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Total Nonnegativity

Introduction

Definition
M € M,(R): M totally positive (resp totally nonnegative) if
all minors are positive (resp nonnegative)
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Total Nonnegativity

Introduction

Definition
M € M,(R): M totally positive (resp totally nonnegative) if
all minors are positive (resp nonnegative)

Here,
» U upper triangular matrices with 1's on the diagonal

» Y totally nonnegative part of U.
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Example: n=3

Introduction

Fomin Shapiro

1 X z Conjecture
Resolution by
0 1 y Hersh :
0 0 1 Monotonicity
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References
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Coxeter Groups

Introduction
Definition
Let W be a group and S C W. If W has a presentation of
the form
» Generators: S
P Relations:

> s2=eforallse$S
» others of the form (ss')™(>) = e for s # s’ € S,
m(s,s’) > 2

then (W, S) is a Coxeter system

427



Coxeter Groups

Introduction
Definition
Let W be a group and S C W. If W has a presentation of
the form
» Generators: S
P Relations:

> s2=eforallse$S
» others of the form (ss')™(>) = e for s # s’ € S,
m(s,s’) > 2

then (W, S) is a Coxeter system
Example
> W =S, symmetric group
> S={s=(@(i+1)|1<i<n-1}
> Relations (sisi11)% = e, (sis;)? = e for |i —j| > 1

427



Let w e W

w = sil . S’-k
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Let we W

W = Sj -+ Sj,

» (i,...,0k) a word for w
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Words

Introduction

Let we W
W = Sj - Sj
» (i,...,Ik) a word for w
» If k minimal, (i,..., i) a reduced word, k = I(w) the
length of w
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Words

Let we W
W = Sj - Sj
» (i,...,Ik) a word for w
» If k minimal, (i,..., i) a reduced word, k = I(w) the
length of w
Definition

Let u,v € W. If there is a reduced word for u that is a
subword of a reduced word for v, then u < v in the Bruhat

order

Introduction
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Words

Introduction

Let we W
W = Sj - Sj
» (i,...,Ik) a word for w
» If k minimal, (i,..., i) a reduced word, k = I(w) the
length of w
Definition

Let u,v € W. If there is a reduced word for u that is a
subword of a reduced word for v, then u < v in the Bruhat
order

Proposition
If W is finite, there exists a unique element wy € W so that
w<wy forall we W

5/27



Example: S3

Introduction
Bruhat order for S3 (note sisps1 = s2s152)

515851 = (1 3)

sis2 =(123) ss1=(132)
[ ]
s1=(12) s =(23)
\id/
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The Connection

Introduction

Let W=3S,, si=(i i+1)forl<i<n—1. Define maps

xi : R — SLy(R)

0
t— 1
_O 0 1_

(where t is in row i, column i + 1)
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The Connection
Introduction

Let W=3S,, si=(i i+1)forl<i<n—1. Define maps

xi : R — SLy(R)

1 0 0
0
t— 1t
0 0 1]
(where t is in row i, column i + 1)
Let w = (i1,...,Ik) € Sp: define map
R* — SL,(R)
(tl, ceey tk) — Xil(tl) .. ’Xik(tk)

7/21



Let w = (1,2,1) € S3 (longest word)
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Example: n=3

Introduction

Let w =(1,2,1) € S3 (longest word)

X1(t1)X2(t2)X1(t3)
1 5 0 1 0 O 1 t3 0 1 t1+t3 b
=0 1 O 01 |-{0 1 0]=1|0 1 t
0 0 1 0 0 1 0 0 1 0 0 1
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Example: n=3

Introduction

Let w =(1,2,1) € S3 (longest word)

X1(t1)X2(t2)X1(t3)
1 5 0 1 0 O 1 t3 0 1 t1+t3 b
=0 1 0|-(0 1 t|-]0 1 0=1]0 1 t
0 0 1 0 0 1 0 0 1 0 0 1
If (t1, 2, t3) € R,
1 x =z
Image = 01 y[|x,y>0,0<z<xy
0 01
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Example: n=3

Introduction

Let w =(1,2,1) € S3 (longest word)

X1(t1)X2(t2)X1(t3)
1 5 0 1 0 O 1 t3 0 1 t1+t3 b
=(0 1 0]-|/0 1 t|-]0 1 0]=1|0 1 tr
0 0 1 0 0 1 0 0 1 0 0 1
If (t1, 2, t3) € R,
1 x =z
Image = 01 yllx,y>20,0<z<xy, =Y
0 01

8/21



> Ay = {(tl, ey td) S Rgo | ZX,' = K} for some fixed
K>0
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Notation

