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Total Nonnegativity

Definition
M ∈ Mn(R): M totally positive (resp totally nonnegative) if
all minors are positive (resp nonnegative)

Here,

I U upper triangular matrices with 1’s on the diagonal

I Y totally nonnegative part of U.
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Example: n = 3

1 x z
0 1 y
0 0 1



Need

I x ≥ 0, y ≥ 0, z ≥ 0

I
∣∣∣∣x z
1 y

∣∣∣∣ ≥ 0

Y = {(x , y , z) ∈ R3 | x , y ≥ 0, 0 ≤ z ≤ xy}
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Coxeter Groups

Definition
Let W be a group and S ⊂W . If W has a presentation of
the form

I Generators: S
I Relations:

I s2 = e for all s ∈ S
I others of the form (ss ′)m(s,s′) = e for s 6= s ′ ∈ S ,

m(s, s ′) ≥ 2

then (W , S) is a Coxeter system

Example

I W = Sn symmetric group

I S = {si = (i i + 1) | 1 ≤ i ≤ n − 1}
I Relations (si si+1)3 = e, (si sj)

2 = e for |i − j | > 1

4 / 27
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Words

Let w ∈W
w = si1 · · · sik

I (i1, . . . , ik) a word for w

I If k minimal, (i1, . . . , ik) a reduced word, k = l(w) the
length of w

Definition
Let u, v ∈W . If there is a reduced word for u that is a
subword of a reduced word for v , then u ≤ v in the Bruhat
order

Proposition

If W is finite, there exists a unique element w0 ∈W so that
w ≤ w0 for all w ∈W

5 / 27
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Example: S3

Bruhat order for S3 (note s1s2s1 = s2s1s2)

s1s2s1 = (1 3)

s1s2 = (1 2 3) s2s1 = (1 3 2)

s1 = (1 2) s2 = (2 3)

id

6 / 27
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The Connection

Let W = Sn, si = (i i + 1) for 1 ≤ i ≤ n − 1. Define maps

xi : R −→ SLn(R)

t 7−→


1 0 · · · 0

0
. . .

...
1 t

...
. . . 0

0 · · · 0 1


(where t is in row i , column i + 1)

Let w = (i1, . . . , ik) ∈ Sn: define map

Rk → SLn(R)

(t1, . . . , tk) 7→ xi1(t1) · · · xik (tk)

7 / 27
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Example: n=3

Let w = (1, 2, 1) ∈ S3 (longest word)

x1(t1)x2(t2)x1(t3)

=

1 t1 0
0 1 0
0 0 1

 ·
1 0 0

0 1 t2
0 0 1

 ·
1 t3 0

0 1 0
0 0 1

 =

1 t1 + t3 t1t2
0 1 t2
0 0 1


If (t1, t2, t3) ∈ R3

≥0,

Image =


1 x z

0 1 y
0 0 1

 ∣∣∣∣x , y ≥ 0, 0 ≤ z ≤ xy



= Y

8 / 27
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Notation

I ∆d−1 = {(t1, . . . , td) ∈ Rd
≥0 |

∑
xi = K} for some fixed

K > 0

I w = (i1, . . . , id) ∈ Sn:

f(i1,...,id ) : ∆d−1 → SLn(R)

(t1, . . . , td) 7→ xi1(t1) · · · xid (td)

I f(i1,...,id )(∆d−1 ∩ Rd
>0) = Y o

w

I f(i1,...,id )(∆d−1) = Yw (= Y o
w )
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Consequences

Let w0 ∈ Sn denote the longest word

Note
I Yw0 =

⋃
u∈Sn Y

o
u

I This decomposition is a stratification of Yw0

I f(i1,...,id )�Rd
>0

is a homeomorphism from ∆o
d−1 to Y o

w

I u ≤ v in Sn iff Y o
u ⊂ Yv

(K , 0, 0) (0,K , 0)

(0, 0,K )

The simplex ∆2

(1) (2)

(2,1)

(1,2,1)

(1,2)

Strata of Y(1,2,1)

10 / 27
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A Moment of Topology

Definition
A set U ⊂ Rm is an m-cell if U ∼= (Bm)o. U is a regular
m-cell if the pair (U,U) ∼= (Bm, (Bm)o)

Definition
A Hausdorff space X is a (finite) cell complex if it can be
decomposed into a (finite) collection of cells eα such that

1. For each eα there exists a continuous fα : Bm → X such
that fα maps (Bm)o homeomorphically to eα and maps
∂Bm to a finite union of cells of dimension < m.

