s_{i_{k}}
$$

- $\left(i_{1}, \ldots, i_{k}\right)$ a word for w

Introduction
Fomin Shapiro Conjecture

Resolution by Hersh

Monotonicity

Fibers of Maps
References

Words

Let $w \in W$

$$
w=s_{i_{1}} \cdots s_{i_{k}}
$$

Introduction
Fomin Shapiro Conjecture

Resolution by Hersh

- $\left(i_{1}, \ldots, i_{k}\right)$ a word for w
- If k minimal, $\left(i_{1}, \ldots, i_{k}\right)$ a reduced word, $k=I(w)$ the length of w

Words

Let $w \in W$

$$
w=s_{i_{1}} \cdots s_{i_{k}}
$$

Definition

Let $u, v \in W$. If there is a reduced word for u that is a subword of a reduced word for v, then $u \leq v$ in the Bruhat order

Words

Let $w \in W$

$$
w=s_{i_{1}} \cdots s_{i_{k}}
$$

Definition

Let $u, v \in W$. If there is a reduced word for u that is a subword of a reduced word for v, then $u \leq v$ in the Bruhat order

Proposition

If W is finite, there exists a unique element $w_{0} \in W$ so that $w \leq w_{0}$ for all $w \in W$

Example: S_{3}

Bruhat order for S_{3} (note $s_{1} s_{2} s_{1}=s_{2} s_{1} s_{2}$)

The Connection

Let $W=S_{n}, s_{i}=(i \quad i+1)$ for $1 \leq i \leq n-1$. Define maps

$$
x_{i}: \mathbb{R} \longrightarrow S L_{n}(\mathbb{R})
$$

Introduction
Fomin Shapiro
Conjecture
Resolution by

$$
t \longmapsto\left[\begin{array}{ccccc}
1 & 0 & & \cdots & 0 \\
0 & \ddots & & & \vdots \\
& & 1 & t & \\
\vdots & & & \ddots & 0 \\
0 & \cdots & & 0 & 1
\end{array}\right]
$$ Hersh

(where t is in row i, column $i+1$)

The Connection

Let $W=S_{n}, s_{i}=(i \quad i+1)$ for $1 \leq i \leq n-1$. Define maps

$$
x_{i}: \mathbb{R} \longrightarrow S L_{n}(\mathbb{R})
$$

$$
t \longmapsto\left[\begin{array}{ccccc}
1 & 0 & & \cdots & 0 \\
0 & \ddots & & & \vdots \\
& & 1 & t & \\
\vdots & & & \ddots & 0 \\
0 & \cdots & & 0 & 1
\end{array}\right]
$$

(where t is in row i, column $i+1$)
Let $w=\left(i_{1}, \ldots, i_{k}\right) \in S_{n}$: define map

$$
\begin{aligned}
\mathbb{R}^{k} & \rightarrow S L_{n}(\mathbb{R}) \\
\left(t_{1}, \ldots, t_{k}\right) & \mapsto x_{i_{1}}\left(t_{1}\right) \cdots x_{i_{k}}\left(t_{k}\right)
\end{aligned}
$$

Example: $\mathrm{n}=3$

Let $w=(1,2,1) \in S_{3}$ (longest word)

Introduction
Fomin Shapiro
Conjecture
Resolution by Hersh

Monotonicity

Fibers of Maps
References

Example: $\mathrm{n}=3$

$$
\begin{aligned}
& \text { Let } w=(1,2,1) \in S_{3} \text { (longest word) } \\
& x_{1}\left(t_{1}\right) x_{2}\left(t_{2}\right) x_{1}\left(t_{3}\right)
\end{aligned}
$$

