A Tourist's Guide to O-Minimality

Alison Rosenblum

Purdue University
September 25, 2021

The Real Numbers

Remember that the real line is not the safe and simple locale that people assume at first glance; it's a wild jungle. You never know when you might stumble upon a compact, uncountable, totally disconnected, nowhere dense set of measure zero just as it starts to accumulate everywhere.

Dr. Mel Friske Professor Emeritus
Wisconsin Lutheran College

The Real Numbers

Remember that the real line is not the safe and simple locale that people assume at first glance; it's a wild jungle. You never know when you might stumble upon a compact, uncountable, totally disconnected, nowhere dense set of measure zero just as it starts to accumulate everywhere.

Dr. Mel Friske Professor Emeritus Wisconsin Lutheran College

Within \mathbb{R}^{n} lurks...

Welcome to O-Minimality

Welcome to O-Minimality

Our Itinerary:

- Welcome Center (definitions and examples)
- A few nice theorems
- Cell Decomposition

Welcome to O-Minimality

Our Itinerary:

- Welcome Center (definitions and examples)
- A few nice theorems
- Cell Decomposition
- All Groups are Abelian

Welcome to O-Minimality

Our Itinerary:

- Welcome Center (definitions and examples)
- A few nice theorems
- Cell Decomposition
- All Groups are Abelian (ish)

O-Minimal Structures

Let $(\mathcal{R},<)$ be a nonempty dense linearly ordered set without endpoints (or, let $\mathcal{R}=\mathbb{R}$).

Definition

A structure \mathcal{S} on \mathcal{R} is made up of $\mathcal{S}_{n} \subset \mathcal{P}\left(\mathcal{R}^{n}\right)$ for each $n \in \mathbb{N}$, with

O-Minimal Structures

Let $(\mathcal{R},<)$ be a nonempty dense linearly ordered set without endpoints (or, let $\mathcal{R}=\mathbb{R}$).

Definition

A structure \mathcal{S} on \mathcal{R} is made up of $\mathcal{S}_{n} \subset \mathcal{P}\left(\mathcal{R}^{n}\right)$ for each $n \in \mathbb{N}$, with
(1) \mathcal{S}_{m} closed under \cup, \cap, and complements

O-Minimal Structures

Let $(\mathcal{R},<)$ be a nonempty dense linearly ordered set without endpoints (or, let $\mathcal{R}=\mathbb{R}$).

Definition

A structure \mathcal{S} on \mathcal{R} is made up of $\mathcal{S}_{n} \subset \mathcal{P}\left(\mathcal{R}^{n}\right)$ for each $n \in \mathbb{N}$, with
(1) \mathcal{S}_{m} closed under \cup, \cap, and complements
(2) If $A \in \mathcal{S}_{m}$, then $A \times \mathcal{R}, \mathcal{R} \times A \in \mathcal{S}_{m+1}$
(3) If $A \in \mathcal{S}_{m+1}$, then $\pi(A) \in \mathcal{S}_{m}$ (where $\pi: \mathcal{R}^{m+1} \rightarrow \mathcal{R}^{m}$ is the projection onto the first m coordinates).

O-Minimal Structures

Let $(\mathcal{R},<)$ be a nonempty dense linearly ordered set without endpoints (or, let $\mathcal{R}=\mathbb{R}$).

Definition

A structure \mathcal{S} on \mathcal{R} is made up of $\mathcal{S}_{n} \subset \mathcal{P}\left(\mathcal{R}^{n}\right)$ for each $n \in \mathbb{N}$, with
(1) \mathcal{S}_{m} closed under \cup, \cap, and complements
(2) If $A \in \mathcal{S}_{m}$, then $A \times \mathcal{R}, \mathcal{R} \times A \in \mathcal{S}_{m+1}$
(3) If $A \in \mathcal{S}_{m+1}$, then $\pi(A) \in \mathcal{S}_{m}$ (where $\pi: \mathcal{R}^{m+1} \rightarrow \mathcal{R}^{m}$ is the projection onto the first m coordinates).
(1) $\left\{\left(x_{1}, \ldots, x_{m}\right) \in \mathcal{R}^{m} \mid x_{i}=x_{j}\right\} \in \mathcal{S}_{m}(i, j \in\{1, \ldots, m\})$

