Safety Protocols

Alison Rosenblum

O-minimal Structures

Gabrielov-Vorobjov Construction

The Symmetric Lands

References

Safety Protocols for the Cartography of Lands Unknown, Fantastic, and Symmetric

Alison Rosenblum

Purdue University

Student Colloquium April 6, 2022

イロト イクト イモト イモト ニモー

Sac

The Many Realms in \mathbb{R}^n

Safety Protocols

Alison Rosenblum

O-minimal Structures

Gabrielov-Vorobjov Construction

The Symmetric Lands

References

▲□▶ ▲□▶ ▲三▶ ▲三▶ - 三 - のへで

Tools of the Trade

Homotopy ($\pi_k(S)$ the *k*-th homotopy group of the space *S*)

Safety Protocols

Alison Rosenblum

O-minimal Structures

Gabrielov-Vorobjov Construction

The Symmetric Lands

Tools of the Trade

Homotopy $(\pi_k(S)$ the k-th homotopy group of the space S)

Homology ($H_k(S)$: kth (singular) homology group of S)

Safety Protocols

Alison Rosenblum

O-minimal Structures

Gabrielov-Vorobjov Construction

The Symmetric Lands

Tools of the Trade

Homotopy $(\pi_k(S)$ the k-th homotopy group of the space S)

Safety Protocols

Alison Rosenblum

O-minimal Structures

Gabrielov-Vorobjov Construction

The Symmetric Lands

References

Homology ($H_k(S)$: kth (singular) homology group of S)

The *k*th Betti number of *S* is $b_k(S) = \operatorname{rank}(H_k(S))$

• the number of "holes" of dimension k in S

The Dangers of \mathbb{R}^n

Safety Protocols

Alison Rosenblum

O-minimal Structures

Gabrielov-Vorobjov Construction

The Symmetric Lands

Safety Protocols

Alison Rosenblum

O-minimal Structures

Gabrielov-Vorobjov Construction

The Symmetric Lands

References

O-minimal Structures

Building a Structure

Definition

A structure S on \mathbb{R} is a collection of subsets of \mathbb{R}^n for each n which contains

- 1. Unions, intersection, and complements of sets in $\mathcal S$
- 2. Cartesian products $(A \times B)$ of sets in S
- 3. Coordinate projections of sets in $S(\pi(A))$ where $\pi: \mathbb{R}^{m+1} \to \mathbb{R}^m$ takes

$$(x_1,\ldots,x_m,x_{m+1})\mapsto (x_1,\ldots,x_m)).$$

4. Each set $\{(x_1, ..., x_m) \in \mathbb{R}_m \mid x_i = x_j\}$

Safety Protocols

Alison Rosenblum

O-minimal Structures

Gabrielov-Vorobjov Construction

The Symmetric Lands

Building a Structure

Definition

A structure S on \mathbb{R} is a collection of subsets of \mathbb{R}^n for each n which contains

- 1. Unions, intersection, and complements of sets in $\mathcal S$
- 2. Cartesian products $(A \times B)$ of sets in S
- 3. Coordinate projections of sets in $S(\pi(A)$ where $\pi : \mathbb{R}^{m+1} \to \mathbb{R}^m$ takes $(x_1, \ldots, x_m, x_{m+1}) \mapsto (x_1, \ldots, x_m)).$

4. Each set
$$\{(x_1,\ldots,x_m)\in\mathbb{R}_m\mid x_i=x_i\}$$

An o-minimal structure is a structure with

- 5. $\{(x, y) \in \mathbb{R}^2 \mid x < y\}$ in S
- 6. All subsets of \mathbb{R}^1 in $\mathcal S$ are finite unions of points and intervals

Safety Protocols

Alison Rosenblum

O-minimal Structures

Gabrielov-Vorobjov Construction

The Symmetric Lands

Example O-minimal structures

- Semi-algebraic sets
 - defined by polynomial equalities and inequalities
- Structure generated by e^x
- Structure generated by sin(x) defined on e.g. $-\pi/2 \le x \le \pi/2$