Example: $\mathrm{n}=3$

$$
\begin{aligned}
& \text { Let } w=(1,2,1) \in S_{3} \text { (longest word) } \\
& x_{1}\left(t_{1}\right) x_{2}\left(t_{2}\right) x_{1}\left(t_{3}\right) \\
& =\left[\begin{array}{lcc}
1 & t_{1} & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right] \cdot\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & t_{2} \\
0 & 0 & 1
\end{array}\right] \cdot\left[\begin{array}{lll}
1 & t_{3} & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]=\left[\begin{array}{ccc}
1 & t_{1}+t_{3} & t_{1} t_{2} \\
0 & 1 & t_{2} \\
0 & 0 & 1
\end{array}\right]
\end{aligned}
$$

If $\left(t_{1}, t_{2}, t_{3}\right) \in \mathbb{R}_{\geq 0}^{3}$

$$
\text { Image }=\left\{\left.\left[\begin{array}{lll}
1 & x & z \\
0 & 1 & y \\
0 & 0 & 1
\end{array}\right] \right\rvert\, x, y \geq 0,0 \leq z \leq x y\right\}
$$

Example: $n=3$

$$
\begin{aligned}
& \text { Let } w=(1,2,1) \in S_{3} \text { (longest word) } \\
& x_{1}\left(t_{1}\right) x_{2}\left(t_{2}\right) x_{1}\left(t_{3}\right) \\
& =\left[\begin{array}{ccc}
1 & t_{1} & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right] \cdot\left[\begin{array}{lcc}
1 & 0 & 0 \\
0 & 1 & t_{2} \\
0 & 0 & 1
\end{array}\right] \cdot\left[\begin{array}{lll}
1 & t_{3} & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]=\left[\begin{array}{ccc}
1 & t_{1}+t_{3} & t_{1} t_{2} \\
0 & 1 & t_{2} \\
0 & 0 & 1
\end{array}\right]
\end{aligned}
$$

Introduction

Fomin Shapiro
Conjecture

Resolution by

If $\left(t_{1}, t_{2}, t_{3}\right) \in \mathbb{R}_{\geq 0}^{3}$

$$
\text { Image }=\left\{\left.\left[\begin{array}{lll}
1 & x & z \\
0 & 1 & y \\
0 & 0 & 1
\end{array}\right] \right\rvert\, x, y \geq 0,0 \leq z \leq x y\right\}=Y
$$

Notation

- $\Delta_{d-1}=\left\{\left(t_{1}, \ldots, t_{d}\right) \in \mathbb{R}_{\geq 0}^{d} \mid \sum x_{i}=K\right\}$ for some fixed $K>0$

Introduction
Fomin Shapiro Conjecture

Resolution by Hersh

Monotonicity

Fibers of Maps
References

Notation

- $\Delta_{d-1}=\left\{\left(t_{1}, \ldots, t_{d}\right) \in \mathbb{R}_{\geq 0}^{d} \mid \sum x_{i}=K\right\}$ for some fixed $K>0$
- $w=\left(i_{1}, \ldots, i_{d}\right) \in S_{n}:$

Introduction
Fomin Shapiro Conjecture

Resolution by Hersh

Monotonicity
Fibers of Maps
References

$$
\begin{aligned}
f_{\left(i_{1}, \ldots, i_{d}\right)}: \Delta_{d-1} & \rightarrow S L_{n}(\mathbb{R}) \\
\left(t_{1}, \ldots, t_{d}\right) & \mapsto x_{i_{1}}\left(t_{1}\right) \cdots x_{i_{d}}\left(t_{d}\right)
\end{aligned}
$$

Notation

- $\Delta_{d-1}=\left\{\left(t_{1}, \ldots, t_{d}\right) \in \mathbb{R}_{\geq 0}^{d} \mid \sum x_{i}=K\right\}$ for some fixed $K>0$
- $w=\left(i_{1}, \ldots, i_{d}\right) \in S_{n}:$

Fomin Shapiro Conjecture

Resolution by Hersh

Monotonicity

$$
\begin{aligned}
f_{\left(i_{1}, \ldots, i_{d}\right)}: \Delta_{d-1} & \rightarrow S L_{n}(\mathbb{R}) \\
\left(t_{1}, \ldots, t_{d}\right) & \mapsto x_{i_{1}}\left(t_{1}\right) \cdots x_{i_{d}}\left(t_{d}\right)
\end{aligned}
$$

