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F 1. Overview f

My work lies in the realms of real algebraic geometry and o-minimality. Real algebraic geometry
has a flavor distinct from (complex) algebraic geometry. By stepping away from an algebraically
closed field, we lose access to many of the tools ubiquitous there. However, by working over R (or
more generally, a real closed field) rather than C, we gain a linear order, expanding the range of
questions we may ask. Real algebraic geometry thus centers around studying properties of semi-
algebraic sets, which can be built up from polynomial equations and inequalities. I often consider
more general sets, namely those definable in some o-minimal structure. O-minimal structures allow
for the inclusion of certain functions which are not algebraic (examples include the exponential
function or trigonometric functions restricted to bounded intervals), while still maintaining the
strong finiteness properties inherent among semi-algebraic sets. More background on this and
other topics can be found following this overview of my main results.

My most recent projects pertain to the role of symmetry (with respect to the action of some
finite reflection group on Rn) in the study of the topology of semi-algebraic sets. Various results
suggest that one may leverage such symmetry when determining, for example, the Betti numbers
of a semi-algebraic set (colloquially speaking, the number of holes of various dimension). Basu
and Riener in [4] recently proved, in the case of the symmetric group Sn, results concerning the
structure of the cohomology spaces of such sets, which yield an effective algorithm for computing
their first l Betti numbers. I have strengthened those results by refining one of the tools used (the
Gabrielov-Vorobjov construction) for the symmetric case. I now seek to extend the strategy of [4]
to other types of symmetry.

The Gabrielov-Vorobjov construction, described in [9], is a technique for replacing an arbitrary
set definable in some o-minimal structure over R with one that is compact, while preserving the
first few homotopy and homology groups. The replacement set is defined by functions closely
resembling those defining the original – an important facet when many complexity bounds make
use of data such as the number of defining functions or (in the polynomial case) their degrees. When
working with symmetry, though, one would like assurances that the group’s action is preserved in
translation. I have shown that, indeed, the maps involved in the Gabrielov-Vorobjov construction
can be made equivariant.

Theorem 1. Let G be a finite reflection group acting on Rn and say that S ⊂ Rn is a definable
set described by continuous functions {h1, . . . , hs}. Say that S is symmetric and that the collection
{h1, . . . , hs} is invariant under the action of G. For an integer m > 0 and parameters r > 0
and 0 < ε0, δ0, . . . , εm, δm < 1, we construct a symmetric closed and bounded set T described by
functions of the form hi± δj and hi± εj (along with the ball of radius r, r2− (X2

1 + · · ·+X2
n)). For

sufficiently large r and 0 < δ0 � ε0 � . . .� εm � δm, there exists an equivariant map ψ : T → S
inducing (equivariant) isomorphisms

ψ#,k : πk(T, ∗)→ πk(S, ∗′) and ψ∗,k : Hk(T )→ Hk(S)

for 0 ≤ k ≤ m− 1 and epimorphisms for k=m.
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For a set S ⊂ Rn defined by polynomials symmetric with respect to permutation of the
variables, the action of Sn allows one to decompose the cohomology spaces H i(S) as direct
sums of copies of irreducible Sn-modules Sλ indexed over partitions λ of n. So, to understand
H i(S) ∼=Sn

⊕
λ`nmi,λ(S)Sλ, one need only calculate the mulitpicities mi,λ(S) with which the mod-

ules Sλ appear. Basu and Riener in [4] establish restrictions on the multiplicities appearing in the
decomposition of a closed semi-algebraic set defined by symmetric polynomials. Via the equivariant
Gabrielov-Vorobjov construction, though, one may replace an arbitrary symmetric semi-algebraic
set by a closed and bounded one without altering the decomposition. Hence, the above theorem
allows one to extend the results on multiplicities to arbitrary symmetric semi-algebraic sets. Basu
and Riener’s algorithm in [4] also now yields information about the mulitpicities.

Theorem 2. Say that S ⊂ Rn is defined by symmetric polynomials {h1, . . . , hs} having degree at
most d (for some d > 1). Then mi,λ(S) = 0 for any λ ` n such that either length(λ) ≥ i+ 2d− 1
or length(tλ) ≥ n− i+d+ 1. (Compare to [4] Theorem 4 which requires that S be defined by closed
conditions on the hi’s).