Fomin Shapiro
Conjecture

> Ay ={(t1,...,tq4) € Rdzo | > xi = K} for some fixed
K>0

> w=(i,...,iq) € Sp:
fi, i) : Dd—1 — SLa(R)

(tl, e td) — Xil(tl) .. 'Xid(tcl)
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Notation

Fomin Shapiro
Conjecture

> Ay ={(t1,...,tq4) € Rdzo | > xi = K} for some fixed
K>0

> W:(ilv'-->id) € Sy
fioia) : Dd—1 = SLa(R)
(t1, ..., tg) ¥ xi(t1) - xi, (tq)

flin,onig) (Bg—1 N RY)) =Yy

> 1
> fii)(Ba1) = Yo (= Y9)
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Consequences

Let wy € S, denote the longest word

Fomin Shapiro
Conjecture

Note

> YWO = Uuesn Yl?
» This decomposition is a stratification of Y,

(2.1)
(0,0, K)
A\ (1)(2)
(K,0,0) (0, K, 0) (12

Strata of Y,
The simplex Aj (1,2,1)
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Consequences

Let wy € S, denote the longest word

Fomin Shapiro
Conjecture

Note

> YWO = Uuesn Yl?
» This decomposition is a stratification of Y,

> f(ilw--:id)ﬂRd is a homeomorphism from AY_; to Y
>0
(2.1)
o
1 2
/N O NG
(K,0,0) (0,K,0)

Strata of Y,
The simplex Aj (1,2,1)
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Consequences

Let wy € S, denote the longest word

Fomin Shapiro
Conjecture

Note
> YWO = ULIESn Yl?
» This decomposition is a stratification of Y,
> f(ilw--:id)[RiO

> u<vinS,iff YO CY,

is a homeomorphism from AY_; to Y

(2.1)
(0,0, K)
A\ (1)(2)
(K,0,0) (0, K, 0) (12

Strata of Y,
The simplex Aj (1,2,1)
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A Moment of Topology

Def|n|t|0n I(::om_in Shapiro

onjecture
Aset U C R™is an m-cell if U= (B™)°. U is a regular '
m-cell if the pair (U, U) = (B™, (B™)°)
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A Moment of Topology

Def|n|t|0n I(::om_in Shapiro
Aset U C R™is an m-cell if U= (B™)°. U is a regular e
m-cell if the pair (U, U) = (B™, (B™)°)

Definition
A Hausdorff space X is a (finite) cell complex if it can be
decomposed into a (finite) collection of cells e, such that
1. For each e, there exists a continuous £, : B™ — X such
that £, maps (B™)° homeomorphically to e, and maps
OB™ to a finite union of cells of dimension < m.

2. AC X isclosed in X iff AN&, is closed in &, for all a.

11/27



A Moment of Topology

Def|n|t|0n Eom_in Shapiro
Aset U C R™is an m-cell if U= (B™)°. U is a regular e
m-cell if the pair (U, U) = (B™, (B™)°)

Definition
A Hausdorff space X is a (finite) cell complex if it can be
decomposed into a (finite) collection of cells e, such that

1. For each e, there exists a continuous £, : B™ — X such
that £, maps (B™)° homeomorphically to e, and maps
OB™ to a finite union of cells of dimension < m.

2. AC X isclosed in X iff AN&, is closed in &, for all a.

Definition
A cell complex is regular if it has a cell decomposition so
that £, is also a homeomorphism on 9B™ for each a.

11/27



Fomin Shapiro Conjecture

Fomin Shapiro
Conjecture

Conjecture (S. Fomin, M. Shapiro)

For each u € S, the stratum Y} is a regular cell, and hence
Yw, is a regular cell complex (as is Y,, for each w € W).
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Resolution: Cell Collapses

Problem: f,, generally not a homeomorphism on the
boundary.

Eg:n=3
1 thh +t3 tit
fa21)(t, 2, 13) = [0 1 b
0 0 1

(0,0, K) /\

(K0, o)v/—\.(o, K,0)

Resolution by

Hersh
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Resolution

Theorem (Hersh)

Let (i1,...,ly) reduced. Let ~ be the identifications given
by any series of face collapses on Ay_1 such that
Lo x~y=fi i) =fi, in)
2. the series of collapses eliminates all regions whose words
are not reduced

Then f( K : Ag_1/ ~ — Y, is a homomorphism which
preserves ceII structure

Resolution by
Hersh
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Monotonicity: Coordinate Cones

In this section, sets and functions are definable in some
o-minimal structure over R

Monotonicity
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Monotonicity: Coordinate Cones

In this section, sets and functions are definable in some
o-minimal structure over R
Let Lj,c = {x€R"| xjoc} foro € {<,=,>}, ceR