O-Minimal Structures

Definition

A structure \mathcal{S} on \mathcal{R} is made up of $\mathcal{S}_{n} \subset \mathcal{P}\left(\mathcal{R}^{n}\right)$ for each $n \in \mathbb{N}$, with
(1) \mathcal{S}_{m} closed under \cup, \cap, and complements
(2) If $A \in \mathcal{S}_{m}$, then $A \times \mathcal{R}, \mathcal{R} \times A \in \mathcal{S}_{m+1}$
(3) If $A \in \mathcal{S}_{m+1}$, then $\pi(A) \in \mathcal{S}_{m}$ (where $\pi: \mathcal{R}^{m+1} \rightarrow \mathcal{R}^{m}$ is the projection onto the first m coordinates).

- $\left\{\left(x_{1}, \ldots, x_{m}\right) \in \mathcal{R}^{m} \mid x_{i}=x_{j}\right\} \in \mathcal{S}_{m}(i, j \in\{1, \ldots, m\})$

Definition

An o-minimal structure is a structure \mathcal{S} with

O-Minimal Structures

Definition

A structure \mathcal{S} on \mathcal{R} is made up of $\mathcal{S}_{n} \subset \mathcal{P}\left(\mathcal{R}^{n}\right)$ for each $n \in \mathbb{N}$, with
(1) \mathcal{S}_{m} closed under \cup, \cap, and complements
(2) If $A \in \mathcal{S}_{m}$, then $A \times \mathcal{R}, \mathcal{R} \times A \in \mathcal{S}_{m+1}$
(3) If $A \in \mathcal{S}_{m+1}$, then $\pi(A) \in \mathcal{S}_{m}$ (where $\pi: \mathcal{R}^{m+1} \rightarrow \mathcal{R}^{m}$ is the projection onto the first m coordinates).

- $\left\{\left(x_{1}, \ldots, x_{m}\right) \in \mathcal{R}^{m} \mid x_{i}=x_{j}\right\} \in \mathcal{S}_{m}(i, j \in\{1, \ldots, m\})$

Definition

An o-minimal structure is a structure \mathcal{S} with
(0) $\left\{(x, y) \in \mathcal{R}^{2} \mid x<y\right\} \in \mathcal{S}_{2}$

O-Minimal Structures

Definition

A structure \mathcal{S} on \mathcal{R} is made up of $\mathcal{S}_{n} \subset \mathcal{P}\left(\mathcal{R}^{n}\right)$ for each $n \in \mathbb{N}$, with
(1) \mathcal{S}_{m} closed under \cup, \cap, and complements
(2) If $A \in \mathcal{S}_{m}$, then $A \times \mathcal{R}, \mathcal{R} \times A \in \mathcal{S}_{m+1}$
(3) If $A \in \mathcal{S}_{m+1}$, then $\pi(A) \in \mathcal{S}_{m}$ (where $\pi: \mathcal{R}^{m+1} \rightarrow \mathcal{R}^{m}$ is the projection onto the first m coordinates).

- $\left\{\left(x_{1}, \ldots, x_{m}\right) \in \mathcal{R}^{m} \mid x_{i}=x_{j}\right\} \in \mathcal{S}_{m}(i, j \in\{1, \ldots, m\})$

Definition

An o-minimal structure is a structure \mathcal{S} with
(0) $\left\{(x, y) \in \mathcal{R}^{2} \mid x<y\right\} \in \mathcal{S}_{2}$
(0) The sets in \mathcal{S}_{1} are exactly the finite unions of intervals and points

Examples

- Semialgebraic Sets: assembled from

$$
\left\{\boldsymbol{x} \in \mathbb{R}^{n} \mid f(\boldsymbol{x})=0\right\} \text { and }\left\{\boldsymbol{x} \in \mathbb{R}^{n} \mid g(\boldsymbol{x})>0\right\}
$$

for f, g polynomials

Examples

- Semialgebraic Sets: assembled from

$$
\left\{\boldsymbol{x} \in \mathbb{R}^{n} \mid f(\boldsymbol{x})=0\right\} \text { and }\left\{\boldsymbol{x} \in \mathbb{R}^{n} \mid g(\boldsymbol{x})>0\right\}
$$

for f, g polynomials

- Slightly more boring: Semilinear Sets
- Really boring: Structure generated by $<$