Advantages

- Avoid infinite(simal) traps
- Decompose definable sets into simple components

Alison Rosenblum

O-minimal Structures

Gabrielov-Vorobjov Construction

The Symmetric Lands

The Dangers that Remain

Safety Protocols

Alison Rosenblum

7 / 20

Safety Protocols

Alison Rosenblum

O-minimal Structures

Gabrielov-Vorobjov Construction

The Symmetric Lands

References

Protocol 27-i

The Gabrielov-Vorobjov Construction

Example $S = \{(x, y) \mid x > 0, 0 < y < \frac{1}{2}x^2\}$ $\setminus \{(3, y) \mid 1 \le y \le 2.5\} \cup \{(0, 0)\}$

Safety Protocols

Alison Rosenblum

O-minimal Structures

Gabrielov-Vorobjov Construction

The Symmetric Lands

Safety Protocols

Alison Rosenblum

8 / 20

イロト 不得 トイヨト イヨト 二日 二

Safety Protocols Alison Rosenblum

8 / 20

nar

- Retain information about homotopy and homology
- T described by functions similar to those defining S

Safety Protocols

Alison Rosenblum

O-minimal Structures

Gabrielov-Vorobjov Construction

The Symmetric Lands

Definable sets: eventually boring

Safety Protocols

Alison Rosenblum

O-minimal Structures

Gabrielov-Vorobjov Construction

The Symmetric Lands

Definable sets: eventually boring

Theorem (Conic Structure at Infinity)

Let $S \subset \mathbb{R}^n$ be a definable set. Then there exists a $0 < r \in \mathbb{R}$ such that S is definably homotopy equivalent to $S \cap \overline{B(0, r)}$.

Exploring S: can stay inside ball of radius r and not miss anything interesting

Alison Rosenblum

O-minimal Structures

Gabrielov-Vorobjov Construction

The Symmetric Lands

Building Blocks

$$\cup \{3 - \varepsilon \le x \le 3 + \varepsilon, \delta \le y \le 1 - \delta\} \cup \{3 - \varepsilon \le x \le 3 + \varepsilon, 2.5 + \delta \le y \le \frac{1}{2}x^2 - \delta\}$$
$$\cup \{3 + \delta \le x, \delta \le y \le \frac{1}{2}x^2 - \delta, x^2 + y^2 \le \frac{1}{\delta}\}$$

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ― 臣 … のへで

Safety Protocols Alison Rosenblum

The Replacement Set

11 / 20

Safety Protocols Alison Rosenblum And what about homotopy and homology?

Theorem (Gabrielov and Vorobjov)

For any choice of m > 0 and small enough ε_i 's and δ_i 's, we have surjective maps

$$\psi_k : \pi_k(T) \to \pi_k(S)$$

 $\phi_k : H_k(T) \to H_k(S)$

which are isomorphisms for $0 \le k \le m - 1$.

Safety Protocols

Alison Rosenblum

O-minimal Structures

Gabrielov-Vorobjov Construction

The Symmetric Lands

Safety Protocols

Alison Rosenblum

O-minimal Structures

Gabrielov-Vorobjov Construction

The Symmetric Lands

References

The Symmetric Lands

Advantage of Symmetry

Safety Protocols

Alison Rosenblum

O-minimal Structures

Gabrielov-Vorobjov Construction

The Symmetric Lands

References

◆臣▶ 臣 ∽へ⊙

Symmetry: action of dihedral group D_4

- Group elements reflect or rotate
- Set: eight copies of fundamental region

Safety Protocols

Alison Rosenblum

O-minimal Structures

Gabrielov-Vorobjov Construction

The Symmetric Lands

Symmetry: action of dihedral group D_4

- Group elements reflect or rotate
- Set: eight copies of fundamental region

So what about homotopy and homology?