Monotonicity
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Monotonicity: Coordinate Cones

In this section, sets and functions are definable in some

o-minimal structure over R

Let Lj,c = {x€R"| xjoc} foro € {<,=,>}, ceR T
Definition

A coordinate cone is a set of the form

C = Ljhghcl ﬂ...ﬂLj CcR"

m>OTm,Cm

with the j; distinct elements of {1,..., n}.
Similarly, an affine coordinate subspace has the form

S = Lj1,:,c1 n...N ij7:7cm C R"

15/27



Semi-monotone Sets

Definition/Theorem

An open bounded set X C R” is semi-monotone if for each

coordinate cone C, X N C is connected (equivalently, if Monotonicity
X NS is connected for every affine coordinate subspace S)

16 /27



Semi-monotone Sets

Definition/Theorem

An open bounded set X C R” is semi-monotone if for each

coordinate cone C, X N C is connected (equivalently, if Monotonicity
X NS is connected for every affine coordinate subspace S)

semi-monotone not semi-monotone
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Monotone Functions

Let f : X — R be bounded and continuous, X C R" open,
bounded, and nonempty, F the graph of f

Monotonicity

Definition/Theorem

f is monotone if
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Monotone Functions

Let f : X — R be bounded and continuous, X C R" open,
bounded, and nonempty, F the graph of f

Monotonicity

Definition/Theorem
f is monotone if

» For each 1 < j < n, f is either strictly increasing in x;,
strictly decreasing in x;, or independent of x;
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Monotone Functions

Let f : X — R be bounded and continuous, X C R" open,
bounded, and nonempty, F the graph of f

Definition/Theorem

f is monotone if

Monotonicity

» For each 1 < j < n, f is either strictly increasing in x;,
strictly decreasing in x;, or independent of x;
» one of the following (equivalent) conditions holds

» F N C connected for each coordinate cone C
» F NS connected for each affine coordinate subspace S.
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Monotone Maps

Let f : X — R¥ be bounded and continuous, with X C R"
open, bounded, and nonempty, F the graph of f.

Monotonicity
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Monotone Maps

Let f : X — R¥ be bounded and continuous, with X C R"
open, bounded, and nonempty, F the graph of f.

Definition Monotonicity
f is quasi-affine if for any T = span{x;, ..., X, Y, Yis }»

a + 8 = n, the projection pr : F — T is injective iff the

image p7(f) is n dimensional
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Definition/Theorem
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Monotone Maps

Let f : X — R¥ be bounded and continuous, with X C R"
open, bounded, and nonempty, F the graph of f.

Definition Monotonicity
f is quasi-affine if for any T = span{x;, ..., X, Y, Yis }»

a + 8 = n, the projection pr : F — T is injective iff the

image p7(f) is n dimensional

Definition/Theorem
f is monotone if
» f is quasi-affine
» one of the following (equivalent) conditions holds

» F N C connected for each coordinate cone C
» F NS connected for each affine coordinate subspace S.
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Examples

Introduction

Fomin Shapiro
Conjecture

Resolution by
Hersh

Monotonicity
Fibers of Maps
not monotone

References

Z =Xy on
0<x<l -1<y<l1
not monotone
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Examples

Introduction

Fomin Shapiro
Conjecture

- /7] Resolution by

Hersh

Monotonicity

z=x>+ y2 on
not monotone 0<x<1l,0<y<1l—x
not monotone

Fibers of Maps

References

Z =Xy on
0<x<l -1<y<l1
not monotone
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Examples

Introduction

Fomin Shapiro
Conjecture

- /1 Resolution by

Hersh

Monotonicity

z=x>+ y2 on
not monotone 0<x<1l,0<y<1l—x
not monotone

Fibers of Maps

References

Z = Xy on ey
0<x<l -1<y<l1 Z = Xy on
not monotone 0<x,y<l1
monotone

19/ 27



Monotonicity and Regularity

Monotonicity

Theorem (S. Basu, A. Gabrielov, N. Vorobjov)

The graph F C R"¥ of a monotone map f : X — R¥ on a
semimonotone set X C R" is a regular n-cell.
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Route to an Alternate Proof

Theorem (J. Davis, P. Hersh, E. Miller)

Let v € W with (i,...,ig) a reduced word for v. Then if
for all w e W, w < v, we have f(/_ll I.d)(p) is contractible for
p € Y., then Y, is a regular cell complex for each w < v. R

21/27



Route to an Alternate Proof

Theorem (J. Davis, P. Hersh, E. Miller)

Let v € W with (i,...,ig) a reduced word for v. Then if

-1 . .
for all w e W, w < v, we have f(il,...,id)(p) is contractible for

p € Y, then Y, is a regular cell complex for each w < v. R

(Key ingredient in proof)

Let ~ be an equivalence relation on the closed ball B" so
that

» all equivalence classes are contractible

> Snfl/ ~ Snfl

» if x ~ y with x € S"7 1, then y € S"!

