Alison Rosenblum

Purdue University

September 25, 2021

The Real Numbers

Remember that the real line is not the safe and simple locale that people assume at first glance; it's a wild jungle. You never know when you might stumble upon a compact, uncountable, totally disconnected, nowhere dense set of measure zero just as it starts to accumulate everywhere.

> Dr. Mel Friske Professor Emeritus Wisconsin Lutheran College

The Real Numbers

Remember that the real line is not the safe and simple locale that people assume at first glance; it's a wild jungle. You never know when you might stumble upon a compact, uncountable, totally disconnected, nowhere dense set of measure zero just as it starts to accumulate everywhere.

> Dr. Mel Friske Professor Emeritus Wisconsin Lutheran College

Within \mathbb{R}^n lurks...

Our Itinerary:

- Welcome Center (definitions and examples)
- A few nice theorems
- Cell Decomposition

Our Itinerary:

- Welcome Center (definitions and examples)
- A few nice theorems
- Cell Decomposition
- All Groups are Abelian

Our Itinerary:

- Welcome Center (definitions and examples)
- A few nice theorems
- Cell Decomposition
- All Groups are Abelian (ish)

Let $(\mathcal{R},<)$ be a nonempty dense linearly ordered set without endpoints (or, let $\mathcal{R}=\mathbb{R}$).

Definition

A structure S on \mathcal{R} is made up of $S_n \subset \mathcal{P}(\mathcal{R}^n)$ for each $n \in \mathbb{N}$, with

Let $(\mathcal{R}, <)$ be a nonempty dense linearly ordered set without endpoints (or, let $\mathcal{R} = \mathbb{R}$).

Definition

- A structure S on \mathcal{R} is made up of $S_n \subset \mathcal{P}(\mathcal{R}^n)$ for each $n \in \mathbb{N}$, with
 - **(**) S_m closed under \cup , \cap , and complements

Let $(\mathcal{R}, <)$ be a nonempty dense linearly ordered set without endpoints (or, let $\mathcal{R} = \mathbb{R}$).

Definition

A structure S on \mathcal{R} is made up of $S_n \subset \mathcal{P}(\mathcal{R}^n)$ for each $n \in \mathbb{N}$, with

- **(**) S_m closed under \cup , \cap , and complements
- **2** If $A \in S_m$, then $A \times \mathcal{R}, \mathcal{R} \times A \in S_{m+1}$
- ◎ If $A \in S_{m+1}$, then $\pi(A) \in S_m$ (where $\pi : \mathbb{R}^{m+1} \to \mathbb{R}^m$ is the projection onto the first *m* coordinates).

Let $(\mathcal{R}, <)$ be a nonempty dense linearly ordered set without endpoints (or, let $\mathcal{R} = \mathbb{R}$).

Definition

A structure S on \mathcal{R} is made up of $S_n \subset \mathcal{P}(\mathcal{R}^n)$ for each $n \in \mathbb{N}$, with

- **(**) S_m closed under \cup , \cap , and complements
- **2** If $A \in S_m$, then $A \times \mathcal{R}, \mathcal{R} \times A \in S_{m+1}$
- If $A \in S_{m+1}$, then $\pi(A) \in S_m$ (where $\pi : \mathbb{R}^{m+1} \to \mathbb{R}^m$ is the projection onto the first *m* coordinates).

○ {
$$(x_1,...,x_m) \in \mathcal{R}^m | x_i = x_j$$
} $\in S_m$ ($i, j \in \{1,...,m\}$)

Definition

A structure S on \mathcal{R} is made up of $S_n \subset \mathcal{P}(\mathcal{R}^n)$ for each $n \in \mathbb{N}$, with

- **(**) S_m closed under \cup , \cap , and complements
- **2** If $A \in S_m$, then $A \times \mathcal{R}, \mathcal{R} \times A \in S_{m+1}$
- ◎ If $A \in S_{m+1}$, then $\pi(A) \in S_m$ (where $\pi : \mathbb{R}^{m+1} \to \mathbb{R}^m$ is the projection onto the first *m* coordinates).

○ {
$$(x_1,...,x_m) \in \mathcal{R}^m | x_i = x_j$$
} $\in S_m$ ($i, j \in \{1,...,m\}$)

Definition

An o-minimal structure is a structure ${\mathcal S}$ with

Definition

A structure S on \mathcal{R} is made up of $S_n \subset \mathcal{P}(\mathcal{R}^n)$ for each $n \in \mathbb{N}$, with

- **(**) S_m closed under \cup , \cap , and complements
- **2** If $A \in S_m$, then $A \times \mathcal{R}, \mathcal{R} \times A \in S_{m+1}$
- ◎ If $A \in S_{m+1}$, then $\pi(A) \in S_m$ (where $\pi : \mathbb{R}^{m+1} \to \mathbb{R}^m$ is the projection onto the first *m* coordinates).