- $f_{\left(i_{1}, \ldots, i_{d}\right)}\left(\Delta_{d-1} \cap \mathbb{R}_{>0}^{d}\right)=Y_{w}^{o}$
- $f_{\left(i_{1}, \ldots, i_{d}\right)}\left(\Delta_{d-1}\right)=Y_{w}\left(=\overline{Y_{w}^{0}}\right)$

Consequences

Let $w_{0} \in S_{n}$ denote the longest word

Note

- $Y_{w_{0}}=\bigcup_{u \in S_{n}} Y_{u}^{o}$
- This decomposition is a stratification of $Y_{w_{0}}$

The simplex Δ_{2}

Strata of $Y_{(1,2,1)}$

Consequences

Let $w_{0} \in S_{n}$ denote the longest word

Note

- $Y_{w_{0}}=\bigcup_{u \in S_{n}} Y_{u}^{o}$
- This decomposition is a stratification of $Y_{w_{0}}$
$-f_{\left(i_{1}, \ldots, i_{d}\right)}{\mid \mathbb{R}_{>0}^{d}}$ is a homeomorphism from Δ_{d-1}^{o} to Y_{w}^{o}

The simplex Δ_{2}

Strata of $Y_{(1,2,1)}$

Consequences

Let $w_{0} \in S_{n}$ denote the longest word

Note

- $Y_{w_{0}}=\bigcup_{u \in S_{n}} Y_{u}^{o}$
- This decomposition is a stratification of $Y_{w_{0}}$
- $\left.f_{\left(i_{1}, \ldots, i_{d}\right)}\right)_{\mathbb{R}_{>0}^{d}}$ is a homeomorphism from Δ_{d-1}^{o} to Y_{w}^{o}
- $u \leq v$ in S_{n} iff $Y_{u}^{o} \subset Y_{v}$

The simplex Δ_{2}

A Moment of Topology

Introduction

Fomin Shapiro
Conjecture
Resolution by
Hersh
Monotonicity
Fibers of Maps
References

A Moment of Topology

Definition
A set $U \subset \mathbb{R}^{m}$ is an m-cell if $U \cong\left(B^{m}\right)^{\circ}$. U is a regular m-cell if the pair $(\bar{U}, U) \cong\left(B^{m},\left(B^{m}\right)^{\circ}\right)$

Introduction
Fomin Shapiro Conjecture

Resolution by Hersh

Monotonicity
Fibers of Maps
References

A Moment of Topology

Definition

A set $U \subset \mathbb{R}^{m}$ is an m-cell if $U \cong\left(B^{m}\right)^{\circ}$. U is a regular m-cell if the pair $(\bar{U}, U) \cong\left(B^{m},\left(B^{m}\right)^{\circ}\right)$

Definition

A Hausdorff space X is a (finite) cell complex if it can be decomposed into a (finite) collection of cells e_{α} such that

1. For each e_{α} there exists a continuous $f_{\alpha}: B^{m} \rightarrow X$ such that f_{α} maps $\left(B^{m}\right)^{\circ}$ homeomorphically to e_{α} and maps ∂B^{m} to a finite union of cells of dimension $<m$.
2. $A \subset X$ is closed in X iff $A \cap \overline{e_{\alpha}}$ is closed in $\overline{e_{\alpha}}$ for all α.

A Moment of Topology

Definition

A set $U \subset \mathbb{R}^{m}$ is an m-cell if $U \cong\left(B^{m}\right)^{\circ}$. U is a regular m-cell if the pair $(\bar{U}, U) \cong\left(B^{m},\left(B^{m}\right)^{\circ}\right)$

Definition

A Hausdorff space X is a (finite) cell complex if it can be decomposed into a (finite) collection of cells e_{α} such that

1. For each e_{α} there exists a continuous $f_{\alpha}: B^{m} \rightarrow X$ such that f_{α} maps $\left(B^{m}\right)^{\circ}$ homeomorphically to e_{α} and maps ∂B^{m} to a finite union of cells of dimension $<m$.
2. $A \subset X$ is closed in X iff $A \cap \overline{e_{\alpha}}$ is closed in $\overline{e_{\alpha}}$ for all α.