» if x ~ y with x ¢ S"71, then y = x
Then B B/ ~

21/27



v=(1,21), pe Yy, 1’(112’1)(p) in red.
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The Goal

Conjecture L
Let (i1,...,Iq) be a reduced word for v € W, let w < v, and

let p € Ygo. Then the strata of f(,.*l}_._’,.d)(p) are graphs of

monotone maps, and hence this stratification is a regular cell
decomposition of the fiber.

This holds in the cases n = 3 and n = 4, by computation

23/27



A few more examples: n =4

1 i+t (t+t)ts+hty tists e
p L 1 ts + t6 t3ts
(1.32,132) = [ 0 1 to + t5
0 0 0 1

24 /27



A few more examples: n =4

1 t1+ta (t1+ta)te+titr titsts

p 10 1 t3 + t t3t5
(1,3,2,1,32) — 0 0 1 th + t5
0 0 0 1

Fibers of Maps

p=(a,b,c,ab,0,0)
€ Y(O3,2,1) = {(X7y?z»xy’070) |X,y,Z> 07X+y+Z: K}

FH(p) ={(t1,02,0,a—t1,c — 1, b) [ 0< 11 < 2,0 < 1 < ¢}
U{(a,C,tg,0,0,b—t3) ‘ 0<t3< b}

-
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A few more examples: n =4

1 ti+ta (t1+ta)te+ tity  titsts

p 10 1 t3 + tp t3t5
(132132) = [ 0 1 tr + t5
0 0 0 1

Fibers of Maps

p = (a,b,0,d,0,0)
€ Y512 = {(x,y,0,u,0,0) [ x,y > 0,0 <u<xy,x+y=K}

_ ab—d d—tib
FYp)={(t;.0.5— = a— 4.0
(p) {( 1,Y, a—t ,d 1,Y, a—t

)10<t <d/b}

24 /27



» Conjectured: strata of f(l_ll ,.d)(p) monotone for all
v,w € Sy, w<v (v=_(i,...,0q), pE YY)

«0O0>» «F>r» «E» «E>»

nae
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Outline of Results

» Conjectured: strata of ’[(E}...,;d)(l’) monotone for all
viw €Sy, w<v (v=_i,...,0q), p€ YY)

» = strata of £, (p) regular, i.e. f,}(p) a regular cell
complex for all viw € S, w < v

Fibers of Maps
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Outline of Results

> Conjectured: strata of f ! .d)(p) monotone for all
vowe Sy, w<v(v=_(i,...,iq), pE YO).

» = strata of £, (p) regular, i.e. f,}(p) a regular cell
complex for all v,w € S,,w < v L

» (Davis, Hersh, Miller) The face poset of the
stratification of f .i,y(P) is isomorphic to the face
poset of the |nter|or dual block complex of the subword
complex A((i1, ..., iq), w)

» (Davis, Hersh, Miller) The interior dual block complex
of any non-empty subword complex A(Q, w) is a
contractible, regular cell complex
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Outline of Results

> Conjectured: strata of f ! .d)(p) monotone for all
vowe Sy, w<v(v=_(i,...,iq), pE YO).

» = strata of £, (p) regular, i.e. f,}(p) a regular cell
complex for all v,w € S,,w < v L

» (Davis, Hersh, Miller) The face poset of the
stratification of f ,.d)(p) is isomorphic to the face
poset of the |nter|or dual block complex of the subword
complex A((i1, ..., iq), w)

» (Davis, Hersh, Miller) The interior dual block complex
of any non-empty subword complex A(Q, w) is a
contractible, regular cell complex

> = £, 1(p) contractible for all v,w € sp, w < v
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Outline of Results

>

>

A\

Conjectured: strata of £ .1....id)(p) monotone for all
viw €Sy, w<v (v=_i,...,0q), p€ YY)
= strata of £, 1(p) regular, i.e. f,71(p) a regular cell

complex for all v,w € S,,w < v

(Davis, Hersh, Miller) The face poset of the
stratification of f ,.d)(p) is isomorphic to the face
poset of the |nter|or dual block complex of the subword
complex A((i1, ..., iq), w)

(Davis, Hersh, Miller) The interior dual block complex
of any non-empty subword complex A(Q, w) is a
contractible, regular cell complex

= f,;1(p) contractible for all v,w € s,, w < v

= Y\, a regular cell complex for each w < v

Fibers of Maps
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