○ {
$$(x_1,...,x_m) \in \mathcal{R}^m | x_i = x_j$$
} $\in \mathcal{S}_m$ ($i, j \in \{1,...,m\}$)

Definition

An o-minimal structure is a structure $\ensuremath{\mathcal{S}}$ with

$$(x, y) \in \mathcal{R}^2 \mid x < y \} \in \mathcal{S}_2$$

Definition

A structure S on \mathcal{R} is made up of $S_n \subset \mathcal{P}(\mathcal{R}^n)$ for each $n \in \mathbb{N}$, with

- **(**) S_m closed under \cup , \cap , and complements
- **2** If $A \in S_m$, then $A \times \mathcal{R}, \mathcal{R} \times A \in S_{m+1}$
- ◎ If $A \in S_{m+1}$, then $\pi(A) \in S_m$ (where $\pi : \mathbb{R}^{m+1} \to \mathbb{R}^m$ is the projection onto the first *m* coordinates).

○ {
$$(x_1,...,x_m) \in \mathcal{R}^m | x_i = x_j$$
} $\in \mathcal{S}_m$ ($i, j \in \{1,...,m\}$)

Definition

An o-minimal structure is a structure ${\mathcal S}$ with

$$(x, y) \in \mathcal{R}^2 \mid x < y \} \in \mathcal{S}_2$$

) The sets in \mathcal{S}_1 are exactly the finite unions of intervals and points

Examples

Semialgebraic Sets: assembled from

$$\{oldsymbol{x}\in\mathbb{R}^n\mid f(oldsymbol{x})=0\}$$
 and $\{oldsymbol{x}\in\mathbb{R}^n\mid g(oldsymbol{x})>0\}$

for f, g polynomials

Examples

Semialgebraic Sets: assembled from

$$\{ \boldsymbol{x} \in \mathbb{R}^n \mid f(\boldsymbol{x}) = 0 \}$$
 and $\{ \boldsymbol{x} \in \mathbb{R}^n \mid g(\boldsymbol{x}) > 0 \}$

for f, g polynomials

- Slightly more boring: Semilinear Sets
- Really boring: Structure generated by <</p>

Examples

Semialgebraic Sets: assembled from

$$\{ \boldsymbol{x} \in \mathbb{R}^n \mid f(\boldsymbol{x}) = 0 \}$$
 and $\{ \boldsymbol{x} \in \mathbb{R}^n \mid g(\boldsymbol{x}) > 0 \}$

for f, g polynomials

- Slightly more boring: Semilinear Sets
- Really boring: Structure generated by <</p>
- ▶ Structure generated by e^x or by sin(x) where $eg -\frac{\pi}{2} \le x \le \frac{\pi}{2}$

Welcome to O-Minimality

"Definable _____"

▶ If a set $A \subset S_m$ for some *m*, we call *A* definable.

"Definable _____

- ▶ If a set $A \subset S_m$ for some *m*, we call *A* definable.
- ► A function $f : A \to B$ $(A \subset \mathbb{R}^m, B \subset \mathbb{R}^n)$ is definable if its graph $\Gamma(f) \subset \mathbb{R}^{m+n}$ is definable

"Definable _____

- ▶ If a set $A \subset S_m$ for some *m*, we call *A* definable.
- ► A function $f : A \to B$ $(A \subset \mathbb{R}^m, B \subset \mathbb{R}^n)$ is definable if its graph $\Gamma(f) \subset \mathbb{R}^{m+n}$ is definable
- etc...

$$\begin{array}{l} \cap, \cup, \text{ complement} \\ A \times \mathcal{R}, \, \mathcal{R} \times A \\ \pi : \mathcal{R}^{n+1} \to \mathcal{R}^n \\ \{(x_1, \dots, x_n) \in \mathcal{R}^n \mid x_i = x_j\} \\ \{(x, y) \in \mathcal{R}^2 \mid x < y\} \end{array}$$

$$\begin{array}{ccc} \cap, \cup, \text{ complement} & \leftrightarrow & \wedge, \vee, \neg \\ & A \times \mathcal{R}, \, \mathcal{R} \times A \\ & \pi : \mathcal{R}^{n+1} \to \mathcal{R}^n \\ \{(x_1, \dots, x_n) \in \mathcal{R}^n \mid x_i = x_j\} \\ & \{(x, y) \in \mathcal{R}^2 \mid x < y\} \end{array}$$

