A Tourist's Guide to O-Minimality

Alison Rosenblum

Purdue University

Student Colloquium March 20, 2019

O-Minimality

Introduction

Monotonicity Theorem

Cell Decomposition Curve Selection Connectedness Ordered Groups References

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・ うへぐ

The Real Numbers

Remember that the real line is not the safe and simple locale that people assume at first glance; it's a wild jungle. You never know when you might stumble upon a compact, uncountable, totally disconnected, nowhere dense set of measure zero just as it starts to accumulate everywhere.

> Dr. Mel Friske Professor Emeritus Wisconsin Lutheran College

O-Minimality

Introduction

Monotonicity Theorem

Cell Decomposition Curve Selection Connectedness Ordered Groups References

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 のへぐ

The Real Numbers

Remember that the real line is not the safe and simple locale that people assume at first glance; it's a wild jungle. You never know when you might stumble upon a compact, uncountable, totally disconnected, nowhere dense set of measure zero just as it starts to accumulate everywhere.

> Dr. Mel Friske Professor Emeritus Wisconsin Lutheran College

> > ヨート

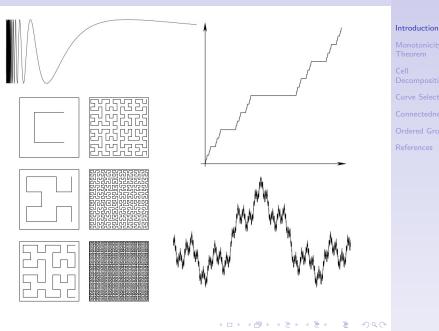
O-Minimality

Introduction

Monotonicity Theorem

Cell Decomposition Curve Selection Connectedness Ordered Groups References

Within \mathbb{R}^n lurks...



O-Minimality

Welcome to O-Minimality

Introduction

Monotonicity Theorem

Cell Decomposition

Curve Selection

Connectedness

Ordered Groups

References

くちゃく 御をえばをえばす ふしゃ

Let $(\mathcal{R}, <)$ be a nonempty dense linearly ordered set without endpoints (or, let $\mathcal{R} = \mathbb{R}$).

Definition

A structure S on \mathcal{R} is made up of $S_n \subset \mathcal{P}(\mathcal{R}^n)$ for each $n \in \mathbb{N}$, with

O-Minimality

Introduction

Monotonicity Theorem

Cell Decomposition Curve Selection Connectedness Ordered Groups References

```
・ロト ・ 日・ ・ 田・ ・ 日・ ・ 日・
```

Let $(\mathcal{R}, <)$ be a nonempty dense linearly ordered set without endpoints (or, let $\mathcal{R} = \mathbb{R}$).

Definition

A structure S on \mathcal{R} is made up of $S_n \subset \mathcal{P}(\mathcal{R}^n)$ for each $n \in \mathbb{N}$, with

1. \mathcal{S}_m closed under \cup , \cap , and complements

O-Minimality

Introduction

Monotonicity Theorem

ell Decomposition Curve Selection Connectedness Ordered Groups References

```
・ロット 4回ッ 4回ット 日 うくの
```

Let $(\mathcal{R},<)$ be a nonempty dense linearly ordered set without endpoints (or, let $\mathcal{R}=\mathbb{R}$).

Definition

A structure S on \mathcal{R} is made up of $S_n \subset \mathcal{P}(\mathcal{R}^n)$ for each $n \in \mathbb{N}$, with

- 1. \mathcal{S}_m closed under \cup , \cap , and complements
- 2. If $A \in \mathcal{S}_m$, then $A \times \mathcal{R}, \mathcal{R} \times A \in \mathcal{S}_{m+1}$
- 3. If $A \in \mathcal{S}_{m+1}$, then $\pi(A) \in \mathcal{S}_m$ (where $\pi : \mathcal{R}^{m+1} \to \mathcal{R}^m$ is the projection onto the first *m* coordinates).

Introduction

Monotonicity Theorem

Cell Decomposition Curve Selection Connectedness Ordered Groups References Let $(\mathcal{R}, <)$ be a nonempty dense linearly ordered set without endpoints (or, let $\mathcal{R} = \mathbb{R}$).