2. A ⊂ X is closed in X iff A ∩ eα is closed in eα for all α.

Definition
A cell complex is regular if it has a cell decomposition so
that fα is also a homeomorphism on ∂Bm for each α.

11 / 27
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Fomin Shapiro Conjecture

Conjecture (S. Fomin, M. Shapiro)

For each u ∈ Sn, the stratum Y o
u is a regular cell, and hence

Yw0 is a regular cell complex (as is Yw for each w ∈W ).

12 / 27
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Resolution: Cell Collapses

Problem: fw generally not a homeomorphism on the
boundary.
Eg: n = 3

f(1,2,1)(t1, t2, t3) =

1 t1 + t3 t1t2
0 1 t2
0 0 1



(K , 0, 0) (0,K , 0)

(0, 0,K )

13 / 27
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Resolution

Theorem (Hersh)

Let (i1, . . . , id) reduced. Let ∼ be the identifications given
by any series of face collapses on ∆d−1 such that

1. x ∼ y ⇒ f(i1,...,id )(x) = f(i1,...,id )(y)

2. the series of collapses eliminates all regions whose words
are not reduced

Then f(i1,...,id ) : ∆d−1/ ∼ → Yw is a homomorphism which
preserves cell structure

14 / 27
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Monotonicity: Coordinate Cones

In this section, sets and functions are definable in some
o-minimal structure over R

Let Lj ,σ,c = {x ∈ Rn | xjσc} for σ ∈ {<,=, >}, c ∈ R

Definition
A coordinate cone is a set of the form

C = Lj1,σ1,c1 ∩ . . . ∩ Ljm,σm,cm ⊂ Rn

with the ji distinct elements of {1, . . . , n}.
Similarly, an affine coordinate subspace has the form

S = Lj1,=,c1 ∩ . . . ∩ Ljm,=,cm ⊂ Rn

15 / 27
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Semi-monotone Sets

Definition/Theorem

An open bounded set X ⊂ Rn is semi-monotone if for each
coordinate cone C , X ∩ C is connected (equivalently, if
X ∩ S is connected for every affine coordinate subspace S)

semi-monotone not semi-monotone

16 / 27
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Monotone Functions

Let f : X → R be bounded and continuous, X ⊂ Rn open,
bounded, and nonempty, F the graph of f

Definition/Theorem

f is monotone if

I For each 1 ≤ j ≤ n, f is either strictly increasing in xj ,
strictly decreasing in xj , or independent of xj

I one of the following (equivalent) conditions holds
I F ∩ C connected for each coordinate cone C
I F ∩ S connected for each affine coordinate subspace S .
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Monotone Maps

Let f : X → Rk be bounded and continuous, with X ⊂ Rn

open, bounded, and nonempty, F the graph of f.

Definition
f is quasi-affine if for any T = span{xj1 , . . . , xjα , yi1 , . . . , yiβ},
α + β = n, the projection ρT : F → T is injective iff the
image ρT (f ) is n dimensional

Definition/Theorem

f is monotone if

I f is quasi-affine
I one of the following (equivalent) conditions holds

I F ∩ C connected for each coordinate cone C
I F ∩ S connected for each affine coordinate subspace S .
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Examples

not monotone

z = xy on
0 < x < 1, −1 < y < 1

not monotone

z = x2 + y2 on
0 < x < 1, 0 < y < 1− x

not monotone

z = xy on
0 < x , y < 1

monotone

19 / 27
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Monotonicity and Regularity

Theorem (S. Basu, A. Gabrielov, N. Vorobjov)

The graph F ⊂ Rn+k of a monotone map f : X → Rk on a
semimonotone set X ⊂ Rn is a regular n-cell.
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Route to an Alternate Proof

Theorem (J. Davis, P. Hersh, E. Miller)

Let v ∈W with (i1, . . . , id) a reduced word for v . Then if
for all w ∈W , w ≤ v , we have f −1(i1,...,id )

(p) is contractible for
p ∈ Y o

w , then Yw is a regular cell complex for each w ≤ v .