Examples

- Semialgebraic Sets: assembled from

$$
\left\{\boldsymbol{x} \in \mathbb{R}^{n} \mid f(\boldsymbol{x})=0\right\} \text { and }\left\{\boldsymbol{x} \in \mathbb{R}^{n} \mid g(\boldsymbol{x})>0\right\}
$$

for f, g polynomials

- Slightly more boring: Semilinear Sets
- Really boring: Structure generated by $<$
- Structure generated by e^{x} or by $\sin (x)$ where eg $-\frac{\pi}{2} \leq x \leq \frac{\pi}{2}$

"Definable

- If a set $A \subset \mathcal{S}_{m}$ for some m, we call A definable.

"Definable

- If a set $A \subset \mathcal{S}_{m}$ for some m, we call A definable.
- A function $f: A \rightarrow B\left(A \subset \mathcal{R}^{m}, B \subset \mathcal{R}^{n}\right)$ is definable if its graph $\Gamma(f) \subset \mathcal{R}^{m+n}$ is definable

"Definable

- If a set $A \subset \mathcal{S}_{m}$ for some m, we call A definable.
- A function $f: A \rightarrow B\left(A \subset \mathcal{R}^{m}, B \subset \mathcal{R}^{n}\right)$ is definable if its graph $\Gamma(f) \subset \mathcal{R}^{m+n}$ is definable - etc...

Model Theory Connection

$$
\begin{gathered}
\cap, \cup, \text { complement } \\
A \times \mathcal{R}, \mathcal{R} \times A \\
\pi: \mathcal{R}^{n+1} \rightarrow \mathcal{R}^{n} \\
\left\{\left(x_{1}, \ldots, x_{n}\right) \in \mathcal{R}^{n} \mid x_{i}=x_{j}\right\} \\
\left\{(x, y) \in \mathcal{R}^{2} \mid x<y\right\}
\end{gathered}
$$

Model Theory Connection

$$
\begin{array}{cl}
\cap, \cup, \text { complement } & \leftrightarrow \quad \wedge, \vee, \neg \\
A \times \mathcal{R}, \mathcal{R} \times A \\
\pi: \mathcal{R}^{n+1} \rightarrow \mathcal{R}^{n} \\
\left\{\left(x_{1}, \ldots, x_{n}\right) \in \mathcal{R}^{n} \mid x_{i}=x_{j}\right\} \\
\left\{(x, y) \in \mathcal{R}^{2} \mid x<y\right\}
\end{array}
$$

Model Theory Connection

$$
\begin{gathered}
\cap, \cup, \text { complement } \quad \leftrightarrow \quad \wedge, \vee, \neg \\
A \times \mathcal{R}, \mathcal{R} \times A \\
\pi: \mathcal{R}^{n+1} \rightarrow \mathcal{R}^{n} \\
\left\{\left(x_{1}, \ldots, x_{n}\right) \in \mathcal{R}^{n} \mid x_{i}=x_{j}\right\} \\
\left\{(x, y) \in \mathcal{R}^{2} \mid x<y\right\}
\end{gathered}
$$

Model Theory Connection

$$
\begin{array}{ccc}
\cap, \cup, \text { complement } & \leftrightarrow & \wedge, \vee, \neg \\
A \times \mathcal{R}, \mathcal{R} \times A \\
\pi: \mathcal{R}^{n+1} \rightarrow \mathcal{R}^{n} & \leftrightarrow & \exists \\
\left\{\left(x_{1}, \ldots, x_{n}\right) \in \mathcal{R}^{n} \mid x_{i}=x_{j}\right\} & & \\
\left\{(x, y) \in \mathcal{R}^{2} \mid x<y\right\} & &
\end{array}
$$

Model Theory Connection

$$
\begin{array}{ccc}
\cap, \cup, \text { complement } & \leftrightarrow & \wedge, \vee, \neg \\
A \times \mathcal{R}, \mathcal{R} \times A & & \\
\pi: \mathcal{R}^{n+1} \rightarrow \mathcal{R}^{n} & \leftrightarrow & \exists \\
\left\{\left(x_{1}, \ldots, x_{n}\right) \in \mathcal{R}^{n} \mid x_{i}=x_{j}\right\} & \leftrightarrow & = \\
\left\{(x, y) \in \mathcal{R}^{2} \mid x<y\right\} & &
\end{array}
$$