Definition

A structure S on \mathcal{R} is made up of $S_n \subset \mathcal{P}(\mathcal{R}^n)$ for each $n \in \mathbb{N}$, with

- 1. \mathcal{S}_m closed under \cup , \cap , and complements
- 2. If $A \in \mathcal{S}_m$, then $A \times \mathcal{R}, \mathcal{R} \times A \in \mathcal{S}_{m+1}$
- 3. If $A \in S_{m+1}$, then $\pi(A) \in S_m$ (where $\pi : \mathcal{R}^{m+1} \to \mathcal{R}^m$ is the projection onto the first *m* coordinates).
- 4. $\{(x_1,...,x_m) \in \mathcal{R}_m \mid x_i = x_j\} \in \mathcal{S}_m \ (i,j \in \{1,...,m\})$

Introduction

Monotonicity Theorem

Cell Decomposition Curve Selection Connectedness Ordered Groups

```
◆□▶ ◆□▶ ◆ ミ ▶ ◆ ミ ● ● ● ● ● ● ●
```

Welcome to O-Minimality

Definition

A structure S on \mathcal{R} is made up of $S_m \subset \mathcal{P}(\mathcal{R}^m)$ for each $m \in \mathbb{N}$, with

- 1. \mathcal{S}_m closed under \cup , \cap , and complements
- 2. If $A \in S_m$, then $A \times \mathcal{R}, \mathcal{R} \times A \in S_{m+1}$
- 3. If $A \in \mathcal{S}_{m+1}$, then $\pi(A) \in \mathcal{S}_m$ (where $\pi : \mathcal{R}^{m+1} \to \mathcal{R}^m$ is the projection onto the first *m* coordinates).

4.
$$\{(x_1,...,x_m) \in \mathcal{R}_m \mid x_i = x_j\} \in \mathcal{S}_m \ (i,j \in \{1,...,m\})$$

▲ロ ▶ ▲周 ▶ ▲ ヨ ▶ ▲ ヨ ▶ → ヨ → の Q @

Definition

An o-minimal structure is a structure ${\mathcal S}$ with

O-Minimality

Introduction

Monotonicity Theorem

Cell Decomposition Curve Selection Connectedness Ordered Groups References

Definition

A structure S on \mathcal{R} is made up of $S_m \subset \mathcal{P}(\mathcal{R}^m)$ for each $m \in \mathbb{N}$, with

- 1. \mathcal{S}_m closed under \cup , \cap , and complements
- 2. If $A \in \mathcal{S}_m$, then $A \times \mathcal{R}, \mathcal{R} \times A \in \mathcal{S}_{m+1}$
- 3. If $A \in \mathcal{S}_{m+1}$, then $\pi(A) \in \mathcal{S}_m$ (where $\pi : \mathcal{R}^{m+1} \to \mathcal{R}^m$ is the projection onto the first *m* coordinates).

4.
$$\{(x_1,...,x_m) \in \mathcal{R}_m \mid x_i = x_j\} \in \mathcal{S}_m \ (i,j \in \{1,...,m\})$$

Definition

An o-minimal structure is a structure $\ensuremath{\mathcal{S}}$ with

5.
$$\{(x, y) \in \mathcal{R}^2 \mid x < y\} \in \mathcal{S}_2$$

6. The sets in \mathcal{S}_1 are exactly the finite unions of intervals and points

O-Minimality

Introduction

Monotonicity Theorem

Cell Decomposition Curve Selection Connectedness Ordered Groups References

Semialgebraic Sets:

Examples

$$\begin{aligned} \{\mathbf{x} \in \mathbb{R}^n \mid f_1(\mathbf{x}) = \ldots = & f_k(\mathbf{x}) = 0, \\ g_1(\mathbf{x}) > 0, \ldots, g_l(\mathbf{x}) > 0 \} \end{aligned}$$

for f_i, g_j polynomials

- Slightly more boring: Semilinear Sets
- Really boring: Structure generated by <
- Structure generated by exp : $\mathbb{R} \to \mathbb{R}$
- Globally subanalytic sets

Introduction

O-Minimality

Monotonicity Theorem

Cell Decomposition Curve Selection Connectedness Drdered Groups

・ロト・日本・日本・ 日本・ シック・

"Definable _

O-Minimality

Introduction

• If a set $A \subset S_m$ for some *m*, we call *A* definable.