$$\begin{array}{ccc} \cap, \cup, \text{ complement} & \leftrightarrow & \wedge, \vee, \neg \\ & A \times \mathcal{R}, \ \mathcal{R} \times A \\ & \pi : \mathcal{R}^{n+1} \to \mathcal{R}^n \\ \{(x_1, \dots, x_n) \in \mathcal{R}^n \mid x_i = x_j\} \\ & \{(x, y) \in \mathcal{R}^2 \mid x < y\} \end{array}$$

$$\begin{array}{ccc} \cap, \cup, \text{ complement} & \leftrightarrow & \wedge, \vee, \neg \\ & A \times \mathcal{R}, \, \mathcal{R} \times A \\ & \pi : \mathcal{R}^{n+1} \to \mathcal{R}^n & \leftrightarrow & \exists \\ \{(x_1, \dots, x_n) \in \mathcal{R}^n \mid x_i = x_j\} \\ & \{(x, y) \in \mathcal{R}^2 \mid x < y\} \end{array}$$

$$\begin{array}{cccc} \cap, \cup, \text{ complement} & \leftrightarrow & \wedge, \vee, \neg \\ & A \times \mathcal{R}, \ \mathcal{R} \times A \\ & \pi : \mathcal{R}^{n+1} \to \mathcal{R}^n & \leftrightarrow & \exists \\ \{(x_1, \dots, x_n) \in \mathcal{R}^n \mid x_i = x_j\} & \leftrightarrow & = \\ & \{(x, y) \in \mathcal{R}^2 \mid x < y\} \end{array}$$

$$\begin{array}{cccc} \cap, \cup, \text{ complement} & \leftrightarrow & \wedge, \vee, \neg \\ & A \times \mathcal{R}, \, \mathcal{R} \times A \\ & \pi : \mathcal{R}^{n+1} \to \mathcal{R}^n & \leftrightarrow & \exists \\ \{(x_1, \dots, x_n) \in \mathcal{R}^n \mid x_i = x_j\} & \leftrightarrow & = \\ & \{(x, y) \in \mathcal{R}^2 \mid x < y\} & \leftrightarrow & < \end{array}$$

New definable sets

 $\{\mathbf{x} \in \mathcal{R}^n \mid \text{ statement involving definable things and } \uparrow\}$

$$\begin{array}{cccc} \cap, \cup, \text{ complement} & \leftrightarrow & \land, \lor, \neg \\ A \times \mathcal{R}, \mathcal{R} \times A & & \\ \pi : \mathcal{R}^{n+1} \to \mathcal{R}^n & \leftrightarrow & \exists \\ \{(x_1, \dots, x_n) \in \mathcal{R}^n \mid x_i = x_j\} & \leftrightarrow & = \\ \{(x, y) \in \mathcal{R}^2 \mid x < y\} & \leftrightarrow & < \end{array}$$

New definable sets

$$\{\mathbf{x} \in \mathcal{R}^{n} \mid \text{ statement involving definable things and } \}$$

for $m \ge n$

A Few Definable Things

- ▶ $\{r\}$ for $r \in \mathcal{R}$
- Interiors and closures of definable sets
- Inverses, and compositions of definable functions (also images and preimages of and restrictions to definable sets)
- If R = ℝ and addition and mulitpication are definable: sums, products, limits, and derivatives of definable functions

Welcome to O-Minimality

As you set out...

What to expect

What not to expect

What to expect

▶ Infinite subsets of *R* contain an interval

What not to expect

What to expect

- Infinite subsets of R contain an interval
- Uniform bounds

What not to expect

What to expect

- Infinite subsets of R contain an interval
- Uniform bounds

What not to expect

Too much 'infiniteness'

What to expect

- Infinite subsets of R contain an interval
- Uniform bounds

What not to expect

Too much 'infiniteness'

 $\triangleright \mathbb{Z}$

Some Theorems

Curve Selection

The Curve Selection Lemma

Let $A \subset \mathcal{R}^n$ be definable, and let $b \in \overline{A}$.

Curve Selection

The Curve Selection Lemma

Let $A \subset \mathcal{R}^n$ be definable, and let $b \in \overline{A}$.

Without o-minimality b

Some Theorems

Curve Selection

The Curve Selection Lemma

Let $A \subset \mathcal{R}^n$ be definable, and let $b \in \overline{A}$. Then there exists a continuous definable map $\gamma : [0, 1) \to \mathcal{R}^n$ such that $\gamma(0) = b$ and $\gamma((0, 1)) \subset A$.