Definition

A cell complex is regular if it has a cell decomposition so that f_{α} is also a homeomorphism on ∂B^{m} for each α.

Fomin Shapiro Conjecture

Introduction
Fomin Shapiro Conjecture

Resolution by Hersh

Conjecture (S. Fomin, M. Shapiro)
For each $u \in S_{n}$, the stratum Y_{u}^{o} is a regular cell, and hence $Y_{w_{0}}$ is a regular cell complex (as is Y_{w} for each $w \in W$).

Resolution: Cell Collapses

Introduction

Fomin Shapiro
Conjecture
Resolution by
Hersh
Monotonicity
Fibers of Maps
References

Resolution: Cell Collapses

Problem: f_{w} generally not a homeomorphism on the boundary.
Eg: $n=3$

$$
f_{(1,2,1)}\left(t_{1}, t_{2}, t_{3}\right)=\left[\begin{array}{ccc}
1 & t_{1}+t_{3} & t_{1} t_{2} \\
0 & 1 & t_{2} \\
0 & 0 & 1
\end{array}\right]
$$

Resolution

Theorem (Hersh)
Let (i_{1}, \ldots, i_{d}) reduced. Let \sim be the identifications given by any series of face collapses on Δ_{d-1} such that

1. $x \sim y \Rightarrow f_{\left(i_{1}, \ldots, i_{d}\right)}(x)=f_{\left(i_{1}, \ldots, i_{d}\right)}(y)$
2. the series of collapses eliminates all regions whose words are not reduced
Then $\overline{f_{\left(i_{1}, \ldots, i_{d}\right)}}: \Delta_{d-1} / \sim \rightarrow Y_{w}$ is a homomorphism which preserves cell structure

Monotonicity: Coordinate Cones

In this section, sets and functions are definable in some o-minimal structure over \mathbb{R}

Introduction
Fomin Shapiro
Conjecture
Resolution by Hersh

Monotonicity
Fibers of Maps
References

Monotonicity: Coordinate Cones

In this section, sets and functions are definable in some o-minimal structure over \mathbb{R}
Let $L_{j, \sigma, c}=\left\{\mathbf{x} \in \mathbb{R}^{n} \mid x_{j} \sigma c\right\}$ for $\sigma \in\{<,=,>\}, c \in \mathbb{R}$

Fomin Shapiro
Conjecture
Resolution by
Hersh
Monotonicity
Fibers of Maps
References

Monotonicity: Coordinate Cones

In this section, sets and functions are definable in some o-minimal structure over \mathbb{R}
Let $L_{j, \sigma, c}=\left\{\mathbf{x} \in \mathbb{R}^{n} \mid x_{j} \sigma c\right\}$ for $\sigma \in\{<,=,>\}, c \in \mathbb{R}$
Definition
A coordinate cone is a set of the form

$$
C=L_{j_{1}, \sigma_{1}, c_{1}} \cap \ldots \cap L_{j_{m}, \sigma_{m}, c_{m}} \subset \mathbb{R}^{n}
$$

with the j_{i} distinct elements of $\{1, \ldots, n\}$.
Similarly, an affine coordinate subspace has the form

$$
S=L_{j_{1},=, c_{1}} \cap \ldots \cap L_{j_{m},=, c_{m}} \subset \mathbb{R}^{n}
$$

Semi-monotone Sets

Definition/Theorem

An open bounded set $X \subset \mathbb{R}^{n}$ is semi-monotone if for each coordinate cone $C, X \cap C$ is connected (equivalently, if $X \cap S$ is connected for every affine coordinate subspace S)