(Key ingredient in proof)

Let ∼ be an equivalence relation on the closed ball Bn so
that

I all equivalence classes are contractible

I Sn−1/ ∼ ∼= Sn−1

I if x ∼ y with x ∈ Sn−1, then y ∈ Sn−1

I if x ∼ y with x /∈ Sn−1, then y = x

Then B ∼= B/ ∼

21 / 27
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Example: n = 3

v = (1, 2, 1), p ∈ Y(1), f
−1
(1,2,1)(p) in red.
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The Goal

Conjecture

Let (i1, . . . , id) be a reduced word for v ∈W , let w ≤ v , and
let p ∈ Y o

w . Then the strata of f −1(i1,...,id )
(p) are graphs of

monotone maps, and hence this stratification is a regular cell
decomposition of the fiber.

This holds in the cases n = 3 and n = 4, by computation

23 / 27
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A few more examples: n = 4

f(1,3,2,1,3,2) =


1 t1 + t4 (t1 + t4)t6 + t1t2 t1t3t5
0 1 t3 + t6 t3t5
0 0 1 t2 + t5
0 0 0 1



24 / 27
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A few more examples: n = 4

f(1,3,2,1,3,2) =


1 t1 + t4 (t1 + t4)t6 + t1t2 t1t3t5
0 1 t3 + t6 t3t5
0 0 1 t2 + t5
0 0 0 1


p = (a, b, c , ab, 0, 0)

∈ Y o
(3,2,1) = {(x , y , z , xy , 0, 0) | x , y , z > 0, x + y + z = K}

f −1(p) ={(t1, t2, 0, a− t1, c − t2, b) | 0 ≤ t1 ≤ a, 0 ≤ t2 ≤ c}
∪ {(a, c , t3, 0, 0, b − t3) | 0 ≤ t3 ≤ b}

24 / 27



Introduction

Fomin Shapiro
Conjecture

Resolution by
Hersh

Monotonicity

Fibers of Maps

References

A few more examples: n = 4

f(1,3,2,1,3,2) =


1 t1 + t4 (t1 + t4)t6 + t1t2 t1t3t5
0 1 t3 + t6 t3t5
0 0 1 t2 + t5
0 0 0 1


p = (a, b, 0, d , 0, 0)

∈ Y o
(2,1,2) = {(x , y , 0, u, 0, 0) | x , y > 0, 0 < u < xy , x + y = K}

f −1(p) = {(t1, 0,
ab − d

a− t1
, a− t1, 0,

d − t1b

a− t1
) | 0 ≤ t1 ≤ d/b}
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Outline of Results

I Conjectured: strata of f −1(i1,...,id )
(p) monotone for all

v ,w ∈ Sn, w ≤ v (v = (i1, . . . , id), p ∈ Y o
w ).

I ⇒ strata of f −1v (p) regular, i.e. f −1v (p) a regular cell
complex for all v ,w ∈ Sn,w ≤ v

I (Davis, Hersh, Miller) The face poset of the
stratification of f −1(i1,...,id )

(p) is isomorphic to the face
poset of the interior dual block complex of the subword
complex ∆((i1, . . . , id),w)

I (Davis, Hersh, Miller) The interior dual block complex
of any non-empty subword complex ∆(Q,w) is a
contractible, regular cell complex

I ⇒ f −1v (p) contractible for all v ,w ∈ sn, w ≤ v

I ⇒ Yw a regular cell complex for each w ≤ v
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