Monotonicity Theorem

The Monotonicity Theorem

Let $f: (a, b) \to \mathcal{R}$ be a definable function. Then there are points $a = a_0 < a_1 < \ldots < a_k < a_{k+1} = b$ such that on each subinterval (a_j, a_{j+1}) , either f is constant or f is strictly monotone and continuous.

Cell Decomposition of \mathcal{R}

Cell Decomposition of \mathcal{R}

Cells:

PURDUE

intervals

Cell Decomposition of \mathcal{R}^2

Cells:

vertical "intervals"

- graphs of continuous definable functions on an interval
 - "bands" between two graphs

Cell Decomposition Adapted to a Set

Let $A \subset \mathcal{R}^n$ be definable.

Cell Decomposition Adapted to a Set

Let $A \subset \mathcal{R}^n$ be definable. Can decompose \mathcal{R}^n to write A as a union of cells.

Consequences of Cell Decomposisiton

- Intuitive concept of dimension
- $O E finably connected \Rightarrow definably path connected$
- Triangulation of definable sets

Purdue

Ordered Groups

Ordered Groups

O-Minimal Ordered Groups

Definition

An ordered group is a group G with a linear order < such that for all $x, y, z \in G$,

 $x < y \Rightarrow zx < zy$ and xz < yz

Ordered Groups

O-Minimal Ordered Groups

Definition

An ordered group is a group G with a linear order < such that for all $x, y, z \in G$,

$x < y \Rightarrow zx < zy$ and xz < yz

Examples

Ordered Groups

O-Minimal Ordered Groups

Definition

An ordered group is a group G with a linear order < such that for all $x, y, z \in G$,

$x < y \Rightarrow zx < zy$ and xz < yz

Examples

Ordered Groups

- ► (ℝ, +)
- ▶ ($\mathbb{R}_{>0}, \cdot$)

Not an Ordered Group

• (
$$\mathbb{R} \setminus \{0\}, \cdot$$
)

Ordered Groups

O-Minimal Ordered Groups

Theorem

All groups are Abelian

O-Minimal Ordered Groups

Theorem

All groups are Abelian

Theorem

Let \mathcal{S} be an o-minimal structure on an ordered group \mathcal{R} , and say $\cdot : \mathcal{R} \times \mathcal{R} \to \mathcal{R}$ is definable in \mathcal{S} . Then \mathcal{R} is Abelian.

O-Minimal Ordered Groups

Theorem

All groups are Abelian

Theorem

Let \mathcal{S} be an o-minimal structure on an ordered group \mathcal{R} , and say $\cdot : \mathcal{R} \times \mathcal{R} \to \mathcal{R}$ is definable in \mathcal{S} . Then \mathcal{R} is Abelian.

Lemma

The only definable subsets of $\mathcal R$ that are also subgroups are $\{e\}$ and $\mathcal R$

Proof Sketch

Proof (lemma).

▶ Let $\{e\} \neq H \subset \mathcal{R}$ be a definable subgroup. Then $H = (s^{-1}, s)$ or $H = [s^{-1}, s]$.

Assume not, and say e < r < h for $h \in H$ and $r \notin H$

$$\begin{array}{c|c} \bullet & \mathbf{r} & \mathbf{h} & \mathbf{rh} & \mathbf{h}^2 & \mathbf{rh}^2 & \cdots \end{array}$$

$$\blacktriangleright s = \infty$$

.

Proof Sketch

Proof (lemma).

▶ Let $\{e\} \neq H \subset \mathcal{R}$ be a definable subgroup. Then $H = (s^{-1}, s)$ or $H = [s^{-1}, s]$.

Assume not, and say e < r < h for $h \in H$ and $r \notin H$

$$\begin{array}{c|c} \bullet & \bullet & \bullet \\ \bullet & r & h & rh & h^2 & rh^2 & \cdots \end{array}$$

$$\blacktriangleright$$
 s = ∞

.

Proof (\mathcal{R} is Abelian).

 $r \in \mathcal{R}$: consider $C(r) = \{s \in \mathcal{R} \mid sr = rs\}$, a definable subgroup of \mathcal{R} Since $r \in C(r)$, $C(r) \neq \{e\}$, so $C(R) = \mathcal{R}$ for all $r \in \mathcal{R}$

References

Michel Coste. An introduction to o-minimal geometry. Istituti editoriali e poligrafici internazionali Pisa, 2000.

LOU AUTOR VAN DEN DRIES, Lou Van den Dries, et al. Tame topology and o-minimal structures. Vol. 248. Cambridge university press, 1998.