,,

- A function f : A → B (A ⊂ R^m, B ⊂ Rⁿ) is definable if its graph Γ(f) ⊂ R^{m+n} is definable
- Similarly, definably connected/path connected, etc.

Monotonicity Theorem

Cen Decomposition Curve Selection Connectedness Ordered Groups

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ 二臣 - のへで

"Definable

• If a set $A \subset S_m$ for some m, we call A definable.

,,

- A function f : A → B (A ⊂ R^m, B ⊂ Rⁿ) is definable if its graph Γ(f) ⊂ R^{m+n} is definable
- Similarly, definably connected/path connected, etc.
- A few definable things
 - $\{r\}$ for $r \in \mathcal{R}$
 - Interiors and closures of definable sets
 - Inverses, and compositions of definable functions (also images and preimages of and restrictions to definable sets)
 - ► If R = R and addition and mulitpication are definable: sums, products, limits, and derivatives of definable functions

Introduction

Monotonicity Theorem

Cell Decomposition Curve Selection Connectedness Ordered Groups References

What not to expect

O-Minimality

Introduction

Monotonicity Theorem

Cell Decomposition

Curve Selection

Connectedness

Ordered Groups

References

◆□▶ ◆□▶ ◆ ミ ▶ ◆ ミ ● ● ● ● ● ● ●

• Infinite subsets of $\mathcal R$ contain an interval

What not to expect

O-Minimality

Introduction

Monotonicity Theorem

Cell Decomposition Curve Selection Connectedness

References

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 のへぐ

- Infinite subsets of $\mathcal R$ contain an interval
- Uniform bounds

What not to expect

O-Minimality

Introduction

Monotonicity Theorem

Cell Decomposition Curve Selection

Connectedness

Ordered Groups

References

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・ うへぐ

- Infinite subsets of $\mathcal R$ contain an interval
- Uniform bounds

What not to expect

Too much 'infiniteness'

O-Minimality

Introduction

Monotonicity Theorem

Cell Decomposition Curve Selection Connectedness

References

・ロト ・ 日・ ・ 田・ ・ 日・ ・ 日・

- Infinite subsets of $\mathcal R$ contain an interval
- Uniform bounds

What not to expect

Too much 'infiniteness'

▶ ℤ

O-Minimality

Introduction

Monotonicity Theorem

Cell Decomposition Curve Selection Connectedness

References

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・ うへぐ

- Monotonicity Theorem
- Cell Decomposition
- Curve Selection Lemma
- ▶ Connected ⇔ Path Connected

Introduction

Monotonicity Theorem

Cell Decomposition Curve Selection

connectedness

Ordered Groups

References

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

- Monotonicity Theorem
- Cell Decomposition
- Curve Selection Lemma
- ► Connected ⇔ Path Connected
- All Groups are Abelian (ish)

Introduction

Monotonicity Theorem

Cell Decomposition Curve Selection Connectedness

Ordered Groups

References

・ロト・日本・山田・ 山田・ 山田・

Monotonicity Theorem

The Monotonicity Theorem

Let $f: (a, b) \to \mathcal{R}$ be a definable function. Then there are points $a = a_0 < a_1 < \ldots < a_k < a_{k+1} = b$ such that on each subinterval (a_j, a_{j+1}) , either f is constant or f is strictly monotone and continuous.

O-Minimality

Introduction

Monotonicity Theorem

Cell Decomposition Curve Selection Connectedness Ordered Groups References

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

Monotonicity Theorem

The Monotonicity Theorem

Let $f : (a, b) \to \mathcal{R}$ be a definable function. Then there are points $a = a_0 < a_1 < \ldots < a_k < a_{k+1} = b$ such that on each subinterval (a_j, a_{j+1}) , either f is constant or f is strictly monotone and continuous.

Outline of Proof.

The proof follows from three claims:

- 1. There is a subinterval of *I* on which *f* is constant or injective.
- 2. If f is injective, then f is strictly monotone on a subinterval of *I*.
- 3. if f is strictly monotone, then f is continuous on a subinterval of I.