Safety Protocols

Alison Rosenblum

O-minimal Structures

Gabrielov-Vorobjov Construction

The Symmetric Lands

The Setting

Symmetry: action of symmetric group \mathfrak{S}_n

- Group elements interchange variables
- \mathbb{R}^2 : reflection symmetry over line y = x

Alison Rosenblum

O-minimal Structures

Gabrielov-Vorobjov Construction

The Symmetric Lands

The Setting

Symmetry: action of symmetric group \mathfrak{S}_n

- Group elements interchange variables
- \mathbb{R}^2 : reflection symmetry over line y = x

 $x^2(x-1)^2(x-2)^2+y^2(y-1)^2(y-2)^2 \leq 0.1 \qquad x^2y+xy^2 \geq 1 \text{ and } (x-3)^2+(y-3)^2 > \frac{1}{2}$

Safety Protocols

Alison Rosenblum

O-minimal Structures

Sabrielov-Vorobjov Construction

The Symmetric Lands

References

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Using Symmetry's Advantages

Setting: S defined by symmetric polynomials in n variables

- s: number of polynomials
- ► d: largest degree

Theorem (Basu and Riener)

There is an algorithm computing each Betti number $b_k(S)$ of S for $0 \le k \le l$, with complexity bounded by

 $(snd)^{2^{O(d+l)}}$

(Without symmetry, best known algorithm for computing all Betti numbers has doubly exponential complexity in n)

Safety Protocols

Alison Rosenblum

O-minimal Structures

Gabrielov-Vorobjov Construction

The Symmetric Lands

Using Symmetry's Advantages

Setting: S defined by symmetric polynomials in n variables

- s: number of polynomials
- ► d: largest degree

Theorem (Basu and Riener)

There is an algorithm computing each Betti number $b_k(S)$ of S for $0 \le k \le l$, with complexity bounded by

 $(snd)^{2^{O(d+l)}}$

(Without symmetry, best known algorithm for computing all Betti numbers has doubly exponential complexity in n)

Strategy: use Gabrielov-Vorobjov construction (and do a lot of other things)

Alison Rosenblum

O-minimal Structures

Gabrielov-Vorobjov Construction

The Symmetric Lands

Gabrielov-Vorobjov Construction Revisited

Reminder

- Replace S with closed and bounded set T
- ▶ Isomorphisms $\psi_k : \pi_k(T) \to \pi_k(S)$ and $\phi_k : H_k(T) \to H_k(S)$ for $0 \le k \le m-1$

Safety Protocols

Alison Rosenblum

O-minimal Structures

Gabrielov-Vorobjov Construction

The Symmetric Lands

Gabrielov-Vorobjov Construction Revisited

Reminder

- Replace S with closed and bounded set T
- ▶ Isomorphisms $\psi_k : \pi_k(T) \to \pi_k(S)$ and $\phi_k : H_k(T) \to H_k(S)$ for $0 \le k \le m-1$

Advantages:

• S defined by symmetric polynomials \Rightarrow so is T

Question:

• Are ψ_k and ϕ_k equivariant?

Definition

Let $f : X \to Y$ with G a group acting on both X and Y. Then f is equivariant if for all $g \in G$, f(g(x)) = g(f(x))

Safety Protocols

Alison Rosenblum

O-minimal Structures

Gabrielov-Vorobjov Construction

The Symmetric Lands

Good news: can adapt Gabrielov-Vorobjov construction so maps are equivariant.

Theorem (Basu and R., 2022+)

Let T be as described in the Gabrielov-Vorobjov construction, m > 0 and ε_i 's and δ_i 's small enough. Then we have equivariant surjective maps

$$\psi_k : \pi_k(T) \to \pi_k(S)$$

 $\phi_k : H_k(T) \to H_k(S)$

which are isomorphisms for $0 \le k \le m - 1$.

Safety Protocols

Alison Rosenblum

O-minimal Structures

Gabrielov-Vorobjov Construction

The Symmetric Lands

Basu and Riener: decompose cohomology spaces

$$H^k(S)\simeq_{\mathfrak{S}_n} igoplus_{\lambda\vdash n} m_{k,\lambda}(S)\mathbb{S}^\lambda$$

S^λ components of the decomposition
 m_{k,λ} number of times each component appears
 If S is closed and bounded, can effectively compute each mulitpicity m_{k,λ}.