Semi-monotone Sets

Definition/Theorem

An open bounded set $X \subset \mathbb{R}^{n}$ is semi-monotone if for each coordinate cone $C, X \cap C$ is connected (equivalently, if $X \cap S$ is connected for every affine coordinate subspace S)

Monotone Functions

Introduction
Fomin Shapiro
Conjecture
Resolution by Hersh

Monotonicity
Fibers of Maps
References
f is monotone if

Monotone Functions

Let $f: X \rightarrow \mathbb{R}$ be bounded and continuous, $X \subset \mathbb{R}^{n}$ open, bounded, and nonempty, F the graph of f

Definition/Theorem
f is monotone if

- For each $1 \leq j \leq n, f$ is either strictly increasing in x_{j}, strictly decreasing in x_{j}, or independent of x_{j}

Monotone Functions

Definition/Theorem
f is monotone if

- For each $1 \leq j \leq n, f$ is either strictly increasing in x_{j}, strictly decreasing in x_{j}, or independent of x_{j}
- one of the following (equivalent) conditions holds
- $F \cap C$ connected for each coordinate cone C
- $F \cap S$ connected for each affine coordinate subspace S.

Monotone Maps

Let $\mathbf{f}: X \rightarrow \mathbb{R}^{k}$ be bounded and continuous, with $X \subset \mathbb{R}^{n}$ open, bounded, and nonempty, F the graph of \mathbf{f}.

Introduction
Fomin Shapiro Conjecture

Resolution by Hersh

Monotonicity
Fibers of Maps
References

Monotone Maps

Let $\mathbf{f}: X \rightarrow \mathbb{R}^{k}$ be bounded and continuous, with $X \subset \mathbb{R}^{n}$ open, bounded, and nonempty, F the graph of \mathbf{f}.

Definition
\mathbf{f} is quasi-affine if for any $T=\operatorname{span}\left\{x_{j_{1}}, \ldots, x_{j_{\alpha}}, y_{i_{1}}, \ldots, y_{i_{\beta}}\right\}$, $\alpha+\beta=n$, the projection $\rho_{T}: F \rightarrow T$ is injective iff the image $\rho_{T}(f)$ is n dimensional

Monotone Maps

Let $\mathbf{f}: X \rightarrow \mathbb{R}^{k}$ be bounded and continuous, with $X \subset \mathbb{R}^{n}$ open, bounded, and nonempty, F the graph of \mathbf{f}.

Definition

\mathbf{f} is quasi-affine if for any $T=\operatorname{span}\left\{x_{j_{1}}, \ldots, x_{j_{\alpha}}, y_{i_{1}}, \ldots, y_{i_{\beta}}\right\}$, image $\rho_{T}(f)$ is n dimensional

Definition/Theorem

\mathbf{f} is monotone if

Monotone Maps

Let $\mathbf{f}: X \rightarrow \mathbb{R}^{k}$ be bounded and continuous, with $X \subset \mathbb{R}^{n}$ open, bounded, and nonempty, F the graph of \mathbf{f}.

Definition

\mathbf{f} is quasi-affine if for any $T=\operatorname{span}\left\{x_{j_{1}}, \ldots, x_{j_{\alpha}}, y_{i_{1}}, \ldots, y_{i_{\beta}}\right\}$, image $\rho_{T}(f)$ is n dimensional

Definition/Theorem

\mathbf{f} is monotone if

- \mathbf{f} is quasi-affine

Monotone Maps

Let $\mathbf{f}: X \rightarrow \mathbb{R}^{k}$ be bounded and continuous, with $X \subset \mathbb{R}^{n}$ open, bounded, and nonempty, F the graph of \mathbf{f}.

Definition

\mathbf{f} is quasi-affine if for any $T=\operatorname{span}\left\{x_{j_{1}}, \ldots, x_{j_{\alpha}}, y_{i_{1}}, \ldots, y_{i_{\beta}}\right\}$,
$\alpha+\beta=n$, the projection $\rho_{T}: F \rightarrow T$ is injective iff the image $\rho_{T}(f)$ is n dimensional

Definition/Theorem

\mathbf{f} is monotone if

- \mathbf{f} is quasi-affine
- one of the following (equivalent) conditions holds
- $F \cap C$ connected for each coordinate cone C
- $F \cap S$ connected for each affine coordinate subspace S.