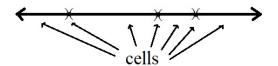
O-Minimality

Introduction

Monotonicity Theorem

Cell Decomposition Curve Selection Connectedness Ordered Groups References

Cell Decomposition of ${\mathcal R}$



(0)-cells: points(1)-cells: intervals

O-Minimality

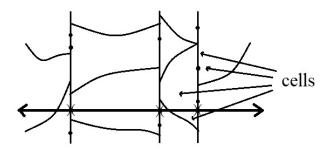
Introduction

Monotonicity Theorem

Cell Decomposition Curve Selection Connectedness Ordered Groups References

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 のへぐ

Cell Decomposition of \mathcal{R}^2



Introduction

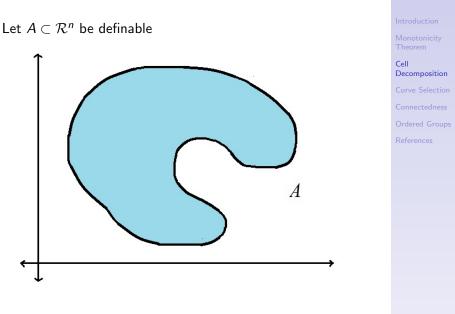
Monotonicity Theorem

Cell Decomposition Curve Selection Connectedness Ordered Groups References

(0,0)-cells: points(0,1)-cells: vertical intervals(1,0)-cells: graphs of continuous definable functions on an interval

(1,1)-cells: "bands" between two (1,0) cells

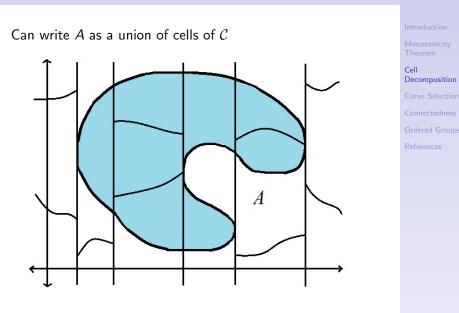
Cell Decomposition Adapted to a Set



・ロト ・ 画 ・ ・ 画 ・ ・ 画 ・ うらぐ

O-Minimality

Cell Decomposition Adapted to a Set



◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

O-Minimality

Curve Selection

The Curve Selection Lemma Let $A \subset \mathbb{R}^n$ be definable, and let $b \in \overline{A}$.

O-Minimality

Introduction

Monotonicity Theorem

Cell Decomposition

Curve Selection

Connectedness

Ordered Groups

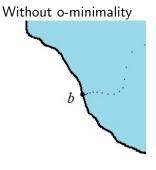
References

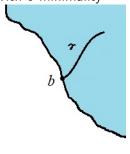
・ロト ・ 通 ト ・ 画 ト ・ 画 ・ 今 の ぐ

Curve Selection

The Curve Selection Lemma

Let $A \subset \mathcal{R}^n$ be definable, and let $b \in \overline{A}$. Then there exists a continuous definable map $\gamma : [0,1) \to \mathcal{R}^n$ such that $\gamma(0) = b$ and $\gamma((0,1)) \subset A$.





O-Minimality

Introduction

Monotonicity Theorem

Cell Decomposition

Curve Selection

Connectedness

Ordered Groups

References

Theorem

Let $A \subset \mathcal{R}^n$ be definable. Then we may write $A = A_1 \sqcup \ldots \sqcup A_k$ (with $A_i \cap A_j = \emptyset$ for $i \neq j$), where each A_i is nonempty, open and closed in A, and definably path connected. Furthermore, this partition is unique. **O-Minimality**

Introduction

Monotonicity Theorem

Cell Decomposition

Curve Selection

Connectedness

Ordered Groups

References

▲ロ ▶ ▲周 ▶ ▲ ヨ ▶ ▲ ヨ ▶ → ヨ → の Q @

$\mathsf{Connected} \Leftrightarrow \mathsf{Path} \ \mathsf{Connected}$

Theorem

Let $A \subset \mathcal{R}^n$ be definable. Then we may write $A = A_1 \sqcup \ldots \sqcup A_k$ (with $A_i \cap A_j = \emptyset$ for $i \neq j$), where each A_i is nonempty, open and closed in A, and definably path connected. Furthermore, this partition is unique.