Model Theory Connection

$$
\begin{array}{ccc}
\cap, \cup, \text { complement } & \leftrightarrow & \wedge, \vee, \neg \\
A \times \mathcal{R}, \mathcal{R} \times A & & \\
\pi: \mathcal{R}^{n+1} \rightarrow \mathcal{R}^{n} & \leftrightarrow & \exists \\
\left\{\left(x_{1}, \ldots, x_{n}\right) \in \mathcal{R}^{n} \mid x_{i}=x_{j}\right\} & \leftrightarrow & = \\
\left\{(x, y) \in \mathcal{R}^{2} \mid x<y\right\} & \leftrightarrow & <
\end{array}
$$

Model Theory Connection

$$
\begin{array}{ccc}
\cap, \cup, \text { complement } & \leftrightarrow & \wedge, \vee, \neg \\
A \times \mathcal{R}, \mathcal{R} \times A & & \exists \\
\pi: \mathcal{R}^{n+1} \rightarrow \mathcal{R}^{n} & \leftrightarrow & \exists \\
\left\{\left(x_{1}, \ldots, x_{n}\right) \in \mathcal{R}^{n} \mid x_{i}=x_{j}\right\} & \leftrightarrow & = \\
\left\{(x, y) \in \mathcal{R}^{2} \mid x<y\right\} & \leftrightarrow & <
\end{array}
$$

New definable sets

$$
\left\{x \in \mathcal{R}^{n} \mid \text { statement involving definable things and } \uparrow\right\}
$$

Model Theory Connection

$$
\begin{array}{ccc}
\cap, \cup, \text { complement } & \leftrightarrow & \wedge, \vee, \neg \\
A \times \mathcal{R}, \mathcal{R} \times A & & \\
\pi: \mathcal{R}^{n+1} \rightarrow \mathcal{R}^{n} & \leftrightarrow & \exists \\
\left\{\left(x_{1}, \ldots, x_{n}\right) \in \mathcal{R}^{n} \mid x_{i}=x_{j}\right\} & \leftrightarrow & = \\
\left\{(x, y) \in \mathcal{R}^{2} \mid x<y\right\} & \leftrightarrow & <
\end{array}
$$

New definable sets

$$
\left\{x \in \mathcal{R}^{\boldsymbol{h}^{m}} \mid \text { statement involving definable things and } \uparrow\right\}
$$

$$
\text { for } m \geq n
$$

A Few Definable Things

- $\{r\}$ for $r \in \mathcal{R}$
- Interiors and closures of definable sets
- Inverses, and compositions of definable functions (also images and preimages of and restrictions to definable sets)
- If $\mathcal{R}=\mathbb{R}$ and addition and mulitpication are definable: sums, products, limits, and derivatives of definable functions

As you set out...

What to expect

What not to expect

As you set out...

What to expect

- Infinite subsets of \mathcal{R} contain an interval

What not to expect

As you set out...

What to expect

- Infinite subsets of \mathcal{R} contain an interval
- Uniform bounds

What not to expect

As you set out...

What to expect

- Infinite subsets of \mathcal{R} contain an interval
- Uniform bounds

What not to expect

- Too much 'infiniteness'

As you set out...

What to expect

- Infinite subsets of \mathcal{R} contain an interval
- Uniform bounds

What not to expect

- Too much 'infiniteness'
- \mathbb{Z}

Some Theorems

Curve Selection

The Curve Selection Lemma

Let $A \subset \mathcal{R}^{n}$ be definable, and let $b \in \bar{A}$.

Curve Selection

The Curve Selection Lemma

Let $A \subset \mathcal{R}^{n}$ be definable, and let $b \in \bar{A}$.

Without o-minimality

Curve Selection

The Curve Selection Lemma

Let $A \subset \mathcal{R}^{n}$ be definable, and let $b \in \bar{A}$. Then there exists a continuous definable map $\gamma:[0,1) \rightarrow \mathcal{R}^{n}$ such that $\gamma(0)=b$ and $\gamma((0,1)) \subset A$.