Theorem 3. There is an algorithm which takes as input a set of symmetric polynomials {h1, . . . , hs}
all having degree at most d and a formula in these polynomials describing a semi-algebraic S ⊂ Rn,
and for a chosen l > 0 computes the multiplicities mi,λ(S) for each 0 ≤ i ≤ l and λ ` n, as well as

the Betti numbers bi(S) for 0 ≤ i ≤ l. The complexity of this algorithm is bounded by (snd)2
O(d+l)

.
(Compare to [4] Theorem 3, which only promises a computation of the first l Betti numbers).

Though the equivariant Gabrielov-Vorobjov construction holds for any finite reflection group,
Basu and Riener in [4] restrict their attention to the symmetric group (what is known as type A in
certain classifications). I wish to extend their results to other types of symmetry. Currently, I am
working in type B, where the symmetric group is replaced by the group of signed permutations.
A special class of sets known as Vandermonde varieties plays a key role in the study of symmetric
semi-algebraic sets, and so I am working to extend results on Vandermonde varieties to type B.

In type B, a Vandermonde variety is defined by the equations X2m
1 + · · · + X2m

n = ym for m
between 1 and some d, with ym ∈ R. Basu and Riener demonstrate and then use that in type
A, the intersection of a Vandermonde variety with a fundamental region of Rn is a topologically
regular cell. I have now shown the same in type B.

Theorem 4. The intersection of a type B Vandermonde variety in Rn with the set defined by
0 ≤ X1 ≤ · · · ≤ Xn is either empty, a point, or a semi-algebraic regular cell of dimension n− d.

I in fact showed something stronger: the interior of the above intersection is a monotone set.
The concept of monotonicity was introduced by Basu, Gabrielov, and Vorobjov in [3] and [2]. Where
applicable, it allows one to reduce the bulk of the work in proving that a set is topologically regular
(typically a very touchy operation) to proving the connectedness of intersections with certain affine
subspaces. I am interested in finding other instances in which to apply monotonicity.

I have already begun investigating monotonicity and totally nonnegative spaces. We say that a
matrix with real entries is totally nonnegative if all minors are nonnegative. In type A, the totally
nonnegative matrices of interest form a space with strata corresponding naturally to the elements
of Sn. One typically considers subspaces Lk(u, v) (the link of u in v) for u, v ∈ Sn, which are
compact and capture the strata “between” u and v. Fomin and Shapiro in [8] conjectured and
Hersh in [12] proved that these spaces are regular CW complexes. However, it may be possible to
offer a simpler proof via monotonicity.

Problem 5. For each u, v ∈ Sn, are the cells in the stratification of Lk(u, v) monotone sets? (If
so, then each Lk(u, v) is a regular CW complex).
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Motivated by further work of Davis, Hersh, and Miller in [7], I have studied the fibers of maps
f(i1,...,id) indexed by words (i1, . . . , id) for the elements of Sn. These fibers also admit a stratification,
the regularity of whose cells implies the regularity of Lk(id, u) for various u ∈ Sn. I have shown
monotonicity of certain fiber cells, but also encountered instances where monotonicity fails.

Theorem 6. For certain classes of words (i1, . . . , id), the fibers of f(i1,...,id) stratify into monotone
cells. As a result, Lk(id, u) is a regular CW complex for all u ∈ Sn for n ≤ 4.

After supplying details on their settings, I will elaborate on each of the three questions I have
studied.

F 2. Background f

O-minimality lies at the confluence of real algebraic geometry and model theory. Geometrically,
a structure over R is a selection of subsets of Rn from each dimension n, which is closed under
desired operations – these are called definable sets. Specifically, finite unions and intersections,
complements, Cartesian products, and coordinate projections of definable sets should be definable,
and the various diagonals {(x1, . . . , xm) ∈ Rm | xi = xj} are always definable. We call a structure
o-minimal if it contains the order relation and if the definable subsets of R are exactly the finite
unions of points and intervals.