Examples

not monotone

Introduction

Fomin Shapiro
Conjecture
Resolution by Hersh

Monotonicity
Fibers of Maps
References

Examples

not monotone

$$
\begin{gathered}
z=x y \text { on } \\
0<x<1,-1<y<1 \\
\text { not monotone }
\end{gathered}
$$

Introduction

Fomin Shapiro Conjecture

Resolution by Hersh

Monotonicity
Fibers of Maps
References

Examples

$0<x<1,0<y<1-x$
not monotone

Fomin Shapiro Conjecture

Resolution by

 HershMonotonicity
Fibers of Maps

Examples

$0<x<1,0<y<1-x$
not monotone

$$
\begin{gathered}
z=x y \text { on } \\
0<x, y<1 \\
\text { monotone }
\end{gathered}
$$

Fomin Shapiro Conjecture

Resolution by Hersh

Monotonicity
Fibers of Maps
References

Monotonicity and Regularity

Introduction
Fomin Shapiro
Conjecture
Resolution by Hersh

Monotonicity
Fibers of Maps
Theorem (S. Basu, A. Gabrielov, N. Vorobjov)
References

The graph $F \subset \mathbb{R}^{n+k}$ of a monotone map $\mathbf{f}: X \rightarrow \mathbb{R}^{k}$ on a semimonotone set $X \subset \mathbb{R}^{n}$ is a regular n-cell.

Route to an Alternate Proof

Theorem (J. Davis, P. Hersh, E. Miller)
Let $v \in W$ with $\left(i_{1}, \ldots, i_{d}\right)$ a reduced word for v. Then if for all $w \in W, w \leq v$, we have $f_{\left(i_{1}, \ldots, i_{d}\right)}^{-1}(p)$ is contractible for $p \in Y_{w}^{\circ}$, then Y_{w} is a regular cell complex for each $w \leq v$.

Route to an Alternate Proof

Theorem (J. Davis, P. Hersh, E. Miller)
Let $v \in W$ with $\left(i_{1}, \ldots, i_{d}\right)$ a reduced word for v. Then if for all $w \in W, w \leq v$, we have $f_{\left(i_{1}, \ldots, i_{d}\right)}^{-1}(p)$ is contractible for $p \in Y_{w}^{\circ}$, then Y_{w} is a regular cell complex for each $w \leq v$.
(Key ingredient in proof)
Let \sim be an equivalence relation on the closed ball B^{n} so that

- all equivalence classes are contractible
- $S^{n-1} / \sim \cong S^{n-1}$
- if $x \sim y$ with $x \in S^{n-1}$, then $y \in S^{n-1}$
- if $x \sim y$ with $x \notin S^{n-1}$, then $y=x$

Then $B \cong B / \sim$

Example: $n=3$

$$
v=(1,2,1), p \in Y_{(1)}, f_{(1,2,1)}^{-1}(p) \text { in red. }
$$

Introduction
 Fomin Shapiro Conjecture

Resolution by

 HershMonotonicity
Fibers of Maps
References

The Goal

Conjecture

Let $\left(i_{1}, \ldots, i_{d}\right)$ be a reduced word for $v \in W$, let $w \leq v$, and monotone maps, and hence this stratification is a regular cell decomposition of the fiber.
This holds in the cases $n=3$ and $n=4$, by computation

A few more examples: $n=4$

Introduction

Fomin Shapiro

Conjecture

Resolution by

Hersh

Monotonicity

$f_{(1,3,2,1,3,2)}=\left[\begin{array}{cccc}1 & t_{1}+t_{4} & \left(t_{1}+t_{4}\right) t_{6}+t_{1} t_{2} & t_{1} t_{3} t_{5} \\ 0 & 1 & t_{3}+t_{6} & t_{3} t_{5} \\ 0 & 0 & 1 & t_{2}+t_{5} \\ 0 & 0 & 0 & 1\end{array}\right]$