Without o-minimality

With o-minimality

Monotonicity Theorem

The Monotonicity Theorem

Let $f:(a, b) \rightarrow \mathcal{R}$ be a definable function. Then there are points $a=a_{0}<a_{1}<\ldots<a_{k}<a_{k+1}=b$ such that on each subinterval $\left(a_{j}, a_{j+1}\right)$, either f is constant or f is strictly monotone and continuous.

Cell Decomposition of \mathcal{R}

Cell Decomposition of \mathcal{R}

Cells:

(1) points
(2) intervals

Cell Decomposition of \mathcal{R}^{2}

Cells:
(1) points
(2) vertical "intervals"
© graphs of continuous definable functions on an interval

- "bands" between two graphs

Cell Decomposition Adapted to a Set

Let $A \subset \mathcal{R}^{n}$ be definable .

Cell Decomposition Adapted to a Set

Let $A \subset \mathcal{R}^{n}$ be definable. Can decompose \mathcal{R}^{n} to write A as a union of cells.

Consequences of Cell Decomposisiton

© Intuitive concept of dimension
(2) Definably connected \Rightarrow definably path connected
(Triangulation of definable sets

Ordered Groups

O-Minimal Ordered Groups

Definition

An ordered group is a group G with a linear order $<$ such that for all $x, y, z \in G$,

$$
x<y \Rightarrow z x<z y \text { and } x z<y z
$$

O-Minimal Ordered Groups

Definition

An ordered group is a group G with a linear order < such that for all $x, y, z \in G$,

$$
x<y \Rightarrow z x<z y \text { and } x z<y z
$$

Examples

Ordered Groups

- $(\mathbb{R},+)$
- $\left(\mathbb{R}_{>0}, \cdot\right)$

O-Minimal Ordered Groups

Definition

An ordered group is a group G with a linear order < such that for all $x, y, z \in G$,

$$
x<y \Rightarrow z x<z y \text { and } x z<y z
$$

Examples

Ordered Groups

- $(\mathbb{R},+)$
- $\left(\mathbb{R}_{>0}, \cdot\right)$

Not an Ordered Group

- $(\mathbb{R} \backslash\{0\}, \cdot)$

O-Minimal Ordered Groups

Theorem

All groups are Abelian

O-Minimal Ordered Groups

Theorem

All groups are Abelian

Theorem

Let \mathcal{S} be an o-minimal structure on an ordered group \mathcal{R}, and say $\cdot: \mathcal{R} \times \mathcal{R} \rightarrow \mathcal{R}$ is definable in \mathcal{S}. Then \mathcal{R} is Abelian.

O-Minimal Ordered Groups

Theorem

All groups are Abelian

Theorem

Let \mathcal{S} be an o-minimal structure on an ordered group \mathcal{R}, and say
$\cdot: \mathcal{R} \times \mathcal{R} \rightarrow \mathcal{R}$ is definable in \mathcal{S}. Then \mathcal{R} is Abelian.

Lemma

The only definable subsets of \mathcal{R} that are also subgroups are $\{e\}$ and \mathcal{R}

Proof Sketch

Proof (lemma).

- Let $\{e\} \neq H \subset \mathcal{R}$ be a definable subgroup. Then $H=\left(s^{-1}, s\right)$ or $H=\left[s^{-1}, s\right]$.
Assume not, and say $e<r<h$ for $h \in H$ and $r \notin H$

$s=\infty$

Proof Sketch

Proof (lemma).

- Let $\{e\} \neq H \subset \mathcal{R}$ be a definable subgroup. Then $H=\left(s^{-1}, s\right)$ or $H=\left[s^{-1}, s\right]$.
Assume not, and say $e<r<h$ for $h \in H$ and $r \notin H$

$s=\infty$

Proof (\mathcal{R} is Abelian).

$r \in \mathcal{R}$: consider $C(r)=\{s \in \mathcal{R} \mid s r=r s\}$, a definable subgroup of \mathcal{R} Since $r \in C(r), C(r) \neq\{e\}$, so $C(R)=\mathcal{R}$ for all $r \in \mathcal{R}$

References

E- Michel Coste. An introduction to o-minimal geometry. Istituti editoriali e poligrafici internazionali Pisa, 2000.
E LOU AUTOR VAN DEN DRIES, Lou Van den Dries, et al. Tame topology and o-minimal structures. Vol. 248. Cambridge university press, 1998.

