
O-Minimality

Introduction

Monotonicity
Theorem

Cell
Decomposition

Curve Selection

Connectedness

Ordered Groups

References

A Tourist’s Guide to O-Minimality

Alison Rosenblum

Purdue University

Student Colloquium
March 20, 2019



O-Minimality

Introduction

Monotonicity
Theorem

Cell
Decomposition

Curve Selection

Connectedness

Ordered Groups

References

The Real Numbers

Remember that the real line is not the safe and
simple locale that people assume at first glance;
it’s a wild jungle. You never know when you
might stumble upon a compact, uncountable,
totally disconnected, nowhere dense set of
measure zero just as it starts to accumulate
everywhere.
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Within Rn lurks...
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Welcome to O-Minimality

Let (R, <) be a nonempty dense linearly ordered set without
endpoints (or, let R = R).

Definition
A structure S on R is made up of Sn ⊂ P(Rn) for each
n ∈ N, with

1. Sm closed under ∪, ∩, and complements

2. If A ∈ Sm, then A×R,R× A ∈ Sm+1

3. If A ∈ Sm+1, then π(A) ∈ Sm (where π : Rm+1 → Rm

is the projection onto the first m coordinates).

4. {(x1, . . . , xm) ∈ Rm | xi = xj} ∈ Sm (i , j ∈ {1, ...,m})
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Definition
An o-minimal structure is a structure S with

5. {(x , y) ∈ R2 | x < y} ∈ S2
6. The sets in S1 are exactly the finite unions of intervals

and points
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Examples

I Semialgebraic Sets:

{x ∈ Rn | f1(x) = . . . =fk(x) = 0,

g1(x) > 0, . . . , gl(x) > 0}

for fi , gj polynomials

I Slightly more boring: Semilinear Sets

I Really boring: Structure generated by <

I Structure generated by exp : R→ R
I Globally subanalytic sets
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“Definable ”

I If a set A ⊂ Sm for some m, we call A definable.

I A function f : A→ B (A ⊂ Rm, B ⊂ Rn) is definable if
its graph Γ(f ) ⊂ Rm+n is definable

I Similarly, definably connected/path connected, etc.

A few definable things

I {r} for r ∈ R
I Interiors and closures of definable sets

I Inverses, and compositions of definable functions (also
images and preimages of and restrictions to definable
sets)

I If R = R and addition and mulitpication are definable:
sums, products, limits, and derivatives of definable
functions
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As you set out...

What to expect

I Infinite subsets of R contain an interval

I Uniform bounds

What not to expect

I Too much ’infiniteness’

I Z
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Our Itinerary

I Monotonicity Theorem

I Cell Decomposition

I Curve Selection Lemma

I Connected ⇔ Path Connected

I All Groups are Abelian (ish)
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Monotonicity Theorem

The Monotonicity Theorem

Let f : (a, b)→ R be a definable function. Then there are
points a = a0 < a1 < . . . < ak < ak+1 = b such that on
each subinterval (aj , aj+1), either f is constant or f is
strictly monotone and continuous.

Outline of Proof.
The proof follows from three claims:

1. There is a subinterval of I on which f is constant or
injective.

2. If f is injective, then f is strictly monotone on a
subinterval of I .

3. if f is strictly monotone, then f is continuous on a
subinterval of I .

�
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Cell Decomposition of R

(0)-cells: points
(1)-cells: intervals
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Cell Decomposition of R2

(0,0)-cells: points
(0,1)-cells: vertical intervals
(1,0)-cells: graphs of continuous definable functions on an
interval
(1,1)-cells: ”bands” between two (1,0) cells
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Cell Decomposition Adapted to a Set

Let A ⊂ Rn be definable
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Cell Decomposition Adapted to a Set

Can write A as a union of cells of C
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Curve Selection

The Curve Selection Lemma
Let A ⊂ Rn be definable, and let b ∈ A.

Then there exists a
continuous definable map γ : [0, 1)→ Rn such that
γ(0) = b and γ((0, 1)) ⊂ A.

Without o-minimality With o-minimality
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Connected ⇔ Path Connected

Theorem
Let A ⊂ Rn be definable. Then we may write
A = A1 t . . . t Ak (with Ai ∩ Aj = ∅ for i 6= j), where each
Ai is nonempty, open and closed in A, and definably path
connected. Furthermore, this partition is unique.

Proof (existence).

Start with a cell decomposition C of Rn adapted to A

1. For cells of C, define C ≺ D if C ∩ D 6= ∅
2. C ≺ D ⇒ ∃ a path between c ∈ C and d ∈ D

3. Define C ∼ D (C ,D ⊂ A) if ∃ a chain
C = C0 ≺ C1 � C2 ≺ . . . � Cl = D

4. Build Ai s from equivalence classes of ∼

�
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Connected ⇔ Path Connected

Theorem
Let A ⊂ Rn be definable. Then we may write
A = A1 t . . . t Ak (with Ai ∩ Aj = ∅ for i 6= j), where each
Ai is nonempty, open and closed in A, and definably path
connected. Furthermore, this partition is unique.

Corollary

A definably connected definable set is definably path
connected.

When R = R, if A is definable, A connected ⇒ A definably
connected ⇔ A definably path connected ⇒ A path
connected.
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O-Minimal Ordered Groups

Definition
An ordered group is a group G with a linear order < such
that for all x , y , z ∈ G ,

x < y ⇒ zx < zy and xz < yz

Examples

Ordered Groups

I (R,+)

I (R>0, · )

Not an Ordered Group

I (R \ {0}, · )
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O-Minimal Ordered Groups

Theorem
All groups are Abelian
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O-Minimal Ordered Groups

Theorem
All groups are Abelian

Theorem
Let S be an o-minimal structure on an ordered group R, and
say · : R×R → R is definable in S. Then R is Abelian.

Lemma
The only definable subsets of R that are also subgroups are
{e} and R
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