A few more examples: $n=4$

$$
\begin{aligned}
& f_{(1,3,2,1,3,2)}=\left[\begin{array}{cccc}
1 & t_{1}+t_{4} & \left(t_{1}+t_{4}\right) t_{6}+t_{1} t_{2} & t_{1} t_{3} t_{5} \\
0 & 1 & t_{3}+t_{6} & t_{3} t_{5} \\
0 & 0 & 1 & t_{2}+t_{5} \\
0 & 0 & 0 & 1
\end{array}\right] \\
& p=(a, b, c, a b, 0,0) \\
& \in Y_{(3,2,1)}^{o}=\{(x, y, z, x y, 0,0) \mid x, y, z>0, x+y+z=K\} \\
& f^{-1}(p)=\left\{\left(t_{1}, t_{2}, 0, a-t_{1}, c-t_{2}, b\right) \mid 0 \leq t_{1} \leq a, 0 \leq t_{2} \leq c\right\} \\
& \cup\left\{\left(a, c, t_{3}, 0,0, b-t_{3}\right) \mid 0 \leq t_{3} \leq b\right\}
\end{aligned}
$$

A few more examples: $n=4$

$$
\begin{aligned}
& f_{(1,3,2,1,3,2)}=\left[\begin{array}{cccc}
1 & t_{1}+t_{4} & \left(t_{1}+t_{4}\right) t_{6}+t_{1} t_{2} & t_{1} t_{3} t_{5} \\
0 & 1 & t_{3}+t_{6} & t_{3} t_{5} \\
0 & 0 & 1 & t_{2}+t_{5} \\
0 & 0 & 0 & 1
\end{array}\right] \\
& p=(a, b, 0, d, 0,0) \\
& \in Y_{(2,1,2)}^{o}=\{(x, y, 0, u, 0,0) \mid x, y>0,0<u<x y, x+y=K\} \\
& f^{-1}(p)=\left\{\left.\left(t_{1}, 0, \frac{a b-d}{a-t_{1}}, a-t_{1}, 0, \frac{d-t_{1} b}{a-t_{1}}\right) \right\rvert\, 0 \leq t_{1} \leq d / b\right\}
\end{aligned}
$$

Outline of Results

Introduction

- Conjectured: strata of $f_{\left(i_{1}, \ldots, i_{d}\right)}^{-1}(p)$ monotone for all $v, w \in S_{n}, w \leq v\left(v=\left(i_{1}, \ldots, i_{d}\right), p \in Y_{w}^{0}\right)$.

Fomin Shapiro Conjecture

Resolution by Hersh

Monotonicity

Fibers of Maps
References

Outline of Results

- Conjectured: strata of $f_{\left(i_{1}, \ldots, i_{d}\right)}^{-1}(p)$ monotone for all $v, w \in S_{n}, w \leq v\left(v=\left(i_{1}, \ldots, i_{d}\right), p \in Y_{w}^{0}\right)$.
$\Rightarrow \Rightarrow$ strata of $f_{v}^{-1}(p)$ regular, i.e. $f_{v}^{-1}(p)$ a regular cell complex for all $v, w \in S_{n}, w \leq v$

Fomin Shapiro Conjecture

Resolution by Hersh

Monotonicity

Fibers of Maps

Outline of Results

- Conjectured: strata of $f_{\left(i_{1}, \ldots, i_{d}\right)}^{-1}(p)$ monotone for all $v, w \in S_{n}, w \leq v\left(v=\left(i_{1}, \ldots, i_{d}\right), p \in Y_{w}^{0}\right)$.
- \Rightarrow strata of $f_{v}^{-1}(p)$ regular, i.e. $f_{v}^{-1}(p)$ a regular cell complex for all $v, w \in S_{n}, w \leq v$
- (Davis, Hersh, Miller) The face poset of the stratification of $f_{\left(i_{1}, \ldots, i_{d}\right)}^{-1}(p)$ is isomorphic to the face poset of the interior dual block complex of the subword complex $\Delta\left(\left(i_{1}, \ldots, i_{d}\right), w\right)$
- (Davis, Hersh, Miller) The interior dual block complex of any non-empty subword complex $\Delta(Q, w)$ is a contractible, regular cell complex