This last condition, that subsets of R should be as simple as possible given the presence of
an ordering, provides the name, order minimal. More importantly, it forces the sets definable in
an o-minimal structure to behave “nicely.” As a consequence of a particular cell decomposition
applicable to definable sets, we have that definable sets can be triangulated (given a compact
definable set A, we can find a finite simplicial complex Λ definably homeomorphic to A). We also
have certain triviality results for definable families (for example, for a definable family {Xα}α∈A,
there are only finitely many homeomorphism types among the sets Xα). For more background on
o-minimal geometry, consult [14] or [6].

One may notice the symmetric group Sn running as a common thread through all three of
my projects. In each case, we think of Sn as a Coxeter system, that is, a group together with a
set of designated generators or simple reflections. For Sn, we will take these to be the adjacent
transpositions si = (i i + 1) for 1 ≤ i ≤ n − 1. In the projects concerning symmetric sets, we
interpret these geometrically as reflections through the hyperplanes {Xi = Xi+1}. In the setting
of totally nonnegative spaces, we will focus instead on combinatorial aspects. In particular, for an
element u ∈ Sn, we consider expressions si1 · · · sid of generators multiplying to u. We say such an
expression is reduced if it is of minimal length among expressions for u. From this, we obtain an
ordering (called the Bruhat ordering) on the elements of Sn: we say u ≤ v if there is a reduced
expression for u which is a subexpression of some reduced expression for v.

Coxeter systems in general are classified into certain types; type An−1 refers to Sn generated
by the adjacent transpositions, while type Bn introduces the idea of signed permutations, and adds
reflection through X1 = 0 to the collection of Coxeter generators. Type A often serves as the
most accessible case, but the possibility of generalizing to other types typically lurks within type
A results.

Monotonicity was developed for sets definable in a fixed o-minimal structure over R by Basu,
Gabrielov and Vorobjov. We say an open bounded X ⊂ Rn is semimonotone if for any affine
coordinate subspace of the form

S = {x = (x1, . . . , xn) ∈ Rn | xj1 = c1, . . . , xjm = cm}
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The left-hand set is semi-
monotone, while the right-
hand set is not

(with the ci’s various constants in R), the intersection S∩X is con-
nected. To address sets of higher codimension, Basu, Gabrielov, and
Vorobjov introduce monotone maps. A map f from a semimono-
tone subset of Rn to Rk is monotone if it is quasiaffine (projections
of the graph Γ to any n of the coordinate axes are injective when-
ever they maintain dimension) and the intersection of Γ with any
affine coordinate subspace is connected. We will say that a set is
monotone if it is either semimonotone or the graph of a monotone
map.

For an open U ⊂ Rn, we say that U is a regular cell if (U,U) is homeomorphic as a pair to
(B

n
, Bn), where Bn is the open ball of dimension n. Gabrielov, Basu, and Vorobjov in [2] show

that any monotone set is a regular cell. Since to demonstrate monotonicity we only need to check
a few conditions such as connectivity, this offers a useful route to proving regularity, which is often
a delicate property to demonstrate directly.

F 3. Equivariant Gabrielov-Vorobjov Construction f

Gabrielov and Vorobjov in [9] develop a means of approximating a given definable subset S of Rn
by a closed and bounded set T . If S is defined by equalities and inequalities involving continuous
definable functions {h1, . . . , hs}, then T is defined by a similar collection of functions, and for a
chosen integer m > 0, there are isomorphisms πk(T ) → πk(S) and Hk(T ) → Hk(S) for 1 ≤ k ≤
m − 1. Motivated by a recent paper of Basu and Riener which studies algorithms for computing
the Betti numbers of sets defined by symmetric polynomials, I proved that one may construct an
equivariant map T → S, and thereby obtain equivariant maps of homotopy and homology.

Sδ,ε for S = {(x 6= 0∧
y 6= 0) ∨ (x = 0 ∧ y =
0)} ∩ {x2 + y2 ≤ r2}

A consequence of triviality allows one to intersect a definable set with a
closed ball of sufficiently large radius r while maintaining homotopy equiv-
alence. For a bounded set S, Gabrielov and Vorobjov’s approximating set
T = Sδ0,ε0 ∪· · ·∪Sδm,εm is the union of a finite number of members selected
from a family {Sδ,ε}δ,ε>0 of compact sets representing S. If we have that S
is symmetric and that G applied to {h1, . . . , hs} is again {h1, . . . , hs}, then
the sets Sδ,ε from among which T is built are automatically symmetric, and
hence so is T . The equivariance of the maps from the theorem, however,
requires more attention.