Safety Protocols

Alison Rosenblum

O-minimal Structures

Gabrielov-Vorobjov Construction

The Symmetric Lands

Basu and Riener: decompose cohomology spaces

$$H^k(S)\simeq_{\mathfrak{S}_n} igoplus_{\lambda\vdash n} m_{k,\lambda}(S)\mathbb{S}^\lambda$$

S^λ components of the decomposition
 m_{k,λ} number of times each component appears
 If S is closed and bounded, can effectively compute each mulitpicity m_{k,λ}.

With equivariance: decomposition the same for S and replacement T

Safety Protocols

Alison Rosenblum

O-minimal Structures

Gabrielov-Vorobjov Construction

The Symmetric Lands

Basu and Riener: decompose cohomology spaces

$$H^k(S)\simeq_{\mathfrak{S}_n} igoplus_{\lambda\vdash n} m_{k,\lambda}(S)\mathbb{S}^\lambda$$

S^λ components of the decomposition
 m_{k,λ} number of times each component appears
 If S is closed and bounded, can effectively compute each mulitpicity m_{k,λ}.

With equivariance: decomposition the same for S and replacement T \Rightarrow can effectively compute each $m_{k,\lambda}$ for arbitrary semialgebraic S.

Safety Protocols

Alison Rosenblum

O-minimal Structures

Gabrielov-Vorobjov Construction

The Symmetric Lands

References I

- Saugata Basu, Richard Pollack, and Marie-Françoise Coste-Roy. *Algorithms in Real Algebraic Geometry*. eng. Vol. 10. Algorithms and Computation in Mathematics. Berlin, Heidelberg: Springer Berlin / Heidelberg, 2006. ISBN: 3642069649.
- [2] Andrei Gabrielov and Nicolai Vorobjov. "Approximation of definable sets by compact families, and upper bounds on homotopy and homology". In: *Journal of the London Mathematical Society* 80.1 (2009), pp. 35–54.
- [3] Saugata Basu and Cordian Riener. "Vandermonde varieties, mirrored spaces, and the cohomology of symmetric semi-algebraic sets". In: *Foundations of Computational Mathematics* (2021), pp. 1–68.

Safety Protocols

Alison Rosenblum

O-minimal Structures

Gabrielov-Vorobjov Construction

The Symmetric Lands

Assume $S \subset \mathbb{R}^n$ symmetric (so, \mathfrak{S}_n acts on $H^i(S)$)

Isotypic decomposition

$$H^k(S) \simeq_{\mathfrak{S}_n} \bigoplus_{\lambda \vdash n} m_{k,\lambda}(S) \mathbb{S}^{\lambda}$$

- λ partition of n
- S^λ Specht module (dimension computed via "hook length formula")

•
$$m_{k,\lambda}$$
 mulitpicity of \mathbb{S}^{λ} in $H^k(S)$
So $b_k(S) = \sum_{\lambda \vdash n} m_{k,\lambda} \dim(\mathbb{S}^{\lambda})$

Safety Protocols

Alison Rosenblum

O-minimal Structures

Gabrielov-Vorobjov Construction

The Symmetric Lands

$$H^k(S)\simeq_{\mathfrak{S}_n} igoplus_{\lambda\vdash n} m_{k,\lambda}(S)\mathbb{S}^\lambda$$

Problem: number of partitions grows exponentially with n

Theorem (Basu and Riener)

S
$$\mathcal{P}$$
-closed (and bounded) semialgebraic set,
 $\mathcal{P} = \{h_1, \dots, h_s\} \subset \mathbb{R}[X_1, \dots, X_n]_{\leq d}^{\mathfrak{S}_n}$. Then
(a) $m_{i,\lambda} = 0$ for length $(\lambda) \geq 1 + 2d - 1$
(b) $m_{i,\lambda} = 0$ for length $({}^t\lambda) \geq n - i + d + 1$

With equivariance in Gabrielov and Vorobjov construction, theorem holds for S not necessarily closed and bounded

Safety Protocols

Alison Rosenblum

O-minimal Structures

Gabrielov-Vorobjov Construction

The Symmetric Lands