Outline of Results

- Conjectured: strata of $f_{\left(i_{1}, \ldots, i_{d}\right)}^{-1}(p)$ monotone for all $v, w \in S_{n}, w \leq v\left(v=\left(i_{1}, \ldots, i_{d}\right), p \in Y_{w}^{0}\right)$.
- \Rightarrow strata of $f_{v}^{-1}(p)$ regular, i.e. $f_{v}^{-1}(p)$ a regular cell complex for all $v, w \in S_{n}, w \leq v$
- (Davis, Hersh, Miller) The face poset of the stratification of $f_{\left(i_{1}, \ldots, i_{d}\right)}^{-1}(p)$ is isomorphic to the face poset of the interior dual block complex of the subword complex $\Delta\left(\left(i_{1}, \ldots, i_{d}\right), w\right)$
- (Davis, Hersh, Miller) The interior dual block complex of any non-empty subword complex $\Delta(Q, w)$ is a contractible, regular cell complex
- $\Rightarrow f_{v}^{-1}(p)$ contractible for all $v, w \in s_{n}, w \leq v$

Outline of Results

- Conjectured: strata of $f_{\left(i_{1}, \ldots, i_{d}\right)}^{-1}(p)$ monotone for all $v, w \in S_{n}, w \leq v\left(v=\left(i_{1}, \ldots, i_{d}\right), p \in Y_{w}^{0}\right)$.
- \Rightarrow strata of $f_{v}^{-1}(p)$ regular, i.e. $f_{v}^{-1}(p)$ a regular cell complex for all $v, w \in S_{n}, w \leq v$
- (Davis, Hersh, Miller) The face poset of the stratification of $f_{\left(i_{1}, \ldots, i_{d}\right)}^{-1}(p)$ is isomorphic to the face poset of the interior dual block complex of the subword complex $\Delta\left(\left(i_{1}, \ldots, i_{d}\right), w\right)$
- (Davis, Hersh, Miller) The interior dual block complex of any non-empty subword complex $\Delta(Q, w)$ is a contractible, regular cell complex
- $\Rightarrow f_{v}^{-1}(p)$ contractible for all $v, w \in s_{n}, w \leq v$
$\bullet \Rightarrow Y_{w}$ a regular cell complex for each $w \leq v$

References I

囯 George Lusztig. "Introduction to Total Positivity". In: Positivity in Lie Theory: Open Problems. Vol. 26. De Gruyter Expositions in Mathematics. Berlin and New York: Walter De Gruyter, 1998, pp. 133-145. ISBN: 3-11-016112-5.
围 Sergey Fomin and Michael Shapiro. "Stratified Spaces Formed by Totally Positive Varieties". In: Michigan Math J. 48 (2000), pp. 253-270.
(Patricia Hersh. "Regular Cell Complexes in Total Positivity". In: Inventiones Mathematicae 197 (2014), pp. 57-114.
© Saugata Basu, Andrei Gabrielov, and Nicolai Vorobjov. "Semi-monotone Sets". In: J. Eur. Math. Soc. 15 (2013), pp. 635-657.

References II

- Saugata Basu, Andrei Gabrielov, and Nicolai Vorobjov. "Monotone Functions and Maps". In: Revista de la Real Academia de Ciencias Exactas, Fisicas y Naturales. Serie A. Matematicas 107 (2013), pp. 5-33.
围 James F. Davis, Patricia Hersh, and Ezra Miller. "Fibers of Maps to Totally Nonnegative Spaces". In: (2019).