Gabrielov and Vorobjov construct their maps of homotopy and homol-
ogy groups by considering an intermediate set V = V (ε0, δ0, . . . , εm, δm).
The construction of V is based on a triangulation of S in some larger com-
pact set. In order to have any hope of symmetry for V , much less equiv-
ariance of the maps connecting this set to S and T , one must begin with a

properly symmetric triangulation. The equivariant triangulation (in the spirit of the triangulation
algorithm given by Coste in [6]) of symmetric definable sets is one pivotal new result.

Theorem 7. Let A be a closed and bounded definable subset of Rn symmetric under the action of a
finite reflection group G, and let S1, . . . , Sl be symmetric sets which are subsets of A. There exists
a triangulation (Λ,Φ) of A adapted to S1, . . . , Sl such that the simplicial complex Λ is symmetric
and Φ : |Λ| → S is equivariant under the action of G.

In the original paper, Gabrielov and Vorobjov could take S as connected without losing gen-
erality and thus ignore basepoint considerations when discussing homotopy groups. However, this
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assumption might easily destroy a set’s symmetry. To account for basepoints, my symmetric ver-
sion constructs not only maps on the level of homotopy and homology (as in the original), but also
an equivariant map from T to S.

As described in the overview, equivariance in the Gabrielov-Vorobjov construction provides
a strengthening of results of Basu and Riener in [4]. Here, one considers sets S described by
symmetric polynomials of bounded degree. From the equivariance of the maps Hi(T ) → Hi(S),
one sees that H i(T ) and H i(S) have the same structure as Sn-modules, and hence the same isotypic
decomposition ⊕

λ`n
mi,λ(S)Sλ ∼=Sn H

i(S) ∼=Sn H
i(T ) ∼=Sn

⊕
λ`n

mi,λ(T )Sλ

This means that each multiplicity mi,λ(S) is equal to mi,λ(T ), and so any results obtained about
the mulitpicities of T as a closed and bounded set hold for those of S as well.

F 4. Vandermonde Varieties f

I would like to extend the results of Basu and Riener in [4] to more general classes of symmetry.
Their theorem concerning the isotypic decomposition of the cohomology spaces of a set S defined
by symmetric polynomials (ref. Thm 2 here) follows from a similar statement about Vandermonde
varieties. I am currently working to prove an analogue of this statement in type B.

Vandermonde varieties were studied primarily in type A by Arnold ([1]), Givental ([11]), and

Kostov ([13]). There, they appear as level sets of the first d weighted Newton power sums p
(n)
A,m =

w1X
m
1 + · · · + wnX

m
n (for some weight vector w = (w1, . . . , wn) ∈ Rn>0). In the more general

setting, one may define Vandermonde varieties using the first d generators of the ring of polynomials
invariant under the action of the group in question. In type B, one can take the Newton power

sums of even degree: p
(n)
b,m = w1X

2m
1 + · · · + wnX

2m
n . For a given y ∈ Rd, then, a Vandermonde

variety in type B has the form V = {x ∈ Rn | p(n)B,w,1(x) = y1, . . . , p
(n)
B,w,d(x) = yd}.

When all weights are equal, the Vandermonde variety’s symmetry should allow one to under-
stand the set as a whole simply by studying it on a fundamental region – here we will use the type
B Weyl chamber defined by 0 ≤ X1 ≤ · · · ≤ Xn. To investigate (co)homology, we must pay partic-
ular attention to intersections with the walls of the Weyl chamber. Since these walls correspond to
intersections of reflection hyperplanes, we may index them via subsets T of the Coxeter generators
of the group. I have reworked a few results of Arnold and Kostov for type B in order to show that
the intersection of a Vandermonde variety with the Weyl chamber is a regular cell. Denoting the
intersection of V with the wall indexed by T as V T , I have established the following regarding the
walls.