Proof (existence).

Start with a cell decomposition $\mathcal C$ of $\mathcal R^n$ adapted to A

Introduction

Monotonicity Theorem

Cell Decomposition

Curve Selection

Connectedness

Ordered Groups

$\mathsf{Connected} \Leftrightarrow \mathsf{Path} \ \mathsf{Connected}$

Theorem

Let $A \subset \mathbb{R}^n$ be definable. Then we may write $A = A_1 \sqcup \ldots \sqcup A_k$ (with $A_i \cap A_j = \emptyset$ for $i \neq j$), where each A_i is nonempty, open and closed in A, and definably path connected. Furthermore, this partition is unique. O-Minimality

Connectedness

Proof (existence).

Start with a cell decomposition \mathcal{C} of \mathcal{R}^n adapted to A

◆□▶ ◆◎▶ ◆□▶ ◆□▶ ● □

1. For cells of \mathcal{C} , define $\mathcal{C} \prec D$ if $\mathcal{C} \cap \overline{D} \neq \emptyset$

$\mathsf{Connected} \Leftrightarrow \mathsf{Path} \ \mathsf{Connected}$

Theorem

Let $A \subset \mathbb{R}^n$ be definable. Then we may write $A = A_1 \sqcup \ldots \sqcup A_k$ (with $A_i \cap A_j = \emptyset$ for $i \neq j$), where each A_i is nonempty, open and closed in A, and definably path connected. Furthermore, this partition is unique.

Proof (existence).

Start with a cell decomposition \mathcal{C} of \mathcal{R}^n adapted to A

- 1. For cells of \mathcal{C} , define $\mathcal{C} \prec D$ if $\mathcal{C} \cap \overline{D} \neq \emptyset$
- 2. $C \prec D \Rightarrow \exists$ a path between $c \in C$ and $d \in D$

- 日本 - 1 日本 - 日本 - 日本 - 日本

O-Minimality

Introduction

Monotonicity Theorem

Cell Decomposition

Curve Selection

Connectedness

Ordered Groups

Theorem

Let $A \subset \mathbb{R}^n$ be definable. Then we may write $A = A_1 \sqcup \ldots \sqcup A_k$ (with $A_i \cap A_j = \emptyset$ for $i \neq j$), where each A_i is nonempty, open and closed in A, and definably path connected. Furthermore, this partition is unique.

Proof (existence).

Start with a cell decomposition \mathcal{C} of \mathcal{R}^n adapted to A

- 1. For cells of \mathcal{C} , define $\mathcal{C} \prec D$ if $\mathcal{C} \cap \overline{D} \neq \emptyset$
- 2. $C \prec D \Rightarrow \exists$ a path between $c \in C$ and $d \in D$
- 3. Define $C \sim D$ ($C, D \subset A$) if \exists a chain $C = C_0 \prec C_1 \succ C_2 \prec \ldots \succ C_l = D$

O-Minimality

Introduction

Monotonicity Theorem

Cell Decomposition

Curve Selection

Connectedness

Ordered Groups

・ロト ・日 ・ モー・ ・ モー・ くら・

Theorem

Let $A \subset \mathbb{R}^n$ be definable. Then we may write $A = A_1 \sqcup \ldots \sqcup A_k$ (with $A_i \cap A_j = \emptyset$ for $i \neq j$), where each A_i is nonempty, open and closed in A, and definably path connected. Furthermore, this partition is unique.

Proof (existence).

Start with a cell decomposition \mathcal{C} of \mathcal{R}^n adapted to A

- 1. For cells of \mathcal{C} , define $\mathcal{C} \prec D$ if $\mathcal{C} \cap \overline{D} \neq \emptyset$
- 2. $C \prec D \Rightarrow \exists$ a path between $c \in C$ and $d \in D$
- 3. Define $C \sim D$ $(C, D \subset A)$ if \exists a chain $C = C_0 \prec C_1 \succ C_2 \prec \ldots \succ C_l = D$
- 4. Build A_i s from equivalence classes of \sim

O-Minimality

Introduction

Monotonicity Theorem

Cell Decomposition

Curve Selection

Connectedness

Ordered Groups

Theorem

Let $A \subset \mathbb{R}^n$ be definable. Then we may write $A = A_1 \sqcup \ldots \sqcup A_k$ (with $A_i \cap A_j = \emptyset$ for $i \neq j$), where each A_i is nonempty, open and closed in A, and definably path connected. Furthermore, this partition is unique.