Proposition 8. Let d ≥ 2, let y ∈ Rd, and let T ⊂ CoxB(n). Then H i(V, V T ) = 0 for all i and T
satisfying either i ≤ card(T )− 2d or i ≥ cardT + 1.

From this, following Basu and Riener’s strategy from [4], I hope in the coming months to prove
a type B analogue of Theorem 2, first for Vandermonde varieties and then for general symmetric
sets. From there, I would like to move to the other Lie types, and perhaps beyond.

F 5. Totally Non-negative Spaces f

I also hope to apply monotonicity as an alternate route to proving a conjecture concerning totally
non-negative spaces. In type An−1, we consider those matrices in SL(n,R) which are upper tri-
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angular, have 1’s on the diagonal, and whose minors are all nonnegative. We can decompose this
space into strata based on which minors are zero and which are strictly positive.

Example 9. The totally nonnegative part of SL(3,R) is the space of matrices
1 x z

0 1 y
0 0 1

 | x ≥ 0, y ≥ 0, 0 ≤ z ≤ xy


Seeing this as a semi-algebraic subset of R3, the six strata of this space are
the interior {(x, y, z) ∈ R3

>0 | z < xy}, the surface z = xy for x, y > 0, the
positive xy-plane, the positive x-axis, the positive y-axis, and the origin.

The totally non-
negative part of
SL(3,R)

The strata of this space correspond very naturally to the elements of Sn, and the containment
ordering on strata precisely reflects the Bruhat ordering on Sn. Motivated by Björner’s study of
the connection between CW complexes and partially ordered sets (see [5]), Fomin and Shapiro in
[8] propose totally nonnegative spaces as a source of naturally arising regular CW complexes whose
face posets are intervals within the Bruhat order. For u ≤ v elements of Sn, they define spaces
Lk(u, v) which inherit a stratification from the totally nonnegative part of SL(n,R). They show
that Lk(u, v) is indeed a CW complex whose face poset corresponds to the Bruhat interval [u, v],
and conjecture that each cell is regular. This was proved by Hersh in [12]. For the link of the
identity in type An−1, regularity also follows as a corollary of results by Galashin, Karp, and Lam
in [10]. However, we hope that monotonicity may offer an alternate, simpler proof.

My work thus far on this question has centered on further results by Davis, Hersh, and Miller.
They interpret the zero links of our totally nonnegative spaces as the images of the standard
simplex ∆d−1 under certain maps f(i1,...,id) indexed by elements u = si1 · · · sid in Sn. In [7], they

demonstrate that, if one can show that all fibers f−1(i1,...,id)
(p) are contractible, one may conclude

that the zero links of the totally nonnegative spaces are regular cells.
I had hoped to demonstrate that the fibers f−1(i1,...,id)

(p) can be decomposed into monotone sets,
which based on results of Davis, Hersh, and Miller would suffice to establish contractibility of the
fibers. The techniques I developed, pertaining to the geometric interpretation of various ‘moves’
for transforming a non-reduced word to a reduced one, demonstrate monotonicity of many cells in
the decompositions of the relevant fibers, including all those present for n ≤ 4. Unfortunately, in
certain examples in the n = 5 case, fibers appear which while regular are not monotone.

Though the application of monotonicity to the Fomin-Shapiro conjecture is thus not as straight-
forward as it originally appeared, there remain avenues to pursue. In the fiber case, changing the
word defining the map f(i1,...,id) or applying some homeomorphisim might resolve the issue. I hope
also to investigate more fully the monotonicity of the original links. Should this technique prove
successful, I would turn to applying monotonicity to the analogous problem in the other Lie types.

F 6. Future Directions f

While the theme of symmetry in all of these projects came about more or less by coincidence,
it provides an intriguing thread to follow in future work. I would like to continue exploring and
developing the role of symmetry and equivariance within real algebraic geometry. From my early
days of studying monotonicity, I have hoped to continue searching for opportunities to apply the
concept to questions of regularity. The commonalities between my projects also inspire my curiosity
about real algebraic geometry in the context of group actions and representation theory. I hope to
continue exploring and expanding these connections in the coming years.
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