Corollary

A definably connected definable set is definably path connected.

Introduction

Monotonicity Theorem

Cell Decomposition

Curve Selection

Connectedness

Ordered Groups

Theorem

Let $A \subset \mathbb{R}^n$ be definable. Then we may write $A = A_1 \sqcup \ldots \sqcup A_k$ (with $A_i \cap A_j = \emptyset$ for $i \neq j$), where each A_i is nonempty, open and closed in A, and definably path connected. Furthermore, this partition is unique.

Corollary

A definably connected definable set is definably path connected.

When $\mathcal{R} = \mathbb{R}$, if A is definable, A connected \Rightarrow A definably connected \Leftrightarrow A definably path connected \Rightarrow A path connected.

Introduction

Monotonicity Theorem

Cell Decomposition

Curve Selection

Connectedness

Ordered Groups References

Definition

An ordered group is a group G with a linear order < such that for all $x, y, z \in G$,

 $x < y \Rightarrow zx < zy$ and xz < yz

O-Minimality

Introduction

Monotonicity Theorem

Cell Decomposition Curve Selection

Connectedness

Ordered Groups

References

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

Definition

An ordered group is a group G with a linear order < such that for all $x, y, z \in G$,

 $x < y \Rightarrow zx < zy$ and xz < yz

O-Minimality

Introduction

Monotonicity Theorem

Cell Decomposition

Curve Selection

Connectedness

Ordered Groups

References

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

Examples

Ordered Groups

Definition

An ordered group is a group G with a linear order < such that for all $x, y, z \in G$,

 $x < y \Rightarrow zx < zy$ and xz < yz

O-Minimality

Introduction

Monotonicity Theorem

Cell Decomposition

Curve Selection

Connectedness

Ordered Groups

References

▲ロ ▶ ▲周 ▶ ▲ ヨ ▶ ▲ ヨ ▶ → ヨ → の Q @

Examples

Ordered Groups

- ▶ (ℝ,+)
- ► ($\mathbb{R}_{>0}, \cdot$)

Not an Ordered Group

► (
$$\mathbb{R} \setminus \{0\}, \cdot$$
)

O-Minimality

Introduction

Monotonicity Theorem

Cell Decomposition

Curve Selection

Connectedness

Ordered Groups

References

Theorem All groups are Abelian

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

O-Minimal Ordered Groups

Theorem All groups are Abelian

Theorem

Let \mathcal{S} be an o-minimal structure on an ordered group \mathcal{R} , and say $\cdot : \mathcal{R} \times \mathcal{R} \to \mathcal{R}$ is definable in \mathcal{S} . Then \mathcal{R} is Abelian.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへで

Introduction

Monotonicity Theorem

Cell Decomposition

Curve Selection

Connectedness

Ordered Groups

References

O-Minimal Ordered Groups

Theorem All groups are Abelian

Theorem

Let \mathcal{S} be an o-minimal structure on an ordered group \mathcal{R} , and say $\cdot : \mathcal{R} \times \mathcal{R} \to \mathcal{R}$ is definable in \mathcal{S} . Then \mathcal{R} is Abelian.

Lemma

The only definable subsets of ${\mathcal R}$ that are also subgroups are $\{e\}$ and ${\mathcal R}$

Introduction

Monotonicity Theorem

Cell Decomposition

Curve Selection

Connectedness

Ordered Groups

References

Introduction

Monotonicity Theorem

Cell Decomposition Curve Selection Connectedness Ordered Groups References

[1] [2]

- Michel Coste. An Introduction to O-Minimal Geometry. Network RAAG. 1999.
- Lou van den Dries. *Tame Topology and O-minimal Structures*. London Mathematical Society Lecture Note Series. Cambridge University Press, 1998. ISBN: 0521598389.

▲ロ ▶ ▲周 ▶ ▲ ヨ ▶ ▲ ヨ ▶ → ヨ → の Q @